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ON ALGEBRAIC GROUPS DEFINED BY JORDAN PAIRS

OTTMAR LOOS

Introduction

Let G be an algebraic group over a field k, and let ψ be an action

of the multiplicative group km of k on G by automorphisms. We say ψ

is an elementary action if it has only the weights 0, ± 1 ; more precisely,

if there exist subgroups H, U+, U~ of G such that (i) H is fixed under ψ,

(ii) U+ and U~ are vector groups and ψt(x) = t±ιx for tekm, xe JJ±, (iii)

Ω = JJ-'H'U+ is open in G, and (iv) G is generated by H, U+,U~. This

situation is characteristic for the complexifications of the automorphism

groups of bounded symmetric domains (see, e.g., [9, 16]). A typical example

is G = GLn with (matrices being decomposed into 4 blocks) ψ given by

tb
d

\

If G is reductive and U+ and U~ are one-dimensional, then an elementary

action is essentially equivalent to an elementary system in the sense of

Demazure [7, Exp. XX], with the technical difference that we consider an

external torus action instead of a sub-torus of G acting by conjugation.

After some preliminaries, our first goal (§ 4) is to find relations describ-

ing the structure of G in terms of the generators H, U+, U~. Since H

normalizes U+ and U" this essentially amounts to a formula expressing

products in U+U~ in terms of their components in Ω = U~HU+. In

more detail, let SS* be the Lie algebra of U±. Then there are ψ-equivariant

isomorphism exprSS*-^ U±, and there is a unique Jordan pair structure

on 23 = (S3+, 23") such that, for xe23+, 3>eS3~, the product exp (x) exp (y)

belongs to Ω if and only if (x, y) is quasi-invertible, and in this case

( * ) exp (x) exp (y) = exp (yx) b(x, y) exp (xv) .

Here xv, yx denotes the quasi-inverse in 23 and 6 is a morphism from the

set of quasi-invertible pairs of 23 into H which has properties analogous

to the "Bergmann transformations" B(x, y) of a Jordan pair. The formula

23
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(*) is the higher-dimensional analogue of Demazure's formula (F) ([7, Exp.
XX, Th. 2.1]). In case U+ and U~ are conjugate by an element of G°,
one can show that the Jordan pair 33 contains invertible elements and
hence is the Jordan pair defined by a (not canonically determined) unital
quadratic Jordan algebra; see Borel-Tits [4, § 5] and Springer [20, 2.21-2.26].

Next we show how to reconstruct G, given 93 and H. The necessary
ingredients for this are an action p of H on S3 by automorphisms and a
morphism b from the quasi-invertible pairs of 93 into H, satisfying suitable
conditions (5.1). Then for every "Jordan system" (93, H, p, b) there exists
an "elementary system" (G, ψ), and this establishes an equivalence of
categories. In case H is the automorphism group of 93 and p = Id, and
under restrictions on k and 93, Koecher proved the existence of G by
realizing it as a group of birational transformations; see [11,12,13]. The
proof given here (5.2-5.9) is more direct but also more computational. The
Lie algebra of G was studied extensively by Tits [21], Koecher [10], and
Meyberg [17].

In § 6, we prove that the unipotent radical of G and the Jacobson
radical of 93 are related by the formula

where N± = exp (Rad 93*). We also show that the automorphism group
of a separable Jordan pair is reductive and its identity component consists
of inner automorphisms, a result due to Springer [20] in the Jordan algebra
case. Finally, we give a description of the group G(k) of /^-rational points
by generators and relations.

The desire to replace the base field k by an arbitrary base ring leads
naturally to considering group schemes and Jordan pairs which are finitely
generated and protective /̂ -modules. In view of recent work of H. P. Petersson
[18] on orders in Jordan pairs over quotient fields of Dedekind rings, this
degree of generality seems not without interest. It turns out that the
formal theory of § 3-§ 5 is easier to handle in the framework of group
sheaves (in the flat topology). Representability questions are then treated
separately; if the base ring is Dedekind, they have satisfactory answers (5.13).
We have therefore adopted this point of view, in particular, since it in-
volves very little extra effort as compared to a more classical approach.

The author wishes to express his thanks to P. Gabriel for a stimulat-
ing conversation. Also, the hospitality of the University of California at
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Irvine during the final preparation of the manuscript is gratefully
acknowledged.

§1. Notations and Preliminaries

1.1. Let k denote a commutative base ring and £-alg the category
of commutative ^-algebras. We follow the notations and conventions of
[5]. In particular, schemes are considered as special ^-functors (covariant
functors from £-alg into sets). If X is a ^-functor we write xe X for
x e X(R), R e k-silg. The base extension of X from k to K is denoted by
Xκ or X®kK. A sheaf is a β-functor which is a sheaf in the flat
(= fppf) topology. We refer to [5, p. 10, p. 50] for the notion of open
(closed) subfunctor. It is easily seen that an open (closed) subfunctor of
a sheaf is itself a sheaf. A ^-functor X is called separated if the diagonal
in X x X is closed. The following result can be proved along the lines
of [5, p. 296].

1.2. LEMMA. Let

X-^Y

be a Cartesian square of sheaves where p is an epimorphism of sheaves.
Then u is an open (closed) imbedding if and only if v is.

1.3. COROLLARY. Let p:X^> Y be an epimorphism of sheaves and E
= X XYXa X X X the equivalence relation defined by p. Then Y is
separated if and only if E is closed in X X X.

This follows by considering the Cartesian square

E -^-> y
diag

XX X >YX Y
V X V

1.4. A subfunctor U of a Munctor X is called dense if, for all open
Va X, and all closed Z d V such that Z z> U Π V we have Z = V, and
this property remains valid in all scalar extensions. If X is a scheme then
this notion of dense is the same as "universally schematically dense"
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(cf. EGA IV, 11.10). The following lemma will be used often (cf. SGA3,

Exp. XVIII, 1.7, and EGA IV, 11.10.10).

1.5. LEMMA. Let X be a smooth separated finitely presented k-scheme

with connected non-empty fibres, and let U be an open subscheme of X.

Then the following conditions are equivalent

( i ) U is dense in X.

(ii) There exists a fppf extension R of k such that U(R) Φ 0.

(iii) U(K) Φ 0 for all algebraically closed fields K e k-alg.

1.6. LEMMA (Cf. SGA3, Exp. XVIII, Prop. 1.1). Let U be α dense

subfunctor of X.

(a) UR is dense in XR, for all R e k-alg.

(b) If U c Ό' c X then U' is dense in X.

(c) If V is open in X then U Π V is dense in V.

(d) If V c U is dense in U then V is dense in X.

(e) If U' α X is open and dense then U Π U' is dense in X.

(f) U X Y is dense in X X Y, for any k-functor Y.

(g) If f,g:X-> Y are morphisms into a separated k-functor Y which

agree on U then f = g.

The proofs are mostly straightforward and are omitted.

1.7. LEMMA. Let p : X—> Y be an epimorphίsm of sheaves, and let U

be a subfunctor of Y such that p~\U) is dense in X. Then U is dense.

Proof. Let V c Y be open, Z C V closed, and assume U Π V a Z.

Then p~\V) is open in X,p~\Z) czp-\V) is closed, and p~\U) Π p~\V)

(Zp~\Z). Hence p~\Z) — p~\V). Now p:p~\V) —> V is an epimorphism

of sheaves, and therefore Z contains the image sheaf of p~\V) under p

which is V.

1.8. A £-group functor is a covariant functor from £-alg into the

category of groups. If G is a £-group sheaf and A and B are subsheaves

of G then A B denotes the image sheaf of A X B under multiplication.

The multiplicative group of k is denoted by km, the additive group of a

finitely generated projective ^-module W by Tta. Thus Tla(R) = %JlR =

Wl ®fc R, for all R e k-alg. The Lie algebra of a £-group functor G is

denoted by Lie(G). We follow [7, p. 209] and write e*x e G(k(ε)) for

x e Lie (G) (where k(ε) is the ring of dual numbers). If G = Ttα is a
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vector group we identify Lie (3Jϊα) with SK and set eεx = ex. If G c GL (9K)

is linear then we identify Lie (G) with the set of x e End (W) such that ee*

= Id + εxeG(k(ε)). (Here GL(2R) is the β-group functor R -> GL(2KΛ)).

The adjoint representation of G(k) on Lie(G) is defined by Int(g )eε* = eεAdg**,

where Int(g)/ι = ghg~\

§2. Jordan Pairs

2.1. Let 93+ and S3" be finitely generated and projective ^-modules,

and let Q+: 93+ -> Hom(93-, 93+) and Q_: 93~-> Hom(93+, 93") be quadratic

maps. For σ = ± define trilinear compositions 93σ X 93~σ X 93σ —> 33%

(x, y, z) H-> {JC^}, and bilinear maps Dσ: S*7 X S3-ff -• End(93σ) by

{xyz} = Dσ(x,y)z = Qa(x, z)y = Qσ(x + z)y - Qσ(x)y - Qσ(z)y .

The pair S3 = (23+, 23") together with the quadratic maps (Q+, Q_) is called

a Jordan pair if the following identities hold in all base ring extensions.

( 1) Dσ(x, y)Qσ(x) = Qσ(x)D_σ(y, x) ,

( 2) Dσ(Qσ(x)y, y) = Dσ(x, Q_σ(y)x) ,

( 3 ) QXQXχ)y) = QAχ)Q-(y)Q.(χ).

A homomorphίsm h: 23 -> SB of Jordan pairs is a pair /ι = (h+, h_) of ^-linear

maps, hσ:ϊ8
σ ->3&σ, such that JισQσ(x) = Qσ{hσ(x))h_σ. The automorphism

group of S3 is denoted by Aut (93). The opposite of 93 is 93op = (93~, 93+)

with quadratic maps (Q_, Q+). A standard example of a Jordan pair is

93+ = 93" = MPjQ(k), p X g-matrices, with Q±(x)y = x-'y-x. For details see

[15].

2.2. The quasi-inverse ([15, § 3]). Let 93 be a Jordan pair. Following

the convention of [15, 2.0], we omit the index σ in Dσ and Qσ and write

Qxy for Q(x)y. For xe93+, y e 93" define B(x,y) e End(93+) and B(y,x)e

End (93") by

B(x, y) = Id - D(x,y) + Q.Q, , B(y, x) = Id - D(y, x) + Q,Q, .

The pair (x, y) e 93+ X 93" is called quasί-ίnvertible if there exists 2 e 93+

such that

( 1) B(x, y)z = x- Qxy and B(x, y)Qzy = Qxy .

This is the case if and only if B(x, y) is invertible, and thus
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(2) z = χy = B(x,y)-\x-Qxy),

called the quasi-inverse of (x,y). We denote by W e 33+ X 23~ the open

dense subscheme of quasi-invertible pairs. In the example above, (x, y)

is quasi-invertible if and only if 1 — x 'y is invertible, and xy =

(1 — x-tyY^ x. If (x,y) is quasi-invertible then

β(x,y) = (B(x,y),B(y,x)-ί)

is an automorphism of 93, called the inner automorphism defined by (x, y).

The subgroup Inn (93) of Aut(93) generated by all inner automorphisms

is normal and called the inner automorphism group,

2.3. The automorphism group functor of V is defined by

Aut (93)(i2) = Aut (93*) ,

for all R e k-alg. We show that Aut (93) is an affine finitely presented

group scheme. Let x{, , xα

n be a set of generators for the A-module

93* (σ = ± ) . Then h = (h+, /ι_)eGL(93+) X GL(93') belongs to Aut (93) if

and only if

KQ(xl) = Q(hσ(x°))h_σ ,

hσD(x°, x]σ) = D(hσ(x0, h_σ(xy))hσ ,

for i,j=l,'- ,n, σ = ± . Since this remains true in any base ring ex-

tension, Aut (93) is the closed subscheme of the affine finitely presented

^-scheme GL (93+) X GL (93~) defined by finitely many equations, and is

therefore itself an affine finitely presented ^-scheme ([5,1, § 3]).

