LOCAL RIGIDITY THEOREMS OF 2-TYPE HYPERSURFACES IN A HYPERSPHERE

BANG-YEN CHEN

Dedicated to Professor Tadashi Nagano on his 60th birthday

1. Introduction

A submanifold M (connected but not necessary compact) of a Euclidean m-space E^{m} is said to be of finite type if each component of its position vector X can be written as a finite sum of eigenfunctions of the Laplacian Δ of M, that is,

$$
X=X_{0}+\sum_{t=1}^{k} X_{t}
$$

where X_{0} is a constant vector and $\Delta X_{t}=\lambda_{t} X_{t}, t=1,2, \cdots, k$. If in particular all eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right\}$ are mutually different, then M is said to be of k-type (cf. [3] for details).

In terms of finite type submanifolds, a well-known result of T . Takahashi [10] says that a submanifold M is S^{m} is of 1-type if and only if M is a minimal submanifold of S^{m}. The theory of minimal submanifolds has attracted many mathematicians for many years. Many interesting results concerning minimal submanifolds have been obtained. For instances, T. Otsuki investigated in [7, 8] minimal (i.e., 1-type) hypersurfaces M of a hypersphere S^{n+1} of a Euclidean $(n+2)$-space E^{n+2} such that M has exactly two distinct principal curvatures. Some interesting local classification theorems were obtained by him (cf. [7, 8]). On the other hand, the problem of classification of 2-type hypersurfaces of S^{n+1} was initiated in [3]. Several results in this respect were obtained in [1, 3, 4, 5, 6].

In this paper we consider the classification problem similar to Otsuki's for 2-type hypersurfaces in S^{n+1}. As a consequence the following two local rigidity theorems are obtained.

Theorem 1. Let M be a hypersurface of the hypersphere $S^{n+1}(1)$ in Received April 24, 1990.
E^{n+2} with at most two distinct principal curvatures. Then M is of 2 -type if and only if M is an open portion of the product of two spheres $S^{p}\left(r_{1}\right) \times$ $S^{n-p}\left(r_{2}\right)$ such that $r_{1}^{2}+r_{2}^{2}=1$ and $\left(r_{1}, r_{2}\right) \neq(\sqrt{p / n}, \sqrt{(n-p) / n)}$.

Theorem 2. Let M be a hypersurface of the hypersphere $S^{n+1}(1)$ in E^{n+2}. Then M is conformally flat and of 2-type if and only if M is an open portion of $S^{1}\left(r_{1}\right) \times S^{n-1}\left(r_{2}\right)$ where $r_{1}^{2}+r_{2}^{2}=1$ and $\left(r_{1}, r_{2}\right) \neq(\sqrt{1 / n}, \sqrt{(n-1) / n)}$.

Remark 1. Theorems 1 and 2 generalize the main results of $[1,6]$, Theorem 3 of [5] and also Theorem 4.5 of [3, p. 279].

2. Some basic formulas

Let M be a connected hypersurface of the unit hypersphere $S^{n+1}(1)$ centered at the origin of E^{n+2}. Then the position vector X of M in E^{n+2} is normal to M as well as to $S^{n+1}(1)$. Denote by ξ a unit local vector field normal to M and tangent to $S^{n+1}(1)$. Let A, h and H denote the Weingarten map, the second fundamental form, and the mean curvature vector of M in E^{n+2}, respectively, and A^{\prime}, h^{\prime} and H^{\prime} the corresponding invariants of M is $S^{n+1}(1)$. We put

$$
\alpha^{2}=\langle H, H\rangle, \quad \beta^{2}=\left\langle H^{\prime}, H^{\prime}\right\rangle
$$

where \langle,$\rangle denotes the inner product of E^{n+2}$. We have

$$
\begin{equation*}
H=H^{\prime}-X, \quad H^{\prime}=\beta \xi, \quad \alpha^{2}=\beta^{2}+1 \tag{2.1}
\end{equation*}
$$

For simplicity we put $B=A_{\xi}\left(=A_{\xi}^{\prime}\right)$. From [3, 4] we have

$$
\begin{equation*}
\Delta H=(\Delta \beta) \xi+\|h\|^{2} H^{\prime}-n \alpha^{2} X+(\Delta H)^{T} \tag{2.2}
\end{equation*}
$$

where $\|h\|$ is the length of h and $(\Delta H)^{T}$, the tangential component of ΔH, satisfies [4]

$$
\begin{equation*}
(\Delta H)^{T}=\frac{n}{2} \operatorname{grad} \beta^{2}+2 B(\operatorname{grad} \beta) \tag{2.3}
\end{equation*}
$$

