ON THE CENTRAL IDEAL CLASS GROUP OF CYCLOTOMIC FIELDS

SUSUMU SHIRAI

Introduction

Let Q be the rational number field, K/Q be a finite Galois extension with the Galois group G, and let C_K be the ideal class group of K in the wider sense. We consider C_K as a G-module. Denote by I the augmentation ideal of the group ring of G over the ring of rational integers. Then $C_K/I(C_K)$ is called the central ideal class group of K, which is the maximal factor group of C_K on which G acts trivially. A. Fröhlich [3, 4] rationally determined the central ideal class group of a complete Abelian field over Q whose degree is some power of a prime. The proof is based on Theorems 3 and 4 of Fröhlich [2]. D. Garbanati [6] recently gave an algorithm which will produce the ℓ -invariants of the central ideal class group of an Abelian extension over Q for each prime ℓ dividing its order.

In the present paper we determine the central ideal class group of a cyclotomic field over Q in terms of generators and relations by refining upon the methods used in [3, 4] (§ 3, Theorem 5). The proof is based on Theorem 32 of our preceding paper [10], which is a generalization of Fröhlich [2, Theorem 3] to the case of a cyclotomic field over Q.

Notation

Throughout this paper the following notation will be used.

- **Q** the field of rational numbers as in Introduction.
- Z the ring of rational integers on which a finite group acts trivially.

Received August 4, 1978.

¹⁾ Cf. Fröhlich [3, p. 212] and [4, pp. 73-77]. When $[K\colon Q]=\ell^\alpha$, this implies that $K_0^*=K$ or $K^*=K$ according as $\ell=2$, K real or otherwise, where K_0^* is the maximal real, unramified, Abelian 2-extension of K which is still Abelian over Q, and K^* is the maximal, unramified, Abelian ℓ -extension of K which is still Abelian over Q.

- Z_n the cyclic group of order n.
- $\langle A \rangle$ the subgroup generated by A when A is a subset in a group.
- (a, b) the commutator $aba^{-1}b^{-1}$ of a and b when a, b are elements in a group.
- (A, B) the subgroup generated by the commutators (a, b) of all $a \in A$, $b \in B$ when A, B are subsets in a group.
- $A \times B$ the direct product of A by B when A, B are groups.
- G(K/k) the Galois group of K over k.
- (, K/k) the norm residue symbol for K/k when K/k is a local Abelian extension.
- $\left(\begin{array}{c} K \\ p \end{array}\right)$ the norm residue symbol for K when K is a finite Abelian extension over Q.
- $C_K/I(C_K)$ the central ideal class group of K defined in Introduction when K is a finite Galois extension over Q.
- $\psi(n)$ the Euler's function, i.e. the number of positive integers not exceeding n which are relatively prime to n.
- (m, n) the G. C. D. of m and n when m, n are rational integers. Moreover we will use the results and notation of the preceding paper [10].

§1. The Schur multiplicator of a finite Abelian group

The structure of the Schur multiplicator $H^{-3}(G, \mathbb{Z})$ of a finite Abelian group G is well-known (cf. [7], [8], [9]). In this section we describe $H^{-3}(G, \mathbb{Z})$ in terms of generators and relations.

Lemma 1. If
$$G=Z_{n_1} imes\cdots imes Z_{n_r},$$
 then $|H^{-3}(G,Z)|=\prod\limits_{1\leq i< j\leq r}(n_i,n_j)$.

Proof. We proceed by induction on r. For any Abelian group A, and any integer q, we denote by A(q) the subgroup comprising all those elements a of A such that $a^q = 1$. Then it follows from R. C. Lyndon [7, Lemma 8.2] that

$$egin{aligned} H^{-3}(G,Z)&\cong H^3(G,Z)\ &\cong H^3(Z_{n_r},Z) imes_{0< k<3}H^k(Z_{n_1} imes\cdots imes Z_{n_{r-1}},Z)(n_r)\ & imes H^3(Z_{n_1} imes\cdots imes Z_{n_{r-1}},Z)\ &\cong (Z_{n_1} imes\cdots imes Z_{n_{r-1}})(n_r) imes H^3(Z_{n_1} imes\cdots imes Z_{n_{r-1}},Z)\ , \end{aligned}$$

because $H^1(G, \mathbb{Z}) = 1$ and $H^2(G, \mathbb{Z}) \cong G$ for any finite Abelian group G.

