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OPTIMAL CONTROL FOR STOCHASTIC PARTIAL

DIFFERENTIAL EQUATIONS AND VISCOSITY

SOLUTIONS OF BELLMAN EQUATIONS

MAKIKO NISIO

§ 1. Introduction

Recently Μ. G. Crandall and P. L. Lions developed the viscosity theory
on nonlinear equations in infinite dimensions and optimal control in
Hubert spaces, in two series of papers, [1], [4].

In this article we wi]l study of optimal control of stochastic partial
differential equations and viscosity solutions of Bellman equation (1.1)
below,

(1.1) eup(- 1 {Ώ\{φ)Μφ, Μφ) - (Όν{φ\ ϋ(η)φ) + λν(φ) - F(0)) = 0 ,

where D and D2 denote the first and second Frechet differentials and Μ
and L(u) are the first and second order differential operators respectively
(see (2.1)).

Let us consider the following stochastic partial differential equation,
(SPDE in short)

where W = (W\ , Wm) is an m-dimensional standard Wiener process and
U(t) an admissible control. We will define the criterion J by

dq(t) = Σ -/-(*"(*> U(t))-±-q(t, x) + p(x, U(t)))dt
ij=o dX, \ 3Xj )

+ Σ ( έ bi(x)^-q(t, χ) + gk{x))dW\t),

(1.3) J(0, U) = Ε Γ e-»F(q(t, φ, U))dt
Jo

where q(t, φ, U) denotes a solution of (1.2) starting at φ. The function
V defined by
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14 MAKIKO NISIO

(1.4) ν(φ) = inf ΰ{φ, U)
U

is called the value function. The SPDE (1.1) describes intuitively a
physical object governed by a partial differential equation with random
perturbation, which has been investigated from various view points, (see
references in [5]). But other important example is the Zakai equation
for controlled partially observed diffusions. In this case, inhomogeneous
term /* and gk are zero and b\ arises from the correlation between system
and observation noises.

We mainly study regularity of the value function, assuming ellipticity
codition (see (Α.2)) and smoothness of coefficients. Since the value function
becomes semi-concave, we can show its differentiability via convex analysis
arguments, (Theorem 4.2). Appealing to this property, we demonstrate
the relationship between a viscosity solution of (1.1) and the value
function.

We will devote Section 2 to the study of optimal control for (1.2),
according to [5]. We introduce a relaxed system and show the existence
of an optimal relaxed system, (Theorem 2.1). Section 3 deals with smooth
properties of the criterion J((f>, U) defined by (1.3) and the value function
(1.4). From the regularity assumptions on coefficients, we can easily see
the differentiability of the criterion, (Proposition 3.1) and semi-concaveness
of the value function, (Proposition 3.2). Using these properties, we discuss
directional derivatives, via convex analysis, and prove that the value
function is densely Gateux differentiable in Section 4.

Section 5 is devoted to the study of a connection between the value
function and the Bellman equation (1.1). We introduce a subsolution (in
viscosity sense) according to [4], but we require one condition which says
that its super differentials are densely non-empty, (see (5.16)). The value
function turns out to be a subsolution of (1.1), (Theorem 5.1) and the
maximum subsolution, which satisfies sub-Bellman principle, (Theorem 5.2).
When b\ and gk in (1.2) are zero, the SPDE (1.2) can be regarded as a
parabolic equation and control problems turns out to be deterministic
ones. Section 6 is a supplement and deals with a deterministic control.

The author wishes to express her sincere thanks to the referee for
his valuable suggestions.

§ 2. Optimal control for SPDE

Let Γ be a convex compact metric space. We call it a control region.
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Let us define the operators L(u) and Μ = (Mu , Mm) by

L(u)ir(x) = έ -#-(*"(*, u)^-+(x) + f\x, u)\ ,
(2.1) ty-o 3 ^ \ dXj /

for x e R ' , w e Γ ,

and

(2.2) Μ*ψ(*) = Σ 6*(*)--?-ψ(χ) + Α ( * ) , for χ e R* ,

respectively, where 3/dx0 = identity, and aij, f\ b\ and gk are bounded and

uniformly continuous.

We denote by Hk the Sobolev space of real valued functions defined

on Rd, with the following norm,

ΙΙΨΙΙϊ= Σ\\ηαη2

\a\<k

where || || = L2(i?d)-norm, a = (α\ , ad) — multi-index with non-negative

integer α\\α\ = a1 + - + ad and Da = (d/dx^1- '{djdxd)
a\ $ denotes the

subspace of ΗΑ with the norm defined by

For simplicity, we put Η° = Η(= L2(Rd)), if no confusion occurs.

Now we introduce the following conditions.

(A.I) Daaij, Dabi (0 < |α | < 4, i, j = 0,1, d, k = 1, 2, . , m) are bounded

and uniformly continuous.

(Α.2) ellipticity condition. aij = aj\ i,j = l, d and (a iJ —(3/2)6*-60<,y=i,...,d

is a non-negative definite matrix, where bl = (6j, , b^) and " . " means

the inner product in Rm.

(Α.3) /*(-, ύ), gk e φ (i = 0, , d, k = 1, , m) and their & norms are

bounded in u.

Hereafter we always assume (Α.1)-(Α.3) and for simplicity, we say

(2.3) \&α«(χ,ΐΛ)\£Κ, \D«bl(x)\£K, | | | f (., u)\\\ ^ Κ, | | |^ | | |^ i f .

To study relaxed systems (in wider sense), we need the following

spaces. By Λ we denote the set of all Borel measures on [0, οο) χ Γ,

such that

(2.4) λ([0, s] X Γ) = s , for any s ^ 0 .

Endowing with the vague topology, we have the following proposition,
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PROPOSIITON 2.1. A is a compact metric space.