The derivation algebra of 93 is Der (93) = Lie (Aut (93)). From 1.8 it

follows easily that Δ = (J+, Δ_) e End (93+) X End (93") is a derivation of 93

if and only if

for all xe93% ye93~% σ = ±. Finally we note that there is a central

homomorphism γ: kn —> Aut (93) given by

2.4. Let Inn (93) be the £-group sheaf associated with the A-group

functor R -> Inn (ΪBR). Then Inn (93) is normal in Aut (93). If k is a field

then Inn (93) is a smooth connected algebraic &-group since it is generated

by β(W) ([SGA3, Exp. V1B, No. 7], see also [2, p. 106]). For (x, y) e 9S+ X 93",
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δ(x,y) = (D(x,y),-D(y,x))

is a derivation of 93, called the inner derivation defined by (x, y). The

linear span of the δ(x, y) is an Aut (93)-invariant ideal of Der(93), the

inner derivation algebra Inder (33). Clearly Inder (93) C Lie (Inn (93)). If

k is a field of characteristic zero then it can be shown that equality holds.

2.5. Let 2Ϊ be a unital quadratic Jordan algebra over k which is

finitely generated and projective as a ^-module. Then 21 defines a Jordan

pair 93 = (2ί, 21) by setting 93+ = 93" = 21 and Q{x)-y = P(x)y where P

denotes the quadratic representation of A. This establishes a one-to-one

correspondence between Jordan algebras "up to isotopy" and Jordan pairs

containing invertible elements ([15, 1.11]). Let Str (21) be the structure

group of 21; i.e., the group of all geGLβ) such that P(gx) = gP(x)g* for

some g* e GL (21) and all x e A. Then g* e Str (21) and the map g >->g*~ι is

an automorphism of period 2 of Str (21). The inner structure group is the

subgroup Instr (21) of Str (21) generated by all P(x), x invertible. The

structure group functor Str (81) is defined by Str (2ί)(i?) = Str (2ίΛ) and we

denote by Instr (2ί) the A-group sheaf generated by the £-group functor

R -> Instr (8ίΛ).

2.6. PROPOSITION. The map f'.g*-* (g9 g*~ι) is an isomorphism of

Str (21) onto Aut (21, 21) mapping Instr (21) onto Inn (21, 21).

Proof. The first statement follows easily from the definitions (cf.

[15,1.8]). Let G be the image sheaf of Instr (21) in Aut (21, 21). Then

G c Inn (21, 21) since P(x) = B(x, x"1 + e) and thus f(P(x)) = β(x, x"1 + β)

(here e is the unit element of 21). Since everything is compatible with

base extension, the converse inclusion will follow if we show: for every

quasi-invertible (x, y) e 21 X 21 there exists a fppf extension R of k such

that B(x, y) e Instr (2ίΛ). If x is invertible then B(x, y) = P(x)P(x~1 - y) e

Instr (21) (cf. [15, 1.12]). If not, let Ucz 2ία be the open subscheme defined by

U(R) = {z e 2^ I (x + z, y) quasi-invertible} ,

and let £/' = U Π I ΓΊ ( — x + I) where I is the open dense subscheme of

invertible elements of 2ί. Then U is dense since 0 e U(k), and so are I

and the translate —x + I. By 1.5 and 1.6, Uf is dense and hence there

exists a fppf extension R of k such that U\R)Φ 0 . Picking ze U'(R)

we have by [15, p. 25, JP34] that B(x, y) = B(z, yx)~ιB{x + z,y)e Instr (2tΛ).
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§3. Elementary torus actions

3.1. Let G be a separated β-group sheaf, and let ψ be an action of

the multiplicative group km on G by automorphisms. Thus for every in-

vertible t e R, Re k-alg we have an automorphism ψt of GR varying

functorially with R and satisfying ψsψt = ψ6ί. The action ψ is called

elementary, and the pair (G, ψ) is called an elementary system if there

exist subgroup sheaves H, U+, U~ of G with the following properties.

( i ) H is fixed under ψ.

(ii) U+ and U~ are vector groups on which ψ acts by scalar mul-

tiplication (resp. the inverse of scalar multiplication).

More precisely: there exist finitely generated and projective ^-modules

3K± and isomorphisms f±: 9K* -> U* such that f+(tx) = ifo •/+(*), f-(t~ιy) =

Ψί •/-(3;)? f°Γ a 1 1 * G *«ι» Λ e ^a, y € 3K« .
(iii) β =. ίJ- i/ C7+ is open in G.

(iv) G is generated (as a £-group sheaf) by H, U+, U~.

We will show later that H, U+, U~ are uniquely determined by these

conditions. Clearly, if (G, ψ) is an elementary system so is any base ex-

tension (Gκ, ψκ). A homomorphism f: (G, ψ) -> (G7, ψ7) is a group homo-

morphism f:G->G' compatible with ψ and ψ\ If ψ is an elementary

action so is ψ~ι defined by ψϊ1 = Ψ«-i This just amounts to interchanging

U+ and U~ and replacing β by Ω~~\

3.2. EXAMPLE. Let G = GLTO and divide a wX ^-matrix g into 4

blocks:

of size p X p, p X q, q X P, q X q, where p + q = n. Let

(2) « , ) = ( « , » ) .

Then ψί is an action which is elementary. Indeed, let H (resp. U+, U~~)

consist of all matrices of the form

then Ω consists of all matrices (1) where a is invertible, and is therefore

open. Since G is a smooth separated finitely presented group scheme with
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connected fibres, Ω is dense in G. Let geG(R). Then ΩR Πg Ω^1 is

open and dense by 1.6, and by 1.5 there exists a fppf extension S of R

such that {ΩR Π gΏ^)(S) Φ 0; i.e., g e Ω(S)Ώ(S). This proves (iv).

Remark. By the same argument, (iv) follows from (iii) whenever G

is a smooth finitely presented group scheme with connected fibres.

Along the same lines, one has elementary actions on the orthogonal

and symplectic groups O2n C GL2n and SpTO C GL2?ι. Again, ψ is defined

by (2), and H is isomorphic with GLn imbedded into GL2w via

(a 0 \

Vθ ta ~ 1/

The groups U± are isomorphic with the additive group of alternating

(symmetric) n X n-matrices.

3.3. LEMMA. Let ψ be an elementary action, and let 23± be the Lie

algebra of U±. Then there exist unique isomorphisms

p B £ - > U±

such that

( 1 ) Lie (exp) = Id; i.e., exp {ex) = eεX ,

( 2) ψt (exp x) = exp (t±:Lx) ,

( 3 ) Ue(ψt)'X = t±ι-x ,

for all tekm, xe%*.

Proof. Let /+: SK̂  -> U+ be as in 3.1 (ii). By the convention of 1.8,

Lie (/+): 9K+-> SS+ is an isomorphism of ^-modules. Define exp(x) =

/+ (Lie (f+)~ιx). One checks easily that (1) and (2) hold, and (3) follows

from (1) and (2). To prove unicity, assume that exp' has the same

properties. Then h = (expO~loexp: 93+ -• 8S+ is an isomorphism which is

by (2) homogeneous of degree one, and therefore induced from a linear

isomorphism of /^-modules. By (1), this isomorphism is the identity. For

exp: S3" -> U~ the proof is analogous.

3.4. LEMMA. The map U~ X H X U+ -> G given by multiplication is

an open imbedding.

Proof. We only have to show that this map is a monomorphism.
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Using the fact that U+ and U~ are subgroups and everything is com-

patible with base extension, this reduces to: if

( 1 ) exp(y)-/i-exp(x) = A7

for xeS3+, yeδS", h,h'eH(k) then A = A7 and x = y = 0. Applying ψ,

to (1) we get

( 2) exp (rιy) A exp

for all tekm. In particular, for t — 1 + ε e £(ε) (dual numbers) (2) implies,

in view of 3.3,

A' - exp ((1 - e)y) A exp ((1 + e)x)

= exp(—εj) exp ( y) A exp (x) exp (εx) = e~sy-hf-eεx ,

and hence eεy = A'e^A'"1 = e s A d f t /^; i.e., 3̂  == Ad A' x. Applying Iie(ψ t ) to

this we get, by 3.3.3, t'ιy = Adh'-tx = t-Adh'-x = ty, for all te km. This

implies y — 0. Hence also x = 0 and A = Ar.

3.5. LEMMA. Lei /: (G, ψ) -> (G7, ψ7) 6β α homomorphism of elementary

systems. Then f maps U± into Uf±, and

{ 1) /(exp (*)) = exp7 (Lie (/)(x)) ,

/or all xe SS±.

Proo/. Define a morphism p: 93̂  -> G7 by φ(x) = /(exp x). Then

( 2 )

for tekm. Let X = ^ ( β 7 ) C S3α Then X contains the zero section, is

open, and (2) implies that it is invariant under km acting on 23« by scalar

multiplication. It follows that X= 23 .̂ By 3.4, we can write

( 3) φ(x) = exp7 (g.(x)) go(x) exp' (g+(x))

with unique morphisms g±:%ϊ-+ 93^ and go:^:-> H'. From (2) and (3)

we get the formulas

( 4 ) gjfx) = t^g±(x) ,

( 5 ) go(tx) = go(x) ,

for all t e km. Hence g0 and g_ are constant equal to 1 resp. 0, and g+

is linear (cf. [19]). By 3.3.1, g+ = Lie(/)|93+. The argument for Sβ- is

similar.
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3.6. PROPOSITION, (a) The subgroups U+ and U~ are uniquely

determined.

(b) H normalizes U+ and U~, and exp is H-equivarίant:

φ. ) h exp {x)h~ι = exp (Ad h x) ,

for all xe%ϊ, heH.

(c) HΠ U+ U- U+ = {1} .

Proof, (a) This follows from 3.5, applied to / = Id. (b) Apply 3.5 to

the homomorphism Int (h): (GR, ψR) -> {GB, ψR), for any h e H(R), R e k-alg.

(c) Let he(HΠ U+U' U+)(R). Then h = uvw with u, w e U+(S), v e U~(S)

for some fppf extension S of R. Hence h~ιuh e U+(S) and u~ιh = h(h~ιu~ιh)

= υw. By 3.4, h = 1.

3.7. LEMMA. Let u,weU~(k) and veU+(k). Then there exists an

fppf extension R of k and xe U+(R) such that xu~ι and xvw belong to Ω(R)>

Proof. Let X= U+ Π (Ω u) and Y= U+ Π (Ωw-ιυ~ι). Then X and

Y are open in U+, and they are dense since 1 e X(k) and υ~ι e Y(k). There-

fore -X* Π Y is dense, and there exists an fppf extension R of k such that

X(R) Π Y(R) Φ 0 (cf. 1.5, 1.6). The lemma follows.

3.8. PROPOSITION. G = H-U+'U'-U* = U+Ώ, and Ω is dense in G.

Proof. Let G' - U+ Ώ = HU+ U~ U\ Then Gf is a subgroup sheaf

of G. Indeed, in view of 3.6(b), this amounts to showing that U~ U+ - U~

C G\ After a base extension, it suffices to show that, for all u,we U~(k),

veU+(k)f there exists a fppf extension R of k such that uvw e G'(R).

Picking x as in 3.7, we have uvw = (ux~ι){xvw) e Ω~ι(R)Ω{R) = U+(R)Ω(R)

C Gf(R). Since G is generated by H, U+, and U~, we have G = G'. Let

Y c ?7+ X U~ be the inverse image of Ω under the multiplication map

U+ X U~ —>• G. Then Y is open and dense, and the inverse image of Ω

under the epimorphism of sheaves U+ X U~ X H X [7+ -> G is Y X i ί x £7+.

By 1.6(f) and 1.7, Ω is dense in G.

3.9. Let Gίn be the subgroup sheaf of G generated by U+ and [7~.

Then by 3.6(6), Gίn is normal in G, and clearly stable under ψ. Since

β (Ί Gίn = C/" (H Π Gin) !7+ is open in Gin we see that ψ induces an

elementary action on Gίn. By 3.8 we have G = H- Gin. If k is a field and

G is an algebraic β-group then by SGA3, Exp VIB, No. 7, Gin is a smooth
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connected algebraic £-group. Finally, we give the following criterion for

a £m-action to be elementary.

3.10. PROPOSITION. Let G be an affine finitely presented group scheme

with connected fibres, and assume that either G is reductive or k is a field

of characteristic 0. Then an action ψ of km on G by automorphisms is

elementary if (and only if) ψ has at most the weights 0, ± 1 on g = Lie (G).

Proof. The "only if" is immediate from 3.4. Let G = G X km be the

semidirect product with km acting on G via ψ, and let S = {1} X km c G.

Identify the character group of S with Z, and let H be the centralizer of

S in G. We have the decomposition g = g^ iθg o θgi into weight spaces

of ψ, and fei, Qj] c Qi+J. Also g0 = Lie (if), and § = Lie(G) = $®k-e (where

e is the canonical generator of Lie (S) = k) with [e, x] = ίx for x e Qt.