If M is of 2-type, then there exist constants b, c and a constant vector X_{0} such that (cf. [3])

$$
\begin{equation*}
\Delta H=b H+c\left(X-X_{0}\right) \tag{2.4}
\end{equation*}
$$

From (2.1)-(2.4) we may obtain

$$
\begin{equation*}
\langle\Delta H, X\rangle=-n \alpha^{2}=-b+c-c\left\langle X, X_{0}\right\rangle, \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{n}{2} \operatorname{grad} \beta^{2}+2 B(\operatorname{grad} \beta)=-c\left(X_{0}\right)^{T} \tag{2.6}
\end{equation*}
$$

where $\left(X_{0}\right)^{T}$ is the tangential component of X_{0} and

$$
\begin{equation*}
\langle\Delta H, H\rangle=\beta \Delta \beta+\beta^{2}\|h\|^{2}+n \alpha^{2}=b \alpha^{2}-c-c\left\langle X_{0}, H\right\rangle . \tag{2.7}
\end{equation*}
$$

On the other hand, the last equality of (2.5) yields

$$
\begin{equation*}
-n \Delta \alpha^{2}=-c \Delta\left(\left\langle X, X_{0}\right\rangle\right)=n c\left\langle H, X_{0}\right\rangle \tag{2.8}
\end{equation*}
$$

Thus, by combining (2.7) and (2.8), we have

$$
\begin{equation*}
\Delta \alpha^{2}=\beta \Delta \beta+\beta^{2}\|h\|^{2}+(n-b) \alpha^{2}+c . \tag{2.9}
\end{equation*}
$$

From (2.9) and the equation of Gauss we have the following [4]
Lemma 1. Let M be a 2-type hypersurface of $S^{n+1}(1)$. If M has constant mean curvature β, then M has constant length of the second fundamental form and constant scalar curvature.

Also from (2.5) we may obtain

$$
\begin{equation*}
c\left(X_{0}\right)^{T}=n \operatorname{grad} \alpha^{2}=n \operatorname{grad} \beta^{2} . \tag{2.10}
\end{equation*}
$$

Therefore (2.6) and (2.10) imply [5]
Lemma 2. Let M be a 2-type hypersurface of $S^{n+1}(1)$. Then grad β^{2} is an eigenvector of B with eigenvalue $-(3 n / 2) \beta$ on the open subset $U=$ $\left\{u \in M \mid \operatorname{grad} \beta^{2} \neq 0\right.$ at $\left.u\right\}$.

Let e_{1}, \cdots, e_{n} be an orthonormal local frame field tangent to M. Denote by $\omega^{1}, \cdots, \omega^{n}$ the field of dual frames. Let $\left(\omega_{B}^{A}\right), A, B=1, \cdots$, $n+2$, be the connection forms associated with the orthonormal frame $\left\{e_{1}, \cdots, e_{n}, e_{n+1}, e_{n+2}\right\}$, where $e_{n+1}=\xi$ and $e_{n+2}=X$. Then the structure equations of M in E^{n+2} are given by

$$
\begin{gather*}
d \omega^{i}=-\sum_{j=1}^{n} \omega_{j}^{i} \wedge \omega^{j}, \quad \omega_{j}^{i}=-\omega_{i}^{j} \tag{2.11}\\
d \omega_{j}^{i}=\sum_{k=1}^{n} \omega_{k}^{i} \wedge \omega_{k}^{j}+\omega_{n+1}^{i} \wedge \omega_{n+1}^{j}+\omega^{i} \wedge \omega^{j} \tag{2.12}\\
d \omega_{i}^{n+1}=\sum_{j=1}^{n} \omega_{j}^{n+1} \wedge \omega_{j}^{i}, \quad i, j, k=1, \cdots, n \tag{2.13}
\end{gather*}
$$