Thus by induction hypothesis,

$$|H^{-3}(G,Z)| = \prod_{1 \le i < j \le r-1} (n_i, n_j) \cdot (n_1, n_r) \cdot \cdot \cdot \cdot (n_{r-1}, n_r)$$
 $= \prod_{1 \le i < j \le r} (n_i, n_j) .$ Q.E.D.

LEMMA 2. Let $G = Z_{n_1} \times \cdots \times Z_{n_r}$, and let

$$1 \longrightarrow (\Omega, \Omega) \longrightarrow \Omega \xrightarrow{f} G \longrightarrow 1$$

be an exact sequence in which Ω is a finite nilpotent group of class two such that $(\Omega, \Omega) \cong H^{-3}(G, \mathbb{Z})$. Denote by ω_i an element of Ω such that $f(\omega_i)$ is a generator of $Z_{n_i}(\subseteq G)$ for $i = 1, \dots, r$. Then (Ω, Ω) is generated by $\binom{r}{2}$ elements

$$(\omega_i, \omega_j)$$
 , $1 \leq i < j \leq r$,

and completely determined by the relations

$$\begin{cases} (\omega_i, \omega_j)(\omega_k, \omega_l) = (\omega_k, \omega_l)(\omega_i, \omega_j) \;, & \text{all } i, j, k, l \;, \\ (\omega_i, \omega_j)^{(n_i, n_j)} = 1 \;, & 1 \leq i < j \leq r \;. \end{cases}$$

Proof. Since Ω is of class two, it is obvious that the elements (ω_i, ω_j) , $1 \le i < j \le r$ generate (Ω, Ω) , and satisfy the above relations (1). Furthermore the order of (Ω, Ω) is $\prod_{1 \le i < j \le r} (n_i, n_j)$ by Lemma 1. Conversely the group which is generated by $\binom{r}{2}$ elements and satisfies the above relations (1) is an Abelian group of order $\prod_{1 \le i < j \le r} (n_i, n_j)$. Hence (Ω, Ω) is completely described by the relations (1). Q.E.D.

§2. Inertia groups

Let p be a rational prime, Q_p be the p-adic number field, T/Q_p be a finite unramified extension, ζ be a primitive p^p -th root of unity, and let $K = T(\zeta)$. Denote by \hat{K} a central extension of K/Q_p such that the p-exponent $\mu(\hat{K}/Q_p)$ of the Galois conductor of \hat{K}/Q_p does not exceed ν .

LEMMA 3. Let p = 2, and let

$$\sigma = (2, K/Q_0)^{-1}, \quad \tau^* = (-1, K/Q_0), \quad \tau = (5, K/Q_0).$$

Denote by $\tilde{\sigma}$, $\tilde{\tau}^*$, and $\tilde{\tau}$ any extensions of σ , τ^* , and τ to \hat{K} , respectively.

²⁾ See [10, §1].

Then the inertia group of \hat{K}/K is generated by the elements $(\tilde{\tau}, \tilde{\tau}^*)$, $(\tilde{\tau}, \tilde{\sigma})$, $(\tilde{\tau}^*, \tilde{\sigma})$.

Proof. Let F be the inertia field of \hat{K}/K , and let D be the fixed field of $\langle (\tilde{\tau}, \tilde{\tau}^*), (\tilde{\tau}, \tilde{\sigma}), (\tilde{\tau}^*, \tilde{\sigma}) \rangle$. Since $G(\hat{K}/Q_2)$ is of class two and $\{\tilde{\sigma}, \tilde{\tau}^*, \tilde{\tau}\}$ is a system of generators of $G(\hat{K}/Q_2)$, the commutator group of $G(\hat{K}/Q_2)$ is generated by the elements $(\tilde{\tau}, \tilde{\tau}^*), (\tilde{\tau}, \tilde{\sigma}), (\tilde{\tau}^*, \tilde{\sigma})$. Thus D/Q_2 is the maximal Abelian extension contained in \hat{K} . Hence $D \supset F$, because F/Q_2 is an Abelian extension.

