ON THE CENTRAL IDEAL CLASS GROUP OF CYCLOTOMIC FIELDS

SUSUMU SHIRAI

Introduction

Let \boldsymbol{Q} be the rational number field, K / \boldsymbol{Q} be a finite Galois extension with the Galois group G, and let C_{K} be the ideal class group of K in the wider sense. We consider C_{K} as a G-module. Denote by I the augmentation ideal of the group ring of G over the ring of rational integers. Then $C_{K} / I\left(C_{K}\right)$ is called the central ideal class group of K, which is the maximal factor group of C_{K} on which G acts trivially. A. Fröhlich [3, 4] rationally determined the central ideal class group of a complete ${ }^{1)}$ Abelian field over \boldsymbol{Q} whose degree is some power of a prime. The proof is based on Theorems 3 and 4 of Fröhlich [2]. D. Garbanati [6] recently gave an algorithm which will produce the ℓ-invariants of the central ideal class group of an Abelian extension over \boldsymbol{Q} for each prime ℓ dividing its order.

In the present paper we determine the central ideal class group of a cyclotomic field over \boldsymbol{Q} in terms of generators and relations by refining upon the methods used in $[3,4](\S 3$, Theorem 5). The proof is based on Theorem 32 of our preceding paper [10], which is a generalization of Fröhlich [2, Theorem 3] to the case of a cyclotomic field over \boldsymbol{Q}.

Notation

Throughout this paper the following notation will be used.
\boldsymbol{Q} the field of rational numbers as in Introduction.
\boldsymbol{Z} the ring of rational integers on which a finite group acts trivially.

[^0]$Z_{n} \quad$ the cyclic group of order n.
$\langle A\rangle \quad$ the subgroup generated by A when A is a subset in a group.
$(a, b) \quad$ the commutator $a b a^{-1} b^{-1}$ of a and b when a, b are elements in a group.
(A, B) the subgroup generated by the commutators (a, b) of all $a \in A$, $b \in B$ when A, B are subsets in a group.
$A \times B \quad$ the direct product of A by B when A, B are groups.
$G(K / k) \quad$ the Galois group of K over k.
(, K / k) the norm residue symbol for K / k when K / k is a local Abelian extension.

$\left(\frac{, K}{p}\right) \quad \begin{aligned} & \text { the norm residue symbol for } K \text { when } K \text { is a finite Abelian ex- } \\ & \text { tension over } \boldsymbol{Q} \text {. }\end{aligned}$
$C_{K} / I\left(C_{R}\right)$ the central ideal class group of K defined in Introduction when K is a finite Galois extension over \boldsymbol{Q}.
$\psi(n) \quad$ the Euler's function, i.e. the number of positive integers not exceeding n which are relatively prime to n.
(m, n) the G.C.D. of m and n when m, n are rational integers.
Moreover we will use the results and notation of the preceding paper [10].

§1. The Schur multiplicator of a finite Abelian group

The structure of the Schur multiplicator $H^{-3}(G, Z)$ of a finite Abelian group G is well-known (cf. [7], [8], [9]). In this section we describe $H^{-3}(G, Z)$ in terms of generators and relations.

Lemma 1. If $G=Z_{n_{1}} \times \cdots \times Z_{n_{r}}$, then

$$
\left|H^{-3}(G, Z)\right|=\prod_{1 \leqq i<j \leqq r}\left(n_{i}, n_{j}\right) .
$$

Proof. We proceed by induction on r. For any Abelian group A, and any integer q, we denote by $A(q)$ the subgroup comprising all those elements a of A such that $a^{q}=1$. Then it follows from R. C. Lyndon [7, Lemma 8.2] that

$$
\begin{aligned}
& H^{-3}(G, Z) \cong \cong H^{3}(G, Z) \\
& \cong H^{3}\left(Z_{n_{r}}, Z\right) \times \prod_{0<k<3} H^{k}\left(Z_{n_{1}} \times \cdots \times Z_{n_{r-1}}, Z\right)\left(n_{r}\right) \\
& \times H^{3}\left(Z_{n_{1}} \times \cdots \times Z_{n_{r-1}}, Z\right) \\
& \cong\left(Z_{n_{1}} \times \cdots \times \mathbf{Z}_{n_{r-1}}\right)\left(n_{r}\right) \times H^{3}\left(Z_{n_{1}} \times \cdots \times Z_{n_{r-1}}, Z\right)
\end{aligned}
$$

because $H^{1}(G, Z)=1$ and $H^{2}(G, Z) \cong G$ for any finite Abelian group G.

