
X. Yamato
Kagoya Math. J
Yol. 76 (1979), 35-114

AN EFFECTIVE METHOD OF COUNTING

THE NUMBER OF LIMIT CYCLES

KAZUO YAMATO

Introduction

We are interested in determining, after a finite number of procedures,
the number and the approximate positions of limit cycles for a given
•system.

For instance, let

ίx = f(x, y)

\

be a given autonomous system on an (x, 3>)-plane R2. Suppose that ana-
lytic expressions for the solutions of (*) are not to be expected. Then
in order to know the analytic properties of the solutions, we have to
study the "pattern" described by the family of integral curves. For this
purpose it is of basic importance to investigate the singular points (points
such that f(x, y) = g(x, y) = 0) and the limit cycles (isolated closed integral
curves), because the singular points and the limit cycles dominate the
global pattern. The problem of investigating the singular points is the
one of algebraic equations, while as to the problem of investigating the
limit cycles, any effective, general method has not been known yet.

The purpose of the present paper is to give a method by which the
number and the approximate positions of limit cycles can be determined.
Indeed we shall show that

( i ) our problem (i.e. determining the number and the approximate
positions of limit cycles) can be reduced to the problem of finding ap-
proximate solutions of a partial differential equation (denoted by (E) be-
low),
and as applications of our method to Lienard's equations we shall prove

(ii) the classical theorem concerning the generating circles of limit
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cycles (the typical result by the classical perturbation technique).

(iii) the Lienard's theorem (the existence of a unique limit cycle).

(iv) the comparatively recent result (Hochstadt, Stephan and D'hee-

dene) concerning the existence of an infinite number of limit cycles.

As for the features of our method we wish to emphasize the following:

( i ) In our proof of the existence of limit cycles we have not to

draw any geometrical figures. Moreover, the approximate positions of

limit cycles are given by algebraic inequalities. In this sense, our theory

plays the same role in the problems of limit cycles as analytic geometry

plays in purely geometric problems.

(ii) The essential part of our existence-proof of limit cycles is to

find the function by which the given system is to be multiplied. There-

fore, after having found it, we can note in a small space the function as

the key to the proof.

(iii) Because of the differential-topological property of our method,

the function (mentioned above) can be used also in the study of the per-

turbed systems (and hence in the study of the forced systems).

Let us explain our method in more detail. Let X be the vector field

corresponding to (*), i.e., X = fdjdx + gdjdy. As usual, let div X be the

divergence of X (with respect to the ordinary area-element dxdy), i.e.,

divX = /s + gy. We consider the following condition:

(D) (Xάiv X)(x, y) = {/(div X)x + £(div X)y}(x, y) < 0

for any (x,y)eΣ = {(x,y)|(divX)(x,y) = 0} .

This condition means that for each point p in Σ, the tangent vector Xp

at p points into the set {(x, y) | (div X)(x, y) < 0}. Therefore, if (*) satisfies

condition (D), then each closed integral curve for (*) is contained in a

connected component of R2 — Σ, and the function div X has a constant

sign along each closed integral curve; hence each closed integral curve

is positively or negatively asymptotically stable according as it is con-

tained in {(xfy)\(άivX)(x9y)<0} or in {(x, y) | (div X)(x, y) > 0}. In this
way, if system (*) satisfies condition (D), we can estimate the number of

limit cycles of (*) in terms of the topology of R2 — Σ.

Now, when (*) does not satisfies (D), what can we say? At this point,

notice that divX can take a different form when we multiply X by a

positive function eu{XiV\ and note that the vector field euX gives exactly

the same pattern as X (We do not try to change the area-element on
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R\ for a certain reason.) Then, if we can choose a function eu so that
the new vector field Y = euX satisfies

(YdivY)(x9y)<0

for any (x, y) e Σ' = {(x, y) | (div Y)(x, y) = 0}, then we can say the same

thing for (*) as for systems satisfying condition (D).

Well, but how shall we find such a function eu? Indeed, it is not

easy to solve directly the partial differential inequality

(DO e*X(div euX) < 0 o n Γ .

Our answer is to find approximate solutions eu of the partial differential

equation

(E) euX(άiv euX) - (div euXf = -λ2

(which is equivalent to

(X - div X)(Xύ) + (X- div X) div X + λ2e~2u = 0) ,

where λ is a constant. Note that for the solution (or approximate solu-
tion) eu of (E) with λ Φ 0, the vector field euX satisfies condition (D')
Hence if we find an approximate solution eu of (E), then we can estimate
the number of limit cycles. Furthermore, as we shall see, our knowledge
of the positions of limit cycles becomes more accurate as the approximate
solution of (E) becomes more correct. Thus, our problem of determining
the number and the approximate positions of limit cycles reduces to the
problem of finding approximate solutions of (E).

Let us explain equation (E). Analytically, the solution eu of (E) is
the "best" function (in the sense of calculus of variations) of all func-
tions satisfying (D') Geometrically, equation (E) means that the 1-para-
meter transformation group {φt} generated by euX has the following pro-
perty. Recall that div(eMX) gives the relation between the area ΛCP; U)
of an infinitesimal neighborhood U of a point p in R2 and the area Δt{p\ U)
of the infinitesimal neighborhood φt{U) of the point φt(p), by the formula

Δt{p; U) = J 0(p; U) exp f (div e«X)(φt{p))dt .
JO

Equation (E) means that the function Jt(p; U) of t behaves as the function



38 KAZUO YAMATO

ceu + (1 - c)e~u

where c is a constant (0 < c < 1) depending on the point p.
It should be remarked that the solution eu of (E) is a "generalized"

integrating factor for X. An integrating factor for X, if any, is a function
eu satisfying div (euX) = 0. (If such a function eu exists, then the pro-
blem of solving (*) reduces to a mere quadrature.) Note that if eu is an
integrating factor for X, then eu satisfies (E) with λ = 0. Hence the solu-
tion eu of (E) can be viewed as a generalized integrating factor for X.
Although integrating factors exist only in the exceptional case, our "in-
tegrating factors" exist for almost every X.

Let us now describe the contents of this paper.
In § 1, we deal with a vector field X defined on a closed surface M.

On M we fix an area-element ω. Then we can define the divergence div X
of X and the set Σ — {p e M|(div X)(p) = 0}. We begin with a geometric
theorem (Theorem 1.1.1), which asserts that if X satisfies

(D) (XdivX)(p) < 0 for any pel,

then we have

the number of limit cycles < %{Σ} — 1 + the genus of M,

where ${Σ) is the number of connected components of Σ .

The lower bound of the number of limit cycles is given by Proposition
1.2.1.

One of the main results of this paper is Theorem 1.1.2 which makes
Theorem 1.1.1 useful. Theorem 1.1.2 asserts that if X is "strongly" struc-
turally stable, then there exists a function eu:M—>R such that

(E) (euX - div ewX)(div euX) = -λ2,

where λ is a positive constant.

Practically the following (Theorem 1.2.2.) is more important. If e° is
an approximate solution of (E), i.e., if ev satisfies

_ ( ^ + ε)2 < ( e χ _ div evX)(άiv evX) < -(λ - ε)2

with constants ε, λ, 0 < ε < λ, then the set

{p e M\ (div evX)\p) >(λ- ε)2}
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contains all limit cycles. Moreover, this set approaches the limit cycles {and

singular points and separatrices) as e —> 0.

By this theorem we can get the approximate positions of limit cycles as
accurately as we want. Let us roughly explain this theorem. If a vector
field euX satisfies (E), then the set {pe M\(άiv euX)2 = λ2} is an invariant
set and contains all the closed integral curves (which are necessarily
limit cycles). Hence if a function e° approximates the function eu, then
the set {p e M\(άivevX)2 = λ2} also approximates the set above for euX,
and so gives the approximate positions of limit cycles.

1.3 and 1.4 are the proofs of Theorems 1.1.1 and 1.2.2 respectively.
It may be noted that the formula in Lemma 1.4.2 gives a new type of
relation between a curvilinear integral and a surface integral. We end
this section by giving an example satisfying condition (D).

In § 2 (which can be read independently of the rest of this paper),
we discuss the applications of our method to Lienard's equations

In order to solve equation (E), with X — (y — f)djdx — xdfdy, we use a
perturbation technique (except 2.5).

We begin with the modifications of Theorem 1.1.1 adapted for Lienard's
equations, and in 2.2 we give the approximate (or formal) solution of (E).
Using this approximate solution we obtain the classical result (cf. Lefschetz
[9, p. 320]) that the generating circles of limit cycles are given by the

zeros of cos θ f(r cos θ)dθ .
Jo

In 2.3 we study the case f(x) = μ sin x and prove the result (due to
Hochstadt, Stephan [6], and D'heedene [3]) that the system

jx = y — μ sin x

[y = — x (μ; nonzero constant)

has an infinite number of limit cycles.
In order to explain 2.4 and 2.5, we have to note that equation (E)

may reduce to the equation

(*X) = ±λ .

It is geometrically obvious that if a vector field X on R2 has a unique



40 KAZUO YAMATO

limit cycle with nontrivial characteristic exponent and has a unique sin-

gular point, say (0,0), then there is a function eu:R2 — {(0,0)}-+/? such

that the divergence div (euX) has a constant sign. (Indeed, as mentioned

in 2.1, we can make div (euX) = constant.) Recall that instead of multi-

plying X by eu, if we multiply the area-element dxdy by eu, then the di-

vergence divω X of X with respect to the area-element ω = eudxdy is given

by e~u(άiv euX) = Xu + d i v X Therefore, the equation divωX = constant

is linear (in w), while the equation div (euX) = constant is nonlinear.

Thus in order to study a Lienard's equation with a unique limit cycle

(or without limit cycle), we had better deal with the equation divω X =

constant. Under this view, the van der Pol equation is discussed in 2.4,

and the Lienard's theorem is proved in 2.5.

§ 3 is devoted to the proof of Theorem 1.1.2. Here it may be appropri-

ate to insert the geometric idea for the proof of this theorem. In order

to simplify the explanation, let us deal with a nonsingular vector field

I on Γ = R2/Z2, and suppose that X has a global cross-section and that

there are only two closed integral curves with nontrivial characteristic

exponent. We want to give a function eu such that euX satisfies (E).

Let A, B be the two closed annular domains bounded by the two limit

cycles. Let a, β be the areas of A, B respectively. (Clearly a + β = 1.)

Then we introduce a C2 vector field Y on T2 as follows:

where

aλ

π

Y —

sin

f(

π
a

•X

d
dx

I d

dy

for x

f(x) = Bl *
-1L sin —(x - a) for x e [a, 1] .

π β
Note that Y has just two limit cycles, x = 0, x = α:, and the areas of the

two annular domains bounded by these limit cycles are a, β respectively.

Furthermore it is easily verified that

( Y - div Y)div Y= -λ2 .

In order to get a function eu such that euX satisfies (E), it suffices to

construct a homeomorphism h: T2 -> T2 (diffeomorphism almost everywhere)

such that h is area-preserving and such that each integral curve for X
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is mapped by h onto an integral curve for Y (In fact, define eu by the
formula h*(euX) = Y). We construct such a homeomorphism h as follows.
Let γ be a noncompact integral curve for X. There is a unique point p
on p such that for an infinitesimal neighborhood U of p, the area of the
(infinitesimal) domain \Jt>ϋΦt(U) is equal to the area of {Jt^oφt(U), where
{φt} is the 1-parameter transformation group generated by X. Such points
p, when γ runs over all noncompact integral curves, constitute two cir-
cles SA C A, SB c B. Since h must be area-preserving and orbits-preserv-
ing, the circles SΛ, SB must be mapped by h to the circles x = a/2, x —
a + β/2 respectively. If the image of one point in SA is once determined,
then the images of other points in SA are uniquely determined again by
the requirement that h is area-preserving and orbits-preserving. Similarly,
the images of other points in T2 are also determined. In this way the
map h is constructed.

Let us return to the contents of § 3. In 3.1 we consider some geo-
metric conditions for a vector field. Lemma 3.1.1 gives a sufficient con-
dition in order that a pathpolygon is an a or ω-limit pathpolygon. In
3.2 we introduce the notion of an elementary vector field and investigate
its basic properties. The vector field euX satisfying the condition (E)
above is, by definition, an elementary vector field. A typical example of
elementary vector fields is the vector field Y on T2 mentioned above. The
geometric conditions in 3.1 are, roughly speaking, the geometric chara-
cterization of elementary vector fields. The precise formulation is Theo-
rem 3.3.1, which is more general than Theorem 1.1.2. A variant of Theo-
rem 3.3.1 is Proposition 3.3.2, to whose proof 3.4-3.7 are devoted. Lastly,
in 3.8 the proof of Theorem 1.1.2 is completed.

We mention Cherkas [1] for the recent review concerning limit cycles.
We also mention Bellman [13] for the various methods to solve equation
(E).

Finally we wish to refer to [12]. In the analysis of vector fields the
divergence is one of the basic notions. The corresponding notion of dif-
ferential forms is the exterior derivative. The paper [12] deals with the
geometric properties of integral manifolds defined by a completely inte-
grable 1-form by means of the exterior derivative.

The author wishes to express his appreciation to Prof. Shiraiwa who
made a number of useful comments on the manuscript.
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§ 1. The number and the approximate positions of limit cycles

Let M be a connected, orientable, closed (i.e., compact and without-

boundary) 2-dimensional manifold of class C3, and let ω be an area-ele-

ment (i.e., a nonsingular 2-form) of class C2 on it. We fix ω.

1.1. An upper bound of the number of limit cycles of a vector field

with condition (D)

Let X be a vector field of class C2 on M. Denote by Σ the set of

zeros of div X, that is,

Σ = {peM\(divX)(p) = O}.

We consider the following condition concerning X:

(D) (X div X)(p) < 0 for any p e Σ .

Note that condition (D) implies that I1 is a closed 1-dimensional submani-

fold of class C1 in M (see 1.3) and hence Σ is a union of a finite number

of circles.

We begin with the following simple fact. It shows the importance of

condition (D) and is our starting point for discussing the qualitative pro-

perty of X.

THEOREM 1.1.1. Suppose that X satisfies condition (D). Then the num-

ber of limit cycles is equal to or less than %{Σ} + g — 1, where #{2*} de-

notes the number of connected components of Σ, and g is the genus of the

surface M. Especially, in the case where M is a sphere (resp. torus), the

equality holds if X has, as singular points, only sources and sinks (resp.

if X is nonsingular).

This theorem will be proved in 1.3.

Unfortunately, vector fields satisfying condition (D) do not make a

dense subset in the set of all C2 vector fields on M, although they make

an open subset. In order to overcome the difficulty, we try to change

the velocity of X by multiplying a positive function eu so that the new

vector field euX (having obviously the same qualitative property as X)

satisfies condition (D). The following theorem tells us not only the pos-

sibility but also how to seek out such a function eu. Recall that a vector

field X on M is said to be structurally stable if a C -̂small perturbation

of X does not change the qualitative property of X. (For the precise

definition, see [10].)
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THEOREM 1.1.2. Let X be a vector field of class C2 on M. Assume

that X is structurally stable, and that (div X)(p) φ 0 for any singular

point p of X. Then there exists uniquely a continuous function u:M-+R

and uniquely a positive constant λ satisfying the following conditions:

( i ) The function u is of class C2 with respect to X, that is, the de-

rivatives Xu, X2u exist, and are continuous on M.

(ii) The function u is a solution of differential equation

(E) (X - div X)(Xu) + (X - div X) div X + λ2e~2u = 0.

(iii) The integral of u on M is equal to zero, that is,

uω = 0 .
M

We shall prove this theorem in § 3.

Remark. Let X, u, λ be as above. Then, using an elementary for-

mula div euX = eu(Xu + div X), we see that the vector field Y = euX satis-

fies the identity

( Y - d i v Y)div Y = -λ2

and hence especially condition (D). (Strictly speaking, although the as-

sumption concerning the smoothness of Y is not satisfied, it makes no

matter.)