Proof. Let us see Λη = {λ/[0, η] X Γ; λ e A}, where λ/Χ is the restric-

tion of λ on X. The induced topology on Αη turns out to be the weak

convergence topology and Αη becomes a compact metric space by applying

the Prohorov metric, say ρη. Since A is metrized by ρ = 2] 2~η min(l, ρη),

we complete the proof. •

Let us set Β(Γ) = Borel field on Γ, at(A) = the σ-field generated by

{λ([0,β\ X A); s ^ ί, ΑβΒ(Γ)} and σ(Λ) = the σ-field generated by σ£Α),

t > 0. Let Ρ = Ρ(Α) be the space of all probabilities on (A, σ(Α))9 endowed

with the weak convergence topology. Then Prohorov's theorem asserts

PROPOSITION 2.2. Ρ is a compact metric space.

By virtue of (2.4), λ has a tf^-adapted kernel X, namely X(dt, du) =

X(t, du)dt, and X{t, du) is a probability on Γ for almost all t. Moreover,

if i is a kernel of λ, then >ί(Ζ, •) = X(t, •) for almost all t. Let us set

= ί
J Γ

for A = a i j and f\
J Γ

and

£(ί, λ)ψ(χ)άί = ί L(w)^(jc)^(i, du)di
(2.5) ir

d

= Σ ^-(a i j ( i , x, λ)-£-+(χ) + f% χ, X))dt.

Now we introduce a relaxed system.

DEFINITION 2.1. & = (Ω, ̂ , ^ t , 0>, W, μ) is called a relaxed system, if

(2.6) (β, ̂ , ^ £ , ^ ) is a probability space with filtration &\

(2.7) W is an J^-adapted m-dimensional Wiener process with W(0) = 0

and

(2.8) μ is an J^-adapted yl-valued random variable (Λ-r.v. in short).

Namely μ(Α χ β) is «Ft-measurable, whenever AeB[0, t] and ΒβΒ(Γ).

For simplicity, we put Ά = (W, //), if no confusion occurs, and some-

times we call μ a relaxed control, ΐϋ denotes the totality of relaxed

systems. Let π(3%) be the image measure on C(([0, oo);Rd) χ A by 3% =

(W, μ). Again endowing the weak convergence topology on the space

γ[ = \π{β)\ £%e di}< we have the following proposition.
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PROPOSITION 2.3. Π is a compact metric space.

Proof. Since W is a Wiener process and A is compact, Π is tight by

the weak convergence topology. Put Ω = C([0, οο); Rd) χ A and (w, λ) e Ω.

We define the usual σ-field and <Fty

& = <7{H;(S), S e [0, οο)} χ σ(Α) and &\ = <7{w(s), s ^ *} X <76(Λ).

Suppose πη (βΠ) converges to π weakly. Then π(- X A) is a Wiener

measure. Moreover, for any bounded continuous / and g, we see

f ftwfo + t) - w(t), - , i^(ifc + ί) - w(t))g(w(Sl),
J Ω

. . , Μ ( ^ ) , μ(Α, χ Β,), , /i(A;. χ Β5))άπη

= f /(^(Ο, * } w(h))dnn ί giwfa), , κ;($,), //(Λ χ Bt),
J Ω J Ω

whenever su , s0 ^ t and Al9 , As c [0, ί]. As η-> οο, we have the same

equality replacing πη by ττ. Now setting W(w, X) = w and //(w;, ̂ ) = λ, W

becomes an JvWiener process and π e Π. This completes the proof. •

DEFINITION 2.2. We say 0ίη converges to St (put 31η-+0ί)9 if π(@η)

-*π(β) weakly.

Consider the SPDE (2.9) for 0t = (W, μ\

(2.9) dq(t) = L(t, μ)ς(ί)άΙ + Mq(t)dW(t), g(0) = ^( e $).

An iJJ-valued J^^adapted process q = q(-,<f>, 0t) is called a solution

of (2.9), if (2.10) and (2.11) hold.

(2.10) Ε Γ \\q(t)\\ldt < οο , for any Τ < οο ,
Jo

and for any η e Co°° (smooth function on Rd with compact support) and

almost all t

Γ £

o

Ρ
(2.11) ' ~ i M + J °

+ (Mq(s)f 7J)dW(s), with probability 1,
Jo

holds, where (,) = L2(Rd)-inner product and < , > = duality pairing between

if"1 and if1 under if0 = (if0)* ( = dual space of if0). Clearly (2.11) does

not depend on any special choice of kernel μ'.
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According to Krylov-Rozovskii [3] (cf. [5]), there is a unique solution

q = q(-, φ, &) in the function space below

(2.12) q e L2((0, Γ ) χ β ; @ η L\Q; C(0, 71; # 3 ) ) , for Τ< οο .

Moreover, there are two constants iV = 2ν(Τ) and c, independent of Μ,

such that

(2.13)

(2.14)

(2.15)

and

(2.16)

where

and

£(sup \\q(t)\\l) ^ Ν(\\φ\\1 + Ak), for k = 0, 1, 2, 3 ,

2?(sup ||ς(ί)| |*) ^ N(II0lit + Bk), for k = 0,1, 2, 3 ,

E\\q(t)f < β°ι(\\φ\\* + Αο), f o r O O

|β) < Ν(θ -

for ^ ^ Γ and i = 0,1, 2 ,

= sup Σ
u ί=0

Now we recall how q depends on 3ft, and φ.

PROPOSITION 2.4 ([5]). Support 3ftn->^. T/im, for φβ^

(2.17) #(£, ̂ , ^ η ) -> g(i, ^, ^ ) m law as W-r.v.

For φ, ψ e φ, ŵ e see

(2.18) £(sup ||ςτ(ί, ^, ^ ) - g(*, ψ, Λ)||» ^ Ν\\φ - ψ | | | , /or A = 0, 1, 2, 3,

d (ί, φ - ψ, 3ft) = g(£, ̂ , ^ ) - g(i, ψ, ^ ) satisfies the linear SPDE (2.19)

(2.19)
+ ΣΣ^) t, x)dW\t)
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Let F:if—>R1 be bounded and Lipschitz continuous, say

(2.20) W ) l ^ & , for φ e Η

and

(2.21)

For 0ί e % we will define the cirterion J and the value function V as

follows

(2.22) J(0, <%) = ΕΓ e-xtF(q(t, φ,
Jo

where Λ (> 0) is a given constant and

(2.23)

respectively. Since J"(0, ̂ ) is continuous in ^ by Proposition 2.4, Propo-

sition 2.3 asserts the following theorem.