(a) Suppose G is reductive and splits over k. Then the same holds

for G. Choose a maximal torus T of G containing S, let Φ be the root

system of T and § = Σ Gα the root space decomposition. Then g€ =

Σ«eΦi 9α (̂  = ±1) where Φ< is the set of all a e Φ such that a \ S = i. Also

[9% g'] = 0 for or, /5 e Φ< since (α: + 0) | S = 2i is not a weight of S in g. It

follows that the root subgroups Ua, Uβ corresponding to gα, $β commute,

and ϊ/* = UaGΦ±1 Utt is a vector group, isomorphic with the additive

group of g±i. The exponential maps expα:g
α—•£/* satisfy ψt-expa(x) =

Int (s) - expα (x) = expα (Ad s x) = expα (ίx) for all t e km, where we set s =

(1, t) e S. Now Ω = U"Ή'S'U+ contains the big cell of G defined by an

ordering of Φ with the property that Φx consists of positive roots. Hence

Ω is open and dense in G, and therefore U~ -H U+ = Ω Γi G is open and

dense in G. By the remark in 3.2, ψ is an elementary action.

(b) If G is reductive but not split over k it splits over an fppf exten-

sion K of k. Thus we have subgroups U± of Gκ such that Hκ, U
± satisfy

the conditions of 3.1, and we have to show that C7± is defined over k. By

faithfully flat descent, it suffices to show that

l K) = £/± ®h (K®k K)

where ίu i2: K-> K®kK are the maps a^ a®l and a »-• 1 ® α. Since ψ

is defined over £ the two base extensions of ψκ induced by iγ and ί2 are

the same, and thus (1) follows from 3.6(a).

(c) Let έ b e a field of characteristic 0. Then g±1 is an algebraic Lie

algebra since it is the derived algebra of A e 0 g ± 1 ([5, p. 262, 2.6]). For
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x e g±1 we have (ad- (x))3 = 0 and adx e = —[e, x] = + x.

Hence x is nilpotent. Therefore g±1 is the Lie algebra of a unique

subgroup U± of G which is isomorphic with the additive group of q±1

under exp. Now it follows easily that H, U± satisfy the conditions of 3.1.

§4. The Jordan pair associated with an elementary action

The notations of §§2,3 will be used throughout.

4.1. THEOREM. Let ψ be an elementary action. There exists a unique

Jordan pair structure on the pair £3 = (23+, -83") of k-modules, and a unique

morphίsm b: W —> H with the following property: For all (x, y)e%$% X S3̂

(R e k-sΛg) we have exp (x) exp (y) e Ω(R) ̂  (x, y) quasi-ίnvertible and in

this case,

( * ) exp (x) exp (y) = exp (yx)b(x, y) exp (xy) .

(b) H acts on S3 by automorphisms via the adjoint representation (cf.

3.6(6)).

(c) The morphism b satisfies

( 1 ) Ad b(x, y).z = B(x, y)z , Ad b(x, y)-w = B(y, x^w ,

( 2 ) hb(x, y)h~ι = b(Ad h x, Ad h -y),

( 3 ) 6(to,r1y) = 6(^,y),

( 4 ) b(x, y)b(x\ w) = b(x, y+w),

( 5 ) Kz,y*)b(x,y) = b(x + z,y)9

for all te km, (x,y)eW, he H, (z, w) e S3J X S3~ swc/i ί/iαί (x,3/ + w) and

(x + z, y) are quasί-ίnvertible.

In the examples of 3.2 one checks easily that the associated Jordan

pair is isomorphic with the Jordan pair of rectangular (alternating, sym-

metric) matrices with quadratic maps Q(x)y = x ιy-x.

4.2. Let X C 33̂  X 33~ be the inverse image of Ω under the map (x, y)

*-* exp (x) exp (y). Then X is open and dense. By 3.4, we can write

( 1 ) exp (x) exp (y) = exp (/_(x, y))b(x, y) exp (f+(x, y))

for all (x, y) e X, with unique morphisms f±: X —> S3* and b:X-^ H. By

applying ψt to (1) and comparing terms in U~, H, U+ we get that (x, y) e X

if and only if (tx, t~ιy) e X and then
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( 2 ) b(tx,Γίy) = b(x,y),

( 3 ) rγ_(x, y) = Utx, r'y) , tf+(x, y) = /+(*x, Γ^) .

Consider now the elementary action ψ' = ψ'1 (cf. 3.1). Then the formula

analogous to (1) is

( 4) exp (y) exp (x) = exp (fί(y, x))b\yy x) exp (f'+(y9 x)) .

By taking inverses in (1) and using (2) and (3) for t = — 1 we get

( 5) exp (y) exp (x) = exp (f+(x, y))b(x9 y)~ι exp (/_(x, y)) .

Comparison with (4) yields f^(y, x) = f±(x, y) and

( 6 ) b'(y,x) = b(x,y)-1.

To shorten notation, write

( 7 ) f+(χ, y) = Λ(y, *) = ^ , Λ(χ, y) = Λ ( Λ *) = y*.

Now (1) and (3) read

( 8) exp (x) exp (y) = exp ( yO&O, 3/) exp (xy) ,

( 9 ) t(χ«) = (txy^y, rι(y*) = (t-'yy*.

If we apply Int (h) to (8), use 3.6(6) and compare terms we get 4.1.2 and

(10) Ad h (xy) = (Ad h x)Ad Λ ».

4.3. LEMMA. Let (x, y) e X, (z, w) e 93+ x SB". ΓΛβ̂ i (x + z, y) e X if

and only if (z, yx) e X, and then

( 1 ) (x + z)y = xy + Ad b(x, y)-ι-z{yX) ,

( 2 ) y3"1 = (y*)',

( 3 ) 6(«,yΛ)6(Λ:,y) = 6(Λ + 2:,y).

Similarly, (x, y + ιυ)e X if and only if (xy, w) e X, and then

( 4 ) (y+w)x=yx + Aά b(x9 y)-w(xV) ,

( 5 ) xy+w = (xy)w ,

(6) b(x, y+w) = b(x, y)b(xy, w).

Proof. We have exp (x + z) = exp (z) exp (y*)60x;, y) exp (xy). This shows

that (x + z, y) e X if and only if (z, yx) e X. Assuming this to be the case,
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we get, by 3.6,

exp (x + z) exp (y)

= exp (yx+z)b(x + z, y) exp ((x + z)v)

= exp ((yx)z)b(z, yx) exp (z^O&ί*, y) exp (x*)

= exp ((y*)β)&(2, yx)b(x, y) exp (Ad &(*, y)"1 z ( ^ +

and comparing terms in U~, H, U+ yields (l)-(3). Now (4)-(6) follow from

this by passing to (G, ψ"1), in view of 4.2.

4.4. LEMMA. Let (x, y) e 23J x S3*, te R, Re k-alg. Then (tx, y) e X(R)

if and only if (x, ty) e X(R), and in this case,

( 1 ) b(tx,y) = b(x,ty),

(2) (tx)* = t(xtv) ,

Proof. We may assume R = k after a base extension. Let Y (resp. Y;)

be the inverse image of X under the morphism t >-> (tx,y) (resp. t «-> (x, ty))

from ka to SŜ  X SS~. Then Y and Y' are open subschemes of ka. To

show that they are equal it suffices to show that Y(K) = Y'(K) for all

^βZds K e Ẑ -alg. Thus we have to show that (tx, y) e X(K) if and only if

(x, ty) e X(K), for all t e K. If t = 0 this is trivial. If ί Φ 0 then (JC, ίy) e

X(K) if and only if (tx, ΓHy) = (ίx, y) e X(if) by 4.2. Now define morphisms

φu φ2: Y^%$a by ψx(t) = (tx)y, φ2(t) = ί(x ίy). By 4.2, φ1 and ^2 coincide on

Y Π Am. Since ftm is dense in ka and 33+ is separated we have φ1 = p2.

The proof of the other two formulas is similar.

4.5. Definition of the quadratic maps Q+,Q_. Let (x, y) e 23J X 33 ,̂

i? e k-alg. Since Jf is open and contains {0} X SS~ and 23+ X {0}, it follows

that (εx, y) and (x, ey) are in X(R(ε)) (where R(ε) is the ring of dual

numbers). Thus we can write

with well-defined morphisms /, g:X$Z X 93" -> 23+. Since x° = x it follows

for ε -> 0 that f(x, y) = x. We claim that g(x, y) is linear in y and

quadratic in x. The first statement is clear since g(x, y) is the derivative

of the map x •-• xw at w = 0 in direction y. By 4.4, we have

= to + εg(tx,y) = t(xuv)

= t(x + εg(x, ty)) = tx + εt2g(x, y)
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for all t € R, and hence g(x, y) is homogeneous of degree 2 in x. By [19],
it is quadratic in x. Thus there is a unique quadratic map Q+: SS+ -*
Hom(93-,3S+) such that g(x,y) = Q+(*) y; i.e.,

(1 ) *" = * + eQ+(*).y.

Similarly, we define Q_: 9T -> Horn (»+ , 93") by

(2 ) yεx = y + εQ_(y)'X.

Note that

( 3 ) (εx)v = ε(xfi2/) = εx

by 4.4. Also, from 4.2.10 it is clear that H acts via Ad by automorphisms

of (Q+, Q_) on (93+, 93"). As in 2.1, 2.2, we drop the subscripts ± on Q±

and define {xyz} and B(x, y).

4.6. LEMMA. For (x,y), (z, w) e 9S+ x 25~, ΛeLie(i ί) ίΛe following

formulae hold (here [α, 6] = aba~lb~l).

(1) Int (exp x) exp (ε y) = exp (εj)6(x, εy) exp (εQ^y) .

(2 ) [exp (x), exp (εy)] = 6(x, ε^) exp (εQ^ y) ,

( 3) [exp (y)
9
 exp (ε̂ )] = exp (εQ

y
z)b(ez

9
 -y) ,

( 4) [exp (εx), exp (εy)] = [h, exp (εx)] = [h, exp (εy)] = 1 ,

[exp (z), b(x, εy)]

= [exp (2), [exp (-εy), exp (*)]] = exp (ε{xyz}) ,

Int (exp (x) exp (y)) exp (e^)

= exp (εQyz)b(x, εQyz)b(εz, -y) exp (εJ5(x, y)z) .

( 7) Ad b(x, y) z = B(x,y)z , Ad b(x,y) w = B(y, xyιw .

Proof. (l)-(3) are immediate from 4.2.8 and 4.5. Replacing x by εx

in (2) we get the first formula of (4) since 6(εx, εy) = 6(ε2x, y) = 6(0, y) — 1

4.4. By 3.6, [h, exp (εx)] = exp (ε Ad h x — εx). Since h e Lie (H), Adh-x

is of the form x + εxf and hence ε Ad h x = εx + ε2xr = εx. Similarly, one

proves the third formula. To prove (5), we use (1), (4), 4.5, and 4.3.3:

Int(exp(2)) δ(x, εy)

= Int (exp (z)) (exp (—εy) exp (x) exp (εy) exp (— xsy))
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= exp (z) exp (—εy) exp (x) exp (εy) exp (—xεy — z)

= exp (-εy)b(z, -εy) exp (x + z - εQzy) exp (εy) exp ( - x - 2 - εQxy)

= exp (-εy)b(z, -εy) Int (exp (x + z)) (exp (εy) exp (-εQ^ y - εQzy))

= exp (-e:y)δ(z, -ey) e χ P (εjW* + 2, e y) exp (ε(Qx+zy - Qxy - Qzy))

= b(-z, εy)b(x + z, εy) exp (ε{xyz\) = b(x, ε;y) exp (ε{xyz)) .

Now (5) follows from (1), (2) and (4). For (6) we use the commutator

formula [ab, c] = (Int (a) [b, c])[a, c], for α = exp (x), b = exp ( y), c — exp (εz).

Then [α, c] = 1 and hence

[ab, c] = Int (a) [6, c] = Int (α) (exp (εQyz)b(εz, -y))

= exp (εQyz)b(x, εQyz) exp (εQxQyz) exp (-ε{ryz})ί>(ε2, - y)

= exp (£Qy2:)6(x, εQyz)b(εz, -y) exp (-ε{x,y2:} + eQxQyz) .