To prove the converse let T' be the inertia field of D/Q_2 . Since $\mu(D/Q_2) \leq \mu(\hat{K}/Q_2) \leq \nu$ by [10, Lemma 3], it follows from local class field theory that G(D/T') is a homomorphic image of the group of prime residue classes mod 2^{ν} . We have $[D:T'] \leq \psi(2^{\nu}) = 2^{\nu-1}$, and hence D = T'K, because of $T' \cap K = T$, $[T'K:T'] = [K:T] = 2^{\nu-1}$. We conclude that D/K is unramified, which implies $F \supset D$.

By the same procedure as the proof of Lemma 3, we obtain

LEMMA 4. Let $p \neq 2$, g be a primitive root mod p^{ν} , and let

$$\sigma = (p, K/Q_p)^{-1}, \qquad \tau = (g, K/Q_p).$$

Denote by $\tilde{\sigma}$ and $\tilde{\tau}$ any extensions of σ and τ to, \hat{K} , respectively. Then the inertia group of \hat{K}/K is generated by the single element $(\tilde{\tau}, \tilde{\sigma})$.

§3. The central ideal class group of cyclotomic fields

Let $m=2^{\nu}p_1^{\nu_1}\cdots p_r^{\nu_r}$ be a positive integer, K be the m-th cyclotomic field over Q, and let \hat{K} be the central class field mod mp_{∞} in the sense of [10, § 3], where p_{∞} is the real prime divisor of Q. Then \hat{K} is a central extension of K/Q, and hence it is a nilpotency class two extension over Q. Moreover it follows from the definition of the central class field mod m that any rational prime not contained in mp_{∞} is unramified in \hat{K} . We have already proved in [10, Theorem 32] that if $(m, 16) \neq 8$, then

(2)
$$(G(\hat{K}/Q), G(\hat{K}/Q)) = G(\hat{K}/K) \cong H^{-3}(G(K/Q), Z)$$
.

For use of this result we distinguish the following three cases:

(a)
$$\nu = 0$$
, (b) $\nu = 2$, (c) $\nu \ge 4$.

In the present paper we will prove our main Theorem for (a) and state the corresponding results for (b) and (c). Assume $\nu = 0$. Let g_i be a primitive root mod $p_i^{\nu_i}$, and let

$$\sigma_i = \left(rac{p_i, K}{p_i}
ight)^{-1}, \qquad au_i = \left(rac{g_i, K}{p_i}
ight), \qquad i = 1, \cdots, r.$$

Since G(K/Q) is isomorphic to the group of prime residue classes mod m, $G(K/Q) \cong Z_{\psi(p_i^{n_i})} \times \cdots \times Z_{\psi(p_i^{n_i})}$, and $\{\tau_1, \dots, \tau_r\}$ is a system of generators of G(K/Q). For each i, we choose elements $\tilde{\sigma}_i$ and $\tilde{\tau}_i$ in the decomposition group of a prime factor \mathfrak{P}_i of p_i in \hat{K} , which under the natural homomorphism of $G(\hat{K}/Q)$ onto G(K/Q) are mapped onto σ_i and τ_i , respectively. Since $G(\hat{K}/K)$ is contained in the center of $G(\hat{K}/Q)$, the inertial group of \mathfrak{P}_i over K does not depend on the choice of \mathfrak{P}_i over p_i , and it is generated by the element $(\tilde{\tau}_i, \tilde{\sigma}_i)$, as we can see by Lemma 4.

According to Lemma 2 and (2), $G(\hat{K}/K)$ is generated by ${r \choose 2}$ elements

$$(\tilde{\tau}_i, \tilde{\tau}_i)$$
, $1 \leq i < j \leq r$,

and completely determined by the relations

$$egin{aligned} &(ilde{ au}_i, ilde{ au}_j)(ilde{ au}_k, ilde{ au}_i) = (ilde{ au}_k, ilde{ au}_i)(ilde{ au}_i, ilde{ au}_j) \;, \qquad ext{all} \;\; i,j,k,l, \ &(ilde{ au}_i, ilde{ au}_j)^{(\psi(p_i^{
u_i}),\psi(p_j^{
u_j}))} = 1 \;, \qquad 1 \leq i < j \leq r \;. \end{aligned}$$