1.2. A lower bound of the number and the approximate position of

limit cycles

PROPOSITION 1.2.1. Suppose that a C2 vector field X satisfies condition

(D). If X is structurally stable, then the number of limit cycles is equal to

or greater than the number of the connected components of M — Σ which

contain neither sources nor sinks.

This is an immediate consequence of the Poincare-Bendixson theorem,

the characterization theorem of Peixoto [10], and the plus or minus in-

variance of each connected component of M — Σ (see 1.3). The following

theorem will be proved in 1.4.

THEOREM 1.2.2. Let X be a C2 vector field on M, and let ε, λ be two

numbers such that 0 < ε < λ. Assume that there exists a C2 function v: M

-> R satisfying the inequalities
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-(λ + ε)V2* < (X - div X)Xυ + {X- div X) div X < -{λ - ε)V 2 ϋ .

M,.e = {p e M|e»(X<; + div X)(p) > λ - ε},

M_(λ_e) = {pe M\e\Xv + divX)(p) < - ( i - ε)}

have the following properties:

( i ) The sets Mλ_6, ikf_u_e) are 2-dimensional, compact, C1 submani-

folds (with boundary) of M, and are invariant in the negative direction of

X, in the positive direction of X respectively.

(ii) Every closed trajectory γ is contained in Mλ_ε U M_u_ε), and is

an a or ω-limit cycle according as γ is contained in Mλ_e or in M_α_e).

(iii) The respective areas of the sets Mλ_s, M_a.ε) are less than

arctan ^ I ^ ( 1 + ' ) ) . ί ω , where μ = — .arctan ^ ) ί ω , where μ
π (1 — μf JM X

Remark 1. Let X, v be as above. Then the vector field Y = evX

satisfies condition (D). In fact, it is an immediate consequence of the

inequality (Y — div Y) div Y < — (λ — εf which is equivalent to the right-

hand side of the above inequalities for v.

Remark 2. Assertion (iii) implies that if X is nonsingular on Mλ_s

U M_(;_e), then the sets Mx_ε and M_(;_e) approach limit cycles as ε—> 0.

1.3. Proof of Theorem 1.1.1

Let X satisfy condition (D). Since X(div X) = 0 at singular points of

X, the set Σ contains no singular point. This fact and condition (D) imply

that any point in Σ is not a critical point of the C1 function div X. By

the implicit function theorem we see that Σ is a closed 1-dimensional sub-

manifold of class C1 in M, and that {p e M \ (div X)(p) < 0}, {p e M \ (div X)(p)

> 0} are compact 2-dimensional submanifolds of M whose boundaries coin-

cide with Σ. Furthermore, condition (D) implies that for any point p of

Σ, the tangent vector of X at p points toward the interior of {p e M\ div X

< 0}. From this it follows that no limit cycle can traverse Σ, and hence

that each limit cycle is contained in a connected component of {pe

M|(divX)(p) < 0} or of {p e M\(divX)(p) > 0}. We must therefore esti-

mate the number of limit cycles contained in each connected component.

Let F be a connected component of {p e M\(div X)(p) < 0}. Note that



NUMBER OF LIMIT CYCLES 45

F is a connected, compact surface with boundary. Let #{dF} denote the
number of connected components of the boundary dF. Let g(F) be the
genus of the closed surface obtained by attaching %{dF} closed disks to
F (i.e. by identifying each boundary of the disks with each connected
component of dF).

LEMMA 1.3.1. The number of limit cycles in F is equal to or less than
g(F)

Proof. For simplicity of notation, we put g = g(F), h = #{3F}. Let
; Z2) be the 1st real homology group of F with coefficients Z/2Z. It

is easy to see that the dimension of HX(F\ Z2) is equal to 2g + h — 1.
Let I: H^F; Z2) X HX(F; Z2) -> Z2 be the bilinear map defined by intersec-
tion. We note that the rank of I is equal to 2g. Suppose now that there
were, in F, g + h limit cycles Cu C2, , Cg+h (C< Π Cj, = φ if i Φ j). Using
the facts that the integral of divX on an invariant set is zero (cf. [7,
p. 281]) and that (div X)(p) < 0 for any interior point p of F, we see that
any Cil9 Ci2, , C<y can not bound a 2-dimensional submanifold of F. Hence
the homology classes [CJ, , [Cg+h] in H^F; Z2) are linearly independent.
On the other hand, it is clear that /([CJ, [Cj]) = 0 for any i, j . From
these two facts we see that the rank of I is equal to or less than 2g — 2.
This contradiction proves our lemma.

From this lemma it follows immediately that the number of limit
cycles in {pe M\(div X)(p) < 0} is equal to or less than

ΣWF) + MβF] - V ,
F

where Fruns over all the connected components of {pe M\(divX)(p) < 0}.
To arrange the expression, we recall that the Euler characteristic of a
closed surface S is equal to 2(1 — genus of S). Then we have, for each
connected component F,

#{aF} + Σ index (p) = 2(1 - g(F)) ,
pGF

where p runs over the set of singular points in F, and index (p) denotes
the index of X at p. Using this relation and the fact that

we conclude that the number of limit cycles in {p e M\(άiv X)(p) < 0} is
equal to or less than
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| ( ί P } - Σ index (p)},
2 I divX(p)<0 J

where p runs over the set of singular points in {p e M\(divX)(p) < 0}.
Clearly, we have the similar inequality for the number of limit cycles in
{p e M\(άivX)(p) > 0}. Consequently, the number of limit cycles in Mis
equal to or less than

#{<?}-4" Σ index (p)

i.e.,

To prove the latter part of our theorem, let us consider the case
where M i s a torus and X is nonsingular. Then we can see easily that
each connected component of {pe M\(divX)(p) < 0} or {pe M\(divX)(p)
> 0} is homeomorphic to a closed annulus and contains at least one limit
cycle. From this it follows that the number of connected components
of {p e M\ (div X)(p) < 0}, {p e M\ (div X)(p) > 0} is equal to %{Σ} and hence
the number of limit cycles is equal to or greater than %{Σ}. From this
and the former part of our theorem, we conclude that the number of
limit cycles coincides with §{Σ), as desired. As for the case where M is
a sphere, we can prove similarly that the number of limit cycles is equal
to §{Σ) — 1. (Our assumption on singular points implies that the index
of each singular point is 1. Using the Poincare-Hopf theorem we see
that M — Σ is a union of two open disks and #{Σ} — 1 open annuluses.)

1.4. Proof of Theorem 1.2.2

Let the notation be as in Theorem 1.2.2. Introduce a vector field
Y = eυX. Recall the elementary formula div Y = e\Xυ + div X). Then
the assumption concerning υ can be written

-(λ + ε)2 < (Y- div y)div y < -(λ - εy.

The sets Mλ_ε, M_iλ_ε) can be written

Mλ_ε = {peM\ (div Y)(p) >λ-ε},

M_a_e) = {p e M | (div Y)(p) < -(λ - ε)} .

and hence the boundaries of Mλ_ε9 M_(̂ _e) coincide with {pe M|(div Y)(p)
— λ — ε}, {pe M|(div Y)(p) = — (λ — ε)} respectively.
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To prove (i), let p be a point of the boundary of Mλ_ε. From the in-

equality ( Y - div Y)div Y<-(λ- ε)2, it follows that (Ydiv Y)(p) < 0, and

hence that the tangent vector Yp points toward the exterior of Mλ_e. It

is clear that the boundary of Mλ_ε is a 1-dimensional, closed manifold of

class C\ because the C1 function div Y:M->R has no critical point on

the boundary of Mλ_6. Consequently, Mλ_ε is a 2-dimensional compact

submanifold of class C1 in M and is invariant in the negative direction

of Y and hence of X. Similarly, the assertion for M_a_ε) can be verified.

To prove (ii) let γ(s) be a closed trajectory for Y. By the mean value

theorem we see that there is a number s0 such that dlds\s=So (div Y)(γ(s))

= 0, i.e. (Ydiv Y)(γ(sΰ)) = 0. Hence {(div Y)(γ(sQ))}2 >(λ - ε)2. This means

that γ(so)eMλ_ε U M_a_t). Part (i) shows that γ(s) e Mλ_ε U M_a_ε) for all

s. The latter part of (ii) is obvious.

To prove (iii), we begin with a comparison theorem.

LEMMA 1.4.1. Let a:R-+R be a continuous function such that

(λ - ε)2 < -a(s) <(λ + ε)2

for all seR, where λ, ε are constants satisfying λ > ε > 0. Let h = h(s)

be the solution of a differential equation

d2h /XT
-Γj- = -a(s)h
ds2

with initial condition h(0) — 1, (dhlds)(0) = 0. Then h satisfies the follow-

ing inequalities:

cosh(λ — ε)s < h(s) < cosh(λ + ε)s for all se R ,

m&- <ζ (X + ε) tanh (λ + ε)s for all s > 0 .
h(s)

(Here h'(s) = dh/ds, as usual.)

Proof. Recall that

cosh(^ ± ε)s = \(eu±s)s + e~
u±e)s)

and that the functions g(s) — cosh (λ ± ε)s satisfy the differential equations

with initial condition g(0) = 1, ^(0) = 0. Now, consider two functions
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η±(s) — cosh (λ ± ε)s — h(s) .

To prove η+(s) > 0, η_(s) < 0, we observe that η±(0) = 0, J/±(0) = 0, and that

> α(S),+(S) , <

Since — a(s) > 0, we conclude that η+(s) > 0 for s Φ 0, and ^_(s) < 0 for
s Φ 0. Consequently, we obtain

V+(s) > 0 , η.(s) < 0

for all s, which show that h satisfies the former inequalities in our lemma.
To prove the latter inequality, note that G(s) = (λ + ε) tanh (λ + ε)s satis-
fies the differential equation

d G = (χ + ε)
2 _ G2

ds

with initial condition G(0) = 0. Using the inequality — a(s) < (λ + ε)2, we
observe that g(s) = h'(s)lh(s) satisfies the differential inequality

ψ < (λ + εf - ^2

with initial condition g(0) = 0. By the usual argument we conclude that
g(s) < G(s) for s > 0, and hence that #(s) < G(s) for all s > 0. This com-
pletes the proof of the lemma.

We prepare another lemma. Recall that Y = e°X. Let {ψs} be the
1-parameter transformation group generated by Y. For a 2-dimensional
compact submanifold N of M, we introduce the following notations. De-
note by 3N the boundary of N, and by area (N) the area of N, i.e.,

area (N) = ί ω .

We denote by ψs(N) the set {ψs(p) \p e iV}. Note that the 2-form ω|̂  on
JV" defines naturally an orientation of N, and the orientation of N defines
an orientation of dN in the canonical way.

LEMMA 1.4.2. Let N be a 2-dimensional compact submanifold of M.
Assume that there exist two positive constants μ, v such that (div Y)(ψs(x))
< —v for all s > μ and all xe N. Then we have
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area (ψs(N)) = - J ^ |J°° (exp £ (div

for any seR, where cγ is the interior product of Y and ω, i.e., the l-form

defined by (cγω)(ξ) = ω(Y,ξ).

Proof. Consider two functions

/(β) = area(ψ,(A0),

g(s) = - f { Γ (exp Γ (div Y)(ψXx))dσ)dσ)crω .
JxedN Us \ Jo / J

Note that for a fixed s, the integral

Γ ^exp Γ (div Y)(ψσ(x))dσ\dσ

converges uniformly for x in dN, and hence is continuous on dN, because

exp (div Y)(ψσ(x))dσ < constant-e~vσ

for any σ > 0 and any x e dN. It is obvious that lim^^ f(s) — 0 = lim^^ ^(s).

We contend that f(s) = g'(s). This will prove that f(s) = g(s). Using

elementary properties of Lie differentiation .£fγ, we observe that

f'(8) = -fϊ ω = A. f ψ*ω = f ^ r(ψ*ω)

= f ψf(^^) = ί Ψ.*((div I » = f (div Y)ω .

On the other hand, using the fact that the pull-back ψfω of ω by ψs is

given by

and recalling the formula j£?Fω = d(cγω) (cf. [7, p. 282]), we observe that

g\s) = f fexp Γ (div Y)(ψσ(x))dσ}cγω = f ^(ψ*ω)
J dN V. J o J J dN

= cγω = (div Y)ω .

Consequently, we obtain /;(s) — ^ ;(s), as desired. This proves our lemma.

Now, we return to the proof of Theorem 1.2.2. Consider a 2-dimen-

sional compact submanifold
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JV = {peM|(div Y)(p) < 0}.

Let a be a positive number defined by the formula

χ - ε = (χ + ε) tanh (λ + ε)σ .

We contend that

( 1) area (ψσ(N)) = - j ^ [[~ (expJ* (div y)(ψs(x))

( 2 ) M_iX_e) c ψσ(N) .

Formula (1) is a direct consequence of Lemma 1.4.2 and the assumption

(Y- div Y) div Y < -(λ - ε)2. To prove (2), it suffices to prove that

for any p in dN, because ikf_u_6), N are invariant by ψ8 (s > 0), and M_u_e)

C JV. To prove this, fix a point p in 9iV, and consider a function

/*(*) = exp {-£(div YXψs(p))ds} .

Then Λ(s) satisfies h(0) = 1, A7(0) = 0. Furthermore,

A'(β) = -(div Y)(ψs(p))h(s) ,

A^β) = - ( 7 d i v Y - (div Y)%h(p))A(s) .

Applying Lemma 1.4.1 to h(s) and a(s) = ( 7 div Y — (div Y)%h(p)), we

obtain

( 3) cosh (λ — ε)s < exp ( - Γ (div Y)(ψ9(p))ds) < cosh 0 + Φ
I Jo J

for all se R, and

( 4 ) -(div Y)(ψs(p)) <(λ + ε) tanh (λ + e)s

for all s > 0. From (4) and our definition of (7, it follows that

(div Y)(ψσ(p)) > -(λ - ε) ,

and hence that

ψσ(p) £{qeM\ (div Y)(q) < -(λ - ε)} .

Consequently, we see that M_α_ε) C ψσ(N), as desired.

Next, we contend that
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( 5) - — - — arctan (e~(λ+e) σ) [ cγω < area (ψσ(N)) ,
λ + ε JdN

(50 area(ψσ(Λ7)) < - — - — a r c t a n (<ru-e)σ) ί cγω .
λ — ε JdN

( 6 ) π- f cγω < area(iV) < ?—- f cγω .

To prove these inequalities, we use the formulas

Γ * ds = —2— arctan (e-(a±i)I) .
J« cosh (̂  ± ε)s λ ± ε

(Note that arctan 1/x = π/2 — arctan x.) Furthermore, we note that

I cγω < 0

because of the definition of the orientation of dN and because of the

positive invariance of N with respect to Y. Then, from (1), (3), we obtain

(5), (50, and (6). Moreover, these inequalities yield

area(iV) π(λ - ε)

In fact, by definition, we see that

I)
Hence, from (57) and the left-hand side of (6), we get at once (7).

To prove (iii) of our theorem, we need another inequality:

( 8) area (N) < area (M) .
2(λ — ε)

To prove this, we consider the set P = {p e Λf |(div Y)(p) > 0}. Then, we

have

(60 * . f cγω < area (P) < π f cγω
2{λ + ε) JdP 2(λ — ε) J dp

which correspond to (6). Since area (M) = area (N) + area (P), it is ob-

vious that

area (N) = \ area (M) + J ( a r e a (N) — area (P)) .
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Then, from the right-hand side of (6), the left-hand side of (6'), and the
fact that dN = — dP (as oriented manifolds), it follows that

area (N) < 1 area (M) + — επ f cγω .
2 2(λ — ε)(/ + ε) J ap

On the other hand, by the left-hand sides of (6), (60, we see that

—-— ιγω < area (M) .
λ + ε Jap

Consequently, we get

area (N) < — — area (M) .
2(λ — ε)

Now, using (2), (7), and (8), we obtain immediately

area (M_w_0) < / + ^ arctan {(-i-) } area (M) .

This is one of the desired inequalities. Similarly, we obtain the inequality
for axesi(Mλ_ε). This completes the proof of our theorem.