Multiplying by exp (εz) on the right we get (6). Finally, if (x, y) e X then

Int (exp (x) exp (y)) exp (εz)

= Int (exp (yx)b(x, y) exp (xy)) exp (εz)

= Int (exp (y*)) Int (6(x, y)) exp (e*)

= exp (^) exp (ε Ad b(x, y) z) exp (—y)

= exp (u) h-exp (ε Ad b(x, y) 2:)

where the exact form of ue 93" and he H is not important. Comparing

terms in U+ with (6) we get the first formula of (7), and the second one

follows by passing to ψ"1.

4.7. LEMMA. If (x, y)eX then B(x, y) and B(x, y) are ίnvertible, and

x* = B(x, y)~\x - Qxy) , yx = B(y9 x)~\y - Qyx) .

Proof. By 4.6.7, B(x, y) is invertible. By 4.5.3, 4.3.1, 4.6.7,

((1 + ε)x)y = (x + εx)v = xv + εB(x, y)'ιχ .

On the other hand, by 4.4, 4.3,

((1 + ε)x)y = (1 + ε)(x(1+^) = (1 + e)((* ")*)

= (1 + ε)(x + εQxy)y = (1 + e)(x" + εB(x, yYlQxy) .

Comparing coefficients at ε we get the first formula, and the second one

follows by passing to ψ~\

4.8. LEMMA. The quadratic maps Q+, Q_ satisfy the Jordan identities.
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Proof. From 4.5.4 and 4.6.7, B(x, y)Qz = Q(B(x, y)z)B(y, x)~ι for all

(x,y)eX, ze%$a, and since X is dense this implies

( 1 ) B(x, y)QzB(y, x) = Q(B(x, y)z)

for all x, ze 23+, Je SSα By expanding and comparing terms of equal

degree we get (among other identities)

( 2 ) D(x, y)Qz + QzD(y, x) = Q(z, {xyz}) .

Now compute xv+εw for (x,y)eX in two ways, using 4.3:

w = χV + g Q ^ ) . ^

= (Λ «)^ =• (x + ε Q ^ ) y = x* + εB(x9 y)-1 - Qxw .

By (1) and 4.7, this implies Qx = B(x,y)Q \xv) - Q(x - Qxy)B{y, x)~\ and

therefore

( 3 ) Q(x - Q*y) = Q*B(y, x) .

Again by density of X, this holds for all (x, y) e 23̂  X S3α - By expanding

and comparing terms of equal degree we get

( 4 ) Q(

( 5 ) Q(Qsy) = QXQVQX .

Setting z = x in (2) and comparing with (4) we have, since {xyx} = 2Qxy,

( 6 ) D(

Let (x9y)eX. Then by 4.3 and 4.6.7, B(x, -εy)B(χ-ey,y) = B(x, (1 - ε)y)

= B((l - ε)x,y) = B(x, y-εV)B(-εx, y). By density, this holds for all (χ,y)

e 83̂  X 3Sα If we expand and compare terms of equal degree at ε we get

( 7 ) D(Qxy,y) = D(x,Qyx).

Passing to ψ""1 it follows that (5)-(7) hold with x and y interchanged.

This proves 4.8.

4.9. LEMMA. H is closed in G it is the fixed point set of ψ.

Proof. By definition, H is contained in the fixed point set, say H\

of ψ. Conversely let g e H;(k). After an fppf extension we may assume

that g = exp (x) exp(y)h exp (z) with x, ze SS+, y, e 93", he H(k) (cf. 3.8).

Applying ψt we get g= exp(ta) exp (Γtyh - exip (tz) for all tekm. Hence
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exp ((1 — t)x) exp (y) = exp (t~
λ
y)h exp (tz — z) A"

1
 e Ω ,

and therefore

exp ((1 - t)x) exp (y) = exp (y
{ι
~
t)x
)b((l - t)x, y) exp ([1 - t)x]

v
) .

Comparing terms in H, U+, U~ we have 6((1 — i)x, y) = 1 and by 4.6.7 and

4.7, t~ιy = ya~t)x = y — Qy(x — tx), for all t e km. By comparing terms at

powers of t we see that y = 0. Hence exp ((1 — t)x) = λ exp ((t — 1)2;)-Λ"1,

and this implies exp (x) = h- exp (—z) /r 1 and therefore g = he H(k). Now

by [5, p. 165, 3.6(d)], H is closed in G.

4.10. To complete the proof of 4.1, all that remains to be shown is

that X = W, the subscheme of quasi-invertible pairs. By 4.7, Xcz W, and

xy and yx are just the quasi-inverse of the Jordan pair 23. Define a mor-

phism b: W—>G by

6(*, y) = exp (—yx) exp (x) exp (y) exp (—xy) .

Then b extends 6 and I c b~ι(H) c W. Also, fc-^ίί) is closed in W since

H is closed in G by 4.9. By density of X, W = ίT^ϋ). Therefore

exp 0 ) exp ( y) = exp (yx)b(x, y) exp (xv)

belongs to Ω for all (x, y) e W. This proves X = W.

4.11. COROLLARY. Assume that G is a scheme, and let g (resp. ϊj)

denote the Lie algebra of G (resp. H). Then

( 1 ) a = S3" θ 5 θ SS+

(direct sum of k-modules), and the following multiplication rules hold:

( 2 ) ffi,5]c5, [2S + ,«- ]cή, R,S3']ca3 , [»%»'] = 0 .

ί b r x, <ε e 9Sσ, y e 33"̂ , h e ζ, iϋe Λαue ίΛe formulas

( 3) Ad exp (x)-z = z ,

( 4 ) Adexp(x) A = A + [x, A] ,

( 5) Ad exp (x) y = y+[x,y] + Qxy

( 6 ) e ̂  = 6(x, ey) ,

( 7 ) -lzΛy,χ]] = {χyz}.

Proof. Since β is open in G and contains the unit section, (1)
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follows from 3.4. Let R = k(ε, εf). If we replace x by εfx in 4.6.2 we get

€..'[*,v] = [e*'*9 e*y] = [exp (e'χ)9 exp (εy)] = &(ε':c, εy) - 6(x, εεy) which implies

(6) in view of [5, p. 210], and also shows that [93+, 93~] c ϊj. Now (5) and

(7) follow easily from 4.6, and (4) follows from 3.6, as well as β, 93σ] c 93*.

By commutativity of Uσ we have [93% 93σ] = 0.

4.12. COROLLARY. Let Gίn c G be as in 3.9, and let Hίn be the sub-

group sheaf of H generated by b(W); i.e., Hίn is the sheaf associated with

the k-group functor R •-• subgroup of H(R) generated by all b(x, y),

(x,y)eW(R).

(a) The Jordan pairs associated with (G, ψ) and (Gίn, ψ) are the same.

(b) We have Hίn = H Π Gin. If k is a field and H is an algebraic

k-group then Hin is a smooth connected algebraic k-group.

Proof. From (*) of 4.1 it is clear that (G, ψ) and (Gίn, ψ) define the

same Jordan pair, and that Hin c H Π Gin. Let now F = Hίn U+ U~ U+

c Gίn. We claim that F = Gίn. Let g e Gin(R) Then there exists a fppf

extension S of R such that g = ux un where the ut are alternatingly

in U+(S) and U~(S). After a base extension, it therefore suffices to show

the following: if u, we U~(k), ve U+(k) then there exists a fppf extension

R of k such that uvw e F(R). Choosing x as in 3.7, we have by 4.1,

uvw = (ux~l)(xvw) e U+(R)Hίn(R)U-{R)U-(R)Hίn(R)W(R) c F(R) .

Now

Hf]Gin = HC] (HίnU
+ U- W) = Hίn(H Γ) U+U~U+) = Hin ,

by 3.6. The last assertion follows from SGA3, Exp. YlB, no. 7.

4.13. LEMMA. Let X = 23̂  X SS~ X H x 93̂  α îcί π:X->G the epimor-

phίsm of sheaves given by π(x, y, h, z) = exp (x) exp (y)h exp (z). Then

π(x, y, h, z) = π(x', y', h', zf) if and only if (x — x\ y) is quasί-invertίble, and

y = yχ-χ>9 h' =b(x- x\

This follows easily from 4.1 and 3.6.

4.14. THEOREM (Generators and Relations). Let (G, ψ) be an elementary

system. Let G' be a k-group sheaf, and let f0: H-+ G', fσ: Uσ -+ G' (σ = + , —)

be homomorphisms. Then there exist a homomorphism f:G —> Gf extending

/o and f+,f- if and only if
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( 1 ) fQ(h)fσ(u)f0(h)-1 = fXhuh-i) ,

( 2) /+(exp (x))/_(exp (y)) = /_(exp (yx))f0(b(x, y))/+(exp (*")) ,

/or α/Z ft e Zf, we £/% (x,y) e VF. (Since G is generated by # , U+, and C/~,

such an / is necessarily unique).

Proof, By 3.6 and 4.1, the conditions (1) and (2) are clearly necessary

for the existence of /. Conversely, assume that they hold. Let π: X-> G

be as in 4.13. Let ψσ\ 23* —> G' be given by ψσ = /σoexp and φ: X—• G' by

^(x,y, /ι, z) — φ+(x)φ-(y)fo(h)φ+(z). If / exists then we have foπ = φ. To

prove existence, we use the fact that the diagram

P ri π

XX GX tX >G
pr2

of ^-sheaves is exact (cf. [5, p. 292]). Therefore it suffices to show that

π(w) = π(w') implies <p(w) = φ(w'), for all w, wf e X. Thus let w = (x, y, h, z)

and w' = (x\ y\ h', z') and assume that π(w) = π(w'). By (1) and (2) and

4.13 we then get

= Ψ-(yx'x')fo(b(x - x\

= φΛrtf*{h'h-ι)φ+(Kάh.{2f - z))

= <P-(y')fo(h')<P+(z' -

which implies φ(w) = φ{w'). This proves the existence of /: G -> Gf satisfy-

ing foπ = φ. We still have to show that / is multiplicative. If veU+

9

geG then

( 3) f(gυ) = f(g)f(υ) , f(υg) = f(υ)f(g) .

Indeed, we may assume, by passing if necessary to a fppf base extension,

that g = exp (x) exp (y)h exp (2), v = exp (z'X and then

exp (y)h exp (« + z'))

Similarly, one proves the second formula, and also

(4) Afe) = /(Λ)/te), f(gh) =

for g € G, /ι e if. Finally, we show that
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(5) f(uvw)=f(u)f(v)f(w),

for u, we U~, veU+. Possibly after passing to an fppf base extension,

there exists an element x e U+ such that ux~ι e Ω~ι and xvw e Ω (see 3.7).

Let ux~ι = zhy, xvw = y'h'z' where z, z' eU+, h, hf e H, y, yr e U'. Then

we have by (3) and (4) that

f(uυw) = f(ux~ι xυw) = f(zhy-y'h'z')

= f(z)f(h)f{y)f{yf)f(h')f{zf) = f(zhy)f {y'h'z')

= fiux'Wxυw) = f(u)f(x)'ιf(x)f(v)f(w)

= f(u)f(v)f(w) .

Now the multiplicativity of / is an easy consequence of (3)-(5), in view

of the fact that G is generated (as a A-group sheaf) by H, U+, and U~.

4.15. COROLLARY. Let (G, ψ) and (G\ ψr) be elementary systems with

associated Jordan pairs S3 and 9S7.

(a) Let f: (G, ψ) —> (G', ψ') be a homomorphism, let

( 1 ) fo = f\H:H-+H>,

and define φσ:%
σ

a-> Kσ by

( 2 ) /oexp = expΌ^σ (cf. 3.5).

Then (<p+, <pj):%$-+ %$' is a homomorphism of Jordan pairs, and we have

( 3 ) AdMh).φ.(z) = φ.(Adh.z) ,

( 4 )

for all z e 3%, (x, y) e W, σ = ± .

(b) Conversely, let f0: H-+ H' be a homomorphism, let (<p+, <p_): 33 -> S3'

be a homomorphism of Jordan pairs, and assume that (3) and (4) hold.

Then there exists a unique homomorphism f: (G, ψ) —> (G', ψ') such that (1)

and (2) hold.

Proof, (a) By 4.9, / maps H into H'. Thus (3) follows from 3.6. If

we apply / to (*) of 4.1 we see that (4) holds and that (φ+, φ_) preserves

quasi-inverses. By 4.5, it follows that (φ+, φ_) is a homomorphism of

Jordan pairs.