Let C_K be the ideal class group³⁾ of K, and let U be the Abelian extension of K corresponding to $I(C_K)$ in the sense of class field theory. Then U is the maximal central extension of K/Q which is unramified over K, and is contained in \hat{K} , as we can see by going back to the definition of the central class field mod \mathfrak{m} . We conclude that U is the subfield of \hat{K} corresponding to $\langle (\tilde{\tau}_1, \tilde{\sigma}_1), \cdots, (\tilde{\tau}_r, \tilde{\sigma}_r) \rangle$ in the sense of Galois theory. Hence

$$C_{\scriptscriptstyle{K}}/I(C_{\scriptscriptstyle{K}})\cong G(U/K)\cong G(\hat{K}/K)/\langle (\tilde{\tau}_{\scriptscriptstyle{1}},\tilde{\sigma}_{\scriptscriptstyle{1}}),\,\cdots,(\tilde{\tau}_{\scriptscriptstyle{r}},\tilde{\sigma}_{\scriptscriptstyle{r}})\rangle$$
.

We next express $(\tilde{\tau}_i, \tilde{\sigma}_i)$ in terms of $\tilde{\tau}_1, \dots, \tilde{\tau}_r$. Define the symbols⁴⁾ $[j, i], [0, i]^*, [0, i]$ by putting

$$\begin{cases} p_i \equiv g_j^{[j,i]} \mod p_j^{\nu_j} \,, & i = 0, 1, \, \cdots, \, r, \, j = 1, \, \cdots, \, r \,, \\ p_i \equiv (-1)^{[0,i]} {}^* 5^{[0,i]} \mod 2^{\nu} \,, & i = 1, \, \cdots, \, r \,, \\ [i,i] = 0 \,, & i = 1, \, \cdots, \, r \,, \end{cases}$$

³⁾ In this case the ideal class groups in the narrow and the wider sense coincide, because no real prime divisor exists in K.

⁴⁾ Cf. Fröhlich [2, pp. 237-238].

where $p_0 = 2$, namely, [j, i] is the index of p_i for the modulus $p_j^{\nu_j}$ relative to the primitive root g_j , and $[0, i]^*$, [0, i] are the indices of p_i for the modulus 2^{ν} relative to the basis $\{-1, 5\}$. Then we have

$$\sigma_i = \prod\limits_{j=1}^r au_j^{[j,i]} \qquad ext{for } i=1,\,\cdots,r \ ,$$

because of $\prod\limits_{\text{all }p}\left(\frac{p_i,K}{p}\right)=1$, the product formula in class field theory. Therefore

$$\begin{split} (\tilde{\tau}_i, \tilde{\sigma}_i) &= \tilde{\tau}_i \tilde{\sigma}_i \tilde{\tau}_i^{-1} \tilde{\sigma}_i^{-1} = \left(\tilde{\tau}_i, \prod_{j=1}^r \tilde{\tau}_j^{[j,i]} \right) \\ &= \prod_{j=1}^r (\tilde{\tau}_i, \tilde{\tau}_j)^{[j,i]} , \end{split}$$

because $G(\hat{K}/K)$ is contained in the center of $G(\hat{K}/Q)$ and $G(\hat{K}/Q)$ is of class two. Thus⁵⁾ we have proved the following main

Theorem 5. Let $m=2^{\nu}p_1^{\nu_1}\cdots p_r^{\nu_r}$ be a positive integer, K be the m-th cyclotomic field over Q, and let $C_{\kappa}/I(C_{\kappa})$ be the central ideal class group of K. Then:

(a) $\nu = 0$. $C_{\kappa}/I(C_{\kappa})$ is generated by $\binom{r}{2}$ elements x_{ij} , $1 \leq i < j \leq r$, and completely determined by the relations

$$egin{aligned} x_{ij} x_{kl} &= x_{kl} x_{ij} \;, & all \; i,j,k,l \;, \ &\prod_{j=1}^r x_{ij}^{[j,i]} &= 1 \;, & i &= 1, \, \cdots, \, r \;, \ &x_{ij}^{(\psi(p_i^{v_i}), \psi(p_j^{v_j}))} &= 1 \;, & 1 \leq i < j \leq r \;, \end{aligned}$$

with the convention $x_{ji} = x_{ij}^{-1}$.