THEOREM 2.1. There is an optimal relaxed system 01* = &*($), namely

(2.24) ν(φ) =

From (2.18) and (2.21), we can easily see that, for ε > 0, there is

δ = δ(ε) > 0 such that

(2.25) |J(0, St) - β/(ψ, ̂ ) | < ε , for any St e 9ΐ ,

whenever φ, ψβ$ and ||0 — ψ|| < 3. Therefore

(2.26) I ν(φ) - V(f)\ < ε, for <ί, ψ e Q and ||0 - ψ | | < δ .

Since ίρ is dense in Η, J( , $!) and V can be extended on Η, say J and V.

Moreover J and V satisfy (2.25) and (2.26) respectively, and

(2.27) 7(φ) = inf J(0, Λ), for ^ e ΛΓ

still holds. J(^, ̂ ) is also continuous in 01, by (2.25). So Proposition 2.3

derives

PROPOSITION 2.5. There is 0t = Μ{φ), φ e Η, such that

(2.28) Ϋ(φ) = J(^, « ) .

When a relaxed system ?̂ = (fi, J^, J^i, ̂ , W, μ) satisfies the condition

(2.29) below
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(2.29) μ'ϋ, •) = δυ(η( )

where U is an JVadapted process with values in Γ and δχ = ^-measure at
χ, & is called an admissible system and denoted by A = (Q, J^, J^, ^, iT, °U)
or A = (W, U). Let us set

αΝ = {A = (W, U); U is ^-adapted and U(t) = E7([2"fl2-")}

where [ ] = Gauss symbol. Now using the same arguments as [5. Sect. 5],
we obtain the approximation theorem below

THEOREM 2.2.

(2.30) ν(φ) = Jim inf Ε Γ e~uF(q(t, φ, A))dt
JV-»oo αΝ J O

(2.31) inf Ε Γ e-xtF(q(t, φ, 9f))dt + e-"G(g(T, φ, £))
3t JO

= lim inf Ε Γ e~ltF(q(t, φ, A))dt + e-iTG(q(t, φ, A))
Ν-*°° ttiv JO

for GeBlJG(H) (= the space of all bounded and uniformly continuous
functions on Η, with the supremum norm,)

Thus the Bellman principle is proved by the routine.

THEOREM 2.3 (Bellman principle). For any Τ

ν(φ) = inf Ε Γ e-uF(q{t, φ, 0t))dt + e-*TV(q(T, φ, 01))
& Jo

= lim inf Ε Γ e-»F(q(t, φ, A))dt + e'" V(q(T, φ, A))
iV-oo αΝ J o

holds.

For the proof we show two inequalities, i.e.

(2.32) ν(φ) £ lim inf Ε Γ e~uF(q{t, φ, A))dt + e~XT V(q(T, φ, A))
Ν-*οο αΝ J o

and the converse inequality. The converse is easy by the definition of V,
but not for (2.32). With this consideration, we will call the following
inequality (2.33) a sub Bellman principle

(2.33) ν(φ) ^ΕΓ e-»F(q(t, φ, u))dt + e'lT V(q(T9 φ, u))
Jo

for Τ < οο and u 6 Γ.

In Section 5 we will use (2.33), (see Theorem 5.2).
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§ 3. Properties of / and V

Hereafter we always assume the following conditions (Α.4) and (Α.5),

besides (Α.1)-(Α.3).

(Α.4) λ > c, where c is the constant in (2.15).

(Α.5) F is the twice Frechet differentiate and DF and D2F satisfy (3.1)

and (3.2) below

(3.1) ||DF(<£)\\<Κ, {D2FJ ^Κ for φ e Η,

with some constant Κ, and

(3.2) {D2F($) - D2F(f)J -* 0 uniformly, as \\φ - ψ|| -> 0 ,

where we identify DF{$) with an element of Η and Ό2Ρ(φ) is identified

with a bounded self-adjoint operator on Η. L(H) denotes the space of

all bounded self-adjoint operators on Η and [•] is its norm.

For example, a taim function F, written by Ρ(φ) = f((eu φ), , (en, φ))

with a smooth function / on Rn, satisfies (Α.5).

First we study differentiability of J. Putting

(3.3) ϋ(φ, Μ;ψ)=Γ e-»E(DF(q(t, φ, «)), ρ(ί, ψ, 0t))dt
Jo

we see,

(3.4)

from

Moreover we

I

(3.5)

0(φ +

ΙΙΛ

Jo

(Α.5).

= Ε Γ e-uF(q(t, ψ
Jo

—

ε2 f°°
= 2 Jo

have

ξ,α;+)-Ο(φ,!Ζ;*

" e-»E(DF(q(t, φ + ξ,

e~u -e~ct\\ξ|| | | ψ | | α ί
Jo

-εθ(φ,α;*)\

+ e*,i*))-F{q(t

e(DF(q(t, φ, Si), ρ

= 2{λ -

)\

^)) - DF(q(t, φ,

- ^ I l f l l l l-Jrl l
λ — c

, φ, 0ί))

(t, ψ, 01))) dt

c)

&)),p(t, ψ, ̂ ))di
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On the other hand, G(<f>, 0ί\ ψ) is linear in ψ, since p(t, ψ, 0t) is a unique

solution of linear SPDE (2.19). By (3.5), G(>,3t, •) can be extended on

Η X Η, say G(-,at, •), and (}(φ, 0t\ ψ) is linear i n | e if and satisfies

(3.6)

and

(3.7) |G(0 + f, # ; ψ) -
A — c

Again (3.4) derives

•57* - ι \ t S A(3.8) I J(0 + εψ, at) - ΰ(φ, at) - \ ψ)| ^
ζ(/ — c)

Since ϋ(φ,^;ψ) is linear in ψ, (3.7) and (3.8) yield the following propo-

sition.