Moreover, if we put $h_{i j}^{n+1}=\left\langle h\left(e_{i}, e_{j}\right), e_{n+1}\right\rangle$, then we have

$$
\begin{equation*}
\omega_{i}^{n+1}=\sum_{j=1}^{n} h_{i j}^{n+1} \omega^{j}, \quad h_{i j}^{n+1}=\left\langle B e_{i}, e_{j}\right\rangle . \tag{2.14}
\end{equation*}
$$

In particular, if e_{1}, \cdots, e_{n} diagonalize $B=A_{\xi}$ such that

$$
\begin{equation*}
h_{i j}^{n+1}=\mu_{i} \delta_{i j} . \tag{2.15}
\end{equation*}
$$

Then from (2.11)-(2.15) we have

$$
\begin{gather*}
e_{i} \mu_{j}=\left(\mu_{i}-\mu_{j}\right) \omega_{i}^{j}\left(e_{j}\right), \tag{2.16}\\
\left(\mu_{j}-\mu_{k}\right) \omega_{j}^{k}\left(e_{i}\right)=\left(\mu_{i}-\mu_{k}\right) \omega_{i}^{k}\left(e_{j}\right) \tag{2.17}
\end{gather*}
$$

for distinct i, j, k.

3. Proof of Theorem 1

Let M be a 2 -type hypersurface of $S^{n+1}(1)$ with at most 2 distinct principal curvatures. Assume M has non-constant mean curvature. We put

$$
\begin{equation*}
W=\left\{u \in M \mid \beta^{2}(u) \neq 0 \text { and }\left(\operatorname{grad} \beta^{2}\right)(u) \neq 0\right\} . \tag{3.1}
\end{equation*}
$$

Then W is nonempty. From Lemma 2 we may choose e_{1} in the direction of $\operatorname{grad} \beta^{2}$ and hence we have

$$
\begin{equation*}
e_{2} \mu_{1}=\cdots=e_{n} \mu_{1}=0, \quad B e_{1}=\mu_{1} e_{1}, \quad \mu_{1}=-(3 n / 2) \beta . \tag{3.2}
\end{equation*}
$$

Let $T_{1}=\left\{Y \in T U \mid B(Y)=\mu_{1} Y\right\}$. If T_{1} is of dimension ≥ 2 on some subset Z of W, then we may choose $e_{2} \in T_{1}$ on Z. From (2.16) we obtain $e_{1} \mu_{2}=$ $e_{1} \mu_{1}=0$. This implies that β^{2} is constant on Z, since $\operatorname{grad} \beta^{2}$ is parallel to e_{1}. However, this is impossible from the definition of W. Therefore, we see that T_{1} is 1-dimensional on W. Since M has at most two distinct principal curvatures, (3.2) implies that the remaining principal curvatures are given by

$$
\begin{equation*}
\mu_{2}=\cdots=\mu_{n}=\frac{5 n}{2(n-1)} \beta, \quad \text { on } W . \tag{3.3}
\end{equation*}
$$

From (2.17) and (3.3) we obtain

$$
\begin{equation*}
\omega_{1}^{k}\left(e_{i}\right)=0, \quad i \neq k, \quad i, k=2, \cdots, n . \tag{3.4}
\end{equation*}
$$

Moreover, from (2.16), (3.2) and (3.3) we find

$$
\begin{equation*}
\omega_{i}^{1}\left(e_{1}\right)=0 . \tag{3.5}
\end{equation*}
$$

From (3.2), (3.3) and (3.4) we have

$$
\begin{equation*}
\omega_{1}^{n+1}=-\left(\frac{3 n}{2}\right) \beta \omega^{1}, \quad \omega_{i}^{n+2}=\frac{5 n}{2(n-1)} \beta \omega^{i}, \quad i=2, \cdots, n, \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
d \beta=\left(e_{1} \beta\right) \omega^{1} . \tag{3.7}
\end{equation*}
$$

Thus, by taking the exterior differentiation of the first equation of (3.6) and applying (2.13), (3.6) and (3.7), we obtain $d \omega^{1}=0$. Therefore, there exists locally a function u such that

$$
\begin{equation*}
\omega^{1}=d u . \tag{3.8}
\end{equation*}
$$

Equations (3.7) and (3.8) imply that β is a function of u. Denote by β^{\prime} and $\beta^{\prime \prime}$ the first and the second derivatives of β with respect to u, respectively. From (2.16), (3.2) and (3.3), we obtain

$$
\begin{equation*}
\beta \omega_{1}^{k}\left(e_{k}\right)=-\left(\frac{5}{3 n+2}\right) \beta^{\prime}, \quad k=2, \cdots, n . \tag{3.9}
\end{equation*}
$$

