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§ 1. Introduction

In discussing convergence of Feynman path integrals [2], we need a

stationary phase method of oscillatory integrals over a space of large

dimension. More precisely, we have to know how the remainder term

behaves when the dimension of the space goes to oo (cf. [2], [3] and [δ]).

The aim of the present note is to give answer to this question under

rather mild assumptions. Application to the Feynman path integrals is

discussed in [3] and [5].

Oscillatory integral of a function /(#), x e R&, is defined by the equality

f f(x)dx = \im[ e-ε^f(x)dx.

We consider the following oscillatory integrals

I({tj}, S, a, v)(xL, x0) = Π ( - z — ) ^ ^ e - i v S < X L * ' " ' X 0 ) a ( x L , •••,*<,) Π dχj-

Here each xj9 j = 0, , L, runs in Rd, v > 1 is a constant and tj9 j = 1,

2, , L, are positive constants.

Our assumption for the phase function S(xL9 , x0) is the following:

(H.I) S(xL, , x0) is a real valued function of the form

where
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Ss(tj3 xj9 Xj-d = -^\Xj ~ ΛΓj-il2 + hωβjy xj9 XjΛ j = 1, 2, . , L.

For any m >̂ 2 there exists a constant Λ;OT > 0 independent of j such that

max sup Idffiζωfa, x,y)\^κm.

(Since both x and y have d components, both a and β are multi-indices

with d components.)

We need a little more notations to write down our assumptions

about the amplitude function. If TL = tx + t2 + + tL is small enough,

the critical point (xf.u xl-i > •> #*) of the phase is the unique solution

of

3XJ8j+ι(tj+l9 xf+ι, xf) + dMt,, x*, xU) = 0, j = 1, 2, , L - 1,

where x£ = Λ:L and xf = x0 (See §2 for the proof). We use the following

notation

Similarly, for any pair of integers k, m with k + 1 < m let x?+1, ,

be the partial critical point, i.e.,

dXjSj+1(tj+u **+1, x?) + ^.S,(^, X*, acj8 )̂ = 0 ,

for j = k + 1, , m — 1, where xf = xk and x* = xw. Then we set

®\XLI ' ' ' > *^m> Xfc> ' ' ' > ^ 0 / : = : β ( # L > ' ' ' > X m.9 Xm-l* ' ' ' > ^fc + 1? *̂ fc5 ' * " > ^ 0 /

If Hi = £ + 1, we define

Our assumption for the amplitude function α(xL, , xQ) is the fol-

lowing:

(H.2) For any positive integer K there exist positive constants Aκ

and Xκ with the following properties:

(i) If K | ^ K for = 0, 1, , L, then

sup ( [] daj.

(ii) For any sequence of positive integers

jo = 0 < Λ - 1 < Λ < Λ - 1 < ' < Js < U s = 1, , L - 1,
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we have the estimate

|3S35ίj:ί d%yd%L

La(x~xh, xu-,,xh_v , * Λ - i , * 0 ) | ^ AKX'K,

a s f a r a s | ^ | <; K, j = 0,jt - 1J19 -,js, L .

Our main result is

THEOREM 1. Under the assumptions (H.I) and (H.2) above there exists

a positive constant δ independent of a and L such that if TL = tλ + t2 +

• + tL < δ then

j}, S, α, p)(xL, x0)

Ί
\ Δ1Z± L

r(xL, x0)),

where r(xL, xQ) satisfies the estimate: For any K ^ 0 there exist positive

constants Cκ and M(K) such that if \ao\, \aL\^ K,

CκXM(K)v-%) - l) .d2d%LAxL, xQ)\ ^ AM(K

Constants δ, Cκ are independent of a, L, {tj}, (xL, x0) and of v but depend

on the dimensionality d of space Rd and {κm}. M(K) depends only on K

and d. H is the d(L — 1) X d(L — 1) matrix

o ,

and w is the Hessian matrix of
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x^x^ ) at the critical point

In case a = 1, we can prove a sharper estimate of the remainder

term.

THEOREM 2. We assume that a = 1 αrcd (H.I). // TL < <5, ^βτι /or

i ί ίΛere βxisίs a constant Cr

κ such that if \aQ\ and \aL\<^ K,

\daΆL

Lr(xL, xo)\ ̂  Π (1 + C'kv-%T*L) - 1.
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The constant δ is the same as in Theorem 1.

Remark. 1) We can easily see from the proof that the phase function
and amplitude function are not necessarily infinitely differentiable. Both
Theorems 1 and 2 are still valid with obvious modification if both func-
tions are of class C16 with sufficiently large k.

2) In the previous work [4], less sharp result was obtained.
The plan of the paper is as follows: Theorems 1 and 2 will be

proved in the case d = 1 in order to avoid excessive complexity of nota-
tions. In § 2 we collect basic properties of both the critical point and
the critical value of the phase function. In § 3 we prove a key lemma
which plays a fundamental role in this paper. This lemma, Lemma 3.1,
may be of independent interest. In § 4 Theorem 1 is proved. Theorem 2
is proved in § 5.

Acknowledgements. In the author's original manuscript the ex-
ponent of TL on the right hand side of the estimate in Theorem 2 was 1.
The referee kindly pointed out it is in fact 2. The author wishes to ex-
press his sincere gratitude to the referee.

§2. Phase functions

In this section we discuss the followings:
( i ) Unique existence of the critical point of S.

(ii) S(ίΓ^0) is of the form ^L~X^ + TLω*(xL, *o)

(iii) Some elementary facts related to the Hessian of S.
The critical point x* = (xf_u , xf) of the phase function is given

by the system of equations

f,(2.1) i ( x * - x*) + i-(x* - x0) + t2dMt2, xL Xi*) + WiOhfe, x
h h

hxf - xf) + λ(χ* - x*) + t3dMt3, xf, xϊ) + t&pάt, xϊ, x?) = 0.
*

9 xL9 xf-d

Here and hereafter dk is the abbreviation of dXk = djdxk.
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The Hessian matrix of S is equal to H(L, 1) + W(L, 1 x), where

n-+* - ± . o, o,

(2.2) H(L, 1) =

o,
o,

and

i\O)2 ~\~ t\(jι(i)\) t2u\U2O)2y ^ ) > ^

(2.3) WT(L, 1; x) = I t2d2dxω2, trβ2

2ωz + ^ α ^ , ^Ws^s, 0, , 0 | .

We have

PROPOSITION 2.1.

(2.4) det H(L, 1) = TL

Lβί G(L, 1) 6β ί t e inverse of H(L, 1). ΪTien iίs (ij) entry is

(2 5) e - ^ + ' * ' + ^ + 1 + ' ' + ^ ifl<ί<i

We use two norms \\x\\^ = lύkάL

R1"1. The next proposition is clear.

and x}\ for any

PROPOSITION 2.2. For any B e E 4 " ' we have

(2.6)

(2.7)

(2.8) ||G(L, ΐ)W(Ll; χ)u\U £

Unique existence of the critical point of S is given by
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PROPOSITION 2.3. Assume that

(2.9) 4 * 2 n < 2"1.