PROPOSITION 3.1. DJ^, at) = Ό(φ, at\ •), and

(3.9) || DJ^ + £ , # ) - ^ ||f ||.
/ — c

From (3.6), we can easily see

(3.ιο) ι ν(φ) - ν(ψ)\ < (κ/(χ -1))u - η.

For the differentiability of V, we first show its concavity. A contiunous

function h is called semi-concave, if, with some positive c

Η(φ + ψ) + Η(φ -ψ)- 21ι(φ) ^ c\\f\\2, for any 0, ψ. e φ .

Now we first show

PROPOSITION 3.2. V is semi-concave.

Proof. It is enough to show (3.11) below.

(3.11) ν(φ + ψ) + V(0 - ψ) - 2V(^) ^ - ^ ^ | | ψ | | 2 , for ^, ψ e ©.

From (Α.5), we see

J( - ψ, ^ ) -

(3.12) = ^{0 e'UF(^ Φ + Ψ,@) + F(q(t, Φ-Ψ, &)) - 2F(q(t, φ, 0t)))dt

= Ε Γ e~u K\\p(t, ψ, 0t)\fdt £ -Κ-
JO λ — 1



STOCHASTIC DIFFERENTIAL EQUATIONS 23

Using the inequality "inf xt + inf yt — inf zi <Ξ| s u p ^ + yi — zt)"9 we obtain

(3.11).

Let us set

(3.13) ν{φ) = Ψ(φ) - f \\φψ, for φ e Η.
Ζ(λ — C)

Then ν is locally Lipschitz and concave.

§ 4. Differentials of V

Now we will study differential of ν of (3.13), appealing to the argu-

ments of convex analysis. For any φ and ψ in Η, ν(φ + θψ) — ν(φ) has

the right and left derivatives with respect to θ, say 3+ν(φ; ψ) and 3'ν(φ; ψ)

respectively, namely

(4.1) 5+ν(φ; ψ) = lim
0 10

and

(4.2) 3-y(^; ψ) = lim ^

Moreover the following properties hold.

(4.3) ΒΜΦ; Ψ) = sup υ ^

and

(4.4) 3+ν(φ;ψ)^3-ν(φ;ψ).

Using the standard arguments of convex analysis [cf. 6], we have following

Propositions 4.1-4.3.

PROPOSITION 4.1.

(4.5) 8+ν(φ; ψ) is lower semi-continuous

(4.6) \3+ν(φ; ψ) - 3+υ(φ; η)\ £ _ ^ — (1

/I — c
(4.7) lim 3+ν(ξ ψ) = 3~ι;(0; ψ)

Proof. (4.5) is easy by the routine method of convex analysis. Since

(4.6) is clear by (3.10) and (3.13), we will only show (4.7).
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Since ν(φ + θψ) is concave in θ e ( — 00, 00), 3*ν(φ + εψ; ψ) is decreasing

in ε. Moreover

(4.9) l im9M0 + εψ; ψ) ^ 3"i;(^; ψ).
£ ί θ

Thus we get

(4.10) Iim9+i;(f ψ) ;> Ιίγπ3+ν(φ + εψ; ψ) ^ 3~ν(φ; ψ).

On the other hand, we see from (4.2) (4.4) and (4.5),

-ι;(?;ψ) = ϊ ϊ ϊ η ( - 3+ν(ξ; - ψ))
(4.11) e-* ^f» f^

= - lim 9+u(f - ψ) ^ - 9+(^; - ψ) = 3-υ(#; ψ).

Combining (4.11) with (4.10), we have (4.7).

PROPOSITION 4.2. 9+υ( ;Ψ) is continuous at φ, if and only if

(4.12) 3+ν(φ;ψ) = 3-ν(φ;ψ)

holds, namely two-side derivative, say 3ν(φ;ψ), exists.

Proof. Suppose (4.12) holds. Then (4.5) and (4.7) derive

(4.13) 3+υ(φ; ψ) ^ l imdM? ψ) £ Ϊϊτη3+ν(ξ; ψ) = Β'υ(φ\ Ψ)
ξ-Φ ζ^Φ

Hence 3+ν(- ψ) is continuous at φ.

For the converse, we assume

(4.14) 3+ν(φ; ψ) = lim 3+ν(ξ ψ) = lim 3+u(f ψ).
ξ-Φ ξ-*φ

Then (4.7) derives (4.12). Π

For ψ e Η, we will define D^ and hf by

(4.15) D^ = {φ € ί ί ; 3υ(^; ψ) exists}

and

(4.16) Λ ^ ) = 3+υ(φ; ψ) + 3+(;(^; - ψ) ( = 3+ι;(^; ψ) - 3~υ(φ; ψ)),

respectively. Then /ιΨ is lower semi-continuous by (4.5) and ΗΨ(φ) < 0 for

^ ϋ Ψ . Let us set

Sp = f ̂  e JET; λ+(0) ^ - — ) , Ρ = 1, 2,
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Then Sp is closed and increasing to D^ as ρ f οο.

PROPOSITION 4.3. {6e( — οο, οο); ξ + θψ<ζΤ)Ψ} is countable, for any ξ

and ψ in Η.

Proof. For the proof we may assume (ψ, ξ) = 0. Put

g+(6) = 9+υ(? + 0ψ; ψ) and £-(0) = 3"i;(£ + 0ψ; ψ).

Then g+ and g~ are locally bounded and decreasing. Moreover

(4.17) g-(0) ^ g+(0) ^ lim g-(d + ε) (say g-(
• 10

holds, and h& + θψ) = g+(^) - g'ifi) ^ g-(* + ) - g~(0).