(b) Define fσ:U
σ-+ G' by (2). Then one checks that fo,f± satisfy the

conditions of 4.14 and hence extend to a homomorphism f:G -> G' which

is easily seen to be compatible with ψ and ψ'.
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§5. The Existence theorem and applications

5.1. We consider the question of how to reconstruct G, given H and

the Jordan pair 93, and introduce the following concept. Let 93 be a

Jordan pair over k, let H be a separated A-group sheaf, and let p:H-+

Aut (33) be a homomorphism. Also let b: W —> H be a morphism from

the subscheme of quasi-invertible pairs of 93+ X 33" into H. Then the

quadruple β — (93, Hy p, b) is called a Jordan system if the following iden-

tities hold for (x, y) e W, (z, w) e 93ί X 93;, Λ e if, ί e Λw.

( 1 )

( 2 )

( 3 ) 6(^,r 1 y) = 6(x fy),

( 4) 6(x, y)&(x", w) = 6(x, y + w) ,

( 5 ) 6(«,y*)6(«,y) = 6(χ + 2,y).

Here β is as in 2.2 and

A homomorphism of Jordan systems, Φ: </-></', is a pair Φ = (/0,^)

where f0: H-> H' is a group homomorphism, and φ — (φ+, φ_): 93 -> 93X is a

Jordan pair homomorphism, such that

( 6 )

( 7 )

for all he H, (x,y) e W. From 4.1 it is clear that every elementary system

(G, ψ) defines a Jordan system J(G9 ψ) = (93, iϊ, /?, 6) where /? is given by the

adjoint representation of H on 93+ and 93". Now 4.15 shows that J is a

covariant functor from the category of elementary systems to the category

of Jordan systems which is fully faithful. In fact, J is an equivalence of

categories since we have

5.2. THEOREM. For every Jordan system / there exists an elementary

system (G, ψ) whose associated Jordan system is /.

The idea of the proof is simple: let / = (93, H, p, b) and let X — 93̂

X 93" X Ή. X 93«. If G exists then it is the quotient of X by the equiva-

lence relation given in 4.13. Thus we take this as the definition of G

and show, rather laboriously, that it has the required properties.

Define then a subfunctor ficlxlas follows. For R e fc-alg, E(R)
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is the set of all ((x,y, h, z), (x',y\ h', z')) in X(R) X X(R) for which (x - x', y)

is quasi-invertible, and

(**) y> = y*-*\ h'=b(x-x\y)h, K(*-z) = (x-*ί)y.

By 2.2, E may also be described by the equations

B(y, x - xW = y - Qy(x - x'),

B(y, x - x')Qy(x - x') = Qy(x - * ' ) ,

B(x - x\ y)h+(z' - z) = x - xf - Qx_x,.y ,

with values in separated ^-functors, and is therefore closed in X X X.

In the following lemmas, we will use standard properties of the quasi-

inverse in a Jordan pair without comment; in particular the formulas

χy+w = (χyγ>9 ( x + zy = χy + βfo yyi\ zw^ β^ y)B(χV", w) = B(x, y + w\

B(z, yx)B(x, y) = B(x + z, y). See [15, § 3].

5.3. LEMMA. E is an equivalence relation on X.

Proof. We have to show that E(R) is (the graph of) an equivalence

relation on X(R), for all R e β-alg. Since / = y9 0
y = 0, 6(0, y) = 1 (which

follows from 5.1.1 for z = x = 0) we have reflexivity. Now assume that

(**) holds. Then {x' — x, y) is quasi-invertible and y = (y')x'~x,

h=b(x- x',y)~ιh' = b(-(x - O,^"*')^'

by 5.1.5, and by 5.1.1,

h'+(z - z') = J5(x - ^ , y)Λ+(z - 20 = - S ( x - x7, y)(x - x')y

= -(x - xf - Q(x - xf)y) = (x' - x) + Q(x' - x)y

= x' - x + Q(x' - x)(yY~x = (x* - x)yt.

This shows that E is symmetric. To prove transitivity, assume (**) and

also that {x' — x", y*) is quasi-invertible and

*", / ) , Λ ^ ^ - zf) = (xf - x'Y .

Then (x — x'\ y) is quasi-invertible, and

y" ___ (yf\x'-x" =; /ya -j 'λjj'-j?" _ yX-x'+x'-x" _ _ A,^-^"

Also,
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ft" = b(x' - x",y')b(x - x',y)h = &(*' - x", yχ-χf)b(x - x',y)h

- x" + x - x7, y)h = b(x - x", y)h ,

by 5.1.5 and finally,

Λ+(*" - z) = K{z" - z') + ft+(*' - z)

= h+h'-'h'+iz" - zf) + (x - x

= B+(χ - χ',yrι'(χ' - χ'Ύ +

= (x - xf + x' - xry
= (X- X")v ,

by 5.1.1.

5.4. We now define G = X/E to be the quotient sheaf of X by E, and

denote by π\X-+E the canonical map. For (x, y, h, z) e X(R), the notation

τr(s, y, ft, -ε) = [x, y, ft, 2]

will be used. By general properties of sheaves (cf. [5, chap. Ill]), we have

the exact sequence of sheaves

pr2

Since E is closed, 1.3 shows that G is separated.

5.5. LEMMA. There is a well defined function χ on G such that

χ([x,y,h,z]) = άet(B(x,y)-h+). The open subfunctor Ω = χ~\km) of G is

dense and isomorphic with 33" X H X 23+ under the map ί: (y, ft, z) ->

[0,y,Λ,*].

Proof, χ is well-defined: Suppose [x, y, ft, z] — [x',y\ h', z\ Then yr

= yx~χf and K = B(x - x',y)h+ whence B(x\y')h'+ = B{x',yχ-χ')B(x - x',y)h+

= B(x, y)Λ+. Clearly T Γ " ^ ) = W X H X %ϊ which is dense in X. By 1.11,

β is dense in G. From (**) it follows easily that i is a monomorphism

into β. Conversely, if g = [JC, y, ft, 2] e 42 then (x, y) is quasi-invertible and

hence g = [0,yx, b(x,y)h, z + h~λ-xv] belongs to the image of ί.

5.6. Let S3« act on X on the left by addition on the first factor:

u (x, y, ft, z) = (M + x, y, ft, 2),

and let i/ act on X via
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/. (x, y, A, z) = (f+(x), /L(y), fh, z) .

Then these actions are compatible in the sense that

/. (u (x, y, h, z)) = f+(u) (/• (x, y, h, z))

and it is easily checked that they are compatible with E. Therefore we

have actions of 33* and H on G, compatible in the sense that f (u-g) =

fΛu)-(f'g) for /eff, ue%:, geG.

5.7. LEMMA. There exist a unique action of 93" on G on the left such

that

{ 1) i; [x, y, h, z] = [*", B(υ, x)(υx + y), b(x, ϋ)'% z]

whenever (x, y) is quasi-invertίble. This action is compatible with the actions

of H and 93« in the sense that

( 2 ) f'(vg) = f-(v

(3) u (υ>g) = v* b(u9ϋ)'(u*>g)).

for all fe H and (u, v) e W.

Proof. Let υ e 33" and g e G(k). After passing to an fppf extension of

k we may assume that g = [x, y, h9 z]. We claim that, again after an fppf

extension, we may even assume that (x, v) is quasi-invertible. Indeed, let

Yt C 23̂  be defined by

= {x' e 93JI (x — x\ y) quasi-invertible} ,

Y2(R) = {x' e S3JI (x\ v) quasi-invertible} .

Then Yx and Y2 are open and dense since x e Yλ(k) and 0 e Y2(k). Hence

Yx Π Y2 is dense, and there exists a fppf extension R of k such that

(Yλ ΓΊ Y2)(R) is not empty. Choosing xf e Y^R) Π Y2(R), define y',h',z' by

{**). Then g = [x',y\ h\ zf] and (x'9 v) is quasi-invertible.

Now we show that (1) is well defined. Thus let [x, y, h, z] = [x\ y', h\ z']

and assume, as we may, that both (x, v) and (x\ v) are quasi-invertible.

By (**), we also have, setting u = x — x\ that (u,y) is quasi-invertible,

and that

y' = yu, h' = b(u9y)h, h+(z' -z) = uy.

To shorten notation, let
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/ = b(x, v)-1 , w = υx , s = f.(w + y) = B_(υ9 x)(υx + y) ,

and define f\w\s' analogously. We have to show: (xv — x'υ, s) is quasi-
invertible, and

(4) s' = s(χV~χ/υ) ,

( 5 ) /'Λ' = b(x» -x'v,s)'fh,

(6) /+λ+(*' ~ z) = (^ ~ * / ϋ) s

Using the formula for (x + ^)y, we have

xv - x'υ = B+(x, v)~\(x - xTvΊ = f+(u~w) ,

in particular, (u, —w) is quasi-invertible. Now

(xυ - xf\ s) = (f+(u-w),f-(y + w))

is quasi-invertible if and only if (since (/+,/_) is an automorphism of 33)
(u~w,y + w) is quasi-invertible, and this is the case since both (u, —w)
and (u, y) are quasi-invertible. Also,

(Xv _ jvy = f+((u~wy+™) = fM) = fAKV - z)),

which proves (6). For (5), we have, by (2)-(5) of 5.1, that

(7) f' = f b(u,-w)-\

and hence

&(*' - x'\ s)-f h = b(f+(u-w),f-(y + w)) f h

= f b{u~w, y + w)f~ι fh = f- b(u~w, y + w) h

= f-b(u,-wyib(u,y)-h = f' h'.

Finally,

s' = fί(w' + / ) = fL(w' + yu) = /i(u»-» + y")

= /i(y" - (-»)κ) = f-(B.(-w, it)-'.((y + i^)'"-10')

and

β'*-*"" - (/_(«; + y)^'""10') = f-((w + y)("-"') .

Now (4) follows from (7).
Next we show that (1) defines an action of 23" on G. Since Ω is

dense in G and G is separated, it suffices to verify the condition Vι{vz g)
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= (vi + v2) g for g = [0, y, A, z] in Ω. But then v-g = [0, υ + y, A, z] and

the assertion follows. Finally, (2) is easily verified from the definitions,

and (3) needs to be checked only for g = [0, y, h, z] in Ω. Then we have

U'(v-g) = u-[0, v + y,h,z] = [u, v + y, h, z] .

Let d = u — Qttϋ. Then (d, υu) is quasi-invertible, and we have the

formulas

( 8 )

( 9 ) d{vU) = u.

Indeed, by (4) and (5) of 5.1 and the "symmetry principle" ([15, 3.3]),

b(u, v) = (b(u, υ)'1)-1 = K-u, vuΓ - b((-uYυU\ -vu)

= b(-u+ Qu'(vu)~u

9 -vu) = b(d, υu) ,

and

κ<-* > = M + Qu.(-vu)u = u+ QU'((-v)-uY = d .

which implies (9). Now we get

υu (b(u, υ) (u* -g)) = vu (b(u, v) [uv, y, h, z\)

= vu [B(u, v) u\ B(v, u)~ι y, b(u, v) A, *]

)(vur+y, A, 2]

= [w, v + y, A, 2:] ,

since B(υ, u)(vu+d) = (£(ι;, M ) . ^ ) ^ ^ - 1 ^ = (1; - Qvu)iuΌ) = v, by (9) applied

with u and 1; interchanged. This completes the proof.

5.8. LEMMA. There exists a unique structure of a k-group sheaf on G

such that

(1) [x,y,h9z] g = χ.(y(h.(z.g)))f

for all (x, y, h,z)eX, ge G.

Proof. By 5.6 and 5.7, the right hand side of (1) defines a map X X

G—>G. We claim that it depends only on the equivalence class [xty, A, z].

Indeed, let [x,y, A, z] = [x',y', h', z'\. Then by (**), 5.6.1 and 5.7.3 we

have, setting u = x — x',
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u-(y(h-(z-g))) = yu-(b(u,y)-(Uv-(h-(z-gy)))

= y'-{h'h-i-{K{z' - z) {h-(zg))))

= y'.(h'h-ί.(h ((z'-z)-(z.g))))

and hence x' (y'• (h'• (z'• g))) — x (y (h (z g))). Thus there exists a unique

morphism G X G-^-G satisfying (1). Clearly, [0, 0,1, 0] is the neutral

element of this multiplication. Now we prove associativity. Let U C Ω

X Ω be the set of all pairs (g, g') = ([0, y, h, z], [0, y', h', z']) for which (z,/)

is quasi-invertible. Then U is open and dense in Ω X Ω and hence U X G

is open and dense in G X G X G. Hence we only have to prove (gg')g"

= g(g'g") for (g, g') e U. In that case,

gg' = y(h-(z [0,y', h', z'])) = y(h [z,y', h', z'])

= y(h.[0, y'\ biz,y')h', h'+-\z*) + z'})

= [0, y + /*-(/*), hb(z, y')K, h'+-\zΌ + z'\ = [0, v, f, w] ,

and therefore

On the other hand, by 5.6 and 5.7.,

gig'g") = y<h-(z (y (h'-(z' g")))))

= y(h- (/* (6(2, / ) («»' (/*' (2' •

= y (^-(y/2) (hb(z, y'W • (h'-\z*) • (z'-g"))))

Finally, it is easily checked that the inverse is given by

[x,y, h, zΓ = [-z, -hz\y), h~\ -x] .