Combining (3.4) and (3.9) we get

$$
\begin{equation*}
\omega_{1}^{k}=-\left(\frac{5}{3 n+2}\right)\left(\frac{\beta^{\prime}}{\beta}\right) \omega^{k}, \quad k=2, \cdots, n . \tag{3.10}
\end{equation*}
$$

By taking exterior differentiation of ω_{1}^{2} and applying (2.11), (2.12), (3.6) and (3.10) we may obtain

$$
\begin{equation*}
\left(\frac{5}{3 n+2}\right)^{2}\left(\frac{\beta^{\prime}}{\beta}\right)^{2}-\left(\frac{5}{3 n+2}\right)\left(\frac{\beta^{\prime}}{\beta}\right)^{\prime}=\frac{15 n^{2} \beta^{2}}{4(n-1)}-1 \tag{3.11}
\end{equation*}
$$

from which we have
(3.12) $\quad 0=(3 n+2) \beta \beta^{\prime \prime}-(3 n+7)\left(\beta^{\prime}\right)^{2}+\frac{3 n^{2}(3 n+2)^{2}}{4(n-1)} \beta^{4}-\frac{(3 n+2)^{2}}{5} \beta^{2}$.

Solving differential equation (3.12) for β^{\prime} we get

$$
\begin{equation*}
\left(\beta^{\prime}\right)^{2}=-\left(\frac{3 n+2}{5}\right)^{2} \beta^{2}-\left(\frac{n(3 n+2)}{2(n-1)}\right)^{2} \beta^{4}+c_{1} \beta^{2(3 n+7) /(3 n+2)} \tag{3.13}
\end{equation*}
$$

for some constant c_{1}. Also from (2.1), (3.2) and (3.9) we have

$$
\begin{gather*}
\Delta \alpha^{2}=-2 \beta \beta^{\prime \prime}+\frac{2(2 n-7)}{3 n+2}\left(\beta^{\prime}\right)^{2}, \tag{3.14}\\
\Delta \beta=\frac{5(n-1)\left(\beta^{\prime}\right)^{2}}{(3 n+2) \beta}-\beta^{\prime \prime} . \tag{3.15}
\end{gather*}
$$

From (2.9), (3.2)-(3.4), (3.14), and (3.15) we obtain

$$
\begin{equation*}
0=\beta \beta^{\prime \prime}+\left(\frac{n+9}{3 n+2}\right)\left(\beta^{\prime}\right)^{2}+n \beta^{2}+\frac{n^{2}(9 n+16)}{4(n-1)} \beta^{4}+(n-b)\left(1+\beta^{2}\right)+c . \tag{3.16}
\end{equation*}
$$

Combining (3.12) and (3.16) we find

$$
\begin{align*}
& 4(n+4)\left(\beta^{\prime}\right)^{2}+\frac{10 n^{2}(3 n+2)}{4(n-1)} \beta^{4}+\frac{2(3 n+2)(4 n+1)}{5} \beta^{2} \tag{3.17}\\
& \quad+(3 n+2)\left\{(n-b)\left(1+\beta^{\prime}\right)+c\right\}=0 .
\end{align*}
$$

From (3.13) and (3.17) we conclude that β is constant on W which is a contradiction. Therefore, W must be empty. Hence, by continuity, we conclude that M has constant non-zero mean curvature in $S^{n+1}(1)$. Hence, by Lemma $1,\|h\|$ is also constant. Since M has at most two distinct principal curvatures, the constancy of β and of $\|h\|$ implies that M has exactly two constant principal curvatures because M is assumed to be of 2 -type. Thus, by Theorem 2.5 of [9], M is locally the product of two spheres $S^{p}\left(r_{1}\right) \times S^{n-p}\left(r_{2}\right)$ such that $r_{1}^{2}+r_{2}^{2}=1$. Moreover, since M is not minimal in $S^{n+1}(1)$, we have $\left(r_{1}, r_{2}\right) \neq(\sqrt{p / n}, \sqrt{(n-p) / n)}$.