(b) $\nu = 2$. $C_{\kappa}/I(C_{\kappa})$ is generated by $\binom{r+1}{2}$ elements x_{ij} , $0 \le i < j \le r$, and completely determined by the relations

$$egin{align} x_{ij}x_{kl} &= x_{kl}x_{ij} \;, & all \; i,j,k,l \;, \ &\prod_{j=1}^r x_{0j}^{{\scriptscriptstyle [j,0]}} &= 1 \;, & \ &x_{0i}^{{\scriptscriptstyle -[0,i]}^*}\prod_{j=1}^r x_{ij}^{{\scriptscriptstyle [j,i]}} &= 1 \;, & i=1,\cdots,r \;, \ &x_{0i}^2 &= 1 \;, & i=1,\cdots,r \;, \ \end{array}$$

⁵⁾ As regards computation in the cases (b) and (c), cf. [11, §3]. See also Fröhlich [3, Theorem 2] and [4, Theorem 3].

$$x_{ij}^{(\psi(p_i^{\nu_i}), \psi(p_j^{\nu_j}))} = 1$$
, $1 \leq i < j \leq r$,

with the convention $x_{ji} = x_{ij}^{-1}$.

(c) $\nu \geq 4$. $C_{\kappa}/I(C_{\kappa})$ is generated by $\binom{r+2}{2}-1$ elements $x_{ij}, -1 \leq i < j \leq r$, $(i,j) \neq (-1,0)$, and completely determined by the relations

$$egin{align*} x_{ij} x_{kl} &= x_{kl} x_{ij} \;, & all \; i,j,k,l \;, \ &\prod_{j=1}^r x_{ij}^{[j,0]} &= 1 \;, & i = -1,0 \;, \ &x_{-1i}^{-[0,i]} x_{0i}^{-[0,i]*} \prod_{j=1}^r x_{ij}^{[j,i]} &= 1 \;, & i = 1,\cdots,r \ &x_{0i}^{(2^{\nu-2},\psi(p_i^{\nu_i}))} &= 1 \;, & i = 1,\cdots,r \;, \ &x_{0i}^2 &= 1 \;, & i = 1,\cdots,r \;, \ &x_{ij}^{(\psi(p_i^{\nu_i}),\psi(p_j^{\nu_j}))} &= 1 \;, & 1 \leq i < j \leq r \;, \ \end{matrix}$$

with the convention $x_{ji} = x_{ij}^{-1}$, where [j, i], $[0, i]^*$, [0, i] are the indices defined by (3).

§4. Applications

Y. Furuta [5, Theorem 4] proved the following result: Let ℓ be any rational prime and m be a rational integer. Assume that the number of different prime divisors p of m such that $p \equiv 1 \mod \ell$ is equal to or greater than 8 (this number should be replaced by 9, only when $\ell = 2$ and $m \not\equiv 0 \mod 4$). Then the class number of the m-th cyclotomic field is always divisible by ℓ and moreover the m-th cyclotomic field admits an infinite unramified ℓ -extension.

The first half of this result can be sharpen as follows.

Theorem 6°. Let $m=2^{\nu}p_1^{\nu_1}\cdots p_r^{\nu_r}$ be a positive integer, K be the m-th cyclotomic field over Q, ρ_{ℓ} be the ℓ -rank of $C_K/I(C_K)$, and let t be the number of different primes p_i of m such that $p_i\equiv 1 \mod \ell$. Then:

(a)
$$\nu = 0$$
. $\rho_{\ell} \ge \frac{1}{2}t(t-3)$.
In particular $\rho_{2} \ge \frac{1}{2}r(r-3)$.
(b) $\nu = 2$. $\rho_{\ell} \ge \frac{1}{2}t(t-3)$, $\ell \ne 2$, $\rho_{2} \ge \frac{1}{2}(r+1)(r-2)$.
(c) $\nu \ge 4$. $\rho_{\ell} \ge \frac{1}{2}t(t-3)$, $\ell \ne 2$, $\rho_{\ell} \ge \frac{1}{2}(r^{2}+r-4)$.

Proof. (a) Suppose the primes p_i to be so numbered that $p_i \equiv 1 \mod \ell$ for $i = 1, \dots, t$. Set $m' = p_1^{r_1} \dots p_t^{r_t}$, and denote by C' the central

⁶⁾ Cf. Fröhlich [3, Lemmas 2 and 3] and [4, Lemmas 4 and 5].

ideal class group of the m'-th cyclotomic field over Q. By virtue of Theorem 5, (a), C' is generated by $\binom{t}{2}$ elements y_{ij} , $1 \le i < j \le t$, and completely determined by the relations

where $y_{ji} = y_{ij}^{-1}$. We define a homomorphism $C_{\kappa}/I(C_{\kappa}) \to C'$ by putting $x_{ij} \to y_{ij}$ for $1 \le i < j \le t$, $x_{ij} \to 1$ otherwise. Then the homomorphism is epimorphic. Hence denoting the ℓ -rank of C' by ρ'_{ℓ} , we have

$$\rho_{\ell} \geq \rho'_{\ell}$$
.