This completes our proof.

5.9. LEMMA. The action ψ of km on G defined by tyt-[x,y,h,z) =

[tx, t~ιy, h, tz] is elementary and the associated Jordan system is isomorphic

with / = (S3, H, p, b).

Proof. One shows easily that ψ is a well defined action by group

automorphisms. Identify H with a subgroup of G via h >-* [0, 0, h, 0] and

define homomorphisms f±: 33* —• G by
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f+(x) = [x, 0, 1, 0] = [0, 0, 1, x] , Uy) = [0, y, 1, 0] .

Let [7± be the image of S3£. Then # , £/+, £7" satisfy (i)-(iv) of 3.1 and

therefore ψ is elementary. From 5.6-5.8 it follows that H normalizes U±;

in fact, hfβ(x)h-1 = /.(Λ. *). Finally by (**), /+(*)/L(y) = [x, y, 1, 0] =

[0, / , hf, z'\ e Ω if and only if (x, y) is quasi-invertible, and then / = yx,

hf = 6(x,y), z' = xy. In view of 4.1, this shows that the Jordan system

of (G, ψ) is ,/ and completes the proof of 5.2.

5.10. COROLLARY. Let (G, ψ) be an elementary system. Then there

exists a unique function χ on G such that χ(g) — detB(x,y)Άdh\%$+) for

g = exp (x) exp (y)h exp (z), (x, ze%$£, y e^8~, he H), and Ω is the open

subfunctor of G defined by χ.

This is immediate from 5.5. Next, we discuss representability of G.

5.11. PROPOSITION. Let (G, ψ) be an elementary system, and assume

that G is a scheme. Then H is a scheme, and the morphism π:X-^G

(cf. 4.13) is a finitely presented, smooth, affine, and surjective morphism of

k'Schemes. The following properties hold for G if and only if they hold

for H:

( i ) finitely presented;

(ii) locally finitely presented;

(iii) flat and locally finitely presented;

(iv) smooth.

Proof. H is a scheme since it is closed in G ([5, p. 50, 4.1]). We can

factor π as follows:

Z - Ξ - > U+ X Ω H ϋ 4 U+ X G

where the first map is the isomorphism (x, y, h, z) —• (exp (x), exp (y) h exp(z)),

c: Ω —• G is the inclusion, and μ is multiplication. Since c is an open

imbedding it is smooth and locally finitely presented. Let U C G be open

and affine, and let χ be as in 5.10. Then c~\U) = 17 Π Ω is the open

subscheme of U defined by a single function, and is therefore itself affine.

This proves that t is affine and quasicompact (cf. [5, p. 48, 3.8, and p. 41, 2.1])

and therefore also finitely presented. It follows that Id X t has the same

properties. The morphism μ:U+ X G-> G is isomorphic with the projection

pr2: C7+ X G->G (cf. [5, p. 161, 3.2]). Since U+ is finitely presented, smooth,

and affine over k, pr2 and hence μ are finitely presented, smooth and affine.
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Thus we have shown that π is finitely presented, smooth, and affine, and

it is surjective since it is an epimorphism of sheaves.

If one of the properties (i)-(iv) holds for H then it holds for X since 93*

is smooth and finitely presented. By EGA IV, 11.3.11, 17.7.5, 17.7.7, it holds

for G. Conversely, if G has one of these properties then so does Ω = H

X U+ X U- and therefore H, by faithfully flat descent (U+ X U~ being

faithfully flat and finitely presented over k).

5.12. LEMMA Let (G, ψ) be an elementary system, and assume that

H is a scheme. Let E = X X GX be the equivalence relation defined by

π: X-> G. Then prx: E-+X is flat and finitely presented.

Proof. From 4.13 it is clear that E is isomorphic with the open sub-

scheme 7 o f l x » α

+ defined by

Y(R) = {(x, y,h,z; xf) e X(R) X 93J | (x - x\ y) quasi-invertible} ,

and that pr^ E-> X is isomorphic with Y^—> X X 93+ — -̂> X where p(x,

y, h, z; x') = (x, y, h, z). Since 93+ is flat and finitely presented over k,p is

flat and finitely presented. Also, Y is the open subscheme of X X 93+

defined by the function f(x,y, h, z; xf) = det B(x — x\ y). Hence the in-

clusion Yc=—>Xχ 93+ is finitely presented. This finishes the proof. We

remark that, in fact, prx: E —• X is even smooth and affine, as follows from

the proof.

5.13. PROPOSITION. Let (G, ψ) be an elementary system over k, and

assume that k is noetherian and H is a finitely presented k-scheme.

(a) G is a finitely presented algebraic space (in the sense of M. Artin).

(b) // k has Krull dimension < 1 then G is a scheme.

(c) If k is a Dedekind ring then G is flat and affine if and only if H is.

Proof, (a) and (b) follow from 5.12 and [1, Th. 3.1.1 and Th. 4B]. If

G is affine so is H since it is closed in G. For the converse, we may,

by [1, 2.3.1], assume that k is a field. Let G = G X km (semidirect) and

S = 1 x km C G. Then S is contained in G° and the centralizer of S in

G is HS. Hence the centre of G° is contained in H-S =Ή X km and is

therefore affine. By [5, p. 359, 8.4], G is affine, and hence G is affine.

I don't know whether G is a scheme whenever H is.

5.14. For any Jordan pair 93 we can define a canonical Jordan system

/(93) by setting H = Aut (93), p = Id, and b = β. This follows from the
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properties of the inner automorphisms β(x, y) ([15, § 3]). The associated

group is called the projective group of 83 and is denoted by PG(83). In

the examples of 3.2, PG (83) is isomorphic with the projective group PGLre

PO2TO, PSpw respectively (except in the first case when p = q = n/2 > 1

where PGLn is an open subgroup of index 2 in PG(83)). As a further

example, let k be a field, and 83 the Jordan pair of 1 X 2-matrices over

a Cayley division algebra C over k (cf. [15, 8.15]). Then one can show

that PG (83) is an adjoint group of type E8 whose ^-rational points may

be identified with the projective group of the Cayley plane defined by C

(cf. ([6]).

5.15. PROPOSITION. Let (G, ψ) be an elementary system with associated

Jordan pair 83, and let G = PG (83). Let ψ be the elementary action on

G and H = Aut(83), £7* the corresponding subgroups.

(a) There exists a canonical homomorphism κ\ (G, ψ) —> (G,ψ) given

by fc(h) = (Ad h 183+, Ad h | 83") (h e H) and /c(exp (*)) = e^φ (x) (x e 83*). The

kernel of K is the largest normal subgroup of G contained in H; in par-

ticular, K: U± —> U± is an isomorphism.

(b) Let γ:kntt->H be as in 2.3, and S the image of γ. Then ψ is

given by φt(g) = r(t)gr(t)~\ and hence H is the centralizer of S in G.

(c) H contains no non-trivial normal subgroup of G. The centre of

G is trivial.

Proof. Define f0: H-> H by h >-* (Ad h \ 83+, Ad h \ 83"). Since the Jordan

pairs of G and G are the same, 4.15 (b) shows the existence of tc, and

clearly K: U± ->U± is an isomorphism. Let ιc(g) = 1. After an fppf ex-

tension, we may by 3.8 assume that g = h exp (x) exp (y) exp (z) with x,

ze 83:, y e 83~, he H. Then κ(h)~ι = S φ ( * ) exp (y) exp (z) = 1 by 3.6 (c).

Hence exp (x) exp (y) = exp ( — z) e Ώ and by 4.1, exp (—z) = exp (yx)b(x, y)

exp(xy), which implies yx = 0, and — z = xv. It follows that y = 0 and

z = — x, and therefore g = heH. Thus the kernel of K is contained in

H. If N is a normal subgroup of G contained in i/ then N centralizes

U+ and JJ- since it normalizes C7+ and U" and f f f l U ^ {1}. By 3.6,

it follows that Aάh-x = x for all heN, xe 83*, and therefore N is con-

tained in the kernel of /c. This proves (a). Now (b) is immediate from

the definitions, and (c) follows from (a) (applied for G = G) and (b).

Next we give an application of the existence theorem to the existence

of quotients.
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5.16. PROPOSITION. Let (G, ψ) be an elementary system, and let N be

a normal subgroup sheaf of G which is stable under ψ. Let iV* = N Π U±

and No = N f] H.

(a) If g = uvhw e U+(R)U-(R)H(R)U+(R) then g e N(R) if and only if

wu e N+(R), v e N~(R), h e N0(R). In particular.

( 1 ) NΠ Ω = N~'N0'N
+ .

(b) Let n* = LieiN*) c 93*. Then (n+, n") is an outer ideal (cf. [15,

1.3]) of the Jordan pair 23 = (23+, 23") associated with (G, ψ), stable under

AάH.

Proof, (a) By passing to a base extension we may assume that

R = k. Consider first the case w = 1 and let u = exp (x), v = exp (3/).

Applying ψt it follows that

( 2) ψ.te) = exp (tx) exp (Γ^)Λ 6 N(R) ,

for all invertible teR, Rek-alg. Since ΛΓ is normal, we have exp(—x)

- ^t(g)'g~ι - exp (x) = exp ((t - ϊ)x) exp ((Γ1 - l)y) e N(R). If ί — 1 is inver-

tible then by (2), ψt-ι(g) e N(R), and hence

ί - l)x)exp((rι - ϊ)y)

Choose now i? = έ[T]/(T2 - T + 1) and let ί be the image of the inde-

terminate T in R. Then i? is fppf over k, and ί"1 = 1 — t. It follows

that h~ι e N(R), and since N is a sheaf, h e N(k). Similarly, there exists

a fppf extension R1 of k and an element t e R'* such that 1 — t and

s = (t2 — t + ΐ)/t(l — t) are invertible. Then exp (sy) e N(R) and hence

ψs_x(exp (sj)) = exp (y) e N(R') which implies v = exp (y) e N(k) as before.

It follows that u = exp (x) = gh~ι exp (y) e N(k).

In the general case, g — uvhw e N(k) if and only if wgw'1 = (wύ)vh e

N(k), and by what we just proved, wu e N+(k), v e N~(k), h e N0(k).

(b) Since N± is a subgroup functor of U±, n* is a £-submodule of

23± = Lie(U±). From 3.6 it follows that (n+,n~) is stable under AάH.

Let y e n " and xe23+. Then exp (ε y) e N(k(ε)), and by 4.6.2 we have

b(xf εy) exp (εQ^) e N(k(ε)) which implies Qxy e n+ by (a). For z e n+ and

xeS3+, ye%$~, a similar argument using 4.6.6 shows that Qyzen~ and
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B(χ, y)z = z - D(x, y)z + QxQyz e π+. Hence D(x, y)z e n+, and D(S3-, 33+)n"

C n~ is shown similarly.

5.17. COROLLARY. Assume that N is a smooth k-scheme. Then No,

N+, and N~ are smooth.

Proof. N D Ω is open in N and therefore smooth. By 5.16 and 3.4,

N ΓΊ Ω ̂  N- X N° X N\ Since N* = N Γ) £7* is a fibred product of locally

finitely presented /^-schemes it is itself locally finitely presented. Hence

to show that JV* is smooth, we only have to show that, for every Rek-

alg, and every ideal / of R of square zero, the canonical map N±(R) ->

N^RII) is surjective (cf. [5, p. I l l , 4.6]). Let n± e iV^E/I). Then n_>n+

e(N (Ί Ω)(R/I), and by smoothness of N (Ί Ω, there exists g = uhv e

N-(R)N0(R)N+(R) such that gB/I = uB/IhR/IvR/I = n_ n+. Hence wΛ/7 = n_,

i ; ^ = λi+, and there assertion follows. In particular, N+ X N~ is faithfully

flat and locally finitely presented over k, and hence the projection N Π Ω

-• iV0 is faithfully flat and locally finitely presented. By EGA IV, 17.7.5

and 17.7.7, No is also smooth.