The converse of this is easy to verify.

4. Proof of Theorem 2

If M is an open portion of the product $S^{1}\left(r_{1}\right) \times S^{n-1}\left(r_{2}\right)$ with $r_{1}^{2}+r_{2}^{2}=1$ and $\left(r_{1}, r_{2}\right) \neq(\sqrt{1 / n}, \sqrt{(n-1) / n)}$, then it is easy to verify that M is a 2 -type conformally flat hypersurface of $S^{n+1}(1) \subset E^{n+2}$.

Conversely, assume M is a 2-type conformally flat hypersurface of $S^{n+1}(1)$. If either $n=2$ or $n \geq 4$, then M is quasi-umbilical, that is, M has at most two distinct principal curvatures such that one of them is of multiplicity $\geq n-1$, according to a result of E. Cartan and J. A. Schouten (cf. [2, p. 154]). In these two cases, Theorem 1 implies that M is an open portion of the product of a circle and an ($n-1$)-sphere with the appropriate radii mentioned above.

In the remaining part of this section we will prove that the same result also holds when $n=3$. Now, assume $n=3$. Denote the Ricci tensor and the scalar curvature of M respectively by R and r. Put

$$
\begin{equation*}
L=-R+\frac{r}{4} g \tag{4.1}
\end{equation*}
$$

where g denotes the metric tensor of M. Sicne M is conformally flat, a result of H. Weyl (cf. [2, p. 26]) yields

$$
\begin{equation*}
\left(\nabla_{Y} L\right)(Z, W)=\left(\nabla_{Z} L\right)(Y, W) \tag{4.2}
\end{equation*}
$$

for vectors Y, Z, W tangent to M.

On the other hand, from the equation of Gauss, we have

$$
\begin{equation*}
R(Y, Z)=2\langle Y, Z\rangle+3 \beta\langle B Y, Z\rangle-\left\langle B^{2} Y, Z\right\rangle \tag{4.3}
\end{equation*}
$$

From (4.1) and (4.3) we find

$$
\begin{equation*}
L(Y, Z)=\left(\frac{r}{4}-2\right)\langle Y, Z\rangle-3 \beta\langle B Y, Z\rangle+\left\langle B^{2} Y, Z\right\rangle \tag{4.4}
\end{equation*}
$$

Therefore, by applying (4.2), (4.3), (4.4) and the equation of Codazzi, we obtain
(4.5) $(Y r) Z-(Z r) Y=12\{(Y \beta) B Z-(Z \beta) B Y\}-4\left\{\left(\nabla_{Y} B^{2}\right) Z-\left(\nabla_{Z} B^{2}\right) Y\right\}$,

$$
\begin{equation*}
r=6+9 \beta^{2}-\|B\|^{2} \tag{4.6}
\end{equation*}
$$

Let e_{1}, e_{2}, e_{3} be orthonormal eigenvectors of B such that

$$
\begin{equation*}
B e_{i}=\mu_{i} e_{i}, \quad i=1,2,3 \tag{4.7}
\end{equation*}
$$

From (4.5) and (4.7) we may get

$$
\begin{gather*}
\left(\mu_{j}^{2}-\mu_{i}^{2}\right) \omega_{i}^{?}\left(e_{j}\right)=3\left(e_{i} \beta\right) \mu_{j}-\frac{1}{4}\left(e_{i} r\right)-e_{i}\left(\mu_{j}^{2}\right), \tag{4.8}\\
\left(\mu_{j}^{2}-\mu_{k}^{2}\right) \omega_{j}^{k}\left(e_{i}\right)=\left(\mu_{i}^{2}-\mu_{k}^{2}\right) \omega_{i}^{k}\left(e_{j}\right) \tag{4.9}
\end{gather*}
$$

for distinct $i, j, k(i, j, k=1,2,3)$.
Let V be open subset of M on which V has three distinct principal curvatures in $S^{4}(1)$. If V is empty, then Theorem 2 follows from Theorem 1. So, from now on we may assume that V is non-empty and we work on V only.