Thus by induction hypothesis,

$$
\begin{align*}
\left|H^{-3}(G, Z)\right| & =\prod_{1 \leqq i<j \leq r-1}\left(n_{i}, n_{j}\right) \cdot\left(n_{1}, n_{r}\right) \cdots\left(n_{r-1}, n_{r}\right) \\
& =\prod_{1 \leqq i<j \leqq r}\left(n_{i}, n_{j}\right) .
\end{align*}
$$

Lemma 2. Let $G=Z_{n_{1}} \times \cdots \times Z_{n_{r}}$, and let

$$
1 \longrightarrow(\Omega, \Omega) \longrightarrow \Omega \xrightarrow{f} G \longrightarrow 1
$$

be an exact sequence in which Ω is a finite nilpotent group of class two such that $(\Omega, \Omega) \cong H^{-3}(G, Z)$. Denote by ω_{i} an element of Ω such that $f\left(\omega_{i}\right)$ is a generator of $Z_{n_{i}}(\subset G)$ for $i=1, \cdots, r$. Then (Ω, Ω) is generated by $\binom{r}{2}$ elements

$$
\left(\omega_{i}, \omega_{j}\right), \quad 1 \leqq i<j \leqq r
$$

and completely determined by the relations

$$
\begin{cases}\left(\omega_{i}, \omega_{j}\right)\left(\omega_{k}, \omega_{l}\right)=\left(\omega_{k}, \omega_{l}\right)\left(\omega_{i}, \omega_{j}\right), & \text { all } i, j, k, l, \tag{1}\\ \left(\omega_{i}, \omega_{j}\right)^{\left(n_{i}, n_{j}\right)}=1, & 1 \leqq i<j \leqq r\end{cases}
$$

Proof. Since Ω is of class two, it is obvious that the elements (ω_{i}, ω_{j}), $1 \leqq i<j \leqq r$ generate (Ω, Ω), and satisfy the above relations (1). Furthermore the order of (Ω, Ω) is $\prod_{1 \leqq i<j \leqq r}\left(n_{i}, n_{j}\right)$ by Lemma 1 . Conversely the group which is generated by $\binom{r}{2}$ elements and satisfies the above relations (1) is an Abelian group of order $\prod_{1 \leqq i<j \leqq r}\left(n_{i}, n_{j}\right)$. Hence (Ω, Ω) is completely described by the relations (1).
Q.E.D.

§2. Inertia groups

Let p be a rational prime, \boldsymbol{Q}_{p} be the p-adic number field, T / \boldsymbol{Q}_{p} be a finite unramified extension, ζ be a primitive p^{ν}-th root of unity, and let $K=T(\zeta)$. Denote by \hat{K} a central extension of K / \boldsymbol{Q}_{p} such that the p exponent $\mu\left(\hat{K} / \boldsymbol{Q}_{p}\right)$ of the Galois conductor ${ }^{2)}$ of $\hat{K} / \boldsymbol{Q}_{p}$ does not exceed ν.

Lemma 3. Let $p=2$, and let

$$
\sigma=\left(2, K / \boldsymbol{Q}_{2}\right)^{-1}, \quad \tau^{*}=\left(-1, K / \boldsymbol{Q}_{2}\right), \quad \tau=\left(5, K / \boldsymbol{Q}_{2}\right)
$$

Denote by $\tilde{\sigma}, \tilde{\tau}^{*}$, and $\tilde{\tau}$ any extensions of σ, τ^{*}, and τ to \hat{K}, respectively.

[^1]Then the inertia group of \hat{K} / K is generated by the elements $\left(\tilde{\tau}, \tilde{\tau}^{*}\right),(\tilde{\tau}, \tilde{\sigma})$, ($\left.\tilde{\tau}^{*}, \tilde{\sigma}\right)$.