Thus, for (5 > 0, {̂  e [α, /3]; g-(i + ) — g-(i) < - }̂ is finite. This im-

plies {θ e [or, 0] Κ(ξ + θψ) < - 3} is finite and {0 e ( - οο, οο); ξ + θψ e Sp}

is countable. Since D .̂ = [Jp Sp, we complete the proof.

Let ek, k = 1, 2, be an orthonormal base of Η. Let Xk, k = 1, 2,

• be independent iV(0, undistributed Gaussian random variables on a

probability space (Ω, IF, &). We assume

(Α.6) ufc > 0 for ife = 1, 2, • and Σ yfc < °° •

Hence Ρ ( Σ Z2

fc < οο) = 1 and

(4.18) Ρ ( Σ * Λ 6 f O = l-

Q denotes the probability law of J]Xkek. So, (£Γ, σ(ίί), Q) is a probability

space and Yk(w) = (^, ek)l^v^9 k = 1, 2, , turn out to be iV(0, ^-distri-

buted independent random variables on (if, σ(Η), Q). For finite sum of

ek, say ψ = 2 y = i r A (̂ = 0)» w e c a n ^ a ^ e a n e w orthogonal base /fc, k =

1, 2, such that f = ψ , linear space of (/Ί ,/η) = linear space of

(β!, -en) and /w+< = en+i, ί = 1, 2, and Zfc; Zfc(u;) = (z^,/fc), are inde-

pendent Gaussian random variables. Appealing to Proposition 4.3, we

show

PROPOSITION 4.4. Q(Dc

f) = 0, for ψ = £ > = ι Γ Λ

Proof Let us set

Y(w) = w - Zx(w)^r = Σ ^*(^)Λ , for w; e ί ί .

Then Υ and Ζ^ are independent. Hence, for any bounded Borel function

g on Η χ if, we have
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E(g(Y, Ζ^)Ισ(Υ)) =

where μ is the probability distribution of Ζ^ψ. Since Ζ^ has a normal

distribution iV, we get

\ΒΒ{Υ,ύ)μ(<Ιυ) = ^

This derives, for any A e σ(Η)

Q(A) =

where y is the probability distribution of Υ. Now putting A = D^, Propo-

sition 4.3 completes the proof. •

Let us set

(4.20) s/ = ( Σ rfcefc ^ 0; rfc = rational, A = 1, 2, η, η = 1, 2, •)

and

(4.21) D = Π D* .

Then stf is a countable dense set of if and D e σ(Η). Now Proposition

4.4 yields

THEOREM 4.1. For 0 e D, 3υ(φ; ψ) and 3ν(φ; — ψ) exisi /or ψβΗ.

Proof. For 0 e D and ψ e J / , (4.15) implies

(4.22) dM0; ψ) = - d+u(0; - ψ).

But, since s/ is dense, (4.22) still holds for ψ e Η by (4.6). This completes

the proof. •

Next we will give one remark on a full probability set of Η.

PROPOSITION 4.5. If Q(A) = 1 for a set A of Η, then A is dense in Η.

Proof. Let us set Xk(w) = (w, ek), k = 1, 2, . Then Xk is inde-

pendent and Ν(0, ^-distributed. From (Α.6), we can choose, for ε > 0,

N(e) such that iV > η and

(4.23) Q(± Χ1<ε)>λ
2
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holds. On the other hand

(4.24) Q(t\X* ~ rk? < e) > 0

where rk = 0 for k^n+1, since Xl9 , Χη are independent Gaussian

random variables with ΕΧ\ > 0. Moreover the independence of Xk implies

Q(B(2e : ψ)) ^ QfE I-X* - rfc|
2 < e W Σ Χ£ < ε) > 0

where B(c; ψ) = {w e # ; || κ; - ψ||2 < c}. Therefore

(4.25) Q(A Π ΰ(2ε; ψ)) > 0 .

Thus, for any ψβ<$/ and ε > 0, A Π 5(2ε : ψ) is non-empty, This completes

the proof. D

Next we will show that 3ν(φ; ψ) is linear in ψ. From the definition,

3+ν(φ, ψ) is clearly positively homogeneous in ψ , i.e. for φ, ξ e Η and ^ > 0,

(4.26) θ3+ν(φ; ξ) = a+u(^; θξ) and ^ " υ ( ^ ; f) = 3~ν(φ; θξ).

Therefore, for φ e D, f e if and 0 > 0, we see

(4.27) 3+ν(φ; - θξ) = - 3-ϋ(^; ^ ) = - 03~ι;(0; f) = - 0a+i;(^; ξ).

For φ, ξ, ηβ Η, we will prove inequalities (4.28) and (4.29) below

(4.28) 3+υ(φ; ξ + η) ^ 3"i;(0; ξ) + a+u(^; ,)

(4.29) 3~ν(φ; ξ + η) £ 3+ν(φ; ξ) + 3'υ(φ; η)

Proof. For ε > 0, we have

υ(φ + sg + ε̂>) - υ(# + e?) < g u p t;(^ + ε? + 6>̂ ) - υ(φ + ε?)

Hence we see

ϋ(0 + ε̂  + εη) - ϋ(^) ^ d+v^ + ^ . f ) + υ(φ + εη) - ϋ(^) ^
ε ~ ε

As ε I 0, we get (4.28) by virtue of (4.7).

Appealing to "3~ν(φ; ψ) = - d M ^ ; - ψ)", (4.28) yields (4.29). •

Now Theorem 4.1 derives, for φ e D

(4.30) du(^; f + 7) = 3ν(φ; ξ) + 3ν(φ; η), for f, η e Η.
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Combining (4.30) with (4.26) and (4.27), we have

(4.31) 3ν(φ; αξ + bq) = αν(φ] ξ) + δν(φ; rj), for φ e D .

Again (4.6) implies "3ν(φ; )eH*". Since \\φ\\2 is differentiate, we get

THEOREM 4.2. V is Gateux differentiable at φβΐ> and its Gateux

derivative θ7(φ) e Η*.