Then the critical point exists uniquely and satisfies the estimate:

(2.10) ||x* - *°|U ύ ^ LΣ\^idkωk+1(tk+u x«k+u 4 ) + tkdkωk(tk, 4 , 4 - i ) | ,

where

X. _ χ0 + _ L.χL9 j = 1, . . ., L — 1 .
1 L J- L

Proof. The critical point x* = (xf_u , xf) is the fixed point of the

map (xL_j, ., x,) = x -» φ(χ) = (^_ 1 ? . . ., y,), where

(2.11) ^ = - Σ £j*&+i9*ω*+,(**+i, Λ*+I, ^ ) + tkdkωk(tk, xk9 xk^)}

The norm of the differential map DΦ(Λ:) = G(L, ΐ)W(L, 1; x) is less than

K2TI £ 1/8 with respect to the norm || IU because of (2.8) and (2.9).

Therefore, the map Φ(x) is a contraction map, which guarantees unique

existence of the fixed point. Usual construction by iteration of the fixed

point gives that

(2.12) IIx* - *°|U

We have Φ(x°) - xG = G(L, ΐ)Ω(x°), where fl(x) - (fl^x), , ΩL^(x)) and

tj, Xj, Xj^) + tj+1djωj+ί(tj+u xj+ί, Xj)9 j = 1, , L - 1.

This and (2.7) yield that ||Φ(x°) - *°|U < (TJQWΩ^. This together with

(2.12) proves the estimate (2.10). Proposition 2.3 has been proved.

Let y and z be points in R^"1 such that

(2.13) ys = gn(t^ - MJMti, xf, Λo)), j = 1, , L - 1,

(2.14) s, = ft^te1 - tL^dL^dLωL(tL.l9 xL, xt^l j = 1, , L - 1.

Then

(2.15) | | y | U \\z\U^l + KiT\.<
σ
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We consider the critical point as a function of (xL, x0). Let X = 90αc* and

Y=3Lx*; let DxW(L,l;x*) and Dγ W(L, 1 x*) be derivatives at x* of

matrix valued function W(L, 1 x) in the direction X and Y, respectively.

PROPOSITION 2.4. We assume (2.9). TTieπ, we have

/C\ Ί / * ^ \ I I ^\ *lί II I I *\ ^f I I ^^ A Ft T 9 J***'* •••
/ y I K ) ίJ γΦ v \\ r} Ύ^" ^ <Γ 4-** / <Γ^Zi .xυ^ | |0 i o^' »/||oo) | | v £ _ i « v ^ | |oo ^ ^ ^ ^ 2 - ^ z< ^ "7Γ

2

(2.17) || do** |U II aLx* |U < 1 + 4 Λ 2 Γi < A .

A

For any integers a and β there exists a positive constant Caβ such that

(2.18) \\DXD>TW(L, 1; x * ) ^ < CaβTL\\v\U .

And for any a and β with a + β >̂ 2 w e Λαue, wiί/i some constant Cαfi,

(2.19) l|3o9ί-i**IL ^ C ^ T | .

The constants Caβ in (2.18) and (2.19) may depend on TL but are bounded

if TL is bounded.

Proof. Since x* is the fixed point of Φ(x), we have that

(2.20) dox* - (DΦ(x*))d,x* + y .

Since the norm of DΦ(x*) is less than κ2T
2

L < 1/8, we have

o** - JΊL < 2*2ri| |y|U ^ 3κ2Tl <
o

Therefore we have

Similarly we can prove estimate for dLx*. (2.16) and (2.17) are proved.

Next we prove (2.18). It follows from (2.16) and (2.17) that for each

pair of indices a and β there exist R1'"1 valued functions aaβ(xL, x0),

baβ(xL, xQ) and caβ(xL, xQ) satisfying

(DiD'rW(L, 1; **))„ = 0, for |λ - j | > 1,

= tsaγ(xL9 xo)f for A = j — 1,

= tjba/(xL, x0) + tj+λcγ(xL, xG), for A = j ,

= ii+1a5ij(xL, x0), for A = + 1.
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These functions aaβ(xL, JC0), baβ(xL, x0) and caβ(xL, x0) may depend also on

tu , tL but remain uniformly bounded in the space &(RXL X Rxo) as far

as (2.9) holds. This proves (2.18).

We shall prove the estimate for dQdLx*. It satisfies

dLdox* = DΦ(x*)dLdQx* + G(L, ΐ)DγW(L, 1; **)90** + dLy.

Thus using (2.18), we have

' | |3L3O*ΊL ^ 2(11 G(L, l)J3 rΨ(L, 1; x*fax*L + II3^IIJ

^ CTi||30x*|L + CΓi ^ CTJ,.

Here and hereafter we denote simply by C various constants which may

be different from one occasion to another. Other higher derivatives of

x* will be estimated similarly. Proposition is proved.

Since 90x* satisfies (2.20) and DΦ(x*) = G(L, Ϊ)W(L, 1; x*),

(2.21) 30x* = G(L, l)Z(xL, x0) + y ,

where Z(xL, x0) = W(L, 1; X*)30Λ;*. Using (2.6), we have

(2.22) HZlk = || W(L, 1; ^)a o ^l ! i ^ 4^2TL||a0x*|U < 6Λ:2ΓL .

Moreover, the j-th component of Z(xL, x0) is of the form

(2.23) Z,(xL, xQ) = tjξjix^ x0) + tj+xηs(xL9 xQ\ j = 1, , L - 1,

where {£,} and {̂ j} are functions, which may depend on tu—-,tL but

bounded in &(RXL X R^o). It follows from this that

Ti1 2 Zj(xL9 x0) remains bounded in &(RXL X R,,,).

Next we consider the second derivatives of the critical value S(xL, x0).

PROPOSITION 2.5. We assume (2.9). Then S(xL, xQ) is of the following

form:

(2.24) S(" o ) = I\"X° | 2

Here ω*(xL, x0) is a function, which may depend also on tu , tL but

remains bounded in &(RXL X Rβ0), satisfying the estimate

(2.25) m a x s u p | da

xjd
β

XLω*(xL9 xQ) \ < κ*m ,
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where κ*m is a constant depending only on κj9 2 <* j <; m. We can choose

(2.26) 4 = 10κ2.

Proof. Since x* is the critical point of S, we have

d 0 θ ( X L , Xo) = 3QO\XL, XL-\ > ' ' *) X\> XW\XL-I = XL-V >XI = X*

= (3.S,)(Xι*, Xo) ,

where we abbreviated Sλ(tu xu x0) simply by Sfa, x0). This implies that

(2.27) 9 ^ S ( " 0 ) = (dlSMxΐ, *.) + O

We have from (2.21) and (2.13) that

where

h(xL, Xo) = -Tι%(t2 + + fL)9o9iω,(*i, xf,

L-\

depends also on tl9 , ίL but we used abbreviation. Since T^ 1^] Zj(xL, x0)

is bounded in ^ ( R ^ X Rxo), ^(xL? ̂ o) remains bounded in &(RXL X R J

uniformly with respect to tl9 , ίL. In particular, (2.22) yields that

(2.28) \h(xL, xo)l ̂  Γ

Hence we have

dis(χΓχ) i
* L

where

ψ(xL, x0) = —h(xL, x0) + ——dlω^xf, x0)

remains bounded in the space &(RXL X RΛ0). Moreover by definition

l^ω^f, x o ) | ^ κ2 and l^^ ίx f , xo)| ̂  /c2. And (2.28) and (2.9) imply that

tl\h(xL, xo)\ < 1. Therefore

\ψ(xL,xΰ)\£ 10 κ2.
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Similar discussions hold for other derivatives of S(xL, xQ). Therefore,

we have proved Proposition 2.5.