Proof. Let F be the inertia field of \hat{K} / K, and let D be the fixed field of $\left\langle\left(\tilde{\tau}, \tilde{\tau}^{*}\right),(\tilde{\tau}, \tilde{\sigma}),\left(\tilde{\tau}^{*}, \tilde{\sigma}\right)\right\rangle$. Since $G\left(\hat{K} / Q_{2}\right)$ is of class two and $\left\{\tilde{\sigma}, \tilde{\tau}^{*}, \tilde{\tau}\right\}$ is a system of generators of $G\left(\hat{K} / Q_{2}\right)$, the commutator group of $G\left(\hat{K} / \boldsymbol{Q}_{2}\right)$ is generated by the elements $\left(\tilde{\tau}, \tilde{\tau}^{*}\right),(\tilde{\tau}, \tilde{\sigma}),\left(\tilde{\tau}^{*}, \tilde{\sigma}\right)$. Thus D / Q_{2} is the maximal Abelian extension contained in \hat{K}. Hence $D \supset F$, because F / Q_{2} is an Abelian extension.

To prove the converse let T^{\prime} be the inertia field of D / Q_{2}. Since $\mu\left(D / \boldsymbol{Q}_{2}\right) \leqq \mu\left(\hat{K} / \boldsymbol{Q}_{2}\right) \leqq \nu$ by [10, Lemma 3], it follows from local class field theory that $G\left(D / T^{\prime}\right)$ is a homomorphic image of the group of prime residue classes mod 2^{ν}. We have $\left[D: T^{\prime}\right] \leqq \psi\left(2^{\nu}\right)=2^{\nu-1}$, and hence $D=T^{\prime} K$, because of $T^{\prime} \cap K=T,\left[T^{\prime} K: T^{\prime}\right]=[K: T]=2^{\nu-1}$. We conclude that D / K is unramified, which implies $F \supset D$.
Q.E.D.

By the same procedure as the proof of Lemma 3, we obtain
Lemma 4. Let $p \neq 2$, g be a primitive root $\bmod p^{\nu}$, and let

$$
\sigma=\left(p, K / \boldsymbol{Q}_{p}\right)^{-1}, \quad \tau=\left(g, K / \boldsymbol{Q}_{p}\right)
$$

Denote by $\tilde{\sigma}$ and $\tilde{\tau}$ any extensions of σ and τ to, \hat{K}, respectively. Then the inertia group of \hat{K} / K is generated by the single element $(\tilde{\tau}, \tilde{\sigma})$.

§3. The central ideal class group of cyclotomic fields

Let $m=2^{\nu} p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}$ be a positive integer, K be the m-th cyclotomic field over Q, and let \hat{K} be the central class field $\bmod m p_{\infty}$ in the sense of $[10, \S 3]$, where p_{∞} is the real prime divisor of \boldsymbol{Q}. Then \hat{K} is a central extension of K / Q, and hence it is a nilpotency class two extension over Q. Moreover it follows from the definition of the central class field mod \mathfrak{m} that any rational prime not contained in $m p_{\infty}$ is unramified in \hat{K}. We have already proved in [10, Theorem 32] that if $(m, 16) \neq 8$, then

$$
\begin{equation*}
(G(\hat{K} / \boldsymbol{Q}), G(\hat{K} / \boldsymbol{Q}))=G(\hat{K} / K) \cong H^{-3}(G(K / \boldsymbol{Q}), \boldsymbol{Z}) \tag{2}
\end{equation*}
$$

For use of this result we distinguish the following three cases:

$$
\text { (a) } \nu=0, \quad \text { (b) } \quad \nu=2, \quad \text { (c) } \quad \nu \geqq 4
$$

In the present paper we will prove our main Theorem for (a) and state the corresponding results for (b) and (c).

Assume $\nu=0$. Let g_{i} be a primitive root $\bmod p_{i}^{\nu i}$, and let

$$
\sigma_{i}=\left(\frac{p_{i}, K}{p_{i}}\right)^{-1}, \quad \tau_{i}=\left(\frac{g_{i}, K}{p_{i}}\right), \quad i=1, \cdots, r
$$

Since $G(K / Q)$ is isomorphic to the group of prime residue classes $\bmod m$, $G(K / Q) \cong \boldsymbol{Z}_{\psi\left(p_{1}^{\nu_{1}}\right)} \times \cdots \times \boldsymbol{Z}_{\psi\left(p_{r}^{\nu_{r} r}\right)}$, and $\left\{\tau_{1}, \cdots, \tau_{r}\right\}$ is a system of generators of $G(K / Q)$. For each i, we choose elements $\tilde{\sigma}_{i}$ and $\tilde{\tau}_{i}$ in the decomposition group of a prime factor \mathfrak{P}_{i} of p_{i} in \hat{K}, which under the natural homomorphism of $G(\hat{K} / \boldsymbol{Q})$ onto $G(K / Q)$ are mapped onto σ_{i} and τ_{i}, respectively. Since $G(\hat{K} / K)$ is contained in the center of $G(\hat{K} / Q)$, the inertia group of \Re_{i} over K does not depend on the choice of \Re_{i} over p_{i}, and it is generated by the element ($\tilde{\tau}_{i}, \tilde{\sigma}_{i}$), as we can see by Lemma 4.