5.18. LEMMA. Let 33 and 3S/ be finite-dimensional Jordan pairs over

a field, and let f: 33 —• 33' 6β α surjective homomorphism. Then f induces

a surjection of the set of quasi-invertible pairs of 33 onto that of 33'.

Proof. Let (x, y) be quasi-invertible in 33' and let (x, y) e 33+ x SB" be

such that f+(x) = x and /_(j) = y. Replacing 33 and 33' by the subpairs

generated by (x, y) and (x, y), respectively, we may assume that 33 and 33'

are associative (see [15, 15.3]). By [15, 15.8], 33 ̂  33O X 58χ X X 33n where

33O is nilpotent and the 33χ, , 33n are local. Let ® be the kernel of /. Then

S ί ^ o X ^ X X ®n where either ®t = ^ or Rt C Rad 33t, for i = 1,

• , n, since 33JRad 33* is a division pair and hence the radical is the

unique proper maximal ideal of SB,. Thus SB ^ S3(1) X 33(2) and ft ^ S(1) X

33(2) where ®(1) c Rad33(1). Let Λ(<),y<> be the components of (x,;y)e 33+ X

33" in 33(i). Then (x, y) = /+(x(1)), Λ(y(I))) and (x ( 1 ),yυ) is quasi-invertible

by [15, 4.3].

5.19. THEOREM. With the notations of 5.16, assume that N is closed

in G and that N+ and N~ are smooth.

(a) n* is a direct summand of SB*, the restriction exp: n^-^N± is an

isomorphism, and (n+,n~) is an ideal of 33, stable under AdH.

(b) Let G' = G/2V {quotient sheaf), and let ψ' be the action of km on
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G' induced by ψ. Then (G'9 ψθ is an elementary system, the canonical map

f: (G, ψ) -> (G', ψθ is a homomorphism, and the Jordan pair associated with

(G\ ψθ is 33' = (SS+/n+, SB'/tr).

Proof, (a) Since N is closed in G,N+ = N(~) U+ is closed in U+

and hence is an affine scheme. Let ωN+/k be the pullback of the module

of differentials Ωι

N+/k to k via the unit section. Smoothness of N+ implies

that ωy+/k is a finitely generated and projective fe-module, and so is n+ =

Lie (N+) = Horn, (ωN+/k9 k) (cf. [7. p. 208, and p. 215]). From SGA3, Exp.

II, 4.11, it follows that n+ is a direct summand of 33+. Let exp (x) e N+(R),

Then ψ1+fi(exp (x)) = exp ((1 + ε)x) = exp (x) exp (ex) e N+(R(ε)) and hence

exp (εx) e N+(R(ε)); i,e., JC e Lie (N£) = nj. This shows that iV+ is contained

in the vector group U = exp (nί) = nί. Since C7 and iV+ are smooth and

have the same Lie algebra (namely n+) the fibres of U and N+ have the

same dimension. By EGA IV, 17.11.5, N+ is open in U. Arguing fibre-

wise, it follows easily that N+ = U. The proof for N~ is the same. Let

xen+ and y e 83". Then exp (x) e N+(k), and by 4.6.2, Qxy e n+. Similarly,,

one shows that Q(n~)%$+ c n", and together with 5.16 (b) it follows that

(n+,n~) is an ideal of S3.

(b) We will construct a Jordan system βr = (S37, if, ρ\ 60 whose as-

sociated elementary system is (G\ ψ'). Let S3' - (2S+/n+, »-/n-). Then 2T

is a Jordan pair over k which is finitely generated and projective as a k-

module since n* is a direct summand of S3*. Let H' = H/No (quotient

sheaf). Since NQ = N Π H is closed in H, the equivalence relation on H

defined by No is closed in H X H, and by 1.3, fΓ is a separated £-group

sheaf. It is easily checked that there is a unique homomorphism p': W

-» Aut (330 satisfying

where the ' denotes the canonical maps H —> W and S3 —> S37. The canoni-

cal map S3 —> S37 is surjective and linear. Hence the induced morphism on

the quasi-invertible pairs W-^ W is smooth, and by 5.18, it is surjective.

In particular, it is faithfully flat and locally finitely presented and there-

fore an epimorphism of sheaves ([5, p. 295, 2.10]). This allows us to define

a morphism b'\ W'-*£P by

provided we can show that the right hand side depends only on the
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equivalence class of (x, y) mod(n+, n~). Thus let (x, y) e W(R), and assume

that x = U(ΠR) and yx = V(ΠR). Since (n£, n^) is an ideal of 83̂  we have

xy = ι^(nj) and yx = ϋα(τt5), and since exp n* = iV*, it follows from (*) of

4.1 that

b(x, y) = exp (-yx) exp (x) exp (y) exp (—xv)

= exp (— yw) exp (w) exp (ι>) exp (— uυ)

= b(u, v) modulo N(R) .

Now it is easily verified that βf = (93', fl"', /o', &') is a Jordan system,

and that the canonical maps S3 —> S37 and H-+ H' define a homomorphism

$ : </ -> </' where ,/ is the Jordan system associated with (G, ψ). Let

<G', ψθ be the elementary system defined by / ' , and let /: (G, ψ) -• (Gr, ψ')

be the homomorphism induced by Φ (see 4.15 and 5.1). Then /: G —> G' is

an epimorphism of group sheaves, and we only have to check that Ker (f)

= N. By 5.16 (a), it suffices to show that Ω ΓΊ Ker (/) = Ω Π N, and this

is clear from the definitions.

5.20. EXAMPLE. If N+ and N~ are not smooth then the induced action

ψ' on GIN may not be elementary. For example, let k be a field, let G

= SO2 n + 1 be the special orthogonal group of the quadratic form q(x0, ,

+i, and let ψt be conjugation by the matrixΣ

1
t

1

' 1
r1

1

Then ψ is an elementary action whose associated Jordan pair is the simple

Jordan pair defined by the standard quadratic form on k2n'1 (cf. [18, p. 196]).

Now let char (k) = 2, and let /: G -> Spn,fc be the exceptional isogeny



ALGEBRAIC GROUPS 59

where a, be kn and A, B, C, D are n X n matrices. Then N = Ker (/) is

an infinitesimal group of height one, and (n+, n~) is the unique proper one-

dimensional outer ideal of 93. The induced action ψ' on Gr = Spn>fc is not

elementary since it has weights 0, ± 1 , + 2 on Lie (G')

§6. The radical

6.1. In this section, k denotes a field and k an algebraic closure of

k. A β-group is an affine finitely presented group scheme over k. If

(G, ψ) is an elementary system we will always assume that G is a A-group.

By 5.13, so is H, and conversely, if (93, H, p, b) is a Jordan system with

H a A-group then the associated group G is a £-group. In particular, the

projective group of 93 is a £-group.

Radical and unipotent radical of a smooth connected /z-group are

denoted by R(G) and RU(G). If G is not connected define R(G) = R(G°)

and RJfi) = RU(G°). By definition, a β-group is semisimple (reductive) if

it is smooth and R{Gι) = {1} (RU(G^) = {1}). Let S be a torus acting on a

/2-group G by automorphisms. If G is connected (smooth, reductive) so

is the fixed point set Gs; more generally, RU(GS) = RU(G)S (SGA3, Exp. XIX).

6.2. Let 93 be a Jordan pair over k. An element x e 93+ is called

properly quasi-invertible if (x, y) is quasi-invertible for all y e 93". Similarly

one defines properly quasi-invertible for elements of 93". The Jacobson

radical of 93 is Rad93 = (Rad93+, Rad93") where Rad93σ is the set of pro-

perly quasi-invertible elements of 93* (cf. [15, § 4]). We say 93 is semisimple

if Rad 93 = 0 and 93 is separable if 93^ is semisimple, for all extension

fields K of k. An ideal % = Q+, S~) of 93 is called trivial if Q β H SΓ = °

Clearly a trivial ideal is contained in Rad 93.

6.3. LEMMA. Let (G, ψ) be an elementary system over k, and let N

be a smooth connected abelian normal subgroup of G, invariant under ψ.

Then (with the notation of 5.16) N = N~-No-N+ a Ω, and (n+,n~) is a

trivial ideal of the associated Jordan pair 93.

Proof. Since N is commutative, N (Ί Ω = N~ NQ N+ is an open sub-

group of N. Hence N= Nf]Ω. By 5.17 and 5.19, iV* = exp (n*) and (n+, n")

is an ideal of 93. lί xen+, y en~ then exp (x) exp (y) = exp (y) exp (x) =

exp (yx)b(x, y) exp (xv) implies y = yx,b(x, y) = 1, x — xv. Hence x — xy =

B(x,y)-ι-(x - Qxy) - x - Qxy and thus Qxy - 0. Similarly Qyx = 0.
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6.4. THEOREM. The protective group G = PG (93) of a separable Jordan

pair 93 is semisimple and its identity component is generated by U+ and U"

(i.e., Gin = G°; cf. 3.9).

Proof. We may assume k algebraically closed. Let S be as in 5.15,

and Gf — S-Gin. Then Gr is a smooth connected £-group which is normal

in G. We claim that Gr is semisimple. If this were not so, let N be the last

non-trivial term in the derived series of R(G'). By 6.3. (n+,n~) is then a

trivial ideal of 93 and hence contained in Rad (93) = 0. Hence N± = {1}

and N = No C H. But H contains no nontrivial normal subgroups of G

by 5.15. Hence N = {1}, a contradiction. Now Gin is normal in Gr and

hence is semisimple as well. Since G'\Gin is at most one-dimensional we

have Gin = G'; i.e., S d Gin. Now consider the homomorphism / : G - >

Aut (Gίn) = A given by g H-> Int (g). Then / is a monomorphism. Indeed,

since S C Gίn, the kernel of / is contained in Gs — H and is therefore

trivial (5.15). By SGA3, Exp. XXIV, A is a semisimple A-group, and A0 =

f(Gin) C f(G). Hence f(G) = G is an open subgroup of A, in particular,

it is semisimple. Also, G°^f(G°) = A0 = f(Gin) and therefore G° = Gin.

6.5. COROLLARY. Let 93 be a separable Jordan pair over k. Then

Aut (93) is a reductive k-group whose identity component is Inn (93).

Proof. Since Aut (%) = H = Gs and Inn (93) = Hin where G is the

projective group of 93, this follows from 6.4 and 4.12. From 2.6 we get

6.6. COROLLARY. Let 21 be a finite-dimensional separable unίtal

quadratic Jordan algebra over k. Then the structure group Str (2ί) is a

reductive k-group whose identity component is Instr(Sί).

This was proved by Springer in [20] by a case-by-case verification.

6.7. PROPOSITION. Let (G, ψ) be an elementary system over k, and as-

sume that the associated Jordan pair 93 is separable. Then the automorphisms

ψt are inner in the following sense: There exists a k-split torus S c Hin

and a nontrivial character η:S->km such that

( 1 ) Int(s) = ^ ( 5 ) ,

for all s e S.

Proof. Let K: G-+G = PG(93) be the canonical homomorphism, and

let S = γ(km) C G° as in 5.15. By 6.4, G° = Gin9 and hence the restriction
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&o Gin -> G° is an epimorphism. Let Z = KQXS) C Hin, and define η:

km by κo(s) = γ(η(s)). For x e 93* we then have

(2) Int (s) exp (x) = exp (Ad s-x) ~ exp (^(s)*1 x) ,

since Λ; induces isomorphisms U± -> £7* (cf. 5.15). It follows that sδ(x, y)s~1

= b(Ads-x, Ad sy) = &(*, y), and hence Z is central in Hin. Now Λ;(iϊ0)

= κ(Hίn) = H° implies that H° c Ker (κ)Ήin. But Ker 0) centralizes G<n,

and hence Z is central in H°. Let S be the maximal A-split torus of the

centralizer of H in Z. Then S is central in H, and K: S-> S is an epimor-

phism. Hence η-.S-^km, is nontrivial. Now (1) follows from (2) and the

fact that S is central in H.

6.8. LEMMA. Let (G, ψ) 6e an elementary system over k and assume

that G is reductive and connected. Then P+ = HU+ and P~ = HU~ are

opposed parabolic subgroups of G.