1.5. An example satisfying condition (D)

We shall give a simple example to which we can apply Theorem 1.1.1.
Let T2 be the torus {(x, y) e R2}jZ2, and let ω = dxdy (i.e. the ordinary

area-element on J2). Let f(x, y) be a C2 function on Γ2, and let μ be a
real number. Consider a vector field

X = μf(χ9y)^~ + ^-
dx dy

on J2. Since div X = μfx and

Z(div X) - (div X)2 = μ\ffxx - fl) + μfxy ,

we have:
If ffxx — fl < 0 on T2, then for μ with sufficiently large \μ\, the vector

field X satisfies condition (D), and hence the number of limit cycles of X
is equal to the number of connected components of Σ = {(x,y) e T2\fx(x,y) = 0}.

§2. Application to Lienard's equations

Let us consider a system of the form
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on an (x, y)-plane R2. In this section, as an application of our theory,

we investigate the number of limit cycles of (L) in some cases. We shall

discuss in 2.3 the case f(x) = μ sin x, and in 2.4 the case f(x) = μ(xz — x),

where μ is a constant. In the previous section, we studied under the

assumption that the surface on which X is defined is compact. For the

study of (L), we have to reformulate the assertions in § 1.

2.1. Modifications of Theorem 1.1.1

Let X be the vector field

on JR2. We assume that / is an odd function of x. For simplicity, we

assume that / is of class C°°. Let ω = ew(x'y)dxdy be an area element of

class C°° on R2. (In practice, we shall deal with the usual case ω =

dxdy.) Denote by div X the divergence of X with respect to ω. It is an

elementary fact that div X = Xw — fx. Moreover, for a C1 function u: R2

-> R, we have

div (euX) = (X+ div X)eu = e\Xu + div X) .

(We consider X + div X as an operator.) It is obvious that euX has the

same qualitative property as X. In order to investigate the system (L)

or the vector field X, we modify Theorem 1.1.1 as follows.

THEOREM 2.1.1. Assume that there exists a C2 function u:R2->R such

that the vector field Y = euX satisfies the following condition:

(DO (Y div Y)(x, y)<0 for any (x, y) e Σ ,

where

Σ = {(x,y)\(divY)(x,y) = O}.

Let n (0 < n < oo) be the number of compact connected components of Σ.

Then the number of limit cycles of (L) is equal to n — 1 or n.

Proof, If Σ = φ, then div Y has a fixed sign on R2 and hence there

is no limit cycle (Criterium of Bendixson [9, p. 238]). Suppose now Σ Φφ«
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Note that Σ is written as a disjoint union

Σ = Jx U J2 U U Jn U Li U U Lm

where Jt are Jordan curves, Lk are open, complete lines, and 0 < τ n < 00.
This is an immediate consequence of condition (D') and the implicit func-
tion theorem (applied to the function div Y: R2 —• R). Furthermore, we
observe that each trajectory γ intersects Σ transversely (if there is any
intersection), and the intersection of γ and each connected component of
Σ is at most one point.

Now, if n = 0, then there is no limit cycle. Because if there were a

limit cycle C, then by Green's theorem we should have (div Y)ω = 0
J D

where D is the disk whose boundary is C. Hence there would be a point
p in D such that (div Y)(p) = 0. Hence pe Lt for some /. Since Lt is
open and complete, we should conclude that Lt Π C consists of at least
two points. This is a contradiction.

Suppose now n > 1. Since the only singular point of X is the origin,
we may assume that Jί9 , Jn are ordered so that the domain bounded
by Jj is a disk which contains no other Jj9 and so that the domain
bounded by Jt and Ji+1 (1 < i < n — 1) is an annular domain which con-
tains no other Jjt It is obvious that the disk bounded by Jx contains no
limit cycle, because div Y has a fixed sign on the interior of the disk.
Furthermore, we see that each of the n — 1 annular domains contains
a unique limit cycle, because each annular domain is invariant in the
positive or negative direction of X, and div Y has a fixed sign on the
interior of the annular domain. Hence there exist exactly j — 1 limit
cycles in the domain bounded by J5 (j = 1, , ή). If n = oo, our theo-
rem is obviously proved. Suppose n < oo. Let U be the unbounded con-
nected component of if2 — Jn. By the same argument as above, we con-
clude that the number of limit cycles in U is at most one. This proves
Theorem 2.1.1.

Considering Theorem 1.1.2, we have a more precise modification of
Theorem 1.1.1.

THEOREM 2.1.2. Assume that there exists a C2 function u: R2->R and a
positive constant ε such that the vector field Y = euX satisfies the inequality

(Γ) (Y-div Y)divy< - ε 2 ,
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which is equivalent to

(I) (X-divX)Xu + (X- divZ)divX+ εV2* < 0 .

Furthermore, assume that ω = oo. Then the number of limit cycles of
J R"

(L) is equal to the number of compact connected components of Σ =

{(*,y)|(divY)(*,y) = 0}.

Proof. From our assumption (Y—div Y) div Y < — ε2, it follows at

once that the condition (DO in the preceding theorem is satisfied. We

use the same notation as in the proof of the theorem. To prove our

theorem, it suffices to prove that if n < oo, the set U (the unbounded

connected component of R2 — Jn) contains at least one limit cycle. To

prove this, we may assume that the vector field -X* points outward along

Jn. Denote by C+(Jn) the union of positive half trajectories starting at

points in Jn. It is clear that C+(Jn) — Jn is an open set in R2 and con-

tained in U, and that Jn is a connected component of the boundary dC+(Jn).

We contend that

C+(Jn)£Jn U U.

Indeed, from the assumption (Y— div Y) div Y < — ε2, we see that there

is a positive constant ε0 such that

div Y < - ε 0 on C+(Jn) - N(Jn) ,

where N(Jn) is a neighborhood of Jn. Using this inequality, we observe

that the area of C+(Jn) is finite, i.e.,.

ω < oo .
G+{Jn)

From the assumption ω = oo, we conclude that C+(Jn) ς: Jn U U, as
J R*

desired. Hence dC+(Jn) — Jnφ φ. Let γ be a trajectory passing through

a point in dC+(Jn) — Jn. It is obvious that γ C dC+(Jn) — Jn. If either

the α-limit set or the ω-limit set of γ is nonempty, then by the Poincare-

Bendixson theorem we conclude that there is a limit cycle in U. On the

other hand, since our system (L) is of the special form, we have the fol-

lowing:

LEMMA 2.1.3. There is no trajectory of (L) whose a and ω-limit sets

both are empty.
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This lemma is an immediate consequence of the following two facts
(proved by the argument similar to [5, p. 219]).

(i) If a trajectory γ through a point (xo,f(Xo)) (x0 φ 0) has not the
origin (0, 0) as its α-limit point or ω-limit point, then γ intersects the
positive y-axis {(0,y)13/ > 0} and the negative y-axis {(0,y)\y < 0}.

(ii) For any y+9 y~(y+ > 0, y_ < 0), either the positive half trajectory
starting at (0, y+) or the negative half trajectory starting at (0, y_) inter-
sects the curve {(x9 f(x)) \ x > 0}.

Consequently our theorem is proved.
In the study of the equation of van der Pol, the following theorem

will be useful.

THEOREM 2.1.4. Assume that fx(0)<0, and that ω = 00. Further-

more, assume that there exists a C1 function u:R2 — {(0, 0)} -> R and a
positive constant ε such that the vector field Y= euX on R2 — {(0, 0)} satisfies

div Y< -ε on R2 - {(0, 0)} .

Then there exists uniquely a closed integral curve for (L). This integral
curve is asymptotically stable.

Proof. The assumption fx(0) < 0 implies that the origin (0, 0) is a
source of (L). Hence there is a Jordan curve J about (0, 0) such that
the vector field X points outward along J. The same argument as in
the proof of the preceding theorem shows that the unbounded connected
component of R2 — J contains a unique limit cycle. It is obvious that
the limit cycle is asymptotically stable.

Remark. Assume that fx(0) Φ 0, and assume that

(άiv X){γ(t))dt Φ 0

for each nontrivial periodic solution γ(t), with period τ, of (L). Let λ be
a positive real number. Then there exists a continuous function u\Rz

—> R such that
(i) the derivatives Xu, X(Xu) exist and are continuous on R2.
(ii) the vector field Y = euX satisfies

(Y-div Y)div Y= -λ2 .

If, in addition, we assume that (L) has only one limit cycle, then we can
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take a continuous function u':R2 — {(0, 0)} —> R such that

(i) the derivative Xu! exists on R2 — {(0, 0)} and is continuous,

(ii) the vector field Y — eu'X satisfies

(divY)2 = ;i2 on 2? 2-{(0,0)}.

The proof of these facts is similar to the one of Theorem 1.1.2.

2.2. Approximate solutions of (euX - div (euX)) div (euX) = -λ2

From 2.1 we know that the problem of counting the number of limit

cycles of (L) is reduced to the one of solving the partial differential in-

equality

( I ) ( X - divX)Xu + (X- divX) άivX + ε2e~2u < 0 ,

where ε is a positive constant. Furthermore, we know that if the system
(L) is "structurally stable", then there is a function u satisfying the partial
differential equation

( E ) (X- divX)Xu + (X- divX)divX+ λ2e~2u = 0 ,

where λ is an arbitrary positive constant. (Equation (E) is equivalent
to the equation (euX - div (euX)) div (euX) = -λ2.) Therefore, it is im-
portant to seek out approximate solutions of (E). In the present paper,
in order to obtain the approximate solutions, we use a perturbation tech-
nique. For this purpose we introduce some notations.

In polar coordinates (r, θ) (x = r cos θ,y = r sin θ), system (L) becomes

I r = — cos θf(r cos θ) ,

θ = - 1 + — sin θf(r cos θ) ,

r

and the vector field X is written

μ (— 1 -I- — sin θ fir cos θ)\
dθ

X= - cos θ f(r cos 0 ) — + f - 1 + — sin θ f(r cos 0)V
dr \ r I

Put

X1 = - cos θ f(r cos θ)^- + — sin θ f(r cos θ)- d

dr r dθ

Then we have X = —d/dθ + Xt. For a function g = g(x,y), we write gθ
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For a continuous function g of angular variable θ, we put

2π Jo

If the mean value g vanishes, then we denote by gdθ the primitive func-

tion whose mean value vanishes. It is obvious that

J**-J>*-Ϊ-JΓ(I»*
The assumption g = 0 implies that gdθ is a function of angular variable

0, i.e., a periodic function with period 2π. For a continuous function g

of θ, it is obvious that (g — g)dθ is a function of θ. Note that if g{θ)

is odd (i.e., g(—θ) = —g(θ))9 then gdθ is defined (and even), because g

= 0. If g(θ) is even and g = 0, then the function #d# is odd and hence

Jo
f f*

we have gα0 = gdθ.
J Jo

PROPOSITION 2.2.1. Assume that f is written in the form

fix) = μfiix)

where μ is a constant, and /i is independent of μ. Let λ be a real number.

Put

a = - i- Γ (div X)d0 , & = — f * cos 0/(r cos θ)dθ ,
2ττ Jo 27Γ Jo

and put

(We consider χx as an operator) Let U0(r), U2(r), , Ϊ72w(r) (# ^ 1) be C°

functions depending only on r. Define

u = uo + μu, + μ2u2 + . . . + μ

2nu2n

as follows.

( 0 ) K o = [/„(/•).

μu1 = A- uΰrB ,
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where

A = ί (div X - a)dθ , B = ί (cos θf(r cos θ) - b)dθ , uOr = ^ - .
J J dr

(2 ) μ2α2 = f (Xψujdθ + (o - δujr ί Bd0 + (o - 6ιO f Adθ + μ

2U2(r) .

In general, for 2 < m < n,

(2m - 1) ^ m - 1 M 2 r o - 1 = J (XiΛ*2—»«,»_, - Xψ*m-2u2m_2)dθ + J J (XlΦ2m

where

(2ι») //2m«2ro = J (Xift—^-ddθ + jj (χ1Φin-1 - XiΦ^-Jdθdθ + μ2mU2m(r),

where

TΛen u e

- div X)X« + (X - div X) div X + Ar '

or - α)r + α(6w0r - o) + ί β " "

UtJ, - XlΦ2n - Xti-Xtμ^U^) ,

where

Proo/. For simplicity of notation, we put

E = (X - div Z)Xu + (X - div X) div X + Λ Γ " .

Recall that X = -3/95 + X,, χ, = X, - div X. Then we have

E = ( ~ + χ,)(-u f + X.U) + ( - - 1 - + χ.) divX+ ίe" 1-

= » o - (XlU), - χ,(M# - XlU) - (div X), + Zl(div X) + ΛV2" .

Substituting u = u0 + μUi + + μinu2n in this expression, and consider-
ing the powers of μ, since w0 = U0{r), we get
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- (div X)θ

(μ2u2)θθ - {Xiμux)e - Xι(μulθ - X.u,) + Z l(div X) + λ2e~2u

(μ*U3)θθ - {Xxμ
2U2)β — χx(μ2U2Q — XψUi)

^ - i ) , - Xiiμ271'1^^ - Xφ2n~2U2n.2)

- (Xφ2nU2n\ - χi(μ2nU2nθ - Xiμ

2n-ιU2n^) - Xl(-X^u2n) .

For 1 < j < 2n, put

Then

Φ8# - χ A + χi(div X) + λ2e'2u

Φze - X1Φ2

•••

Φjθ - xβ^,

u,*), - XlΦ2n - χ,(-

On the other hand, by our definition we see that μύus is an even or odd

function of θ according as j is even or odd, because A, B are clearly

odd, and the operators Xu χ1 preserve the property of "even" or "odd".

Hence we also see that Φj is an even or odd function of θ according as

j is odd or even. Let us return to the expression for E obtained above.

Since Φx = div X — a + buQr, we see that the 1st term Φίθ — (div X)θ cer-

tainly vanishes. It is easy to see that

Φie = —Xi(a - buQr) + b(buOr - a\ + a(buQr — a) .

Hence the 2nd term Φ2Θ - χι(Φι — divZ) + λ2e~2u is equal to

b(buor - a)r + a(buor - a) + λ2e~2u .

Now, for 3 < j < 2n, the definitions of μjuj9 Φ3 yield

( * ) ΦJΦ= XιΦj-i - XiΦj-i

(If j is odd, we have χxΦj-ι = 0, because χiΦ^-i is odd.) Consequently, we

see that E is equal to the desired expression.
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Remark. The formula (*) in the proof will be used later.

The following fact can be directly verified.

PROPOSITION 2.2.2. Let u = u0 + μux + + μ2nu2n be as in the pre-

ceding proposition. Then we have

div (euX) = e\a - buOr - Φ2 - Φ3 - - Φ2n

where

φ. = (μJUj), _ X^-'uj.d .

The following lemma gives us how to define the function u0.

LEMMA 2.2.3. Let a, b be the same as in Proposition 2.2.1. Assume

that b = b(r) has only a finite number of zeroes. Let b0 = 0 < bx < < bm

be the nonnegative zeroes, and assume that br(bi) Φ 0 for each bu in other

words, each bt is a simple root of b(r) = 0. Let K, λ be two positive numbers.

Furthermore, assume that w{x,y) depends only on r = Vx2 + y2, and that

ewdxdy = K for each i = 0,1, , m ,

where bm+ί = oo. Suppose that b(r) < 0 for re(0, &0. Define a function

Uo{r) by the following formulas:

Kλ J__ sin (— ί ω) for r Φ bt ,
>ewb \fc Jco,r] /2π>

where

\ ω—\ emdxdy
J [0,r] J 0<#2 + 2/2<r2

Then uo(r) is a C00 function of r, and satisfies the differential equation

b(buOr — a)r + a(buOr — a) + λ2e~2u° = 0 .

Furthermore we have

eu°(a - buor) = λ cos (—[ ω) .
VΛ: J[o,r] /

Remark. In the case where b(r) > 0 for r e (0, b^), we define uo(r) by

the formulas:
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— sin (— [ ω) for r Φ bt .
>wb \κ Jeer] /2ττ2 re

Then uo(r) satisfies the same conclusion as in the lemma, except that the
last formula is replaced by

eUo(a - buOr) = -λ cos (— ί ω) .