According to Lemma 2 and (2), $G(\hat{K} / K)$ is generated by $\binom{r}{2}$ elements

$$
\left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right), \quad 1 \leqq i<j \leqq r,
$$

and completely determined by the relations

$$
\begin{aligned}
& \left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right)\left(\tilde{\tau}_{k}, \tilde{\tau}_{l}\right)=\left(\tilde{\tau}_{k}, \tilde{\tau}_{l}\right)\left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right), \quad \text { all } i, j, k, l, \\
& \left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right)^{\left(\psi\left(p_{i}^{\nu}\right), \psi\left(p_{j}^{p} j_{j}^{j}\right)\right.}=1, \quad 1 \leqq i<j \leqq r .
\end{aligned}
$$

Let C_{K} be the ideal class group ${ }^{3}$) of K, and let U be the Abelian extension of K corresponding to $I\left(C_{K}\right)$ in the sense of class field theory. Then U is the maximal central extension of K / Q which is unramified over K, and is contained in \hat{K}, as we can see by going back to the definition of the central class field mod m. We conclude that U is the subfield of \hat{K} corresponding to $\left\langle\left(\tilde{\tau}_{1}, \tilde{\sigma}_{1}\right), \cdots,\left(\tilde{\tau}_{r}, \tilde{\sigma}_{r}\right)\right\rangle$ in the sense of Galois theory. Hence

$$
C_{K} / I\left(C_{K}\right) \cong G(U / K) \cong G(\hat{K} / K) /\left\langle\left(\tilde{\tau}_{1}, \tilde{\sigma}_{1}\right), \cdots,\left(\tilde{\tau}_{r}, \tilde{\sigma}_{r}\right)\right\rangle
$$

We next express ($\left.\tilde{\tau}_{i}, \tilde{\sigma}_{i}\right)$ in terms of $\tilde{\tau}_{1}, \cdots, \tilde{\tau}_{r}$. Define the symbols ${ }^{4)}$ $[j, i],[0, i]^{*},[0, i]$ by putting

$$
\begin{cases}p_{i} \equiv g_{j}^{[j, i]} \bmod p_{j}^{\nu_{j}}, \quad i=0,1, \cdots, r, j=1, \cdots, r, \tag{3}\\ p_{i} \equiv(-1)^{[0, i]^{*} 5^{[0, i]}} \bmod 2^{y}, \quad i=1, \cdots, r, \\ {[i, i]=0,} & i=1, \cdots, r,\end{cases}
$$

[^2]where $p_{0}=2$, namely, $[j, i]$ is the index of p_{i} for the modulus $p_{j}^{\nu_{j}}$ relative to the primitive root g_{j}, and $[0, i]^{*},[0, i]$ are the indices of p_{i} for the modulus 2^{ν} relative to the basis $\{-1,5\}$. Then we have
$$
\sigma_{i}=\prod_{j=1}^{r} \tau_{j}^{[j, i]} \quad \text { for } i=1, \cdots, r
$$
because of $\prod_{\text {ant } p}\left(\frac{p_{i}, K}{p}\right)=1$, the product formula in class field theory. Therefore
\[

$$
\begin{aligned}
\left(\tilde{\tau}_{i}, \tilde{\sigma}_{i}\right) & =\tilde{\tau}_{i} \tilde{\sigma}_{i} \tilde{\tau}_{i}^{-1} \tilde{\sigma}_{i}^{-1}=\left(\tilde{\tau}_{i}, \prod_{j=1}^{r} \tilde{\tau}_{j}^{[j, i]}\right) \\
& =\prod_{j=1}^{r}\left(\tilde{\tau}_{i}, \tilde{\tau}_{j}\right)^{[j, i]}
\end{aligned}
$$
\]

because $G(\hat{K} / K)$ is contained in the center of $G(\hat{K} / Q)$ and $G(\hat{K} / Q)$ is of class two. Thus ${ }^{5)}$ we have proved the following main