Finally we discuss Hessian determinant of S.

PROPOSITION 2.6. Let φ(x, y) be a real valued C°°-function of (x, y) e

R w X R\ Let y : Rm Bχ-+y*(χ) e R " be a C~-map such that

(2.29) dyφ(x, y*(x)) = 0 for any x e Rw .

We assume that

(2.30) det Hessyφ(x,y)\y.y*ix) Φ 0

and that the map φ*: R w 9 x -» φ(x, y*(x)) e R has a critical point JC*, i.e.,

(2.31) dxφ*(x*) = 0 .

Then (x*,y*) — (x*,y*(x*)) is a critical point of φ(x,y). Moreover we have

the product formula of Hessian determinant:

(2.32) det Heβs^rtφ = (det Hess β ^ )(det Hessyφ(x,

Proof We have, from (2.29),

(2.33) 3^(«*,y*) = 0.

On the other hand we have, from (2.31), that

This and (2.33) gives that dxφ(x*,y*) = 0. Therefore, (x*,y*) is a critical

point of 0.

We have

\dxdyφ, d\φ / (χ>y) = (χ*,y*)'

On the other hand we have

Hess^* = dlφ(x*,y*) + ^ ^ , / ) 3 j * ( x * )

= d2

xφ(x*, y*) — dvdxφ(x*9 y*)dyφ(x*f y*)"^xdyφζx*, y*),

because

d2

yφ(χ, y*(x))dxy*(x) + dxdyφ(x, y*(x)) = 0 .

Therefore the next Lemma proves (2.32). Proposition 2.6 is proved.
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LEMMA 2.7. Let A be a (m + n) x (m + n) matrix. We write

A = («
3, C

C, D

where B is an m X m matrix, C is an m X n matrix and D is an n X n

regular matrix. Then we have

det (A) = det (D) det (B - CD'1 ιC).

Proof. Take the determinant of the following matrix identity:

IB, C\( I, 0\ _ (B- CD-llC, C\

VC, D)\-D-"C, l ) - \ 0, DJ

Let x? be the critical point with respect to xx of S2(x2, Xi) + Sx{xu x0).

We define a function D(S2 + Sj x2, Xi) from the hessian determinant at

xf in the following way:

(2.34) det HessΛ,*(S2 + S,) = tχ + tcL D(S2 + S,; x2, x0).

Let k < m be two positive integers. Then we define (x^-u •• >^*+i) a s

the partial critical point, i.e.,

djSj+1(xf+u x*) + S^SίxJ8, xU) = 0, = A + 1, , m - 1.

Here x* = xm and xf = xfe. We denote the critical level by S*l)fc+1(xm, xk),

i.e.,

(2.35) ί̂ m.fc + lV̂ mJ f̂c) ~ ^vSfva %m-> X'm-i) + * ' * + \ + l ( ^ l ) f̂t + l> f̂c) *

As a consequence of Proposition 2.5 we can write

(2.36) S*m,fc+1(xm, xk) = (̂ m ~ ^ + ( ί f c + i + . . . + O < * + i ( * w , Λ*)

We define D(Λ:TO, xfc) by

(2.37) det(Hessu*m_ i )...,, | + i )(Sm + + Sk+ι)) = h+ι + ' ' ' + tn D(xm, xk).

If m = 1 and A = 1 then we set S^O^, xQ) = S^ίj, x1? xo)

PROPOSITION 2.8. We

(2.38) D(xL, x0) = ( f t ΰ(S f c + S*_M; xfc, x0))
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Proof. We prove (2.38) by induction on L. The case L = 2 is clear.

By induction hypothesis the Hessian determinant of SL^ + + Sx

at the critical point x* = (xί_2(#z,-i, *O)> * •> *ί(*L-i> #o)) with respect to

xL_2, , Xi equals

So Proposition 2.6 gives that

4 1 \ 4

U-'tL

= det Hess^^S^ + S^_1(1) det Hessu#_a>...ιa.#)(SL_ι + +

,-i + + U

ί, • ί

We have proved (2.38) for L and Proposition is proved.

PROPOSITION 2.9. We have

JL/yθ2 \~ Oj j X2? XQ) — -*- "l ^l^ 2 o \ 2) 0/ *

iϊerβ ^(x2, ô) remains bounded in &(RX2 X R^o).

Proof.

This proves Proposition.

PROPOSITION 2.10. Assume that (2.9) holds. We write

T

det Hessx*S(xL, xQ) = ^

Then

(2.39) D(xL, x0) = 1

where q(xL, x0) may depend also on tu - - -,tL but remains bounded in the

space J*(R X R) uniformly with respect to tu , tL.

Proof. We have from Proposition 2.8 that
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D(xL, *„) = ( Π D(Sk + S i + I i l xk, xS) I

We can apply the previous proposition. Then we have

D(xL, *b) = Π (1 + tkTk^gk(xL, x 0)),

where gk(xL, x0) are bounded in the space ^ ( R X R). Proposition is

proved.

§ 3. Key Lemma

The aim of the section is to prove the following Lemma 3.1, which

plays an important role in the proof of the main results. In the present

section assumption (H.2) is not needed. Instead we require the following

assumption about the amplitude function:

(H.3) For any K ^ 0 there exists a positive constant Aκ such that

m a x s u p |dx

L

Ld%L

Lz\ d%a(xL9 , xQ)\ < A κ ,

where max is taken with respect to multi-indices (μL9 , aQ) satisfying

LEMMA 3.1. We assume the hypothesis (H.I) for the phase function

and hypothesis (H.3) above for the amplitude function. Then there exists

a positive constant δ > 0 such that I({tj}, S, α, v)(xL, xQ) can be written as

I vi \1/2 ' '
:,}, S, α, v)(xL9 xQ) = I — — - e x p { - ίvS(xL9 xQ)}b(xL, x0),

as far as TL = tt + t2 + + tL < δ. For any m^>0 there exist constants

Cm and K(m) such that if \aQ\<*m, \otL\<Lm,

\oxL°χ(sυ\χL > χo/l ^ ^m m a x bup \oXLoXL_1 -oXQa\xL, , x o ; | ,

where max is taken with respect to all (βL, , βQ) satisfying β0 <̂  a09 βL ^ aL

and \βj\^ K(m). Here constants K(m) and Cm do not depend on L, v and

a. We can choose K(m) = 4m + 1 7 + 6.

Proof of basic Lemma 3.1 will be given after Lemma 3.6. Before

that, we collect preparatory facts. Most of them are well known but we

will write them down for the convenience of the reader.

From now on we let E = (iv/2π) for the sake of brevity of notation.
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The following Lemma is found in Kumanogo [6],

LEMMA 3.2 (Kumanogo [6]). Let

( a \L Γ ί L

-TL-) exp —iμΣi fX^+i - xι
2π / J R 2 L I .7=1

L

X a(xL+u ξL, , ft, XI)Ψ (ΛΪ) Π dfJdXj

Then there exists a function U(a)(xL+l9 ft, ^) swc/i that
J(μ, ά)ψ(xL+1) = (-A.) f exp{- J>(XL + 1 - Xi)ft}t/(a)(xL+1, ft, Xi)^(xi)d^dft

\ 2ττ / J R2

VFe

3€lC/(a)(a:L+1, ft, xx) = C / ^ ^ i ^ ί ^ + i , ft, *i),

and

dxlU(a)(xL+ί, ξu x,) = U(dxla)(xL+u ξu x,).