Before proving the lemma, we note the following fact.

LEMMA 2.2.4. Let α, b be as in Proposition 2.2.1. Assume that w(x, y}

depends only on r — Vx2 + yz. Then we have

a = — — Γ fx(r cos Θ)dθ - bwr ,
2π Jo

Proof. The former relation can be directly verified. By integration
by parts, we have

— Γ* sin2 θfx{r cos θ)dθ = — .
2π Jo r

From this we obtain the latter relation.

Proof of Lemma 2.2.3. To prove the smoothness of uo(r)9 clearly it
suffices to prove the smoothness of eUoir) at r = bi9 Let £ > 1. Note that
the C°° function b(r) is written

b(r) = (-ΐ)i+\r - bdβ(r) 9

where β(r) is a C°° function with β(bi) > 0. Using Lemma 2.2.4, we see

that β(bt) = (—iya(bi). Note that the C00 function sin(̂ /Λ: ί ω) is also
J [0,r]

written

Bin ( i
\A: Jco,r]

where σ(r) is a C°° function with σφi) > 0. Using the fact
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d [ ω = 2πrew ,
J [0,r]dr

we see that σ(bi) = {2π2jκ)biewihί\ From these expressions it follows that

e

2ττ2 rewβ{r)

on a neighborhood of r = bt. This shows that eWo(r) is of class C°° at

r = 6i. Similarly, we can verify that eUo(r) is of class C°° at r = 0. Con-

sequently, we see that uo(r) is a C°° function. Now, differentiating the

both sides of

beUo = - -
rew \κ Jco.r] /2ττ2 re"

we get

e^{br + buor) = — ^ ( _ 1 _ ) sin (£• f ω) - Jl cos (iL f ω ) .
27Γ2 \reW Ir \K J[0,r] / \ΛΓ J [0,r] /

The first term of the right-hand side is equal to —beUo(wr + 1/r). Since

6r = — a — b(wr + 1/r), we obtain

βMo(α - buOr) = ^ cos f — f ω) ,
\Λ: J[o,r] /

which is the latter formula in our lemma. Again differentiating the both

sides of this formula, we get

eu°{(a - buor)r + uor(a - buOr)} = (be^-'λ2 sin2 (•*• f ω) .

Since

b(a — 6w0r)r + «(« — buOr) = 6{(α —

we obtain

6(α - 6wo,)r + a(a - buOr) = tV^ίsin2 (iL ϊ ω\ + cos2 (*- f ω)}

This proves our lemma.

By taking u = u0 + μux + μ2u2 as an approximate solution of (E), we

can now prove the following fact.
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THEOREM (Lefschetz [9, p. 320]). Let f, b be the same as in Proposi-

tion 2.2.1. Assume that b = b(r) has only a finite number of zeroes, and

let b0 = 0 < 6j < < bm be the nonnegative zeroes, and R a number greater

than bm. Assume that br(b^) Φ 0 for each bt. Then there exists a positive

number μ0 such that if 0 < \μ\ < μ0, then the system (L) on the disk {(x, y) \ x2

+ y2 < R2} has precisely m limit cycles. As μ~*0, each limit cycle tends

to a circle {(x, y) \ x2 + y2 — bl} for some 6̂ (1 < i < m).

Proof. Put DR = {(x,y)\x2 + y2 < R2}. It is easy to construct a C°°

function w(r) so that

2π
Λ&ϊ + i

J hi

for i = 0, , m, where bm+1 — oo. Let ω — ew{r)dxdy, and let K — 1, λ — \μ\.

Then we can apply Lemma 2.2.3 or the remark. Define uo(r) by the for-

mulas in Lemma 2.2.3 or in the remark according as b(r) < 0 or > 0 on

(0, b^. By the definition of uo(r), we have at once

b(buor - a)r + a(buor - a) + μ2e~2u° = 0 .

Note that uQ(r) is independent of μ. Let i72(^) = 0. Defining μuu μ2u2

by the formulas in Proposition 2.2.1, and putting u = u0 + μux + μ2u2, we

get

(X~divX)Xu + (X- divX)divX

= b(buOr - a)r + a(buQr - a) - (X^2u2)e — χxΦ2 - tl

Hence

(X - div X)Xu + (X - div X) div X = -μ2e~2Uo + [μ]3 ,

where [μ]3 is a function such that

for any (x, y) e DR and any μ with \μ\ < 1, where Kz is a positive constant.

Since e~2u = e~2UQ(l — 2(μux + μ2u2) + •)> for each positive integer n, we

can find a constant μn > 0 such that

e-^ < - ^ e - 2 - 0 + [μ]3 < -μ ^ μ (
n I \ n

for any (x, y)eDR and any μ with 0 < \μ\ < /in. We may assume that

/*n < 1/n2 for each ι̂. Consequently we obtain
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_ (
\

_ d i v χ)Xu + {X- div X) div X < -( { (
n / \ n

for any (x, y) e DR and for any μ with 0 < \μ\ < μn. On the other hand,
by Proposition 2.2.2 and Lemma 2.2.3 or the remark, we have

div (euX) = ±μ cos (π [ ω) + [μ]2 ,

where [μ]2 is a function such that |[μ]2| < K2\μf for any (x,y)eDB and
any μ with \μ\ < 1, where if2 is a positive constant. From the proof of
Theorem 1.2.2 we now observe that if N is a sufficiently large number,
then for any n > N and for any μ with 0 < \μ\ < μn, the set

Mn = Ux,y)eDR\ |(dive XX*,y)| > ^ = ^ |^|}

is written as a disjoint union

Mn = A 0 UA,U U Am

where A* satisfy the following conditions:
( i ) Ao is a closed disk containing the origin, and each At (i > 1)

is a closed annular domain containing the circle x2 + y2 = 6 .
(ii) Each At is invariant in the positive or negative direction of X.
(iii) Each At (i > 1) contains exactly one limit cycle, and any limit

cycle in DR is contained in some At (i > 1).
(iv) As n -> oo, each At (i > 1) tends to the circle x2 + y2 = b\.

This proves the theorem.

Remark. The preceding theorem does not give us the qualitative pro-
perty on the whole plane R2. By means of a Liapunov function ([8]), the
following fact is known: (J. R. Graef [4, Theorem 3.1]) Assume that there
are positive constants k and c such that

f{x) > c if x > k

(and hence f(x) < — c if x < — k, because / is assumed to be odd). Then
there is a closed disk D such that the vector field X points inward along
the boundary 3D, and such that any trajectory starting in R2 — D enters
D after a positive time.
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2.3. The case f(x) = μ sin x

Let us apply our theory to the system

(x = y — μ sin x ,
Ίμ sin x

ly = - * ,

where μ is a constant. Hochstadt, Stephan [6] and D'heedene [3] proved
that for μφ 0, system (L)μsinx has an infinite number of limit cycles. We
shall prove this fact by taking such a function u — u0 + μux + + μ8u8

as in Proposition 2.2.1, by verifying that the system multiplied by eu satis-
fies condition (Γ) in Theorem 2.1.2 (in a neighborhood at oo), and by ob-
serving that the set Σ contains an infinite number of circles.

Now let f(x) = μ sin x, and recall the notation in 2.2. The vector
field X corresponding to system (L^s^ is written in polar coordinates

where

Xx = -cos θf(r cos θ)~ + — sin θf(r cos θ)— .
dr r dθ

For a function g of angular variable θ, we denote by g its mean value.

PROPOSITION 2.3.1. Let ω = dxdy and let μ Φ 0. Let u0 = U0(r) be a

C°° function such that

uo= — log ̂ - for r > 1 ,

and let U2(r) = ί74(r) = = Us(r) = 0. Define μuu μ2u2, , μ*us by the

formulas in Proposition 2.2.1. Put u = u0 + μux + + μ8u8. If ε is a

sufficiently small positive number, then there exists a positive number R

such that the function u satisfies

( I ) ( X - divX)Xu + (X- divX)divX+ e2e~2u < 0

on{(x,y)\r= Vϊf+J2 > R}.

For the proof we use the notation O in the following sense: for a
function g(r, θ) which is not assumed to have period 2π in the angular
variable θ, we write
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g(r,θ) = O(r-™)

if there exists a constant K such that rm \g(r, θ)\ < K for any r > 1 and

for any θ satisfying 0 < θ < 2τr.

LEMMA 2.3.2. 77ιe functions

a= - — f * fx(r cos 0)<20 , b = — Γ cos 0 /(
2ττ Jo 2ττ Jo

r cos

Λαi e ίΛβ following properties:

( i ) α = —μJ0(r), b = μJx{r), where J0(r), Jx(r) are the Bessel functions

of order 0, order 1 respectively.

(ii) ar = b, br = — a — —.
r

(iii) α = O(r-*\ b = O(r-*)

(iv) α2 + 62 = / / ( A + O(r-2))

Proof. The properties (i)-(iii) are well known in the theory of Bessel

functions. From the asymptotic expansions of Jo, Jx we have (iv).

LEMMA 2.3.3. The functions

A = Γ (-/Λ(r cos 0) - α)d0 , J3 = Γ (cos 0 f(r cos 0) - 6)d0
Jo Jo

have the following properties:

(i) Ar = B, Br= - A - — B+— sinθf
r r

(ii) A = O(r-t), B = O(r-*).

Proof. It is easy to verify (i). The proof of (ii) is the same as that

of Lemma 1 of Hochstadt and Stephan [6, p. 372].

LEMMA 2.3.4. The function

Φ2 = μ2u2θ - X1(μu1)

has the following property: For any integer i > 0 we have

psί + 2

) A ΦΦ2 o ( r ) , Φ2 o ( Γ ) ,
dr* V β> drιdθ dr'dθ2

Proof. By the definition of u2> we have
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φ2 = (α - buQr)rB + (a - buQr)A

and hence

ΦIΘ = (α — 6w0r)r(cos θf-b) + (a- buύr)(-fx - a)

ΦIΘΘ = (α — buQr)r(~-sin 0 / — r sin 0 cosθfx) + (a — 6w0r)(r sin 0/xa.) .

Recall that w0 = i log ττr/2. Hence MOr = l/2r. Using (ii), (iii) of Lemma

2.3.2, we observe that for any integer i > 0,

J^(α - buor) = O(r-t) .

On the other hand, by (i), (ii) of Lemma 2.3.3 we also have

A O(r) , fjB (ft) .
drι drι

Consequently, using Leibniz's formula we conclude that

for each integer i > 0. Similarly we can verify the others.

LEMMA 2.3.5. The function

μ2u2 = f (Xψuddθ + (a - buOr)r ί Bdθ + (a - buOr) ί Adθ

has the following property. For any integer i > 0 we have

Proof. First we verify that

f Adθ = O(r"*) , ί Bdθ = O(r"i).

By definition we have

J JO 2 7 r J θ \ J θ /

Using the fact A = O(r~*) we obtain Adθ = O(r~*). Similarly we obtain

Bdθ = O(r~%). Furthermore, using (i) of Lemma 2.3.3, we get
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for each / > 0. Consequently the function

g = (a- buQr)r ί Bdθ + (a - buOr) f Adθ

satisfies (d^dr^g = 0{r~ι). It is easy to see that g satisfies also

J? σ = Πfr'1) — £ — Oίr"^

drzdθ drιdθ2

Therefore, to prove our lemma we have to prove that the function

(Xφu^dθ satisfies

jL J (Xφuddθ = O(r->) , ^(Xφud = O(r-*) ,

To prove this, recall that μux = A — uOrB. Since Ar = .B, we have

χ i μ U ί = -cosθf{B - (Mo r B) r } + ™*lL{-fx - a - uQr(cosθf- b ) } .

Recall that wOr = l/2r. Hence, to prove 9*/3r* ί (X.μu^dθ = Oir"1) it suffices

to prove

Note that

Jcosff/JBcW = [(cos/?/- b)Bdθ + b \Bdθ = —B2 + b ίBdθ .

This shows that cos θfBdθ = Oίr'1). Furthermore, using (i) of Lemma

2.3.3 we observe that 97^* cos θfBdθ — 0{r~ι), as desired. It is easy to

see that (dηdr'χXφu,) = O(r^)9 (d^/dr'dθχXφu,) = O(r^). Our lemma is

proved.

LEMMA 2.3.6. Let g(r, θ) be a C°° function which is not assumed to

have period 2π in the angular variable θ. Let G(r, θ) be the function
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(X^dθ or the function (χιg)dθ.
Jo Jo

(i) Assume that for any integer i > 0, we have

ί fii + l

rt — Π(r~m) — a — Π(r
r*§ { ' ' dr*dθg~ {

~m+ί/2)

Then for any integer i > 0 we have

(ii) Assume that for any integer i > 0, we have

Then for any integer ί > 0 we have

Γθ

Proof, (i) Let G(r,θ) = {χxg)dθ. By the definition of χl9 we have
Jo

G(r, θ) = - Γ cos θfgrdθ + —[θ sin θ fgβdθ - Γ (div X)gdθ .
Jo r Jo Jo

First, we shall prove that the function Gj = cos θfgrdθ satisfies

dί

It is obvious that (d'/dr^f = O(r°). Hence, by the assumption (dlldrl)g =

O(r~m) we see that G1 satisfies the first two properties. Since

£ { (-r sinθfx)gr + cosθfgrθ} ,

by the assumption {dί+1jdrίdθ)g = O(r~m+h) we see that Gx satisfies also the

Cθ

last property. Similarly we observe that the function (div X)gdθ satisfies
Jo

the same property as G^ Next, we shall prove that the function G2 =

1/r sin θ fgθdθ satisfies
Jo
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Since (βt+1ldrΛdff)g = O(r"m + i), the function G2 satisfies the first two pro-

perties. Since

2 = J l -ί{cos ί/ft + sin 0 ( - r sin θ)fxgβ + sin
or r

and (d^jdr'dθ^g = O(r"w + 3 / 2), we obtain (dί+2/drW)G2 = O(r" m ^). In par-

ticular, the function G2 satisfies the same property as Gx. From these we

conclude that the function (χig)dθ satisfies the desired property. The
Jo

proof above shows that the function {Xxg)dθ also satisfies the same
Jo

property. Part (i) is proved.
Cθ

(ii) As in the proof of (i), let Gx — cos θ fgrdθ. We shall prove that
Jo

By integration by parts we have

Note that (d^dr^b = O(r~h) because of (ii), (iii) of Lemma 2.3.2, and note

that (d^dr^B = O(r~*) because of (i), (ii) of Lemma 2.3.3. Then the as-

sumptions (973r')g = O(r~m), (3<+1/3r*3^ = O(r~m) yield {d'jdr^G, = O(r~m^).

Since (3t+1ldrtdff)G1 = (d'/dr'Xcos θfgr), we have at once (dι+1ldridff)G1 = O(r"m).

Further, since

31+2 Gί = | ^ { - s i n θfgr + cos 0 ( - r sin θfx)gr + cos θfgrβ} ,

we obtain {dMldrid6F)G1 = O(r"m + 1). Similarly we observe that the function

(div X)gdθ satisfies the same property as Gv It is easy to see that the
Jo

function G2 = 1/r sin 0 jfecW satisfies
Jo
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In particular, the function G2 satisfies the same property as Gx. Con-
pθ nβ

sequently we see that the functions Xigdθ, χigdθ satisfy the same pro-
Jo Jo

perty as Gx. This proves (ii).

Proof of Proposition 2.3.1. We use the notation in Proposition 2.2.1.

We shall prove that

( i ) If ε is a sufficiently small positive number, there exist positive

constants K, Ro such that

b(buQr - a)r + a(buQr - α) + e2e~2u < - —

for all r > Ro.

(ii) χ i Φ 3 = O(r-v>), X lΦ 5 = O(r-\ XιΦ7 = O(r-5'2).

(iii) (X^u%)e = O(r-v>)9 XlΦ8 = O(r-v>).

(iv) χi(Xiμ*uB) = O(r-v*).