Theorem 5. Let $m=2^{\nu} p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}$ be a positive integer, K be the m-th cyclotomic field over \boldsymbol{Q}, and let $C_{K} / I\left(C_{K}\right)$ be the central ideal class group of K. Then:
(a) $\nu=0 . \quad C_{K} / I\left(C_{K}\right)$ is generated by $\binom{r}{2}$ elements $x_{i j}, 1 \leqq i<j \leqq r$, and completely determined by the relations

$$
\begin{array}{ll}
x_{i j} x_{k l}=x_{k l} x_{i j}, & \text { all } i, j, k, l \\
\prod_{j=1}^{r} x_{i j}^{[j, i]}=1, & i=1, \cdots, r \\
x_{i j}^{\left(\psi\left(p_{i}^{i}\right), \psi\left(p_{j}^{p j)}\right)\right.}=1, & 1 \leqq i<j \leqq r
\end{array}
$$

with the convention $x_{j i}=x_{i j}^{-1}$.
(b) $\nu=2 . \quad C_{K} / I\left(C_{K}\right)$ is generated by $\binom{r+1}{2}$ elements $x_{i j}, 0 \leqq i<j \leqq r$, and completely determined by the relations

$$
\begin{array}{ll}
x_{i j} x_{k l}=x_{k l} x_{i j}, & \text { all } i, j, k, l, \\
\prod_{j=1}^{r} x_{0 j}^{[j j, 0]}=1, & \\
x_{0 i}^{-[0, i]^{*}} \prod_{j=1}^{r} x_{i j}^{[j, i]}=1, & i=1, \cdots, r, \\
x_{0 i}^{2}=1, & i=1, \cdots, r,
\end{array}
$$

[^3]$$
x_{i j}^{\left(\psi\left(p_{i}^{2}\right), \psi\left(p_{j}^{p j}\right)\right)}=1, \quad 1 \leqq i<j \leqq r,
$$
with the convention $x_{j i}=x_{i j}^{-1}$.
(c) $\nu \geqq 4 . \quad C_{K} / I\left(C_{K}\right)$ is generated by $\binom{r+2}{2}-1$ elements $x_{i j},-1 \leqq i$ $<j \leqq r,(i, j) \neq(-1,0)$, and completely determined by the relations
\[

$$
\begin{array}{ll}
x_{i j} x_{k l}=x_{k l} x_{i j}, & \text { all } i, j, k, l, \\
\prod_{j=1}^{r} x_{i j}^{[j, 0]}=1, & i=-1,0, \\
x_{-1 i}^{-[0, i]} x_{0 i}^{-[0, i]^{*}} \prod_{j=1}^{r} x_{i j}^{[j, i]}=1, & i=1, \cdots, r \\
x_{-1 i}^{\left(2 \nu-2, \psi\left(p_{i}^{p i))}\right.\right.}=1, & i=1, \cdots, r, \\
x_{0 i}^{2}=1, & i=1, \cdots, r, \\
x_{i j}^{\left(\psi\left(p_{i}^{p i}\right), \psi\left(p_{j}^{p j)}\right)\right.}=1, & 1 \leqq i<j \leqq r,
\end{array}
$$
\]

with the convention $x_{j i}=x_{i j}^{-1}$, where $[j, i],[0, i]^{*},[0, i]$ are the indices defined by (3).

§4. Applications

Y. Furuta [5, Theorem 4] proved the following result: Let ℓ be any rational prime and m be a rational integer. Assume that the number of different prime divisors p of m such that $p \equiv 1 \bmod \ell$ is equal to or greater than 8 (this number should be replaced by 9 , only when $\ell=2$ and m $\not \equiv 0 \bmod 4)$. Then the class number of the m-th cyclotomic field is always divisible by ℓ and moreover the m-th cyclotomic field admits an infinite unramified ℓ-extension.