Moreover, there exists a constant Co independent of μ, L and of a such that

w /iβre

|| a ||fc = max sup

Proof is found in Kumanogo [6], A simple corollary is

COROLLARY 3.3. For any m^>0 there are constants Cm and Kx(m) such

that if !#£,+!I, |βi|, \ax\ ^ m,

i\dϊ\d%U(a)(xL+1, ft, * ) | ^ Cm(L + iy"Cf + 1 | |α |U l ( m )

We can choose KJjή) — 2m + 3.

Let S(t, x, y) = (l/2t)\x — y\2 + tω(t, x, y) and let a(x, y) be in the space

X R,), then for any f(y) e C0°°(R) we set

( w\
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We assume as in § 1 that

max sup |d%dβ

yω(x, y)\ <L κm .

If 81 ί |2 ΛΓ2 < 1 then Op (2, S, α, v) defines a bounded linear operator on L2(R)

(cf. [1]). Its adjoint Op(£, S, a, v)* is of the form

( 7̂
1/2

LEMMA 3.4. Assume that S(t, x, y) is as above. Then there exists a

positive constant δί = <5I({Λ;W}) depending only on dimensionality of the space

and {fcm}m such that if \t\ 5g δί then Op(ί, S, 1, v)'1 exists and is of the form

Op(ί, S, 1, v)-1 = Op(ί, S, 1 + tp, v)* ,

where p(t, x,y) satisfies the estimate: For any multi-indices a and β there

exists a positive constant Caβ independent of t, v such that

Proof is given in [3].

Let Si(ti9 x, y) = (ll(2ti))\x — y\2 + ^ 0 ) ^ , x, y), i = 1, 2, be phase functions

and a(x, y, z) be an amplitude function as in § 1. Then we consider

,}, S2 + Su α, v)(x, y) = (Ey(Ey £ e-*v^(ίi.«..)+β.(ί,...y»α(ίC> ^ y)dz ,

here α(x, 2, y) e J ( R x χ R 2 χ R y ) . We employ the notations D(S2 + S t; x, y)

of (2.34) in § 2 and denote (tx ί2)/(^ + ί2) by τ. Applying the stationary phase

method [1], we easily obtain

LEMMA 3.5. Assume that 8(^ + t2f/ct< 1. Then

( τp \ 1/2 / τp \ 1/2 ?
ΞL) l^.) e-u<8l{t**>'>+w«a>v»a(x,z9
t χ ] \t2/ J R

H +

where b(x,y) is of the following form:

b(x, y) = (α(x, z*, y) + (-ί^DiSt + St; x, yY^Δ
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where Δk is the laplacίan with respect to z. For each m >̂ 0 there exist

K(m) and Cm such that for any a and β with \a\, \β\^m

\d%dβ

yr,(x, y)\ + \d«dβ

yr2(x, y)\^Cm max sup \da

x

fdζdζa(x, z,y)\,

where max is taken for such af, βf and γf as a! <*a, βf <L β, f <̂  K(m).

K(m) can be chosen as 2m + 4 + 2.

Proof. We have only to apply stationary phase method (cf. Theorem

4.1 of [1]).

Let Sjitj, Xj, Xj-i), j = 1, 2, , L, be the phase functions as in Lemma

3.1. We employ the notation S >̂fc+1(Λ;m, xk) of (2.35) in §2 if m > k.

LEMMA 3.6. There exists a positive constant δ2 — δ2({κm}) such that if

Tk = tk + tk+1 + ••• + U< δl9 then

( FX1/2 / E \1 / 2

X e * Ί * i 1 Ok\Xk, y fe_i, Xk~\)Ciyk-\

Here the function bk(xk,yk.l9 xk^) satisfies the following estimate: For any

a, β and γ, there is a constant Caβΐ such that

^ Caβr

Proof. Let ̂ 2 be so small that 8δ2

2κ2 < 1, 8%4 < 1, δ2< (̂{/s:m}) and

*$). Assume Tk<δ2. Then 8 ^ ^ + tkffc2< 1 and 8^., + 4 ) 2 4 < 1.

So we apply Lemma 3.5 to the kernel function of the operator

We obtain

Opfe, St, 1, v)Op(Tk_u Si_hl, 1, v) = Op(Tfc, Sf*tl, 1 + τfcpfc, v),

where τfc = tkTk_λ(tic + ϊ^.j)-1 and pfc = pk(xk, x0) 6 Λ(R X R). Since Tk <

î({̂ m})j we can apply Lemma 3.4 to Op(Tk_u Sl_1)U 1, v). Therefore, we

have

Sk, 1, v) =

This means that
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F\1/2

/ F\1

(f)
JR

x

with

bk(xk,yk-i, xk-i) =

Lemma 3.6 is proved.

We can now prove Lemma 3.1. The proof is a modification of the

discussion in [6], [7], [8] and [4]. Let δ be so small that δ < <5I({Λ:W}) and

δ < δ2({fcm\) and Sδ2κ2 < 1. Assume that TL < δ. Using the function

I({tj}9 S, a, v)(xL, x0), we define integral transform

Op({*,}, S, α, v)f(xI) - f /({ί,}, S, α, v)(xL, x,)f(x«)dx,.

JR

Since 87^2 < 1, Op({^}, S, α, v) is a bounded operator on L2(R). (cf. [1]).

Since TL < δ2({κm}), we can apply Lemma 3.6 to e-
USk^Xl»Xk-ι) for any

k = 2, 3, , L. Thus

}, S, α, y)/(xL) = Π ( " ) 1 / 2 f e-'^ 2^<^^^-»a(xL, , xQ)f(xQ) \\ dx,

- E

X a(xL, , x0) Π δ / ^ , ^ . ! , xj.

where the phase function Φ equals

Σ {S*,i(^»^-i) - £5-1,1(^-1^-1)} + S,(tu xu x0)
i-2

+ S^ίj, xu Xz) - S1(tu xu yx).

We next employ Kuranishi's technique. We rewrite
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where

ξs = T, Γ 9f SJfl(*i> βy,-, + (1 - 8)yj)d8
Jo

= - Xj + i(yj-ι + tt) + τs Γ 9X,i(*i. s^ -i + (1 - s)yj)ds .
2 Jo

Therefore, the jacobian of the correspondence x3 —• ^ is

where

P / ^ , Xj>yj-ι) = δ^^ω*-,!^, s^_! + (1
Jo

satisfies the estimate: For any a, β and γ, with |α | , \β\ and I7Ί < m,

Since 8T|A: | < 1, we have \dξ3ldxά\ < 2"x. The correspondence R e ^ - >

f j 6 R is one to one and onto. We may consider x3 as a function

Xj(yj,ξj,yj-ι)

This diffeomorphism has the following property: Let f(yj9 x^yj-i) be

an arbitrary function in J ( R X R X R). Then for any multi-indices α, β

and y there exists a positive constant Caβr such that

K ^ A -/(^> χ X^' £J î-i)» ̂ -i)l < c«^ m a x

where maximum is taken with respect to those multi-indices a! <£ a> βf ̂  j9

and / ^ y.