These and Proposition 2.2.1 will prove our proposition. In order to prove

our assertion, it is convenient to introduce the following notation: Let

g(r, θ) be a function which is not assumed to have period 2π in the an-

gular variable θ and which is of class C°° on {(r, θ) \ r > 0}. Let a, β be

two real numbers > 0. We write

if for any integer i > 0 the function g satisfies

Lemmas 2.3.4 and 2.3.5 assert that

( 1) Φ2 .= 0(r-u, 1,1) , μ2u2 = 0(r~ι\ | , 1) .

Furthermore, by Lemma 2.3.6 we have:

( 2 ) Jo « g ) d » , j o (Xlg)d6 - | o ( r.w_ έ ; ^ χ ) .f ^ ^ = o ( r_w ; α χ )

We shall also use the following obvious fact: If G(r,θ) = O(r~m;a, β) ,

then G(r, ̂ )d^ = O(r"m; a, β), because we assume that a, β > 0. We now
Jo

contend that
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( 3 )

( 4 ) Φ

( 5 ) Φ

( 6 )

( 7 )

( 8 ) Φ

Indeed, by definition we have

= J (XΛ - W * + J J
By (1), (2) we see at once that Φ3, μ

sus = O(r~'; 0,1). The formulas in

(3) are proved. By definition we have

By (2), (3) we obtain at once Φt, μ*u4 = O(r'w; J, 1). Similarly we can

verify (5)-(8). Our contention is proved. We can now prove our asser-

tion (i)-(iv). To prove (i), note that the function μu% + μ2w2 + + μsu3

is bounded on {(x, y) \ r2 = x2 + j 2 > 1}. Using Lemma 2.3.2 we get

b(buor - a)r + a(buΰr - α) + ε2e"2" = -^-{-μ* + εV2* + O^)} ,
πr

where ύ = μuλ + + μ8u8. Since e~2U is bounded on {(x,y)\x2 + y2 > 1},

we obtain (i). To prove (ii), we use again (2). Indeed, by (2), (3) we have

at once XίΦ3 = O(r~3/2; J, 1). This shows that χxΦ3 = O(r"3/2). Similarly we

get ^Φ"5 = O(r~2), γβΊ = O(r"5/2). In order to prove that {Xφ%u,)θ = O(r"3/2),

we note that

( 9 ) Γ (Xίμ*uB)dθ = O(r-w; 0,1) ,
JO

because of (2) and (8). Then by definition we get what we want. To

prove the latter part of (iii) we use again (2) and (8). Then
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Γ
Jo

XlΦ8dθ = O(r~^; 0,1)

and hence, in particular, Xl08 = O(r 5/2). It remains to prove (iv). The

formula (9) yields

O(r~^) , (Xiμ*uQ)r = O(r~^) , (X^uQ)0 = O(r ^2) .

From these it follows that χx{Xxμ
9u^ = O(r"5/2). This completes the proof

of our assertion (i)-(iv). Consequently our proposition is proved.

PROPOSITION 2.3.7. Let ω ••= dxdy, and μΦO. Let u = u0 + μuλ +

+ μ8u8 be the same as in Proposition 2.3.1. Then we have

div (e*X) = μeu{- ^/A- cos (r - -l) + O(r-^ .

Hence there exists a compact set K in R2 such that the set

Σκ = {(x, y)eR>- K\ (div e XXx, y) = 0}

consists of an infinite number of circles.

Proof. From Proposition 2.2.2 and (1), (3)-(9) in the proof of Proposi-

tion 2.3.1 it follows that div (euX) = eu(a + /iθ(r"1)). By (i) of Lemma 2.3.2

we have άiv(euX) = eu(—μJ0(r) + μθ{r~x)). It is well known that

cos O - fπr

This shows the former part of our proposition. The latter part is obvious.

By Propositions 2.3.1, 2.3.7 and from the proof of Theorem 2.1.2 we

now conclude that if μ Φ 0, then system (L)μ s i n x has an infinite number

of limit cycles. More precisely, we have:

THEOREM (cf. Hochstadt and Stephan [6], D'heedene [3]). Let μ φ 0.

Then there exists a compact set K such that the system (L)μ&inx restricted

on R2 — K has the following properties:

(i) It has an infinite number of closed integral curves.

(ii) Each closed integral curve is positively or negatively asymptotically

stable.

Remark. For generalizations of this result, see Comstock [2], Ponzo

and Wax [11].
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2.4. Lienard's equations with a unique limit cycle

It is well known that if μ is a positive constant, then the van der

Pol equation

π , (χ = y - μ(χ* - x),

has a unique limit cycle. The remark at the end of 2.1 asserts that if

μ > 0, there exists a function u: R2 — {(0, 0)} —• R such that the divergence

of the system

(x = {y - μ(x* - x)}eu

\y = -xeu

on R2 — {(0, 0)} (with respect to the ordinary area-element dxdy) is a ne-

gative constant. It is important to know the analytic expression of such

a function u. For instance, it will provide an effective tool in the study

of forced van der Pol equations. Here, we shall give explicitly a func-

tion w such that if 0 < \μ\ < 1, then the divergence divX of the system

(h)μ(χB-X) with respect to the area-element ω = ewdxdy satisfies

|divX| > positive constant

on R2 — {(0, 0)}. This and Theorem 2.4.1 mentioned below will prove that

if 0 < \μ\ < 1, the system (L)Mα;3_r) has a unique limit cycle.

Remark. Let X and w b e a vector field and a function on R2 respec-

tively. The relation between the divergence div0 (ewX) of ewX with respect

to the ordinary area-element dxdy and the divergence άivw X of X with

respect to ω = ewdxdy is given by the formula:

div0 (ewX) = ew div,, X .

We now begin by noticing the following fact corresponding to Theo-

rem 2.1.4. As in 2.1, let f(x) be a C°° odd function and let

dx dy

THEOREM 2.4.1. Suppose that fx(0) Φ 0. Assume that there exists a C1

function w: R2 — {(0, 0)} —> R and a positive constant ε such that the diver-

gence div X of X with respect to ω = ewdxdy satisfies the following inequality ι

divX< — ε or d ivX>ε
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on R2 - {(0, 0)} according as fx(0) < 0 or fx(0) > 0. If [ ω = oo where

D = {(x, y) I x2 + y2 < 1}, then there exists a unique closed integral curve

for (L). This integral curve is positively or negatively asymptotically stable

according as fx(0) < 0 or fx(0) > 0.

The proof is the same as that of Theorem 2.1.4. In order that we may

apply this theorem, we prepare the following proposition. We use the

notation in 2.2.

PROPOSITION 2.4.2. Suppose that f is written in the form

fix) = μfiix) ,

where μ is a constant, and fx is independent of μ. Put

a = - ϋ ί Γ fx(r cos θ)dθ , b = — Γ cos θ f(r cos θ)dθ .
2π Jo 2π Jo

Let W0(r), W2(r), , W2Jj) (n > 1) be functions defined on r > 0 and of

class C°°. Define a function

w = wQ + μwx + + μ27lw2w

on R2 - {(0, 0)} as follows.

( 0 ) u ; 0 = Wi(r).

( 1) μwx = A — wOrB ,

where

A={ (-fx(r cos θ) - α)<20 , B = f (cos β/(r cos 0) -

( 2) / M = J (Xψwjdθ + μ2W2(r) .

In general, for 2 < m < τι,

(2m - 1) i^-1^-! = J (X^'l)w

(2m) ^2WM;2TO = J W-lw

ί/ie divergence div X of X with respect to
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is given by

div X = a - worb + Σ Xiμ2mw2m + Xψ2nw2n .
1< w<n—1

(In the case n = 1, read div X = a — wOrb + Xλμ
2w2.)

Proof. Note that div X = Xw — fx. Substituting w = w0 + μvox +

— fx, and recalling that X = —djdθ + Xu we obtain

div X = — μw19 + XχW0 — fx

-μ2W2θ

-μkwkθ

-μ2nW2nθ + X^n-'w2n_x + Xiμ

ZnW2n .

Since XxwQ = — cos θfwOr, our definition of z^ implies that the 1st term

becomes

—μwlθ + XxwQ — fx = a — wOrb .

Note that μwx is odd (as a function of 0), and hence that X^wx is also

odd. Therefore the function μ2w2 — (Xφw^dθ + μ2W2(r) is well-defined

and even. The 2nd term —μ2w2θ + Xφw^ certainly vanishes. Generally,

both μkwk, X^kwk are even or odd functions of θ according as k is even

or odd. Our proposition is now obvious.

In order to apply this proposition to the van der Pol equation, let

f z= μ(χz — χ)9 and let W0(r) = — 41ogr, and W2(r) a function to be deter-

mined. Define w = w0 + μwλ + μ2w2 by the formulas in Proposition 2.4.2.

We know already that

div X = a — wQrb + X^2w2 .

We shall prove that if 0 < \μ\ < 1, and if W2(r) is chosen suitably, then

div X > positive constant or < negative constant according as μ < 0 or

> 0. (See Proposition 2.4.3 below. We will now give a heuristic argu-

ment for it.)

First, we contend that

a — wOrb = —μ .
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In fact, using the formulas cos2 θdθ — π, cos4 θdθ = fπ, we see that
Jo Jo

a = -(μ/2)(3r2 - 2), 6 = {μβ)r(%r2 - 1). Our definition of wQ implies that

a — wOr& = — μ.

Now, we must evaluate X^2w2. Note that μwι is odd (as a function

of θ), and so is μwlr. Hence μwlr can be written in the form

μwlr = μ sin 0 Ωx ,

where βj is even and in fact a function of r, cos 0. We consider Ωx as a

function of r, x. Recall that μ2w2 — {XφW^)dθ + μ2W2(r). Then we can

write

Note that μwlθ = —fx — (wOrlr)xf + μ. We now choose W2(r) so that

is divisible by (x2 — I)2. In other words, we define

— cos θfμΩx - —JμwΛdθ

= £ {j XfμΩi + λ.f{f, + ™*-xf - μ)]dx .

Then μ2w2r can be written in the form

fίwu = μ\x2 - Ϊ)Ω2

Thus

; = — cos θfμ*w2τ + — s i n β fμ2w2t

= f\-±.tίφ? - l)Ωt - sin2 θ ̂ {μxΩ, + fx + ~^-xf - μ}}

= -^ίrΩ2 + sin2 θ (xΩ, + ^xf + ±fs - l)\ .
r2 I \ μr μ )>

f
μr μ

It remains to determine Ωu Ω2. By definition we have

ir = - f (/, _ i . cos θf -μ)dβ.
Jo \ T /r

μwx,

Then it is easy to see that

μwίr = 2μr sin θ cos3 θ ,

whence
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Ω -

We contend that

Indeed, since ιυOr = —4/r, the expression for μ2w2 yields

Using the fact that

Γ (x2 - l)x\x2 - 2)dx = -^(ίc2 - l)2(x4 - 2x2 - 1) ,
J1 o

one can verify directly that

μ*W2r = μ\x* - 1){^(-^ 6 + X' + X2 + 1) + -

From this our contention follows. We now substitute these Ωu Ω2 in the

expression for X^2w2 obtained above. Omitting the intermediate calcula-

tions, we obtain

We shall prove that

on R2 — {(0, 0)}, where ε is a sufSciently small positive constant. This will

prove that if 0 < \μ\ < 1, then

d i v X = -μ(l - —X,μ2w2\ < -με or > -με
\ μ )

according as μ > 0 or μ < 0.

In order to prove the estimate (*), it suffices to prove that
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(ii)

r
Γ2

r
sin2.

f 2r 2Γ
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))>(-! +
>I * \ 2 +

It is obvious that (i) holds on x2 > J. Moreover (i) holds on r2 < f. If

^2 ^ i> a n ( i r* ^ 1> we have

ί l ί λ H _ 7 / 2 _ 1 \ Ί f /_ 7 X 7 - 7 .

because

max/2 =
27

If Λ2 < i, and f < r2 < 1, then

Ar' + 2rλ 2/1 " 2rΛ 2 + 7r2/
7/γ 3\ 3/7

> W\ Ίϊ) > ~ΊU
49

These show (i). To prove (ii), note that cos2 θ sin2 θ < \. Since (ii) holds

on x2 > f, it suίEces to prove that (ii) holds on x2 < f. If x2 < f, we have

ζ- sin2 ί (3Λ:2 - 2) = /̂ 2 cos2 tf sin2 θ (x2 - 1)2(3Λ:2 - 2) > ~ - i ^ 2 .

The estimate (ii) is proved. Consequently, calculating the terms wu w2

we obtain:

PROPOSITION 2.4.3. Put

w = - 4 log r + ~^-x(x2 - 2)y
r

T/ιeτι ί/ie divergence div X o/

with respect to ω = ewdxdy satisfies the following inequality: There is a

positive number ε such that
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- ^ ifo<μ<ι,

-μe i / - l < / £ < 0 .

Verifying that ω = oo for μ Φ 0, by Theorem 2.4.1 we have:
JR2-D

COROLLARY 2.4.4. Suppose that 0 < \μ\ < 1. TΛen. system (h)μix^x) has

a unique closed integral curve, which is positively or negatively asymptoti-

cally stable according as μ > 0 or μ < 0. (Compare Lefschetz [9, p. 268],

Hirsh-Smale [5, p. 218].)

2.5. A proof of the Lienard's theorem

Let f£x) be a C1 odd function such that £(*) has a single positive

zero xufx < 0 on (0, xt)9 and such that flx(x) > 0 if |* | > *1# Let X =

(y ~~ μfd^jdx — xdjdy, where μ is a nonzero constant. We want to prove,

by means of div X, the following theorem.

THEOREM 2.5.1 (cf. Lefschetz [9, p. 268]). The vector field X possesses

a unique closed integral curve. This integral curve is positively or nega-

tively asymptotically stable according as μ > 0 or μ < 0.

Proof. Let c,d:[—xl9 xt] -> R be functions defined by

c(x) = max (λ/x? - x\ μfx(x)) ,

d(x) = min (—\/χl — x\ μfλ{x)) .

We introduce a closed (topological) disk

D = {(x, y) I |* | < *,, d(*) < y < c(x)} .

It is easily verified that D is positively or negatively invariant for X ac-

cording as μ < 0 or μ > 0. Moreover, noting that X(x2 + y2) = —2μxfu

one sees easily that D contains no closed integral curve. On the other

hand, using the same Liapunov function as in Graef [4, p. 45], we see

that there is a closed disk E containing D such that E is positively or

negatively invariant for X according as μ > 0 or μ < 0. Hence E — D

contains a closed integral curve (Poincare's closed path theorem). We

shall prove its uniqueness. We define w: R2 — D —> R by the following

formula:

if |* | > xx
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The definition of D assures us that w is well-defined. It is obvious that

w is continuous (on R2 — D) and of class C1 except on |* | = xu Now, we

let ω = ewdxdy and consider the divergence div X (defined on R2 — D —

{|*| = *j}) of X with respect to ω. Using the formula divX = Xw — μflx,

we obtain

"x'1 on |* | < x1 ,

—μflx on |* | > *! .

Hence

on {(x,y) € R2 — D\x Φ 0, * =£ ± * J and the equality holds only on x — 0.

Noting that X\R2 — D traverses the lines x = 0 and |* | = *j (3/^0), we

conclude that if μ > 0 (resp. < 0), any closed integral curve in R2 — D

is positively (resp. negatively) asymptotically stable. Hence the closed

integral curve is unique (cf. [9, p. 235]). Theorem 2.5.1 is proved.

§ 3 Proof of Theorem 1.1.2

As in § 1, let M be a connected, closed 2-dimensional C3 manifold

with a fixed area-element ω (of class C2).

3.1. Geometric conditions for X and a decomposition of M

Let X be a C1 vector field on M. We consider the following condi-

tions :

(a) Each singular point of X is either a source, a sink or a saddle point

(cf. [5]).
(b) For any singular point p of X, we have

(c) For any periodic trajectory γ(t) of X with period τ, we have

(
o

(d) If there is a trajectory γ(t) which connects two saddle points

lim γ(t) = p , lim 7-̂ ) = g ,
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and if (div X)(p) is negative, then (div X)(q) is also negative.