The first half of this result can be sharpen as follows.
Theorem $6^{6)}$. Let $m=2^{y} p_{1}^{\nu_{1}^{1}} \cdots p_{r}^{\nu_{r}}$ be a positive integer, K be the m-th cyclotomic field over $\boldsymbol{Q}, \rho_{\ell}$ be the l-rank of $C_{K} / I\left(C_{K}\right)$, and let t be the number of different primes p_{i} of m such that $p_{i} \equiv 1 \bmod \ell$. Then:
(a) $\nu=0 . \quad \rho_{\ell} \geqq \frac{1}{2} t(t-3)$.

In particular $\quad \rho_{2} \geqq \frac{1}{2} r(r-3)$.
(b) $\quad \nu=2 . \quad \rho_{\ell} \geqq \frac{1}{2} t(t-3), \quad \ell \neq 2$,
$\rho_{2} \geqq \frac{1}{2}(r+1)(r-2)$.
(c) $\nu \geqq 4 . \quad \rho_{\ell} \geqq \frac{1}{2} t(t-3), \quad \ell \neq 2$, $\rho_{2} \geqq \frac{1}{2}\left(r^{2}+r-4\right)$.
Proof. (a) Suppose the primes p_{i} to be so numbered that $p_{i} \equiv 1$ $\bmod \ell$ for $i=1, \cdots, t$. Set $m^{\prime}=p_{1}^{\nu_{1}} \cdots p_{t}^{\nu t}$, and denote by C^{\prime} the central
6) Cf. Fröhlich [3, Lemmas 2 and 3] and [4, Lemmas 4 and 5].
ideal class group of the m^{\prime}-th cyclotomic field over \boldsymbol{Q}. By virtue of Theorem 5, (a), C^{\prime} is generated by $\binom{t}{2}$ elements $y_{i j}, 1 \leqq i<j \leqq t$, and completely determined by the relations

$$
\begin{array}{ll}
y_{i j} y_{k l}=y_{k l} y_{i j}, & \text { all } i, j, k, l, \\
\prod_{j=1}^{t} y_{i j}^{[j, i]}=1, & i=1, \cdots, t, \tag{4}\\
y_{i j}^{\left(\psi\left(p_{i}^{i}\right), \psi\left(p_{j}^{p / j)}\right)\right.}=1, & 1 \leqq i<j \leqq t
\end{array}
$$

where $y_{j i}=y_{i j}^{-1}$. We define a homomorphism $C_{K} / I\left(C_{K}\right) \rightarrow C^{\prime}$ by putting $x_{i j} \rightarrow y_{i j}$ for $1 \leqq i<j \leqq t, x_{i j} \rightarrow 1$ otherwise. Then the homomorphism is epimorphic. Hence denoting the ℓ-rank of C^{\prime} by ρ_{ℓ}^{\prime}, we have

$$
\rho_{\ell} \geqq \rho_{\ell}^{\prime} .
$$

It follows from the assumption that

$$
\left(\psi\left(p_{i}^{\nu_{i}}\right), \psi\left(p_{j}^{\nu_{j}^{j}}\right)\right) \equiv 0 \bmod \ell \quad \text { for } 1 \leqq i<j \leqq t
$$

Noting the convention $y_{j i}=y_{i j}^{-1}$, we denote by A the matrix of coefficients in the additively written equations (4) on generators $y_{i j}$ and by $r(A)$ its rank as a matrix in $G F(\ell)$. Since A is $a\left(t, \frac{1}{2} t(t-1)\right.$) matrix, we have $r(A) \leqq t$. Hence

$$
\rho_{\ell}^{\prime}=\frac{1}{2} t(t-1)-r(A) \geqq \frac{1}{2} t(t-3) .
$$

Q.E.D.

Corollary 7. Let $m=2^{y} p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}$ be a positive integer, h be the class number of the m-th cyclotomic field over \boldsymbol{Q}, and let t be the number of different primes p_{i} of m such that $p_{i} \equiv 1 \bmod \ell$ for an odd prime ℓ. Then:
(a) $\nu=0$. If $r \geqq 4$, then $2^{2} \mid h$.

$$
\text { If } t \geqq 4 \text {, then } 2^{2} \ell^{2} \mid h
$$

(b) $\nu=2$. If $r \geqq 3$, then $2^{2} \mid h$.

$$
\text { If } t \geqq 4, \text { then } 2^{5} \ell^{2} \mid h
$$

(c) $\nu \geqq 4$. If $r \geqq 2$, then $2 \mid h$.