It follows from the assumption that

$$(\psi(p_i^{\nu_i}), \psi(p_i^{\nu_j})) \equiv 0 \mod \ell$$
 for $1 \leq i < j \leq t$.

Noting the convention $y_{ji} = y_{ij}^{-1}$, we denote by A the matrix of coefficients in the additively written equations (4) on generators y_{ij} and by r(A) its rank as a matrix in $GF(\ell)$. Since A is a $(t, \frac{1}{2}t(t-1))$ matrix, we have $r(A) \leq t$. Hence

$$\rho'_{\ell} = \frac{1}{2}t(t-1) - r(A) \ge \frac{1}{2}t(t-3).$$

Q.E.D.

COROLLARY 7. Let $m = 2^{\nu}p_1^{\nu_1} \cdots p_r^{\nu_r}$ be a positive integer, h be the class number of the m-th cyclotomic field over Q, and let t be the number of different primes p_i of m such that $p_i \equiv 1 \mod \ell$ for an odd prime ℓ . Then:

- (a) $\nu=0.$ If $r \geq 4$, then $2^2|h$. If $t \geq 4$, then $2^2\ell^2|h$.
- (b) $\nu = 2$. If $r \ge 3$, then $2^2|h$. If $t \ge 4$, then $2^5\ell^2|h$. (c) $\nu \ge 4$. If $r \ge 2$, then 2|h.
- (c) $\nu \geq 4$. If $r \geq 2$, then 2|h.

 If $t \geq 4$, then $2^8 \ell^2 |h$.

In any case h is divisible by 4 if $r \ge 4$, and by $2^{2}\ell^{2}$ if $t \ge 4$.

Finally we state a result concerning the invariants of the central ideal class group of cyclotomic fields. The following Lemma can be

easily verified⁷⁾.

LEMMA 8. For any prime p and any integer a prime to p, let

$$o(p^{\nu}, a) = the \ order \ of \ a \ mod \ p^{\nu} \ for \ \nu \ge 1,$$
 $q(p, a) = the \ highest \ exponent \ of \ p \ dividing \ a^{p-1} - 1.$

Then we have: (i) If $p \neq 2$ and $\alpha = q(p, a)$, then

$$o(p, a) = o(p^2, a) = \cdots = o(p^{\alpha}, a),$$

 $o(p^{\alpha+i}, a) = p^i o(p, a) \quad \text{for } i \ge 1.$

(ii)
$$p=2$$
. If $\alpha=q(2,a)>1$, i.e. $a\equiv 1 \mod 4$, then
$$o(2,a)=o(2^2,a)=\cdots=o(2^a,a)=1\;,$$

$$o(2^{a+i},a)=2^i \qquad \qquad \text{for } i\geq 1\;,$$

and if $\alpha = 1$, i.e. $a \equiv 3 \mod 4$, then

$$egin{align} o(2^{\imath},\,a) &= o(2^{\imath},\,a) = \, \cdots = o(2^{eta},\,a) = 2 \;, \ o(2^{eta+i},\,a) &= 2^{i+1} & ext{for } i \geqq 1 \;, \ \end{cases}$$

where $\beta =$ the highest exponent of 2 dividing $a^2 - 1$. Note $\beta \geq 3$, which implies that the group of prime residue classes mod 2° is not cyclic when $\nu \geq 3$.