Remark 1. Let X satisfy condition (b). Then, for any C1 function
v:M-+R, the vector field Y = evX, also, satisfies condition (b) because
of the formula div Y= X(eΌ) + eΌ div X and the trivial fact that X(ev)(p) = 0
for any singular point p of X.

Remark 2. For a singular point p of X, if (div X)(p) > 0 (resp. < 0),
then a function v:M->R satisfying

ev(P) =
- 1

(divX)(p) V ' (divXXp)/

has the following property:

(dive*X)(p) = e'^divJEXp) = 1 (resp. -1) .

In order to describe the qualitative property of X with these condi-
tions, we need the definition of pathpolygon.

DEFINITION (cf. Lefschetz [9]). A pathpolygon Γ is a closed subset of
M having the following properties:

(i) The set Γ is written as a union

N f t u in} u A u W U U A U {ϊr}

where pt are saddle points (not necessarily distinct), and γt are trajectories

with lim^.o. γt(t) = pi9 lim^+00 γt(t) = p<+1 (pr+i=jPi), and orbits {r<} =

(ii) There is a continuous map A: S1 X [0,1) -> M such that the image
h(Sι X 0) coincides with Γ and such that the restriction h\: S1 X (0,1) ->
A(S2 X (0,1)) is a homeomorphism whose image intersects with neither
local stable manifolds nor local unstable manifolds of the saddle points pt.

The set h{Sι X [0,1)) will be called a collar of the pathpolygon Γ.
An a-limit pathpolygon is defined to be a pathpolygon Γ which has a collar
W such that the α-limit set of any point in W — Γ coincide with Γ.
Similarly, we can define an ω-limit pathpolygon.

LEMMA 3.1.1. Suppose that X satisfies conditions (b), (d), and has a
pathpolygon Γ. Let p be a saddle point in Γ. If (div X)(p) is positive,
then Γ is an a-limit pathpolygon. If (div X)(p) is negative, then Γ is an
<ύ-limit pathpolygon.
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Proof. Let Γ = px U {rJ UftU {ft} Up r U {γr} as in the definition,
and let W be a collar of Γ. Replacing X by —X if necessary, we may
assume that (div X)(pd < 0. We shall prove that Γ is an ω-limit path-
polygon. Note that condition (d) implies that (div X)(pd < 0 for all L
Let g e Γ be a regular point. Choose a local coordinate system (£, r) in a
coordinate neighborhood U of q such that X— djdt on ί7, ω = ±dtdr on
the segment t = 0, and such that t/ Π Γ = {(*, r) | r = 0}, UΓ)W= {(ί, r) | r > 0}.
By means of the normal {(t, r) \ t = 0, r ^ 0} with coordinate function r, we
can define a so-called Poincare map /?: [0, ε) -» [0,1) for a sufficiently small
positive number e. Let £7* be neighborhoods of pt such that (div X)(x) <
— δ for xe [/*, where δ is a positive constant. Note that there exists a
positive constant I satisfying the following condition. For any T > 0,
there exists r0 > 0 such that for any point p with coordinates (0, r), 0 <
r < r0, the trajectory γ(t) starting from p has the following properties:

(i) The trajectory γ(t) crosses the normal {(0, r)\r > 0} at the point
with coordinates (0, p(r)) after a time τ > T for the first time.

(ii) The point γ(t) is contained in Ul=i Ut for any ί 6 [0, τ] — S, where
S is a union of a finite number of subintervals of [0, r] such that the sum
of the lengths is less than L

Using this fact and the formula

({φt} denotes the 1-parameter transformation group generated by X), we
can easily see that φ(r)/dr-> +0 as r—> +0, and hence that p(r) < r for
sufficiently small r > 0. This shows that Γ is an ω-limit pathpolygon.
Our lemma is proved.

Now, let X be a vector field satisfying conditions (a)-(d). We in-
troduce the following subsets of M. Let Ω be the set consisting of sin-
gular points and of limit cycles of X. Let Ω+ be the subset of Ω consisting
of singular points at which div X is positive, and of α-limit cycles. Simi-
larly, let 42 _ be the subset of Ω consisting of singular points at which
divX is negative, and of ω-limit cycles. It is clear that Ω = Ω+ U Ω_
(disjoint union) because of conditions (b), (c). Furthermore, we denote
by Ω+9 Ω* the sets consisting of saddle points at which div X is positive,
negative respectively. We put

Ξ+ = {pe M\p £ ί?ϊ, ω-lim (p) e Ω*},
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£_ = {p e M\p <z Ω*, α-lim (p) e β*} ,

Ξ = Ξ + { J Ξ_,

where α-lim (p), ω-lim (p) denote the α-limit set of p, ω-limit set of p re-

spectively (cf. [5]). Note that Ξ+ C) Ξ_ = φ because of condition (d). It is

obvious that the sets introduced above are invariant sets of X (in the

both directions).

PROPOSITION 3.1.2. Suppose that X satisfies conditions (a)-(d) and the

following condition:

(e) The a and ω-lίmit sets of every trajectory are either singular points,

closed orbits or pathpolygons.

Let Π+, Π_ denote the unions of a-limit pathpolygons, ω-lίmit pathpolygons

respectively. Then M is expressed as the disjoint union

M=Ω [J Ξ Ό MQ,

where

Mo = {pe M|α-limit (p) C i 2 + U Π+, ω-limit (p) c i J . U Π_}.

The subset Mo is open, and the subset Ω U Ξ is closed. The set Ω consists

of a finite number of singular points and a finite number of closed, orbits.

Furthermore, we have

fl+U5+={]?e M|α-lim (p) c i J + U Π+, ω-lim (p) c Ω+}

Ω_ U Ξ_ = {p e Mlαr-lim (p) c β_, ω-lim (p) c i 3 . U #_} .

Proo/. It is obvious that, Ω, Ξ, Mo are disjoint each other. By con-

dition (e) we see that for any point p of M, if p g Ω then the αr-limit set

of p coincides with a source, saddle point, α-limit cycle or α-limit path-

polygon, and the ω-limit set of p coincides with a sink, saddle point, ω-

limit cycle or ω-limit pathpolygon. In other words, M is expressed as a

disjoint union

lα-l im(p)cf l + U flϊ U /7+'
M = β U p e l - β

1 ω-lim (p) C β_ U β j U Π_

Note that condition (d) implies that

{p e M\ α-lim (p) 6 flί, ω-lim (p) e βj} = φ .

From these facts and the definitions of Ξ±, it follows immediately that

M = β U 5+ U Ξ_ U Mo and hence Λf = β U Ξ U Λf0. It is obvious that
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Mo is open and hence Ω U Ξ is closed. The former part of our assertion
is proved. We see easily that

Ω+ I) Ξ+d{pe M\a-lim (p) Ci2 + U Π+, <y-lim (p) c Ω+},

Ω_ U Ξ_ c {p e M|α-lim(p) C β_, ω-lim(p) C Ω_ U i7_} .

Since Mo and the two sets of the right-hand sides of these inclusion re-
lations are disjoint each other, and since M = Ω U Ξ U Mo (disjoint union)
as proved above, we conclude that in the inclusion relations, the equalities
hold.

It remains to prove that Ω consists of a finite number of singular
points and a finite number of closed orbits. To prove this, it suffices to
prove that the number of closed orbits is finite. Lemma 3.1.1 implies that
each pathpolygon (if any) has a collar containing no closed orbit. There-
fore in order to prove the finiteness of the number of closed orbits, it
suffices to prove the following lemma.

LEMMA 3.1.3. Suppose that a C1 vector field X satisfies conditions (a),
(c), (e), and has an infinite number of closed orbits. Then there exists a
pathpolygon Γ such that any collar of Γ contains an infinite number of
closed orbits.

Proof. Let πu ie I, be the infinite number of closed orbits. Denote
by {fti}' the set of points p such that the set {iel\πt Π U Φ φ] is infinite
for any neighborhood U of p. Then, using conditions (a), (c), (e) we see
that

(i) If pe{πiY9 then ω-\im(p) is a saddle point, and ω-lim (p) e {πt}'.
(ii) If p is a saddle point and p e {TΓJ', then there is a trajectory γ(f) such
that lim .̂oo γ(t) = p, and γ(t) e {TΓJ7 for each t.

Now, since M is compact, there is a point p e {TΓJ7. Then, from (i) it fol-
lows that ω-lim(p) is a saddle point PJ e {TΓJ7. By (ii) we have a trajectory
γx{t) such that l im^^ γ^t) = pu and γ^t) € {πj' for each t. Again from (i)
it follows that ω-lim (γ^t)) is a saddle point p2 6 {TΓ*}7, and hence l i m ^ γx(t)
— p2. Repeating the same arguments, since the number of saddle points
is finite, we obtain a pathpolygon Γ. It can be directly checked that Γ
has the desired property. This completes the proof of our proposition.
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3.2. Elementary vector fields

Let Y be a continuous vector field on M. Assume that Y generates

a unique 1-parameter transformation group {ψs} of M and that Y has a

divergence div Y. Furthermore, we assume that the divergence div Y is

continuous, and the derivative Y(div Y) exists and is continuous (on M).

Here, we define div Y to be a function on M such that for any seR and

any open set U d M, the area of the set ψs(U) is given by

ί fexp Γ (div Y)(ψ8(x))ds)ω .
Jxeu I Jo J

We define the derivative Yf of a function / by the formula

(Yf)(x) = lim %(* . (*) ) - /(*)}.
s-+o s

DEFINITION. Let λ be a positive number. We shall say that the vector

field Y is elementary with stability exponent λ if Y satisfies the equation

( Y - d i v Y)div Y = -λ2 ,

i.e.,

(Y(div Y))(p) - (div YY(p) = -λ2

for all peM.

DEFINITION. Let X be a vector field on M (such that X generates a

unique 1-parameter transformation group). A function u:M-+R is said

to be of class Cr with respect to X if u is continuous and if the derivatives

Xu9 X2u = X(Xu), , Xru exist and are continuous on M.

LEMMA 3.2.1. Let X be a C2 vector field, and let {φt} be the 1-para-

meter transformation group generated by X. Let u:M->R be a function

of class C2 with respect to X. Then the vector field Y = euX generates a

unique 1-parameter transformation group {ψ,} and has a divergence div Y

of class C1 with respect to Y. The divergence div Y is given by

div Y = X(eu) + eM(div X) .

Furthermore, for each point p in M, there is a function S(t) such that, for

all t,

( i ) φt(p) = ψS(t)(p).

( ϋ ) JΪψL = e-(Φt(P))9 S(0) = 0.
at
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(iii) P δ(t)dt = eu(p) Γ ^ ε(s)ds
Jo Jo

where

δ(t) = exp {£ (div X)(&(p))cft} , ε(s) = exp [ £ (div

Proof. For peM, let S(£,p) be the solution of the differential equation

d S ^ p ) = β-«<"(p)> with S(0,p) = 0 .

We define ψs by the formula

Ψs(p) = Φt(P)

where s = S(t,p). We can easily verify that {ψs} is the unique 1-para-
meter transformation group generated by the vector field Y. To prove
div Y = X(eu) + ew(div X), it suffices to prove that this formula holds in a
flow box at any regular point of X. This can be directly verified. It
remains to prove (iii). For this, we put

rt fiS(t)

= δ(t)dt - euW ε(s)ds .
Jo Jo

We shall prove h(t) = 0. First, note that h(0) = 0. From the formulas
in (ii) it follows immediately that

= δ(t) - eu™-ui''<*»6(S(t)) , A'(0) = 0 .
at

Furthermore, using the formulas

= 6(S(ί)) (div YX&

(div Y)(φt(p)) = e » w » ) . | d " ( ^ P ) ) + (div

we obtain

^ ( d i
at at

Since 7ι(0) = /̂ (O) = 0, by uniqueness theorem of differential equations we
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conclude that h(t) = 0, as desired. This completes the proof of our lemma.

LEMMA 3.2.2. Let X be a C2 vector field. Let u:M->R be a function

of class C2 with respect to X. Let λ be a positive number. Then, in order

that euX is elementary with stability exponent λ it is necessary and sufficient

that the identity

(X - div X)Xu + (X- div X) div X + λ2e~2u = 0

holds.

Proof. By Lemma 3.2.1 we have div (euX) = eu(Xu + άivX). By de-

finition, euX is elementary with stability exponent λ if and only if (euX

— div (euX))(dίv euX) = —λ2. It is easy to see that this equation can be

written

e2u{(X - div X)Xu + (X - div X) div X} = -λ2 .

This proves our lemma.

From this lemma we get immediately:

LEMMA 3.2.3. Let X, u be as in the previous lemma. Let u0 be a real

number. Then euX is elementary with stability exponent 1 if and only if

eu+u°X is elementary with stability exponent eUo.

The analytic property of elementary vector fields is given by the fol-

lowing lemma.

LEMMA 3.2.4. Let Y be an elementary field with stability exponent 1.

Let {ψs} be the 1-parameter transformation group generated by Y. Let pe M,

and put

£(s) = exp< (div
Uo

Then we have

ces + (1 - c)e-

where c is a constant satisfying 0 < c < 1. Furthermore, two infinite in-

tegrals ε(s)ds, ε(s)ds converge and coincide if and only if (div Y)(p)

= 0. If that is the case, we have
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ε(s) == — L - , (div Y)(ψ8(p)) = - tanh s .
coshs

Proof. Since ε(s) satisfies the differential equation

= (div

we see that the function l/ε(s) satisfies differential equations

1

Cl I 1 \ //j : , . Λ7\2 Λ7/J4,, T7W/ i / Λ\ 1( i r ) = ((divY)2-F(div
ds2 Vε(s)/ " ' x " " " " ε(s)

From the assumption (Y — div Y) div Y = — 1, we obtain

d2

which is a linear differential equation with constant coefficients. Since
ε(0) = 1, we conclude that

1 = ces + (1 - c)e"s

ε(s)

where c is a constant. Since ε(s) > 0, the constant c satisfies 0 < c < 1.

If c = 0 (or 1), it is obvious that ε(s)ds = oo ίor ε(s)ds = oo J. If 0 <

ε(s)ds, ε(s)ds converge, and that ε(s)ds =

J -oo JO

ε(s)ds if and only if c = | . On the other hand, since

J *μ = - ce; - 0; - f
we see that (div Y)(p) = 0 if and only if c = £. Consequently we conclude

that Γ ε(s)ds = Γ ε(s)<2s if and only if (div Y)(p) = 0. The latter part of
JO J-oo

our assertion is obvious, because if c = \, then ε(s) = 1/cosh s, (div Y)(ψs(p))
= — tanhs.

Remark. In order to explain the analytic property of elementary

vector fields, let us recall the meaning of ε(s) = exp < (div Y)(ψs(p))ds\.
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For simplicity, we assume that Y is of class C2. Then the 1-parameter

transformation group {ψs} induces the 1-parameter transformation group

{ψs*} on the tangent bundle of M. Let p e M, and let {vl9 v2} be a basis

of the tangent space at p. Denote by \(vl9 v2)\ the area of the parallelo-

gram with the two sides vί9 v2. Then it is an elementary fact that the

relation between \(vί9 v2)\ and \(ψs*vl9 ψs*v2)\ is given by the formula

\(ψs*vl9 ψs*v2)\ = \(vl9 v2)\ exp jί (div Y)(ψs(p))ds\ .

Therefore, if Y is elementary with stability exponent 1, then the function

1

of s is of the form const. {ces + (1 — c)e"s}9 which is one of the simplest

functions in analysis.

The preceding lemma implies the following geometric property of

elementary vector fields.

PROPOSITION 3.2.5. Let Y be an elementary vector field with stability

exponent 1. Let {ψs} be the 1-parameter transformation group generated by

Y. Put

= ±1},

M0-{peM||(divY)(p)|<l}.

Then we have

M — N+ U N_ U Mo (disjoint union) .

The two sets N+9 N_ are closed and invariant by {ψs}. Furthermore, for

any point p in MQ9 the a-limit set of p is contained in N+ and the ω-limit

set of p is contained in N_.