Let 7]j = T^ξjiyj, Xj9yj-ι). Then for any a, β and y there exists a

constant Cαi9r independent of {t^ such that

^ γ1 max sup la^a^S^,,/^, ^ , 30-i)|,
RXRXF

where max is taken with respect to multi-indices with a' <La, βf ̂  β and

Similarly, we make change of variables from xx to ηx.

χ(tl9 xu x0) — Sx(tl9 xu yx) = ηx(x0 — yd ,
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here

V ^ J ^ ^ f t , Xi, sx0 + (1 - s)yλds .

After these change of variables the phase function becomes

L-\

where yL — xL and y0 = x0. Therefore we have

(3.1) 0p({*,}, S, α, v)f(yL) = [^-J2 £ e-*<i<^-»J(f)(yL, yL

where

—- eχp{ - Λ Σ (^ - y*-i)

z,-i

x «i(yL, JL-I, VL-I - ,yu ηuyo)f(yo) J\ dy^xdη5

with

(3 2) L L~λ dx

We consider yL as a parameter and apply Lemma 3.2 to J(f)(yL>yL-i)'

Then we obtain

(3.3) J(f)(yL, yL.x) - (^-) f e-^—^U(ai)(yL, yL-u V,
\ 2π / J R2

For any multi-indices aL, aL_l9 a0 and ^ with |αL | , |αΛ_i|, |αol» 1 ^ 1 ^ ^ , we

have the following estimate:

{aύ{yL, yL-u v, yo)l

^ CΊ Cf"1 max sup
L-l ,

VL-1 fc = 2 Vk-X Vk VI 2/0

Here Cα and C2 are positive constants depending on mu max is taken

with respect to multi-indices with \aL_1\, |α£|, | ^ | ^ K(m1) ^ 2mj + 3 and

sup is taken with respect to yό e R, ^ e R , j = l, , L - l , Since

relationship aλ{xL, , xQ) with α(xL, , x0) is given by (3.2), we have
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(3.4) |3;j3;ί:;9j3S U(ax){yL, yL.» η, y.)l

^ C, Cf"1 max sup |3«M:; 3ί°α(*L, xL_,, ,x,)\,

where C3 is another constant and max is taken with respect to multi-

indices satisfying |α£|, |α"_i|, , \a"\ <Ξ! 2mί + 3.

We replace J(f)(yL, yL-i) in (3.1) by the right hand side of (3.3). Then

we have the expression

(3.5) Op({ti},S,a,v)f{xΰ=(-ψ-) [-Z-

X f -tv(S*
JR3

Using stationary phase method with respect to yL_x and η, we can find

b(xL, x0) such that

ί,}), S, o,

This means that

(3.6) /({«,}, S, α,

Here b satisfies the following estimate: For any m >̂ 0 there exists a

positive constant C(m) such that if \aL\, \aQ\<Lm

(3.7) \d%d%b(xL9 xo)\ ^ C(m) max sup |3;£3Jί:ί9fβj t / ί α , ) ^ , ^ - i , ??, JΌ)I>

where max is taken with respect to multi-indices satisfying a'L <ΞJ aL,

a'o £ aQ and \a'L_x\, \βf\ < 2m + 10. Combining (3.7) with (3.4), we have

(3.8) |3g3;;&(xL, xo)l ^ ^Cf" 1 max^ sup^ 13^3^:;- d°ia(xL9 xL.l9 - , xQ)\,

where C4, C5 are positive constants depending on m and max is taken

with respect to multi-indices satisfying |α" | , |tf"_!l, , | O ^ 2(2m + 10)

+ 3 = 4m + 23. This together with (3.6) above proves Lemma 3.1 with

K(m) = 4m + 23.

§ 4. Proof of Theorem 1

For any k > j , we denote 2fc + + tά by T(k, j). Let <5 be as in

Lemma 3.1. We have to treat the oscillatory integral
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(4.1) /({«,}, S, a, v)(xL, x0)

Π ( T )

when JΓL < δ.

First we perform integration over xx space. Using stationary phase

method, we have

' ' / /y7 \ 1/2 / iy7 \ 1/2 ?

) β-'-'M^-'αSto)^, , x,, xo) + (^a)(xL) , *„

The amplitude of the main term of the right hand side equals

(4.3) (Siα)(xL, , x2, xϋ) = a(xL, , x2, xo)D(S2 + Sί; x2ί xo)"1/2,

and R^XL, - , X2, X0) is the remainder term.

Similarly, integrating S^ over x2 space and applying the stationary

phase method, we obtain

j )

V i (o, 1) /

where SaS^ is the main term and i?2Siα is the remainder term. We have

(4.4) SMXL, --,xo) = D(S3 + SJfl; x3, ̂ - '^( f taX^, , x3, x2*, x,),

where xf is the critical point of *S3 + SJα with respect to x2.

When we integrate the term including S2Sxα(xL, , x3, x0) over x3

space, we use the stationary phase method:

( P\i/2/ τp \i/2 ? tt

T ) ( ^ o ^ ) e-t«*««*««»**li<»"'»StS1α(xL, ;Xt,xt)dxtt4 / \ 1 (3, 1) / J R
/ IP \l/2 J.

iα is the main term and RiS2S1α is the remainder.

Repeating this process L — 1 times, finally we obtain, among other

terms,
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Since we have
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. . . S M

Proposition 2.8 yields that

Here D(xL, x0) = (*Λ tLl(U + + O) det Hessx* (SL + + St) as in

§ 2. Therefore,

(4.5) ( A Y V ' ^ ^ S ^ S ^ -SXαX̂ , *β)

l/2

This is nothing but the main term of Theorem 1. The remainder term

consists of others.

Now we treat the remainder term. Since {R^a){xL, , JC2, x0) has com-

plicated structure as a function of x29 we postpone integration over x2

space of the term including (Rxa)(xL, •••,x2)Xo) until later stage of the

proof. We do perform integration over x3 space beforehand, because the

structure of Rxa(xL, , #8, x2, x0) as a function of x3 is much simpler.

The stationary phase method gives

( τp \ i/2 / τ? \ i i/2 tt

Λ ( L

( Ί? \V2/

Γ(43)/ \

(
Γ(4,3)/ \Γ(2, 1)

X

Again SzRxa(xL, , x4, x2, x0) = (i?!a)(xL, , x4, x2, x^)D(S, + S3; x4, x2)"1/2 is

the main term and RzR1a(xL, , x4, x2, x0) is the remainder.

We skip integration over x3 space of the term including R^S^aix^

• , x3, X!), because this is complicated as a function of x3. By virtue of

the stationary phase method,
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EY'*/E\1/2ί E
\tj \tj \T(3,l)

( τp \i/2/

Γ(5, 4) / V

\i/2

/Γ(5, 4) / V Γ(3, 1) /

X (S 4i? 2S 1a(xL, , *5, x3, ^o) + RiR2Sιa

Here

SAR2Sίa(xL9 , ΛS, Λ:3, *O) = (R2Sίa)(xL, - ., χ5, x3,

is the main term and iϊ4i?2S1α is the remainder.

Similarly, we perform integration over x4 space of the term including

S3 i?!α. But we skip integration over x± space of the term including

R$R,a.