Let <% = 3$(φ) be an optimal one, which satisfies (2.28). Recalling

Proposition 3.1, we have

THEOREM 4.3. 3Ϋ(φ) = Ώΰ(φ\Μ\ for φβΌ.

Proof. Since 7(φ) = J(^; 9t) and 7(φ + ξ) £ 1(φ + ξ;@) for ξ e Η, we

see from (3.4)

7(φ + εψ) - 7(φ) < 3(φ + εψ; 3) -

2{λ - c)

Dividing both sides by ε > 0 and tending ε to 0, we get

(37(φ), ψ) ^ (DJty; Μ), ψ), for ψ e Η.

Since ψ is arbitrary in Η, "(θ7(φ), - ψ) < (DJty;&), - ψ)" also holds.

This derives

), ψ) = (DJ(^; ^ ) , ψ) for ψ e i i .

Now we complete the proof. •

To study the value function V, we are concerned with D ΓΙ φ . Taking

Hermite base and suitable vk, we can prove that Dflip is dense in Η.

Putting

(4.32) hn{x) = ( - lWnT-1 e x p ( ^ ) ( Α ^ Θ χ ρ ( - ^ - ) ) , for χ e R1,

the Hermite base e4 is defined as follows.

(4.33) eh(x) = ft M ^ e x p f ^

for χ = (jtj, . . .jcd) e Rtf and multi index k = (ku -^d), At ^ 0. Using the

following properties of hn

(4.34)
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we get

(4.35) x2hn = <Jn{n - l)hn_2 + (2η + l)hn + V(n Η

Therefore we have

(4.36) — £ - = -(Vfcefc-j. — V^i + l^fc+r)
dXi 2

and

(4.37) | χ | 2 β έ = Σ 'Jkjikj — l)eJfe_27/ + ( 2 ^ + 1)β4 + V(£j + 1 ) ( ^ + 2)e f e + 2 J i

where Ι5 is the j th unit vector (0, 0,1, 0, 0) and k + ρ = (k^ + Pi,

• kd + pd).

For φ = 2 c*^^ (4-36) yields

(4.38)

So, Βφ/ΘΧίβΗ, if and only if 2 c | ^ < οο. Repeating this argument, we

have

PROPOSITION 4.6. // Σ c | |^ | p < οο, tfierc 0 e i/p.

On the other hand, (4.37) implies that, if Σ 4 1 έ Τ < °°> t h e n (I + \Χ\2)Φ

e Η. Hence (1 + \χ\2)(3φ/3χ,) e Η, if £ c||&|3 < co. Therefore, if Σ ( ^ , β*)Ί&Γ

<οο, then ^ e ^ .

Putting

(4.39) vh = \k\-d-*

we will define a probability Q on ί ί in the same way as (4.18) and obtain

a full probability set D of (4.21). Since the number of elements of

{£; \b\ = 7i} = (U J ^ ^ Χ ) = Ofa*-1), " Σ ^Ι^Γ < οο" holds. Therefore

Q(^) = l. Hence we get

(4.40)

Moreover Theorem 4.3 derives that, for

(dV(<f), ψ) = lim ±(ν(φ + εψ) - ν(φ))
β-ο ε

(4.41)

= lim — (ΰ{φ + εψ; flu*) - </(0; 5?*)) = 9J(^; «*), ψ)

holds, for any ψ 6 φ, where ^?* = !%*(<f) is an optimal relaxed system.
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§ 5. Subsolution of Bellman equation

Suppose V is smooth, namely satisfies the condition (Α.5). Then Ito's

formula derives, for φβ$£> and an admissible system A = (W, U),

Ee-"V(q(t)) - ν(φ) = [ e-»E(- XV(q(8)) + (DV(q(s)),L(U(s))q(s))

(5.1) J° ,
+ ±(D*V(q(s))Mq(s), Mq(s))ds,

where q = q(-, , A). Appealing to (2.16), the Bellman principle show that

V satisfies the Bellman equation (4.2) below.

PROPOSITION 5.1. If V satisfies (Α.5), then

(ζ2) 0 = sup ( - ±(ΌΨ(φ)Μφ, Μφ) - (ΌΫ(φ\ Ηιι)φ) + λΫ(φ) -

for φ e § .

Proof. First we evaluate the integrand of (5.1), for small t. Here Ki

denotes a constant independent of A, φ and s.

E\(DV(q(s)) - ΌΫ(φ), L(U(s))q(s))\

(5.3) ^ K2E\\q(s) - φ\\ \\q(s)\\2

Ε\φ7(φ), L(U(s))q(s) - L(U(s)W\ ^ K,E\\Q(S) ~ Φ\\*

From (5.3) and (5.4), we see

(5.5) E\(DV(s), L(U(s))q(s)) - (ΌΫ(φ), Ηϋ(β))φ)\ £

Repeating the similar arguments, we have

(5.6) E\(&V(q(8))Mq(8), Mq(s)) - {&ν&(β))Μφ, Μφ\ £

For ε > 0, there is δ = δ(ε) > 0, such that

(5.7) [ W ( ? ) - WO?)] < e , whenever ||f - y\\ < δ ,

by virtue of (Α.5). Hence we have

E((D*V(q(s)) - Β*7(φ))Μφ, Μφ)\ £ Κ9\\Μφ\?(

(5.8)
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Combining (5.6) with (5.8), we have

\E(D*V(q(s))Mq(s), Mq(s)) - (Όψ(φ)Μφ, Μφ)\

( 5 ' 9 ) ^ Κ(^Ύ\\φ\\ΐ + l) 1 + ΐ)(ε

Now recalling (5.1), we get

Ee-uV(q(t)) - ν(φ)
(5.10) « ι _ _

= Ε\ ±-(ΒΎ(φ)Μφ, Μφ) + (DV(f), L{Us)$) - λν(φ)ά8 + o(t).
JO 2

where ο(£)/Ζ->0, uniformly in A, as t-^0.