$$
\text { If } t \geqq 4 \text {, then } 2^{8} \ell^{2} \mid h
$$

In any case h is divisible by 4 if $r \geqq 4$, and by $2^{2} \ell^{2}$ if $t \geqq 4$.
Finally we state a result concerning the invariants of the central ideal class group of cyclotomic fields. The following Lemma can be
easily verified ${ }^{77}$.
Lemma 8. For any prime p and any integer a prime to p, let

$$
\begin{aligned}
& o\left(p^{\nu}, a\right)=\text { the order of } a \bmod p^{\nu} \text { for } \nu \geqq 1 \\
& q(p, a)=\text { the highest exponent of } p \text { dividing } a^{p-1}-1 .
\end{aligned}
$$

Then we have: (i) If $p \neq 2$ and $\alpha=q(p, a)$, then

$$
\begin{aligned}
& o(p, a)=o\left(p^{2}, a\right)=\cdots=o\left(p^{\alpha}, a\right) \\
& o\left(p^{\alpha+i}, a\right)=p^{i} o(p, a) \quad \text { for } i \geqq 1
\end{aligned}
$$

(ii) $p=2$. If $\alpha=q(2, a)>1$, i.e. $a \equiv 1 \bmod 4$, then

$$
\begin{array}{lr}
o(2, a)=o\left(2^{2}, a\right)=\cdots=o\left(2^{\alpha}, a\right)=1 \\
o\left(2^{\alpha+i}, a\right)=2^{i} & \text { for } i \geqq 1,
\end{array}
$$

and if $\alpha=1$, i.e. $a \equiv 3 \bmod 4$, then

$$
\begin{array}{lr}
o\left(2^{2}, a\right)=o\left(2^{3}, a\right)=\cdots=o\left(2^{\beta}, a\right)=2, \\
o\left(2^{\beta+i}, a\right)=2^{i+1} & \text { for } i \geqq 1,
\end{array}
$$

where $\beta=$ the highest exponent of 2 dividing $a^{2}-1$. Note $\beta \geqq 3$, which implies that the group of prime residue classes $\bmod 2^{\nu}$ is not cyclic when $\nu \geqq 3$.

Denote by B the matrix of coefficients in the additively written equations on generators $x_{i j}$ in Theorem 5, (a), noting $x_{j i}=x_{i j}^{-1}$. Then B is a $\left(\frac{1}{2} r(r+1), \frac{1}{2} r(r-1)\right)$ matrix. Let e_{i} be the elementary divisors of B in the domain of rational integers such that $e_{1}\left|e_{2}\right| \cdots \mid e_{s}, e_{i}>0, i=1, \cdots, s$. Then $C_{K} / I\left(C_{K}\right)$ can be written in the form, as a product of cyclic groups,

$$
\begin{equation*}
C_{K} / I\left(C_{K}\right) \cong Z_{e_{1}} \times \cdots \times Z_{e_{s}} . \tag{5}
\end{equation*}
$$

Each e_{i} can be computed by the following rule: Let $D_{i}(B)$ be the G.C.D. of all i-th minors in $\operatorname{det} B$. Then

$$
D_{i}(B)=e_{1} e_{2} \cdots e_{i}, \quad 1 \leqq i \leqq s
$$

Hence

$$
\begin{aligned}
e_{1} & =\text { the G.C.D. of all entries of } B \\
& =\text { G.C.D. }\left\{\left(\psi\left(p_{i}^{\nu_{i}}\right), \psi\left(p_{j}^{\nu_{j}}\right),[j, i],[i, j]\right) \mid 1 \leqq i<j \leqq r\right\} \\
& =\text { G.C.D. }\left\{\left.\left(\frac{\psi\left(p_{i}^{\nu_{i}}\right)}{o\left(p_{i}^{\nu_{i}}, p_{j}\right)}, \frac{\psi\left(p_{j}^{\nu_{j}^{\prime}}\right)}{o\left(p_{j}^{\nu_{j}^{\prime}}, p_{i}\right)}\right) \right\rvert\, 1 \leqq i<j \leqq r\right\} .
\end{aligned}
$$