We continue this process; the rule is that if Rk appears we skip

integration over xk+1 space. Then, finally, we get the expression

(4.6)

Here

(4.7)

the

/({*,}, S, α, ^

main term is

-d

Xo) =

£ \1/2

£J \1/2

x stands for the summation with respect to sequence of integers (j s, Λ_I,

, jx) with the property

o - Λ < Λ - i < h < k - K λ < Λ - K < js -i < Λ — K Λ

The summand is

(4.8) Ajsjg^h(xL, x.) =

X j e x p { - ivSJ.y,.,...^^, %, , xyi, x0)}

X bhl,_ι...iι(xι, xh, • • ,xjι, x,) Π Λ t ί .
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The amplitude function of this is

( 4 9) bjsJs-i:-h(χL, Xj,, Xj.-19 , xJl9 Xo)

= (QL-IQL-2- Qiα)(xL, x j s, , x j t, x 0 ),

where Qs = Id, if =j,,jt-l9 , jf,

= -R̂ j if 7 = Λ ~ 1> Λ-i — 1> * »Ji — 1;

= Sj, otherwise.

The phase function is

(4.io) S L s - x - ^ , χ j s , ',χjι9xo) = Σ S 5 f c l Λ _ 1 + 1 ( Λ Λ , ^ . J .
Λ = l

We can apply Lemma 3.1 to Ahh_x.mmh and obtain

(4.11) A , . , ^ . . . ^ , xo) = (~J2 e-*<ι«***aUh_x...5x{xL, x0).

For any m ̂  0 Lemma 3.1 gives positive constants Cm and K(m) such

that if \aL\ and |<x01 ̂  ^

(4.12) |3g3S«i.j.-i».ii(^*b)l

35ί; 35g3ί;6ifi#_1...i,1(Λ;L,Λ;Jf, , x, l5 x o ) | .

Here max is taken over those indices /3's which satisfy βL ̂ LaL, |/30| ̂  m,

|j3Jfc| ^ iί(/72) for Λ = 1, 2, , s and sup is taken with respect to xju e R,

M = 1, ••-,§. This implies that

(4.13)

( 7? \l/2 j( i ' i

&\ e'i*t.*<n"*(D(xL, Xo)'1/2(a(xL, x0) + r(xL, x0))),
J L '

(4.14) r(xL, Xo) = I>(xL, xo)
1/2 Σ ' «,sis-,..i1feί ^)

Therefore, we have only to obtain estimate of Σ ' ah' ' ' a(χ^> χo) f̂ r the

proof of Theorem 1.

In order to prove the estimate of ^ ^ . ^ . . ^ ( X L * #O) we can use estimate

of bJtJ9_ι...Jl, because (4.12) holds.

LEMMA 4.1. Assume (H.I) for the phase function and (H.2) for the

amplitude function. Let δ be as in Lemma 3.1. Then for any m^O there

exist a constant CmΛ and an integer M(m) such that for any aQ, aL, ajk,

0 <, k<, s, with \aJk\ ̂  m, \aL\ ̂  m, \<xo\ ^ m,
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(4.15)

α /iere

= Max sup

where Max is taken over indices satisfying \βjk\, \βjk-A ̂  M(m) and sup is

taken for xju_x e R, w = 1, , s. We can choose M(m) = 2m + 4 + 2.

We assume Lemma 4.1 for the time being. Then we can prove

Theorem 1. In fact, combining (4.7) and Lemma 4.1, we have

where mf = K(m). On the other hand (H.2) implies that

Therefore, we obtain from (4.14) that

(4.16) \d%d%r(xL, xo)l £

^ fΠ
=i

We have proved our Theorem 1 up to the proof of Lemma 4.1. (Since we

can choose mf = K(m) = 10m + 10 + 20, we choose M(m') = δO(m + l + ΐ)).

Lemma 4.1 follows immediately from the next

LEMMA 4.2. We assume (H.I) for the phase function. Let a(xL, xL_u

••-,*!, x0) be a function of L + 1 variables satisfying assumption (H.2).

Then for any sequence of integers 0 = k0 < kγ — 1 < kx < k2 — 1 <

< kr — 1 < kr < kr+1 = L κ;β introduce the function

( 4 . 1 7 ) Pfc rfc r_1...fc1(^L> #L-1> * ' *? ^fcy + l> ^fcr5 ^fcr_!? *> ^fci? ^θ)

, ku
where Qj = Id /or 7 = £r, ^ r_j,

= β ; /or j = kr - 1,

— Ŝ  otherwise.
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This function enjoys the following estimate: For any m ̂  0, there exist

constants COT)2 and M(m) such that if\aL\, \<xo\ and \akj\ <J m, (j = 1, 2, , r),

(4.18) ( r + l \ i 1

11 ^XkjlPkrkr-i- kti^Li %kry
 x k r - i -9 %kι>

j - 1, ks.x + 1)

X max sup

max is tafcera ouβr ί/iosβ indices βkj <; αfcy, |]Qfcy_il ̂  Mini), j = 0,1, , r

sup is ία^βλi u iίΛ respect to xkj_λ e E , j = 1, , r. Moreover, for any

integers lu , lq with kr < lx — 1 < lλ < Z2 — 1 < < lq ^ L — 1, /or

arbitrary multi-indices alu, alu_x (I <L u <L q) and for multi-indices akj with

\ak.\<Lm (0 ̂  j ^ r + 1), we have

(4.19)

X

., *._,

X max sup

X

υXLυxo 11 \c/a?iα

t/a?ίM_i/ 11 Wίt B Oίt α -i/

where max is taken over those indices which satisfy, βku ̂  aku, \βku-i\ ̂  M(m),

(u = 1, 2, , r) and jS0 ̂  ao; sup is taken with respect to xku-ι e R, u = 1,

• , r. Constants CW}2 ami M(m) depend only on m. We can choose

M(m) = 2m + 4 + 2.

Proof. We prove by induction on r. The case of r = 1. We abbre-

viate kx as £.

If k I> 3, then pfc(xL, , xfc+1, xfc, xQ) = i?fc_!Sfc_2, , Stα(Λ:L, ••-,#*, xo)

If ^ = 2, then pfc(xχ,, , xk+u xk9 x0) = Ria(xL, , ̂  ^o)

We set

(4.20) g f c , , xk9 xk_l9 x0) = Sfc_2, , SMXL, ' , **, ̂ - i , ^o), if A ̂  3 ,

= α(xL, , x2, xu xQ), if ^ = 2 .

Let SJ,!^!, Λ:0) = ^(ί^ Λ J, XO) Then pk is defined by the equality:
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(Eγy E γ
\tj \T(k-l,ΐ))

E1 X1/2 &

, 1) /\ T(k,

X [D(xk9 XQyί/2q(xL, , Xk9

Therefore,

( ET\l/2/ Î 1 \l/2 λ

^ 1 / *z\ I e-i»(Sk(tkixk,xk-l) +

tj \T(k - 1 , 1 ) / JR
X

f IN

, 1)

Similarly, if k < k - K A < 4 - K < lq ύ L - 1, then
( τp\iβ/ τp \i/2 /• 4

ίfc/ \Γ(fe - 1 , 1 ) / JR
X

= Γ

X (D(xh,.

+ .