On the other hand, the Bellman principle yields

(5.11) 0 = inf Ε\\Γ e-"F(q(s, φ, A))ds + e-«V{q(t, φ, A)) - ν(φ)] .
A t LJo J

Combining (5.10) with (5.11), we have

0 = inf (F(0) - λν(φ) + i-(Z)2V(0)M^, Μφ)

(5.12) ^ t _
+ 1 f JS(D%), L(U(s))$)ds + ο(1).

£ Jo

Since (DVfy), L(U(s))$) ^ infMeL(DV(^), L(M)^), we see

inf Γ Ε(ΌΫ(φΙ L(U(s))f)ds ^ ί inf
A Jo ίί€Γ

= inf i(Z)F^), L(«)0) = inf Γ

^ inf Γ £?(Z)V(^
A Jo

Hence
(5.13) inf f tf(Z)y(0), L(C7(s

A Jo

holds. (5.12) and (5.13) complete the proof. •

We will give a simple example of smooth V.

EXAMPLE. Γ denotes the set of all Borel functions on Rd with values

in [—1, 1] and 0 outside the unit ball {\χ\ ̂  1}. Hence Γ ( c L2(Rd)) is a

complete separable metric space earring the weak topology. For eu , ek

in
Μ6Γ
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eH and h e C~(R*), we will put c(w) = /*((w, ex), , (u, ek)). Then c is
continuous on Γ. Let us assume

α"(*, u) = aij(x), for (/, j) Φ (0, 0), αοο(χ, u) = C(M)

and f*(x, u) = 0, for i == 0,1, d.
Now we consider the following SPDEs for a relaxed system (W, μ).

dq(t) = Aq(t)dt + c(i, /ί)(ίί + M^(i)dW(i), q(0) — φ

dp(t) = Ap(t)dt + iWp(£)dW(£)» ρ(0) = φ

_ ^
where A. = Τ̂

Ito's formula yields

—laij(x)[ )). Since c does not depend on χ,
•i \ \ dXj II

q(t) = exp(£ c(s,

On the other hand, there exist w* such that mintt€rc(zz) = c(u*). So
c(s,/i) ^ C(M*), and ||g(i)|| ^ exp(c(u*)i)||p(i)||. If the function F has the
form F(^) = /(Ιΐψ)Ι2) with smooth and non-increasing /, then //(£, •) = du*(-)
is optimal for any φ. Therefore using the same arguments as Proposition
3.1, we obtain the smoothness of V by the smooth condition of /.

We will study the connection between V and a viscosity solution of
(5.2), when V is not smooth. Let us define G : L(H) χ ffxR1 χ W χ Γ
-> R1, by

(5.14) G(S,p, a, φ, u) = - -(βΜφ, Μφ) - (ρ, 1(η)φ) + λα -
A

Then the Bellman equation is denoted by

(5.15) sup ΰ(Ό2υ{φ\ Όυ(φ), υ(φ), φ,η) = 0.
er

For ι; e C(H, R1), the superdifferential at φ, say Ό*υ(φ), (resp. sub-
differential at <£, Ό~ν(φ)) is defined by

e L(fl) X ff; HE ̂  + l)-^)-( A l )-i(Sg,g) ^ 0
f-° II £11*

(resp. Ώ~ν(φ)

= {(S, ρ) e L(fl) X Η; li «*lim

DEFINITION 5.1. ι; e BOC(H) is called a subsolution of (5.15), if
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(5.16) {φ e ξ>; Ό*υ{φ) is not empty} is dense in Η

and, for any (8,ρ)βΌ+υ(φ) (φβΗ2),

(5.17) sup G(s, ρ, ν(φ), φ,ιι)^0

uer

holds.

DEFINITION 5.2. ν e BUG(fl) is called a supersolution of (5.15), if

(5.18) {φ€&', Β~ν(φ) is not empty} is dense in Η

and, for any (S, ρ) e Ώ~(φ) (φ e Η2),

(5.19) sup G(S, ρ, ν(φ), φ9 u) ^ 0
uer

holds.

If υ is both sub and super solution, ν is a viscosity solution.

Let us denote by Ζ the space of all function with sub Bellman principle,

namely

Z={ve BUC(#); ν(φ) £ Ε [ e^sF(q(S) φ, u))ds + e-"v{q(t, φ, u)),
Jo

for any φ e §> ^ 0 a n d ue Γ}.

Then Ζ is closed and convex and VeZ by the Bellman principle.

PROPOSITION 5.2. If ν e Ζ and satisfies (5.16), £/ιβτι ν is a subsolution

of (5.15).

Proof For (S,p) e Ό*υ(φ), we can take a smooth function h on if,

such that

(5.20) Η(φ) = υ(0), Ζ)Λ(0) = ρ , Ό2Η{φ) = S and h^v on Η.

Moreover there is a constant b such that, for ahy ψ e if,

Ι Μ Ψ ) | ^ 6 ( 1 + Ι Ι Ψ Ι Ι 2 ) , Ι |Ι>Λ(Ψ)ΙΙ ^ 6 ( 1 + ΙΙΨΙΙ) ,
( ' lD2h(f)J ^ 6 and lim [D2/i(f) - Ι)2/ι(ψ)] = 0 .

For instance, we will define Λ according to [1], Assuming φ = 0, we set

ίίυ(ψ) - υ(0) - (ρ, ψ) - - i (S^, ψ)1 + / | |ψ | | 2 for ψ φ 0

(ο for ψ = 0 ,

where [α]+ = max(a, 0). Then u; is continuous at 0, since (S,p) e Ό+υ(φ).
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Let ρ be a smooth increasing function on [0, οο), such that

on [0, 1)

on [2, οο).