Proof. Let G = G X\ km (semidirect product) and let S = {1} X km C G.

Then G is reductive, and S is a one-dimensional split torus of G with root

system Φ = A1# Hence Gφ+ = SP+ and Gφ- = S-P~ are opposed parabolic

subgroups of G ([3, 4.15]), and hence P+ = G Π (S-P+) and P' = G Π (S P"")

are opposed parabolic subgroups of G.

6.9. THEOREM. Lei (G, ψ) be an elementary system over an algebraically

closed field k, and assume that G is smooth and connected. Let Rad (93)

= (n+,n~) be the radical of the associated Jordan pair S3, and let N± =

exp(n±) C U\ Then RU(G) = N-RU(H)N+.

Proof. Let NQ be the A-subgroup of H generated by 6(93 ,̂ n~) and

b(na, 33α) This is a smooth connected A-group. We claim that

is a smooth connected unipotent normal subgroup of G; in particular,

N C RU(G). Clearly, N is smooth and connected. To show that it is a

normal subgroup of G it suffices to show that N(k) is normal in G(k), since

k is algebraically closed, and all groups involved are smooth. From 4.1

and the definition of Rad (93) it follows that N(k) is a subgroup of G(k).

The invariance of Rad (93) under Aut (93) implies that N(k) is stable under

conjugation by H(k). If x e 93+ and y e n " then

Int (exp (x)) exp (y) = exp (yx) b(x, y) exp (xy — x)
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with yx = y + Qy-xy en~ and xv — x = Qxy
x e n+, since Rad (93) is an

ideal of 93. Also 6(x, y) e N0(k). If w e 93+, i en" , or w e n+, i; e S3 then by

3.6 and 4.1,

Int (exp (x)) b(u, v) = exp (x — B(u, v)-x)- b(u, v) ,

and x — B(u, x)-x = — {uvx} + QuQυxe n+, again since Rad(93) is an ideal.

Thus N(k) is stable under conjugation by U+(k), and similarly one shows

that it is stable under conjugation by U~(k). This proves that N is normal

in G. Now we show that N is unipotent. Replacing G by G/RU(G) (which

is permissible by 5.19), we may assume that G is reductive, and then have

to show that N = {1}. By 6.8, P+ and P~ are parabolic subgroups of G,

and hence N Π P+ = N0>N+ and N Γ) P~ = N0 N~ are parabolic subgroups

of JV. Then N/NQ-N* = N* is both affine and projective which implies

iV± = {1} and therefore also No = {1}.

Let now N' = N-RU(H)N\ By 6.2, N0 = Nf)Hcz RU(G) Π H =
Bβ(H) and hence iVc iV'. Since N+ N~ a Na N' it follows that 2\P is a

subgroup of G. Also, ΛΓ is unipotent since N and N'/N = RU(H)/NO are

unipotent. We claim that N' is normal in G. In view of what we proved

before, it suffices to show that conjugation by elements of U±(k) maps

RU(H) into N'. Let x e 93* and h e Ru{H){k). Then

( 1 ) Int (exp (Λ)) A = exp(x - Aάh x) h .

and we have to show that x — Ad h-xe n±. Consider the homomorphism

φ: G~>Gf = PG (93/Rad (93))° induced by the canonical homomorphisms 93

->93/Rad(93) and # - > A u t (93) ->Aut (93/Rad (93)) (cf. 4.15). By 6.4, G' is

semisimple, and Gr = G'in. Hence φ is an epimorphism, and we have

RU(H) c RU(G) C Ker (φ). Applying φ to (1) it follows that Lie (φ)

(x — AdΛ tf) = 0, and hence x — AdA x e n * . This proves that N' is

normal in G and therefore contained in RU(G). To prove equality, we

show that G/N' is reductive. Replacing G by G/N' (which we can do in

view of 5.19), we may assume that H is reductive and 93 is separable, and

then have to show that G is reductive. Consider the canonical homomor-

phism K: G->PG(93)°. Then by 6.4 and 5.15, RU(G) C Ker (A:) C H which

shows RU(G) = {1}. This completes the proof.

6.10. COROLLARY, (a) 93 is separable if and only if the projective

group G of ^β is semisimple.

(b) 93 = Rad93 if and only if the "inner projective group" Gin is uni-
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potent

6.11. COROLLARY. Let S3 be a Jordan pair over an algebraically closed

field with non-zero radical. Then S3 contains a nonzero trivial ideal, in-

variant under all automorphisms and antiautomorphisms of S3.

Proof. Let G = PG (S3). By 6.9, Gin is not semisimple. Let N be the

last non-trivial term in the derived series of R(Gίn), and let N = N~ No N
+

as in 6.3. Then N+ and N~ are not both equal to {1}. Otherwise, N = No,

would be a normal subgroup of G contained in H and therefore iV0 = {1}.

Then (n+,n~) has the desired properties.

Remark. This results was used in [14] to prove the nilpotence of the

radical of a Jordan triple system. A direct proof can now be found in

[15].

6.12. THEOREM. Let (G, ψ) be an elementary system over k and let K

be an extension field of k. Then

G(K) = U+(k) Ω(K) = Ω(K) U-(k) .

Proof, (a) k infinite. Let K be the algebraic closure of K, and let

Ω* = U~(k)H(K).U+(K). Then β* is Zariski-dense in G(K). Indeed, let

π: X-> G be as in 4.13. Then π: X(K) -* G(K) is surjective ([5, p. 291, 1.15]),

and π~\Ω*) contains W(k) X H(K) X S3| (where W a S3̂  X S3" is the sub-

scheme of quasi-invertible pairs). Since k is infinite, W(k) is Zariski-dense

in S3J X S3J and hence π~\Ω*) is Zariski-dense in X(K). It follows that

β* is Zariski-dense in G(K). Now let geG(K). Then (g>Ω*) Π Ω(K) is

not empty since Ω(K) is Zariski-open in G(K). Hence there exist u e U~(k)9

heH(K), veU+(K), ωeΩ(K) such that guhv = ω. This implies gu =

ωv-'h-1 e Ω(K) Π G(K) = Ω(K), and hence g = (ωv-ιhι)u~ι e Ω(K)-U~{k). By

passing to (G, ψ~λ), we get the other equation.

(b) k finite. Let us first assume that G is reductive and connected.

Then by 6.8, P+ and P~ are opposed parabolic subgroups of G, and by 6.9,

S3 is separable. Choose a split torus S as in 6.7, and let S7 be a maximal

β-split torus of G containing S. Let P/+ and Pf~ be the opposed minimal

parabolic subgroups of G defined by S'. Then P/σ c P'% and by [3, 6.25],

G(K) = P/+(k) P'-(K)P'+(K) = P+(k)P-(K)P+(K) = U+(k)Ώ(K).
Now let G be arbitrary. We have G = HU+ U~ -U+ = HGίn = G ίn if,

and the kernel of the homomorphism Gin X H-+G given by multiplication
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is isomorphic with H Π Gin = Hίn (4.12), in particular, it is connected.
Hence if K is finite, G(K) = Gin(K)H{K) by [5, p. 426, 7.6], and if if is
infinite, this is still true by (a). Replacing G by Gίn, we may therefore
assume that G is smooth and connected. Let Gf = GjRu{G) and let ψ' be
the action induced by ψ on G'. Then G/ is reductive, (G', ψ') is an
elementary system, and the canonical map φ: (G, ψ) -> (G', ψ;) is a homo-
morphism (5.19). By 6.9, RU(G) = N-RU(H)N+, and U/σ = Uσ/N and Hf

= H/RU(H). Since Uσ -> U7* is induced by the surjective linear maps 93σ

-> 93<7Rad(93"), the maps Uσ{k)-+Ufσ(k) and Uσ(K)-> U'σ(K) are surjective.
Let now geG(K). Then pfe) e G'OSQ = U'+{k)Ώ'(K), by what we proved
before. Hence there exist ue U+(k), ve U~{K), we U(K) such that <p(g)
= <p(uvw) modulo H'{K), in other words, w~ιv~ιu~ιg e φ'^H'XK). We have
φ~\H') = N~H>N+. Indeed, since: φ\Ή.->Ή.f is an epimorphism, φ~\Ή.f)
HRU(G) = N~HN+. It follows that u)-ιυ'ιu-ιg = agΛ where xeN~(K),
heH(K), yeN+(K), or g = uvwxhy. Since #-(!£) = exp (Rad (»i)) it
follows from 4.1 and 6.2 that wxeΩ(K). Hence #e U+(k)-U-(K)Q(K)-
H(K)N+(K)= U+(k) Ω(K). The second formula follows by passing to
(G, ψ"1).

6.13. COROLLARY. (Generators and relations for G{k)). Let k be in-
finite. Let Γ be an abstract group, and let φ0: H(k)-+Γ, φ±: U±(k)->Γ be
homomorphisms. Then there exists a homomorphίsm φ: G(k) -> Γ extending
<p0 and <p+,ψ- if and only if

-1 = φσ(huh'1) ,

2) ^+(exρ (x))φ_(exp (y)) = ^_(exp (yx))φ0(b(x, j))^+(exp (xy)) ,

for all h e H(k), u e Uσ(k), (x, y) e δS+ X 93" quasi-inυertible. Indeed, G(k)
= U+(k)Ώ(k) by 6.12, and hence G(£) is the quotient of S8+ X 9S" X F(/e)
X 93+ by the equivalence relation given in 4.13. We can now copy the
proof of 4.14, provided we show: for all u,weU~(k), veU+(k) there
exists xe U+(k) such that xu~ι and xvw are in Ω(k). In view of 4.1, this
amounts to showing that for all a,ce%$~, b e 93+ there exists 2e93+ such
that (z, — a) and(z + 6, c) are quasi-invertible. Since k is infinite, this is
always possible.

6.14. As an application, we determine the relation with the group Ξ
introduced by Koecher in [11]. Similar remarks apply to the groups
studied in [12, 13]. Let SI be a finite-dimensional quadratic Jordan algebra
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with unit element e over an arbitrary field k, and let Ξ(%) be the group

of birational transformations of 21 generated by the structure group Str (2ί)

and the maps x »-> ty(x) = x + y (y e 2ί) and x *-*j(x) = —x~\ Let 93 =

(2ί, 21) be the Jordan pair defined by 21 and G = PG(93) the projective

group of 23. Thus H = Aut (93). Then Ξ(Έ) is isomorphic with G(k). In-

deed, let K be an infinite extension field of k, let ^0 H(K) = Aut (93 )̂ ->

Str (Si*) be the isomorphism (g,g^~ι)^g (cf. 2.6), and define p ± : U±(K)->

3($ίκ) by 9+(expx) = tx and ^_(expy) =jotyoj == ty. For geStr(2 l x ) we

have gotxog-λ = tgx and jΌgoj = g*-\ This implies (1) of 6.13. For (2),

we have to show that tx°ty — tyX o B(x, y) o txV. Taking inverses, this is

equivalent with ty<>tx = txV ° B(x, y)~ι o ty*. Now ty(z) = (2:"1 - j ')" 1 - 2* ([15,

3.13]), and hence

(tyotx)(z) = (x + z)v - x* + B f o y ) - 1 . * ^ = (ίΛ»o J3(Λ,y)-ioίyx)(2) .

By 6.13, we have a homomorphism 9: G(if) —> Ξ(ΆK) extending, <p0, φ± which

is surjective since j = teoteote. Assume that ^(exp (x) exp (y)h exp (2)) =

tx°tyogotz = Id (where h = (g,g*~1)). Then ί?yo£ = i_ .̂_0, therefore 0 =

ίi,(0) = ί-α -^g'XO) = - x - z, hence g~ι = ty =jotyoj, and ty =jog~ίoj

= g* which implies 0 = g\0) = ty(0) = y. Thus g = Id, A = 1, and

exp (x) exp (y)A exp (z) = exp (JC + z) = 1 .

This shows that 9 is an isomorphism. By 6.12, G(k) = U+(k)U'(k)H(k)U+(k).

It follows that φ maps G(k) isomorphically onto Ξ(Έ). Also we see that

every element of S(W) is of the form gotxojotyojotz with. geStr(2ί), x,

y, z e 2ί. This was proved by Koecher in case k is infinite and of char-

cteristic Φ 2.

Added in proof. In the paper O. Loos, Homogeneous algebraic varieties

defined by Jordan pairs. Mh. Math. 86 (1978), 107-127, some of the

results of § 6 are extended to the case of an arbitrary base ring.
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