We prove (4.18) for r = 1. Differentiating both sides of (4.21) with

respect to xL and applying the stationary phase method Lemma 3.5 to

(4.21), we obtain the estimate for pk: For any m there exists Cm>0 such

that if I ak |, | a0 \ ^ m and #L is arbitrary,

(4.23) |a-a

x max sup | a ^ a ^ ^ : ; a
a j f c - 1

here max is taken over those indices for which βk<,ak, \βk_ι\<Ξ2m

and βQ ̂  cc0. Since (4.20) implies

(4.24) q(xL, - ,xk, xk-u xQ) = D{xk_u x o )- 1 / 2 α(x L , , xk9 xk,ί9 x0) if h ^ 3

= αfe, , x29 xί9 x0) if k = 2 .
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Leibnitz' rule gives

VI {ft, 1)
max sup |

Here CWf8 = 2r2m+4+2\ max is taken for βh £ ak9 \βk^\ £ 2m + 4 + 2 and

β0 ^ <*o Choose M(m) and Cmj2 so that

(4.25) M(m) = 2m + 4 + 2 and C
m>2 ^

Then this proves estimate (4.18) for r = 1.

We prove (4.19) for r = 1. Using the stationary phase method to

(4.22) and using (4.24) again, we obtain the following estimate: For any

m ^ 0 if |αfc|, |αo | <; w and αZtt, αίtt_i, (u = 1, , g), αL are arbitrary multi-

indices,

Π , x h - i , xfc, x0)

^ ^ m , o l ^ . T i X I

\ vί \κ, 1) /
o X L o X k a a ; k _ 1 o X o

\\ oXι

u

uoXι

u

u_x
w 1

Pl(ft,l)

X

max sup

Max is taken for βk ^ αΛ, jS0 ^ a0 and |^fc_i| ^ 2m + 4 + 2 in the middle

term. In the last term max is taken for βk^ak, β^^a^ and |j8£_i|<^

2m + 4 + 2. We choose M(m) and Cm>2 as in (4.25). Then (4.19) of the

case r = 1 is proved.

Now assuming Lemma 4.2 for r, we prove (4.18) for r + 1.

Let kr+ί be any integer such that L > kr+1 — 1 > kr and we let

( 4 . 2 b ) Pkr + lkr...kl\XL) ' ' *> #fcr + i + l> ÂV + 1> Xkr> ' ' '> ^fcl? ^0/

Set
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Then pkr+lkr...kl is defined by the equality

(4.28) ' E VΎ E

I e-i»{Skr + 1(tkr + 1,x

JR

X

^

T(kr+1, kr

X (L/(Xfcr + 1, Xkr)

"I" Pkr + i' 'kι\XLf ' ' *>

Therefore,

(4.29)
tkr+

X q(xL, 5

X )

89

Apply the stationary phase method Lemma 3.5 to (4.28). Then for

any m >̂ 0 if |α f c r | and |α f c r + 1 | ^ m, we have with the same CW)0 as in (4.23)

(4.30)

r - 1

I i °Xku

+1, K +
X max sup

X

max is taken for βkr+1 ^ αfcr+I, βkr £ akr and l ^ ^ ^ l ^ 2m + 4 + 2. Here

αr0, #fcω (w = 1, 2, , r — 1) and aL are arbitrary multi-indices.

On the other hand, by definition (4.27) we have
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(4.31) q(x

Therefore,

(4.32) q(x

And we have

(4.33)
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) • Ύ*
fcr? y Λkι9

)

vT(kr+1, kr

X max sup
a?* Γ + 1 - i

I

X Pkr" ki\XL)

JJ/, σ ^ * r +1 °Xkr + ! - 1 σ^A r

Here max is taken for multi-indices |$. r + 1 _! | ^ 2m + 4 + 2, and βf

kr ^ ^9kr.

Now we restrict to the case \akJ\ ̂  m, j = 1, , r. We can apply induction

hypothesis (4.19) for r with q = 1, A = ftr+1, α h = /3fcr+1 and a,,.! = i3fcr+1_j

to (4.33) and we get a majorization for the right hand side of (4.33).

Consequently, if \ak\, \akJ\, \<xo\^ m, we have

* (tkuT(ku -i,ku^
11 \ ^Γ77 7 Γ~

\

tkr+iτ(kr+1 -i,kr

^ 7 7 7 "vT(kr+u hr_λ

* (
11 \

X max sup

X

Here max is taken for β'o <; α0, /3fcr+1 ^ afcr+1, 1)8^^-!| ̂  2m + 4d + 2, ^ <: aku,

\βku-ι\ ̂  2m + 4 + 2, (u = 1, , r) and sup is taken with respect to

xku^ e R , M = 1, , r + 1. We may choose M(m) and COTj2 as in (4.25).

We have proved (4.18) for r + 1.

We next prove (4.19) for r + 1. Let ll912, •• ,ZQ be a sequence of

integers with the property kr < kr+1 — 1 < kr+ί < lx — 1 < lλ < < lq — 1

< /, ^ L - 1. Then we have, from (4.28),
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<-> (^ΓU,..-!,+1))
JR

X

= ( f l I e - i v 4 r + 1,kr + i^kr+^lcr)

\ T(kr+U kr+l)ϊ

X (D(xter+1, xkrY
ϊβ

L, x l q 9

We apply the stationary phase method Lemma 3.5 to (4.34). For any

m ^ 0 let akr and akr+1 be two multi-indices with \akr\, \akr+ι\<Lm; let aku

(μ = 1, 2, , r — 1), αz, or0, and alu (u = 1, 2, , g) be arbitrary multi-

indices. Then with the same constant CW)0 as in (4.23) and (4.30), we have

(4.35) ( q

II Όxιu

X

X max sup

X

Q r-\

We use the relationship (4.31) between q and pkr...kl. The right hand side

of this inequality is majorized by

X max sup βkr ΓΊ
α?fcr 1 1

r-l

Π ̂

Here max is taken for βkr+1 ^ α f c r+1, |^ r + 1 _il ^ 2m + 4 + 2 and ^ r <I αfcr.

Now we assume that \ak.\ ̂  m, ,/ = 1, , r + 1, and |α o | , |ofL| ^ m as

in Lemma 4.2 but that alυ} u — 1, , q, are arbitrary. Then we use
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the induction hypothesis (4.19) for r where q is replaced by q + 1 and

{ID - - , lq) is replaced by (&r+1, lu , lq) to majorize (4.36). Then we have

(4.37)

X

dudu

^ W,0^m,3W,2 11 I ^77 7 —

X max sup

X

q r-1
11 xiy, xifi—i 11

max is taken for βkΐ+1 ^ atr+ί, \β'kr+1-Λ ^ 2m + Ad + 2, j8£ ̂  αfcr, IjSj^K

2m + 4 + 2, /30 ̂  a0 and sup is taken with respect to xku~ι € R, w = 1, 2,
• , r + 1. We can choose M(m) and Cm,2 as in (4.25). Then the above
inequality proves (4.19) for r + 1. We have completed proof of Lemma
4.2.

Proof of Theorem 1 has been completed.

§ 5. Proof of Theorem 2

We can proceed just as in the proof of Theorem 1. And we have

(5.1) /(&}, S, 1, v)(xL, x0) = A,(xL, x0) + Σ ' Ahu_x...H(xL, x0).