Put k(r) = swp{w(f); \\ψ\\ £ r and f(t) = 2 Γ Γ k(r)drds + p(t). Then fe

C2[0, οο). Hence, g, defined by #(ψ) = /(||ψ||), satisfies g(0) = 0, Dg(0) = 0

and D2g(0) = 0. Thus h(ty) = g(ty) + v(0) + (ρ, ψ) + | (δψ, ψ) is a required

one.

From the definition of Ζ, we see

0 £ Ε [e-»F(q{8, φ, u))ds + e~uv(q(t, φ, u)) - υ(φ)
Jo

^ Ε f e-"sF(q(s, φ9 u))ds + e-uh(q(ty φ, u)) -
Jo

^ Ε Γ e-^ s(- G(D*h(q(s, φ, w)), DA(qr(e, ψ, u)),
Jo

q(s^, u), u))ds.

Dividing both side by t and letting t tend to 0, we get

(5.22) O

in the same way as Proposition 5.1. Since ueF is arbitrary, we complete

the proof. •

Now we will prove

THEOREM 5.1. V is a subsolution.

Proof. Since V e Ζ, we will only show (5.16). Using concavity of ν

of (3.13), Theorem 4.2 implies

ν(φ + ψ) - υ(φ) - (Βυ(φ), ψ) - — (Οψ, f) £ 0, for φ e D, ψ e Η.

This derives

(5.23) (-^—l dV(d)) e D + F(^), for 0 e D ,
\ ^ — c /

where 7 = identity on Η. Since D n $ is dense, (5.16) holds. •

Next we will show the maximum property.

THEOREM 5.2. V is the maximum subsolution with sub Bellman

principle.
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Proof. First we remark that υ e Ζ satisfies (5.24) below.

(5.24) υ(φ) rg Ε Γ e-*sF(q(s, φ, A))ds + e-»v(q(t, φ, A)),
Jo

for A = (W, U) e αΝ. Put Δ = 2~Ν. For s e [Azf, ka + J), C7(s) can be re-

garded as a constant ( e f ) , under the conditional probability P(-lakJI(W))9

and g(s, 0, U) = q(s — kd, q(kd, φ, U)9 U(kJ)) holds. This argument yields

Ε Γ e-»F(q(8, φ, A))ds + e-»v(q(t, φ, A))/akAW))
(5.25) J ^ά

Repeating this evaluation, we can easily obtain (5.24) by (2.12):

As £—>οο, (5.24) derives

(5.26) υ(φ) ̂  lim inf Ε Γ e-XsF(q(s, φ9 A))ds , for φ e § .
Ν-*οο αΝ J o

Thus (2.30) yields "υ(φ) < Υ(φ) for φ e φ". Since φ is dense, we can com-

plete the proof. •

The proposition 5.3 below is a partial converse of Proposition 5.2.

PROPOSITION 5.3. Let ν be a twice differentiahle. If ν is a subsolution,

then ν e Ζ.

Proof. Since (ΰ 2 ι ; ( | ) ,ΰι ;(ψ))6ΰ + ν( | ) for any ψ e Η and q(-^,u)e
C([0, οο), ϋ 3 ) with probability 1 for φ e φ> we see

(5.27) G(D2v(q(s, φ, u)\ Dv(q(s, φ, u)), v(q(s, φ, u)\ q(s, φ, u), u) £ 0 .

Hence Ito's formula concludes ν e Ζ.

In the customary version of admissible control for SPDE, we use

Γ-valued adapted process, where Fc{w; Rd ->Rfc, Borel measurable}. In

some cases Γ admits only constant functions, for instance, this control is

appropriate for the Zakai equation.

§ 6. Remarks on deterministic control

When Μ = 0, our stochastic control turns out to be a deterministic

control for PDE. In this case we usually take Γ-valued Borel function

on [0, οο) as an admissible control. For an admissible control u(-)9 we

consider PDE

(6.1) 4 ^ = L ( u ( t ) ) q ( t ) , w i t h q(0) = φ ( β $ ) .
ot
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The value function ιυ(φ) is defined by

(6.2) ιν(φ) = inf Γ e-uF(q(t, φ, u(>))dt.
ω(.) JO

So this control can be studied in two ways of viewing, either as a

stochastic control with Μ = 0 , or as a deterministic control. First we

remark that both value functions coincide.

PROPOSITION 6.1. ιν(φ) = ν(φ) for φβ$.

Proof, Since an admissible control u(-) can be regarded as a relaxed

system, clearly

(6.3) ν(φ) £ νυ(φ).

On the other hand, for A(W, U)eaN, U turns out to be a Γ-valued Borel

function under the conditional probability P(-[a(W)). Hence with pro-

bability 1,

(6.4) E(j~ e-»F(q(t, φ, A))dt/a(W)) ^ ν{φ)

holds. Now (2.30) completes the proof. •

In the same way we can easily see the Bellman principle

(6.5) ιυ(φ) = inf Γ e~uF(q(t, φ9 u(.))dt + e'lTw(q(T9 φ, u(-)).
Μ(0 JO

When Μ = 0, the Bellman equation (5.15) turns out to be the first

order equation (6.6) below.

(6.6) sup ( - (Όν(φ), Σ(ιι)φ) + λυ(φ) - Ρ(φ)) = 0 ,
uer

We will give the definition of viscosity subsolution of (6.6) from the point

of first order equation [1].

ϋ}ν(Φ) = ( Ρ 6
I

\\ξ\\

is called superdifferential.

DEFINITION 6.1. veBOC(H) is called a subsolution of (6.6), if

(6.7) {φ e φ; ϋΐυ(φ) is not empty} is dense in Η

and, for any ρ e D?v($), (φ e Η2),
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(6.8) sup ( - (ρ, Ώ(μ)φ) + λυ(φ) - F(0)) ^ 0

holds.

If ν is a subsolution of Definition 5.1, then ν turns out to be a sub-

solution of Definition 6.1, because ρβΌί;ν(φ) whenever (S,p) e Ό+υ(φ).

Hence, Theorem 5.1 concludes that V is a subsolution of (6.6).
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