Denote by B the matrix of coefficients in the additively written equations on generators x_{ij} in Theorem 5, (a), noting $x_{ji} = x_{ij}^{-1}$. Then B is a $(\frac{1}{2}r(r+1), \frac{1}{2}r(r-1))$ matrix. Let e_i be the elementary divisors of B in the domain of rational integers such that $e_1|e_2|\cdots|e_s, e_i>0, i=1,\cdots,s$. Then $C_K/I(C_K)$ can be written in the form, as a product of cyclic groups,

$$(5) C_{K}/I(C_{K}) \cong Z_{e_{1}} \times \cdots \times Z_{e_{s}}.$$

Each e_i can be computed by the following rule: Let $D_i(B)$ be the G.C.D. of all *i*-th minors in det B. Then

$$D_i(B) = e_1 e_2 \cdots e_i , \qquad 1 \leqq i \leqq s .$$

Hence

$$egin{aligned} e_{\scriptscriptstyle 1} &= ext{the G.C.D. of all entries of } B \ &= ext{G.C.D. } \{ (\psi(p_{i^t}^{\nu_i}), \, \psi(p_{j^t}^{\nu_j}), \, [j, \, i], \, [i, j]) \, | \, 1 \leq i < j \leq r \} \ &= ext{G.C.D. } \left\{ \left(\frac{\psi(p_i^{\nu_i})}{o(p_i^{\nu_i}, p_j)}, \, \frac{\psi(p_j^{\nu_j})}{o(p_j^{\nu_j}, p_i)} \right) \, \middle| \, 1 \leq i < j \leq r \right\}. \end{aligned}$$

⁷⁾ See also L. E. Dickson [1, Chapter VII].

Thus by virtue of Lemma 8 we obtain

Theorem 9. Let $m=p_1^{\nu_1}\cdots p_r^{\nu_r}, p_1, \cdots, p_r$ distinct odd primes, and let $C_K/I(C_K)$ be the central ideal class group of the m-th cyclotomic field over Q. Then the first elementary divisor e_1 of $C_K/I(C_K)$ in (5) becomes constant for all ν_i sufficiently large. In fact if we put $\alpha_{ij}=q(p_i,p_j)$ and take $\nu_i > \max{\{\alpha_{ij} | j=1, \cdots, r\}}$ for $i=1, \cdots, r$, then

$$e_{\scriptscriptstyle 1} = ext{G.C.D.} \left\{ \left(rac{\psi(p_i^{lpha_{ij}})}{o(p_i, p_i)}, rac{\psi(p_j^{lpha_{ji}})}{o(p_j, p_i)}
ight) \middle| 1 \leqq i < j \leqq r
ight\} \,.$$

Example. For $m=5^{\nu_1}11^{\nu_2}, \nu_1 \geq 2, \nu_2 \geq 2$, we have $C_{\kappa}/I(C_{\kappa}) \cong \mathbb{Z}_2$.

Remark. Let K be a finite Galois extension over Q, f(K) be its Galois conductor in the sense of [10, § 2], and let m be a rational module such that f(K)|m. We denote by \hat{K}_m the central class field mod m and by K_m^* the genus field mod m of K/Q in the sense of [10, § 3]. Then it follows from [10, Theorem 31] that if all first ramification groups of K/Q are cyclic, then

$$G(\hat{K}_m/K_m^*) \cong H^{-3}(G(K/Q), Z)$$
.

Thus the method leading up to main Theorem 5 can be applicable to determine the central ideal class group of Abelian extensions over Q whose first ramification groups are cyclic, because it is based on Lemma 2 and (2).

REFERENCES

- [1] L. E. Dickson, History of the Theory of Numbers, vol. 1, Washington 1919.
- [2] A. Fröhlich, On fields of class two, Proc. London Math. Soc. (3), 4 (1954), 235–256.
- [3] —, On the absolute class-group of Abelian fields, J. London Math. Soc., 29 (1954), 211-217.
- [4] —, On the absolute class-group of Abelian fields (II), J. London Math. Soc., 30 (1955), 72-80.
- [5] Y. Furuta, On class field towers and the rank of ideal class groups, Nagoya Math. J., 48 (1972), 147-157.
- [6] D. Garbanati, Invariants of the ideal class group and the Hasse norm theorem, J. reine angew. Math., 297 (1978), 159-171.
- [7] R. C. Lyndon, The cohomology theory of group extensions, Duke Math. J., 15 (1948), 271-292.
- [8] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. reine angew. Math., 127 (1904), 20-50.
- [9] I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch

- gebrochene lineare Substitutionen, ibid., 132 (1907), 85-137.
- [10] S. Shirai, On the central class field mod m of Galois extensions of an algebraic number field, Nagoya Math. J., 71 (1978), 61-85.
- [11] —, On Galois groups of class two extensions over the rational number field, Nagoya Math. J., 75 (1979), 121-131.

Toyama Medical and Pharmaceutical University