Considering the function f(s) = (llε(s))(dε(s)lds) instead of ε(s)9 we see

that the proof of Lemma 3.2.4 implies the following:

LEMMA 3.2.6. Every bounded solution f — f(s) of a differential equation

df
ds r + 1~

is given by
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f(s) = -
ces + (1 - c)e~s

where c is an arbitrary constant satisfying 0 < c < 1. Hence, the solution

is constant if and only if c = 0 or c = 1. If 0 < c < 1, £/ιen £/ιe solution

f has the following properties:

- 1 <f(s) < 1 for all seR ,

EXAMPLE. Let R2 be a plane with coordinate system (x9 y). Let Γ2

be the torus defined by R2l(2πZ X 2πZ), and let ω = dxdy be the area-
element on T2. Let Y be a vector field

Y=/(χ)J_ + £(x) A ,
dx dy

and assume that g(x) is continuous and periodic with period 2π. It is
directly verified that if f(x) = ί/m sin mx (̂  is a positive number and m
is a positive integer), then Y is an elementary vector field on T2 with
stability exponent λ. More generally, using the fact that a function /
defined by

/<*)=

— sin μx for x > 0

v
sin vx for # < 0 (μ, v; constants)

is of class C2 (at x = 0), we get many examples of nonsingular elementary
vector fields on T2. Conversely, we can prove that if X is a nonsingular
vector field on Γ2 and if X is structurally stable, then there is a homeo-
morphism which preserves the area-element ω and by which X is equivalent
to the vector field mentioned above. Indeed, in the proof of Proposition
3.3.2, we seek out essentially such a homeomorphism.

3.3. Existence theorems of the multiplier eu such that euX is ele-
mentary

In 3.2, we introduced a class of vector fields (elementary vector fields).
Despite its rather simple definition, this class is of generality in the fol-
lowing sense. For almost every vector field X, by choosing a suitable
multiplier, we can make X elementary. More precisely, as a (slightly
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generalized) reformulation of Theorem 1.1.2, we have:

THEOREM 3.3.1. Let X be a C2 vector field on M. Assume that X

satisfies conditions (a)-(e) as in Proposition 3.1.2. Then there exists a

function u:M-+R and a positive number λ such that

( i ) The function u is of class C2 with respect to X.

(ii) The vector field euX is elementary with stability exponent λ.

(iii) The integral of u on M, uω, is equal to zero.
J M

Furthermore, these u and λ are uniquely determined.

This theorem is a direct consequence of Lemma 3.2.3 and the following

proposition.

PROPOSITION 3.3.2. Let X be the same as in the preceding theorem.

Then there exists uniquely a function u:M-+R such that

(i) u is of class C2 with respect to X.

(ii) euX is elementary with stability exponent 1.

This proposition will be proved in 3.6. In 3.4, 3.5 we shall prepare

for the proof.

3.4. Solving linear differential equations with boundary conditions

We give some elementary facts of 1st order linear differential equa-

tions. Let d:R->R be a continuous function. Put

δ(t) = exp [[' d(t)dtl .
Uo J

LEMMA 3.4.1. Let d = d(t) be periodic with period τ. Assume that

Then the solution of a differential equation

dt

with condition

g(0) = ,

is given by
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Γ δ(s + t)ds I [ δ(s + t)ds \
git) = J° resp. J° I
* W (δ(τ)-l)δ(t) \ P (1 - δ(τ))δ(t) /

Proof. The general solution of dgjdt + d g — 1 is given by

g(t) = [c + £ δ(ί)ώ}/δ(ί) .

From the condition g(0) = g(τ), we get

c = \'δ(t)dtKδ(τ) - 1) .
Jo

On the other hand, by change of variable we have

fT δ(s + t)ds = Γ 3(ί)Λ + Γ δ(τ + t)dt - f (̂Odί .
Jo Jo Jo Jo

Note that <5(τ + t) = δ(τ)δ(t) because of the periodicity of d. Using these
relations, we see that

P δ(s + t)ds
g(t) = J°

Replacing g by —g, we get the assertion corresponding to the parentheses.

LEMMA 3.4.2. Assume that limt_±oo d(t) = 1 (resp.
Then the solution of a differential equation

+ d(t)g(t) = 1 (resp. -1)
at

with condition

Km g(t) = 1
ί^±oo

is given by

t)ds ( Γ δ(s + t)ds \

— H ' )
Proof. Let us consider the case lim^i^ d(t) — 1. Note that

Γδ(t)dt = oo , Γ oo .
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The general solution of dg/dt + d-g = 1 is given by

In order that g satisfies condition l i m ^ . ^ g(t) = 1, it is necessary to choose

c = Γ δ(t)dt ,
J —oo

because l i m ^ ^ δ(t) = 0. Let c be chosen as above. Since l i m ^ δ(t) = oo,

= 0, by the theorem of de Γ Hospital we see that

lim g(t) = 1 .
ί—±00

Furthermore, since δ(t)dt = δ(s + t)ds, we obtain
J —oo J —oo

f 3(s + ί)cfe

- —

Similarly, we can prove the assertion corresponding to the parentheses.

LEMMA 3.4.3. Assume that limί__oo d(t) = 1, l i m ^ d(t) = — 1. Further-

more, assume that

J-oo JO

Let k be a positive constant Then the solution of a differential equation

^ Ά + d(t)g(t) = -sin ίk-' Γ δ(t)dt)
dt \ Jo /

w iί/i conditions

g>0, lim g(ί) = l

isίs // and only if k = 2/^ δ(t)dt. If that is the case, the solution is
Jo

kcosik-1 ΐ δ(t)di)
g(t) = V Jo L .
^ δ(t)

Proof. The general solution is
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c - f f sin (k-1 f δ(t)dt))δ(t)dt

Changing the variable by z = δ(i)dt, we observe that

Jo

c - k + k cos (V1 Γ δ(t)dt)
git) = ^ ^ L .

On the other hand, by the assumption l i π v ^ d{t) = +1, we see that

= 0. Hence, in order that l im^g^) = 1, it is necessary that

c — k + k cos (k~x I δ(t)dt) = 0
\ Jo /

and

-1 Γ δ(t)dt)
Jo / — ilim

Hence, it is necessary that k = 2/π δ(t)dt. Conversely, let ^ be as above.
Jo

Put c = k. Then, we can easily verify thatg(Z) satisfies g > 0 , limt^±oog(t)

= 1. This proves our lemma.

3.5. The expression of the multiplier eu

Let Z be a vector field on M. Suppose that Z can be written

where X is a C2 vector field satisfying conditions (a)-(e) in 3.1, and υ is

a function of class C2 with respect to X. Let {Ce} be the 1-parameter

transformation group generated by Z (cf. Lemma 3.2.1). For pe M, put

δ(f,p) = exp {£ (divZ)(Ct(p))cft} .

Let M = Ω \J Ξ \J Mo be the decomposition induced by X as in Proposi-

tion 3.1.2. Note that Z induces the same decomposition. Now, let w:M

->R be a function of class C2 with respect to Z. Put Y=ewZ. In terms

of {ζj, div Z, H;, we shall study the condition for Y to be elementary with

stability exponent 1. Note that we have a basic relation div Y = Z(ew)
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+ ew div Z (cf. Lemma 3.2.1).

LEMMA 3.5.1. In order that

(Y - div Y) div Y = - 1 on Ω U Ξ

it is necessary and sufficient that

fl on Ω + U Ξ+ ,
div Y = ,

[-1 on fl_ U

Proo/. Suppose that (Y- div Y) div Y= - 1 on β U £\ Let p e β U £.
Let {ψj be the 1-parameter transformation group generated by Y. Consider
a function

f(s) = (div

It is obvious that the function / is bounded. Since Ω U Ξ is an invariant
set of {ψ J, we get

df(s)
ds

.-j*(s) = - 1 for all s .

From Lemma 3.2.6 it follows either that f(s) Ξ + 1 or that / has the
following properties:

- 1 < /(s)< 1 for all s, and lim f(s) == + 1 .

Hence, if peΩ + , it is obvious that f(s) = 1. If p 6^+, by the definition
of i?+, we see that lim^^/O) == 1, and hence f(s) = 1. Consequently, we
conclude that f(s) = 1 for peΩ+ I) Ξ+, in other words, div Y = l onfl+

U Ξ+. Similarly, we see that div Y = —1 on Ω_ U Ξ_. Conversely, sup-
pose that div y = + l o n f l ± U S ' ± . Since Ω± U Ξ± are invariant by {ψj,
we see that Y(div Y) = 0 on Ω± U B±, and hence that (Y - div Y) div Y
= - 1 on Ω U £.

LEMMA 3.5.2. Suppose that Z has a periodic trajectory γ = γ(t) with

period τ. If γ represents an a-limίt cycle {γ}, then in order that div Y = 1

on {γ}, it is necessary and sufficient that

P'δ(t,p)dt
eW(P) = ^7—, Γ forpe{γ}.

If γ represents an ω-limit cycle {γ}, then in order that div Y = — 1 on {γ}>
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it is necessary and sufficient that

P' δ{t,p)dt

1 - δ(τ,p)

Proof. Fix p e {γ}. Put

g(fy = e w \ d(t) = (div ZXC,(P» .

Note that g(2), d(ί) are periodic functions with period τ, and that d{t)dt
Jo

is positive or negative according as {γ} is an α-limit cycle or cy-limit cycle.

Since div Y = Z(ew) + ew div Z, we have at once

(div Y)(ζt(p)) - 4gg>- + g(t)d(t) .

Hence, we see that div F = l on {γ} if and only if

Applying Lemma 3.4.1, we see that div Y — 1 on {?-} if and only if

fΓ δ(s + Ô s
= -h(δ(τ) -

i.e.,

t(p)> -_. Jo

Using the facts that

δ(τ9p) = δ(τ, ζt(p)) for all t ,

δ(t + 5, p) = δ(t9 p)δ(s, ζt(p)) for all s, t,

we observe that eMζt{p)) can be written

δ(s, ζt(p))ds

Keplacing Z by — Z, we obtain the latter part of our lemma.

Remark. Let γ be as in the preceding lemma. Suppose that {γ} is
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an ω-limit cycle. Let p e {γ}. Then we have

[ δ{t,p)dt Coo

-f—-—- = δ(t,p)dt.
l-δ(τ,p) Jo

In fact, since 1 > δ(τ, p) > 0, we observe that

[δ(t,p)dt Cτ

J i L - _ = δ(t,p)dt{l + δ(τ,p) + δ2(τ,p) + + 3 » ( τ , p ) + • • • } .
l-δ(τ,p) Jo

ΛT p(n+l)τ

Note that δn(τ,p) δ(t,p)dt = δ(t,p)dt9 because δn(τ,p)δ(t,p) = ^(nr + ί,p).
Jθ Jwr

Then we get at once the desired formula.

LEMMA 3.5.3. Assume that d i v Z = ±1 on Ω±. Suppose that Z has

a pathpolygon Γ. If Γ is an a-limit pathpolygon, then in order that div Y

= 1 on Γ it is necessary and sufficient that

Γ°
J-oo '

// Γ is an ω-limit pathpolygon, then in order that div Y= — 1 on Γ it is

necessary and sufficient that

ew(P) _. gfopjdt for all peΓ .
Jo

Proof. As in the proof of the previous lemma, let pe Γ, and put

g(t) = e"(*(*» , d(t) = (div Z)(ζt(p)) .

Then we have

iv yχc,o>)) = ^ - + g(t)d{t).
at

Suppose that Γ is an α-limit pathpolygon. By assumption, we have

div Z(saddle points) = ± 1. From this and the definition of Γ, it follows

that lim^±oβ d(t) = 1. Now, suppose that div Y = 1 on Γ. Then we have

at

First, let p be a saddle point (in Γ). We contend that
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= f°

Indeed, it is obvious that g(t) is constant, and d(t) = 1. Hence we have

g(t) ΞΞ 1, whence ew(p) = 1. On the other hand, we also have δ(t,p) = e* and

hence <5(£, p)cft = 1. This proves what we want. Next, let p be a re-

gular point (in Γ). By what we have seen, we know that lim^±co g(t) = 1.

Then by Lemma 3.4.2, we get

f° δ(s + t,p)ds

ί(ί,p)

Using the fact 5(ί + s,p) = δ(t,p)δ(s, ζt(p)), we obtain

Conversely, suppose that

Γ° for all /? e Γ
J - c

Let p be a regular point. Since Γ is invariant by {ζj, we see that ew

satisfies the formula obtained above. Again by Lemma 3.4.2 we see that

dg(t)/dt + d(t)g(t) = 1 and hence that (div Y)(ζt(p)) = l This proves that

div y = l on the regular points in Γ. By the continuity of div Y, we

conclude that div Y = l o n Γ , Replacing Z by — Z yields the latter part

of our lemma.

Remark, Let Z be as in the preceding lemma. Let p e Ξ+ (or 5r_),

and put

g(t) - J° ^ δ(s, ζt(p))ds (resp. J~ δ(s, ζt

Then from the proof of the lemma, we have

at

(resp. * Ά = - 1 - (divZXCt(p)) g(ί)) .

Similarly we can prove the following.
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LEMMA 3.5.4. Assume that div Z = ± 1 on Ω± U Π±, where Π+9 Π_

denote the unions of a-limit pathpolygons, ω-limit pathpolygons respectively.

Put Π = Π+ U Π_. Then in order that

,. „ fl on Ω + U B+ ,
div Y = I

(-1 on Ω_ U # - ,

Ϊ£ is necessary and sufficient that

1 for peΩ U Π ,

eMP) = . J_ δ(t,p)dt for p e Ξ+ ,

Γ 3(ί, p)ώ /or
\JO

LEMMA 3.5.5. Assume that divZ— ±1 on Ω± U Π± (as in the preced-

ing lemma). Let Mo be the same set as in Proposition 3.1.2.

( i ) The function δ(t, p) converges to zero uniformly in the wider sense

for peMQ as t—> ±oo. Moreover the infinite integrals

Δ+(P) = Jo°° δ(t, p)dt , Δ_(p) = J° δ(t, p)dt

converge uniformly in the wider sense for p e MQ. Hence J+(p), Δ_(p) are

continuous functions on Mo.

(ii) Put

If Y is elementary with stability exponent 1, then we have

(iii) Each point p in Mo can be written uniquely

P - Uq)

with qe Σ, τ e R.

(iv) If Y is elementary with stability exponent 1, then we have

-1 [' δ(t,q)dt)
Jθ /

e

δ(t, q)

for any qe Σ and any te R, where k = 2/ττ δ(t, q)dt. Conversely, if w
Jo
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satisfies this equality for any qe Σ and any te R, then we have

(Y - div Y) div Y = - 1 on Mo .

Proof of (i). By definition we have

ω-lim (p) c Ω_ U ZL for p e Mo .

By assumption we have

d i v Z = - 1 on Ω_ U Π_ .

Hence for each point p in M09 we find a real number T and a neighbor-

hood E7(p) of p satisfying the following condition: For any pf e U(p),

there are a finite number of intervals Iu J2, , J r such that the sum of

the lengths is less than T and such that

(div ZXCXP')) < — \ for all t e [0, oo) - U I* .

Hence for each p e Mo, there is a neighborhood [7(p) of p and a constant

such that

f (div Z)(ζt(p'))dt < -~t + const. for all * > 0 and all ;/ e C/(p) .
Jo 2

Clearly £(£, p) converges to zero uniformly in the wider sense for p e Mo

as t-> oo. Moreover this inequality shows that the infinite integral

δ(t, p)dt = £ |exp £ (div

is uniformly convergent in the wider sense, and hence a continuous func-

tion of p e Mo. Similarly, we can prove the other assertions.

Proof of (ii). Suppose that Y is elementary with stability exponent

1. Then from Lemma 3.5.1, Propositions 3.2.5 and 3.1.2, we observe that

{p e M | ( d i v Y)(p) = ± 1 } = Ω ± \ J B ± .

Hence in particular, we see that if p satisfies (div Y)(p) = 0, then p e Mo.