[^4]Thus by virtue of Lemma 8 we obtain
Theorem 9. Let $m=p_{1}^{\nu_{1}} \cdots p_{r}^{\nu_{r}}, p_{1}, \cdots, p_{r}$ distinct odd primes, and let $C_{K} / I\left(C_{K}\right)$ be the central ideal class group of the m-th cyclotomic field over Q. Then the first elementary divisor e_{1} of $C_{K} / I\left(C_{K}\right)$ in (5) becomes constant for all ν_{i} sufficiently large. In fact if we put $\alpha_{i j}=q\left(p_{i}, p_{j}\right)$ and take $\nu_{i}>\max \left\{\alpha_{i j} \mid j=1, \cdots, r\right\}$ for $i=1, \cdots, r$, then

$$
e_{1}=\text { G.C.D. }\left\{\left.\left(\frac{\psi\left(p_{i}^{\alpha_{i j}}\right)}{o\left(p_{i}, p_{j}\right)}, \frac{\psi\left(p_{j}^{\alpha_{j i}}\right)}{o\left(p_{j}, p_{i}\right)}\right) \right\rvert\, 1 \leqq i<j \leqq r\right\} .
$$

Example. For $m=5^{\nu_{1}} 11^{\nu_{2}}, \nu_{1} \geqq 2, \nu_{2} \geqq 2$, we have $C_{K} / I\left(C_{K}\right) \cong Z_{2}$.
Remark. Let K be a finite Galois extension over $\boldsymbol{Q}, f(K)$ be its Galois conductor in the sense of [10, § 2], and let m be a rational module such that $f(K) \mid m$. We denote by \hat{K}_{m} the central class field $\bmod m$ and by K_{m}^{*} the genus field $\bmod m$ of K / Q in the sense of [10, §3]. Then it follows from [10, Theorem 31] that if all first ramification groups of K / Q are cyclic, then

$$
G\left(\hat{K}_{m} / K_{m}^{*}\right) \cong H^{-3}(G(K / \boldsymbol{Q}), Z)
$$

Thus the method leading up to main Theorem 5 can be applicable to determine the central ideal class group of Abelian extensions over \boldsymbol{Q} whose first ramification groups are cyclic, because it is based on Lemma 2 and (2).

References

[1] L. E. Dickson, History of the Theory of Numbers, vol. 1, Washington 1919.
[2] A. Fröhlich, On fields of class two, Proc. London Math. Soc. (3), 4 (1954), 235256.
[3] - On the absolute class-group of Abelian fields, J. London Math. Soc., 29 (1954), 211-217.
[4] , On the absolute class-group of Abelian fields (II), J. London Math. Soc., 30 (1955), 72-80.
[5] Y. Furuta, On class field towers and the rank of ideal class groups, Nagoya Math. J., 48 (1972), 147-157.
[6] D. Garbanati, Invariants of the ideal class group and the Hasse norm theorem, J. reine angew. Math., 297 (1978), 159-171.
[7] R. C. Lyndon, The cohomology theory of group extensions, Duke Math. J., 15 (1948), 271-292.
[8] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. reine angew. Math., 127 (1904), 20-50.
[9] I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch
gebrochene lineare Substitutionen, ibid., 132 (1907), 85-137.
[10] S. Shirai, On the central class field mod \mathfrak{m} of Galois extensions of an algebraic number field, Nagoya Math. J., 71 (1978), 61-85.
[11] - On Galois groups of class two extensions over the rational number field, Nagoya Math. J., 75 (1979), 121-131.

Toyama Medical and Pharmaceutical University

[^0]: Received August 4, 1978.

 1) Cf. Fröhlich [3, p. 212] and [4, pp. 73-77]. When $[K: Q]=\ell^{\alpha}$, this implies that $K_{0}^{*}=K$ or $K^{*}=K$ according as $\ell=2, K$ real or otherwise, where K_{0}^{*} is the maximal real, unramified, Abelian 2 -extension of K which is still Abelian over \boldsymbol{Q}, and K^{*} is the maximal, unramified, Abelian ℓ-extension of K which is still Abelian over \boldsymbol{Q}.
[^1]: 2) $\operatorname{See}[10, \S 1]$.
[^2]: 3) In this case the ideal class groups in the narrow and the wider sense coincide, because no real prime divisor exists in K.
 4) Cf. Fröhlich [2, pp. 237-238].
[^3]: 5) As regards computation in the cases (b) and (c), cf. [11, §3]. See also Fröhlich [3, Theorem 2] and [4, Theorem 3].
[^4]: 7) See also L. E. Dickson [1, Chapter VII].