Here

( J? \l/2 »

is the main term; 2]/ is the same as in §4 and

S + l / Z^ \l/2

(5.3) ^ . ^ f e ^ ^ Π ( 7

A J

X I e /s "?i y s JI °θjs...jί\xL, Xjs, ', xjt, XQ) I] &Xjk,

where

S + l

(5.4) Sjsjs-i~'ji\XLi Xj,9 ' ' •> ̂ i> #θ) = Σ J ^^yft-i + lV îft* ^A-i)
fc = l

and
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(5.5) bjsJs-l '3i\XLi Xjs> ' ' '> XUV Xθ)

where Q, = Id if y = j s , j , _ l 5 , j l 9

= i?, if 7 = ; s - 1,Λ_! - 1, ,7i - 1,

= Sj otherwise.

Applying Lemma 3.1 to AJsjs^1...jl(xL, xo)9 we have

( W \ 1 / 2 tt
^ L e-t"Ί*<m *i>a],...lι(xL, xt) .

Thus setting, just as in (4.14),

(5.6) r(xL, xQ) - D(xL9 * 0 ) 1 / 2 ( Σ ' a,,...^, x0)),

we have

(5.7) /({*,}, S, 1, v) = ( A
\ i L

We have only to obtain estimate of r(xL, x0) to prove Theorem 2.

By virtue of Lemma 3.1, we get estimates of aJtm.mjl(xL9 x0): For any m ^> 0

there exists Cm and K(m) such that if |αL | , |αrol ^ ^

(5.8)

^ Cj, max sup S3ίί Π d& bjs...3l(
χ

L, χ

js,
 χ

}s-v

m a x is t a k e n over /30 ̂  aQ a n d \βjr\^ K(m).

We wish t o o b t a i n e s t i m a t e of bjs...h. Cons ider xL, ,xjs+ί a s p a r a -

m e t e r s a n d set

(5.9) bjsJs-i' jAXLi ' ' *> ^;s+l> ^js? Xj*-V ' ' *> *^ii' *̂ 0/

where Q̂  = Id if j = j t , j , _ u -, j u

= JR̂  if j =jf, - l,Λ-i — 1, •• -Ji - 1.
= Sj otherwise.

The next Lemma gives estimate of bjs...u.

LEMMA 5.1. Let δ be as in Theorem 1 and TL< δ. Then buu_x...h is

independent of xLy , xjs+1. It is of the form
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(5.10) bj8js-i ' h\XL> ' ' *> Xj,+U XW> XJs-l> ' ' "> Xji> #o)

r = l i;

where pjr(xjr, %_ t) satisfies the estimates

(5.11) I^A-x^v(%> %_>)! ^ Cα/3 /or α W a and β.

Here constant Caβ depends only on a and β.

We assume Lemma 5.1 for the moment and continue proof of Theorem

2. Since bj$js_1...h = S^S^- •Sif+1&i,,,_1...il, we can apply Lemma 5.1 to

(5.5) and obtain

= D(xL, χ , y Π (^)τ(jr - I,;,., + ifpdXir, %-χ)
r = l \ v /

Combining this with (5.8), we have

\dlL

LdZajs...h(xLix,)\< Cimaxsup 3g32; f\ d%D(xL, xJa)-
r-\

X Π (^T(jr - LΛ^ + ΐfp,Xxίr, %_,)
r = l \ y

Therefore, for any / n ^ O w e can find a constant CTO>1 such that

13232^,...^^, χϋ)\ ^ C^,, fl b'%rTUτ - i,Λ-i + I)2)
r = l

as far as | α j and |αo | ̂  m. This and (5.6) imply

\dlld%r{x *)l < Σ 7 C Π v^tsrTUr ~ l,Λ-i + I)2

l
Σ

OV ii)

We have proved Theorem 2 upto the proof of Lemma 5.1.

Proof of Lemma 5.1. We prove Lemma by induction on s. The case

s = 1. We abbreviate jx = j . Just as in the proof of Lemma 4.2, we let

(5.12) bs(xL9 - ••>*,,!„ x, , *o) = Λi-iSi-2 -$(1).

Then this is defined by the equality
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( τp\i/2/ τp \i/2 ?

ΞL\ ( _ E L )

tj) \ T(j — 1, 1) / JR

—
T h i s m e a n s t h a t bj(xL, - , x j + u x j 9 x0) i s i n d e p e n e n t o f x L 9 > - 9 x j + 1 . W e

can write, b3(xL, , JCJ+1, xj9 xQ) by 6/x^, Λ:0) Furthermore we wish to show

that we can write

(5.14) bjixj, x0) = v-HjT(j - 1,

To show (5.14), we need a closer look at the amplitude function of

(5.13). By virtue of Proposition 2.10, there exists a function qό{xs_l9x^e

x R) such that we have

1, lyq^ix^ xQ).

This means that

(5.15) dXJ_tD(xj-u ^o)- 1 / 2

We apply Lemma 3.5 to (5.13). For any m there exists a constant

Cm such that if | aQ |, | α̂  | ̂  m we have

(5.16) \d%d2 bs(xj9 xo)\ < c i - ^ ^ - y ^ m a x sup |^. :;
\ VI (J, 1) / a?

, 1) /
sup |S^=;

Here max is taken over ^ and ̂  with 1 <̂  l^^l ^ 2m + 4 + 2, \βQ\<^m.

This proves (5.14). Lemma 5.1 for s = 1 is true.

Assuming Lemma 5.1 for s, we prove it for s + 1. By induction

hypothesis the function bhh_x...h (xL9 , xu+l9 xU9 xh_v , xJι9 x0) does not

depend o n x L , , xjs+ί. So we may denote it by

Let j s + ί be an arbitrary integer such that j s + 1 <Λ+i < ί/ Then we

have by definition (5.9).

We see that
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( 5 . 1 8 ) S j + 1 - 2 S i + i έ i i _ χ .

Here we set fl(%+1^, xjs) = 1 if-Λ+i - 1 = Λ + 1. Thus (5.17) and (5.18)
imply that the function

is defined by the equality:

(5.19) (-A_Y/2( E γ
\tuj \T(js+1-l,js + ΐ)J

X I e-
ί"^j8 + 1(tjs + vxJs + vxjs + 1^

JR

( ^ \ 1 / 2 * •

X

The left hand side of this equals

\1/2/ E V/2

) ( )

X
JR

The last integral was treated earlier in (5.13). Using discussions there,
we can prove that (5.19) equals

-1 IΛ+i y s

V2

1, « i f)-1 / 2 + v-Hjs+1T(js+ι - 1,Λ + ί)2pjs+ί(xjg+v xjt))

with some pJa+ι(Xja+l9 xjβ) e ^ ( R χ R). It follows from this that

(5.20) 6ί, + 1 i , . . .M^L> ' *> ^ , + i + i> ^ , + 1 > ^i«» * ' '> x i i» ^o)

XJi>

We can use induction hypothesis for bjs...h{xjs, , %, xo)> i © > replace
bjt...jl(xjt, , xίx, x0) in (5.20) by the right hand side of (5.10). Consequently,
we obtain
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X PΛ +,(«i.+,. % ) ΓI Pi,(*ίr. **-.)
r = l

This proves (5.10) for s + 1. Lemma 5.1 has been proved.

We have completed proof of Theorem 2.
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