Therefore to prove (ii), it suffices to prove that for p e Λf0, the condition

Λ+CP) — ^-(p) is equivalent to the condition (div Y)(p) = 0. Let {ψj be

the 1-parameter group generated by Y. Let p e MQ. Put

ε(s) = exp
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Using Lemma 3.2.1, we have

ΔΛP) = Γ δ(t,p)dt = e«» Γ e(s)ds ,
Jo Jo

Δ_(p) = j° δ(t,p)dt = eM

On the other hand, by Lemma 3.2.4 we know that the condition ε(s)ds
Jo

= ε(s)ds is equivalent to the condition (div Y)(p) = 0. These prove
J -oo

what we want.

Proof of (iii). Fix p e MQ. Consider a function

h(t) = ΛΛUP)) - Δ.QI
Since the condition h(—τ) = 0 is equivalent to the condition ζ_τ(p)e2τ,
it suffices to prove that h(t) has a unique zero. First, we shall prove its
existence. By the assumption divZ= ± 1 on Ω± U Π± and by the defini-
tion of M09 we have

lim(divZ)(C ί(p))=+l.

t->±oo

From this it follows that

lim Δ±(ζt{p)) = 1 , lim Δ±(ζt{p)) = ex. .

Hence we obtain

lim h(t) = + oo ,

which shows that /ι(ί) must have at least one zero. Next, to prove the
uniqueness, we shall prove that h(t) satisfies

= _ 2 - (div Z)(ζt(p))h(t) .
dt

This will show that the differential coefficients of h at zeros are negative
and hence prove the uniqueness of the zero of h. Note that

^(divZ)(ζs(ζ4(p))) =

Then
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-%rδ(s, ζt(p)) = -^-<5(s, ζt(p)) - <5(s,,
at as

Using this formula and the fact

we get

d

d

dt

Consequently we obtain

dψ- = -2- (div Z)(Up))h(t) ,
at

as desired.

Proof of (iv). Fix qeΣ. As in the proof of Lemma 3.5.2, we put

Then

^ - + d{t)g(t) = (div YXUq))
at

In order to apply Lemma 3.4.3, note that

lim d(t) = + 1 ,
£-»±oo

because divZ= ± 1 on ί3± U /Z±. Furthermore, note that

Γ δ(t, q)dt = Γ ί(ί, q)dt ,
Jθ J-oo

because qeΣ.
Now, suppose that Y is elementary with stability exponent 1. Then

from Lemmas 3.5.1 and 3.5.4 we see at once that

lim g(t) = 1 .
ί—±oo

We contend that

(div YXCfo)) = -sin (e-^ £ δ(t, q)dt) .
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This and Lemma 3.4.3 will show that

ew(q)

:»<«> = A Γ δ(ί, q)dt ,
π Jo

*β(<,ήr)d<)
0 /

and hence will prove the former part of (iv). Now, we must prove the
formula above. Let {ψj be the 1-parameter group generated by Y. Put

ε(s) = exp [ [ (div

Let S(t) be the function defined by

Then using Lemma 3.2.1, we obtain

δ(t, q)dt = eMq) ε(s)ds .
Jo Jo

On the other hand, by Lemma 3.2.4 we have

e(s) - - 1 — ,
coshs

because (div Y)(q) = 0. We use the fact

Γs 1
ds = arcsin tanh s .

Jo cosh
coshs

(This function is known as the Gudermann function gd s.) Then we have

sin (e-w(q) P δ(t, q)dt\ = tanh S(i) .

By Lemma 3.2.4 we have also

tanh s = -(div Y)(ψs(q)) .

Consequently we obtain the desired formula.
Conversely, suppose that

k cos (V1 Γ δ(t, q)dt)
ew(ζt(q)) _ \ Jθ /_

δ(t, q)



106 KAZUO YAMATO

for all te R. This is written

k cos (k~ι I δ(t)dt\

δ(t)

where

δ(t) = exp (T d{t)dt\ , k = — Γδ(t)dt.
\Jo / ^ Jo

Applying Lemma 3.4.3, we see that g(t) satisfies

d(t)g{t) = —sin (k~x

Hence we conclude that

(div Y)(ζt(q)) = - s i n (*-*

On the other hand, since Y — e™Zy we have

(Fdiv YXCfo)) = e « ^
at

Consequently,

(Fdiv Y)(ζt(q)) = β"<*«»-

Calculating the derivative of the right-hand side yields

(Ydiv Y)(ζt(q)) = -gφk-'δit) cos fife-1 Γ

"1 ΐ δ(t)dt\Y

= {(div ^(ζ.fe))}2 - 1 .

This and (iii) show that 7 div Y = (div Y)2 — 1 on Mo. Our lemma is

proved.

Remark. Let the assumption and the notation be as in Lemma 3.5.5.

Fix qeΣ. Put

k cos (k~ι Γ δ(t, q)dt)

= ^ - / ^ L
δ(t, q)
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Then we have

*£& = - s i n (k-* £ ί(ί, g)<ft) - (div Z){ζt(q))g{t) .

3.6. Proof of Proposition 3.3.2

Let X be a C2 vector field satisfying conditions (a)-(e). We use the

notation in Proposition 3.1.2. Let M = Ω [j Ξ \J MQ be the decomposition

induced by X. Let v: M-+R be a function of class C2 with respect to X.

As in 3.5, put Z = evX, and let {ζj be the 1-parameter transformation

group generated by Z. By the following two lemmas we may assume that

Z satisfies

d i v Z - ± 1 on Ω± U Π± ,

and we see that in order to prove our Proposition, it suffices to prove

our assertion for this vector field Z.

LEMMA 3.6.1. There exists a function v: M-+R of class C2 with respect

to X such that div(eϋZ) = ±1 on Ω± U Π±.

This lemma will be proved in 3.7.

LEMMA 3.6.2. Let v be a function of class C2 with respect to X. Put

Z = eΌX. If there exists uniquely a function w:M-+R of class C2 with

respect to Z such that ewZ is elementary with stability exponent 1, then

there exists uniquely a function u:M->R satisfying the conditions (i), (ii)

in Proposition 3.3.2.

Proof. We can check directly that the function u = υ + w has the

desired property.

Now, we return to the proof of our proposition. Note that we can

use Lemmas 3.5.4 and 3.5.5, because we have assumed that d i v Z = ± 1

on Ω± U Π±. First, we shall prove the uniqueness of such a function w.

Suppose that there is a function w of class C2 with respect to Z such

that ewZ is elementary with stability exponent 1. From Lemmas 3.5.1 and

3.5.4, we have

(1 for p e Ω U Π ,

Γ

Γ

δ(t,p)dt for peΞ+ ,

δ(t,p)dt for peΞ_ ,
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where

δ(t, p) = exp ί Γ (div Z)(ζt(p))dt\ .

Furthermore, by Lemma 3.5.5 we have

k'1 I δ(t, q)dt)

« ^ ^ L ΐovp = ζτ(q)eM0,

where

qeΣ = ίpeMQ Γδ(t9p)dt = Γ δ(t,p)dt) , k = — Γδ(t, q)dt.
I Jo J -°o J π Jo

Since M = Ω U ̂  U Mo, these expressions show that w is uniquely deter-
mined (provided it exists).

We shall now prove its existence. Define w: M-+ R by the expres-
sions obtained above. It is well-defined, because if peΠ+ (or Z7_), then
by our assumption divZ= ± 1 on Π±, we have

Γ δ(t,p)dt = 1 for Γ δ(t,p)dt = l) .
J-oo \ JO /

If we knew that this function w is of class C2 with respect to Z, then
again by Lemmas 3.5.1, 3.5.4, and 3.5.5 we could conclude that the vector
field Y = ewZ satisfies (Y - div Y) div Y = - 1 on M, in other words, Y is
elementary with stability exponent 1. Therefore, to prove our proposition
it suffices to prove that w is of class C2 with respect to Z. For this it
suffices to prove that it is true for ew.

First, we must verify the continuity of ew. From the continuity of
the function divZ, it follows at once that

δ(t, q) = exp [ [ (div Z)(ζt{q))dt^

is a continuous function of t, q. By (i), Lemma 3.5.5 we know that k =
f°°

δ(t, q)dt is also a continuous function of q e Σ. Consequently, we see
Jo

that
k cos (V1 Γ δ(t, q)dt\
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is a continuous function of t, q, in other words, the function ew is con-

tinuous on the open set MQ. Let pe Ω_ {J Ξ_. To prove the continuity

of ew at p, let {pn} be any sequence convergent to p. We shall prove

liπitt^ ew{Pn) = ew{p\ Note that a sufficiently small neighborhood of p is

contained in Ω_ U iS'. U Mo, because i2+ U S+ is closed. Therefore to prove

lim^.^ ewiPn) = ew{p\ it suffices to prove this in the case where either the

sequence {pn} is contained in fl_ U 5_, or {pn} is contained in Mo. Note

that we can write

e»<*'> = Γ δ{t,p')dt for p'eΩ. U Ξ.
Jo

because δ(t,p')dt= 1 for p'eΩ_. On the other hand, from the proof
Jo

of (i), Lemma 3.5.5 we have:

LEMMA 3.6.3. The function Δ+\ β_ U Ξ_ U Mo -> J? defined by

J+(p) = I δ(t,p)dt
Jo

is continuous.

Hence, if the sequence {pn} is contained in Ω_ (J ̂ -, then we have

lim ew(Pn) = lim J+Cpn) = //+(/?) = ew{p) ,

as desired. Suppose now that {pn} is contained in Mo. Then by (iii),

Lemma 3.5.5 we can write

Pn = ζτn(qn) with qn e Σ .

Note that τn —> oo as 7i -> oo, because p £ Mo. Consider the inequality

|e«κp»> _ e«(p)| ^ eMpn) __ f00 §(t,pn)dt + \[ δ(t,pn)dt - ί δ(tfp)dt .
Jo IJo Jo I

From Lemma 3.6.3 it follows that the second term in the right-hand side

converges to zero as pn —> p. By the following lemma, we see that the

first term in the right-hand side also converges to zero as pn -> p, and

hence we conclude that ew is continuous at any point in Ω_ U B_.

LEMMA 3.6.4. There exist two positive numbers c, T such that

- J o δ(t,ζτ(q))dt < c - \'δ(t,q)dt/\"δ(t,q)dt
Jo / J o
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for any qeΣ and any τ > T.

Proof. From the relation δ(τ + t9 q) = δ(τ, q)δ(t, ζτ(q))9 we have

2-k- \τδ{t,q)dt
2 Jo

δ(t9 ζτ(q))dt =
r, q)

Hence

<w«» _ Γ δ(t9 ζ£q))dt
Jo

k

d(τ9 q)

Using the estimate

cos (k-1 Γδ(t, q)dt\ - (— - k-1 Γδ(t, q)dt\

cos Λ: — ί — — x\ < const, ί x — — J for x close to — ,

we obtain

δ(t, ζr(q))dt
(τ,q) \2

if is small. From (i), Lemma 3.5.5 and the compact-τr/2 - k'1 f1δ(t,q)dt
Jo

ness of I7, it follows that τr/2 — &"1 ^(ί, q)dt converges to zero uniformly
Jo

for q in Σ as τ-> oo. The right-hand side of the inequality obtained
above is written

coast. (Λ'l _

From the continuity of the function k on Σ, it follows that k is bounded.
Therefore, to prove our lemma it suffices to prove that the function

1 -

is bounded on {(τ, g)|τ > 0, qeΣ}. Note that this function is equal to
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Γ
Jo

δ(t, q)dt

Since A+ is continuous on Ω_ U Ξ_ U Mo (Lemma 3.6.3), it is obvious that
A+ is bounded on the subset {ζt(q) \ t > 0, q e Σ}. From this and the fact
that the function k is positive and bounded below, we see that the function

Λ+(ζτ(g))( f δ(t9 q)dt\ is bounded on {(τ, q)\τ > 0, q e Σ}. This proves our

lemma.
Similarly, we see that ew is continuous at any point in Ω+ (J Ξ+.

Consequently we know that ew is continuous on the whole M.
Next, to study Z(ew) we use Remarks following Lemmas 3.5.3 and 3.5.5.

Then, noting that divZ = ±1, ew = 1 on Ω±, we have

ί ± 1 - (div Z)(p)ew{p) for peΩ± U Ξ± ,
(Zew)(p) = J g . n / _χ p ̂  ^ \ _ ( d . v Z ) ( p ) g l D ( p )

for p = ζr(g) G Mo, g e ί .

Note that div Z is continuous on M. Furthermore we know already the
continuity of ew. Therefore to prove the continuity of the function Z(ew)
on M, it suffices to prove that the function S defined by

for peΩ± U B± ,

-1 £ δ(t, q)dt\ for p = ζ£q) eM0,qeΣ ,

is continuous on M. This is an immediate consequence of the fact that

k'1 δ(t, q)dt converges to ±ττ/2 uniformly for q in Σ as τ-> ±oo. Con-
Jo

sequently, the continuity of Z(ew) is proved.
Finally, to study Z2(ew)9 note that the function (div Z)ew is of class

C1 with respect to Z, because it is true for div Z, ew. Therefore, to prove
that Z(ew) is of class C1 with respect to Z, it suffices to prove that the
function S given above is of class C1 with respect to Z. It is obvious that

for p e Ω U Ξ ,

, q) cos (k-1 Jo δ(t, q)dή for p = ζτ(q) e MQ, q e Σ .

This function ZS is certainly continuous, because δ(τ, q) converges to zero
uniformly for q in Σ as τ -> ± oo (Lemma 3.5.5, (i)). Consequently, the
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function Z(ew) is of class C1 with respect to Z, and hence our function

ew is of class C2 with respect to Z. This completes the proof of our

proposition.

3.7. Proof of Lemma 3.6.1

Let X be a C2 vector field satisfying conditions (a)-(e). Let {φt} be

the 1-parameter transformation group generated by X. Using Remark 2

in 3.1 and Lemma 3.5.2, we obtain easily a function v:M-*R of class C2

such that άiv(evX) = ± 1 on i3±. Because Ω consists of a finite number

of points and a finite number of circles (Proposition 3.1.2). Using Lemma

3.5.3, we can modify the function v so that

( i ) v is continuous on M.

(ii) v is of class C2 on M — U, where U is a neighborhood of 77 Π

{saddle points}.

(iii) Xv, X2v exist on Π Π U and are continuous on it.

(iv) div(eϋZ) = ± 1 on fl± U Π±.

Furthermore, we must modify v so that υ is of class C2 with respect to

X. For this purpose we need a lemma. Note that for each saddle point

p of X, there exists a local coordinate system (x, y) of class C2, in a co-

ordinate neighborhood V of p9 such that X\v is written in the form

dx dy

where α(x, y), b(x, y) are of class C1 and satisfy a(x, y) > 0, b(x, y) < 0.

LEMMA 3.7.1. Let X be a C2 vector field on a neighborhood of the

origin of R2, and assume that X is written in the form

' dx """ dy '

where α(x, y), b(x, y) are of class C1 and nonzero. Let f(x), g(y) be functions

of x, y respectively. Assume that f(x), g(y) are of class C2 with respect to

a{x, 0)xd/dx, 6(0, y)yd/dy respectively, and assume that f(0) = g(0). Put

Then the function h(x, y) is of class C2 with respect to X, and its restric-

tions to the x-axis, y-axίs coincide with f(x), g(y) respectively. Furthermore
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h(x, y) is of class C2 on {(x, y) \ x Φ 0, y Φ 0}.

Proof. This can be directly checked.

Using this lemma, we obtain at once a function v having the desired
property. Lemma 3.6.1 is proved.

3.8. Proof of Theorem 1.1.2

Suppose that a C2 vector field X is structurally stable. Then the
characterization theorem of Peixoto ([10]) asserts that X satisfies condi-
tions (a), (c), (d), (e) in 3.1. Suppose that X satisfies condition (b) be-
sides. Then we can apply Theorem 3.3.1. Hence we find a function
u:M-+R satisfying the conditions (i)-(iii) in Theorem 3.3.1. Since euX
is elementary with stability exponent λ, from Lemma 3.2.2 it follows that
u satisfies equation (E) in Theorem 1.1.2. Our theorem is proved.
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