Since the three principal curvatures $\mu_{1}, \mu_{2}, \mu_{3}$ are distinct on V, formulas (2.17) and (4.9) give

$$
\begin{equation*}
\omega_{i}^{j}\left(e_{k}\right)=0 \tag{4.10}
\end{equation*}
$$

for distinct i, j and k. If the mean curvature β is constant on V, then from Lemma 1 and formula (4.6), $\|h\|,\|B\|$ and r are all constant on V. Thus (4.8) yields

$$
\begin{equation*}
e_{i} \mu_{j}^{2}=\left(\mu_{i}^{2}-\mu_{j}^{2}\right) \omega_{i}^{j}\left(e_{j}\right) \tag{4.11}
\end{equation*}
$$

for distinct i and j. Combining (2.16) and (4.11) we find

$$
\begin{equation*}
e_{i} \mu_{j}=0 \tag{4.12}
\end{equation*}
$$

for distinct i and j. Since $3 \beta=\mu_{1}+\mu_{2}+\mu_{3}$, (4.12) implies that V is an
isoparametric hypersurface in $S^{4}(1)$ with three distinct principal curvatures. Furthermore, from (4.11), we have $\omega_{i}^{j}\left(e_{j}\right)=0$. Therefore, from (4.10), we get $\omega_{i}^{j}=0$. Thus V is flat and also the product of any two of the three principal curvatures is equal to -1 . But this is a contradiction, since the later condition implies V is totally umbilical. Consequently, we know that the mean curvature of V in $S^{4}(1)$ is nonwhere constant. Hence, by applying Lemma 2, we may choose e_{1} in the direction of $\operatorname{grad} \beta^{2}$. In this case we have

$$
\begin{equation*}
\mu_{1}=-\frac{9}{2} \beta, \quad \mu_{2}=\frac{15}{4} \beta+\delta, \quad \mu_{3}=\frac{15}{4} \beta-\delta \tag{4.13}
\end{equation*}
$$

for some function δ and from (2.16) and (4.13) that

$$
\begin{equation*}
e_{2} \beta=e_{3} \beta=0, e_{1} \mu_{2}=-\left(\delta+\frac{33}{4} \beta\right) \omega_{1}^{2}\left(e_{2}\right), e_{1} \mu_{3}=\left(\delta-\frac{33}{4} \beta\right) \omega_{1}^{3}\left(e_{3}\right) \tag{4.14}
\end{equation*}
$$

From (2.16), (4.13), and (4.14) we get

$$
\begin{equation*}
\omega_{1}^{2}\left(e_{1}\right)=\omega_{1}^{3}\left(e_{1}\right)=0 \tag{4.15}
\end{equation*}
$$

Therefore, we obtain from (4.10) and (4.15) that

$$
\begin{equation*}
\omega_{1}^{2}=\phi \omega^{2}, \quad \omega_{1}^{3}=\eta \omega^{3} \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=-\frac{4 e_{1} \delta+15 e_{1} \beta}{33 \beta+4 \delta}, \quad \eta=\frac{4 e_{1} \delta-15 e_{1} \beta}{33 \beta-4 \delta} . \tag{4.17}
\end{equation*}
$$

By taking exterior differentiation of $\omega_{1}^{4}=\mu_{1} \omega^{1}$ and applying (2.13), (4.14) and (4.16) we may obtain $d \omega^{1}=0$. Thus, there is a local function u such that

$$
\begin{equation*}
\omega^{1}=d u \tag{4.18}
\end{equation*}
$$

From (4.14) and (4.18) we see that β is a function of u. From (2.16) and (4.8) we may obtain

$$
\begin{equation*}
\left(\mu_{j}-\mu_{i}\right) e_{i} \mu_{j}=3\left(e_{i} \beta\right) \mu_{j}-\frac{1}{4}\left(e_{i} r\right), \quad i \neq j \tag{4.19}
\end{equation*}
$$

Letting $i=1, j=2$ for (4.9) and using (4.6) we find

$$
\begin{equation*}
\left(\mu_{2}-\mu_{3}\right) \mu_{1}^{\prime}+\left(\mu_{1}-\mu_{3}\right) \mu_{2}^{\prime}+\left(\mu_{2}-\mu_{1}\right) \mu_{3}^{\prime}=0 \tag{4.20}
\end{equation*}
$$

From (4.13) and (4.20) we obtain $\delta \beta^{\prime}+11 \beta \delta^{\prime}=0$. Hence we get

$$
\begin{equation*}
\beta=a \delta^{-11} \tag{4.21}
\end{equation*}
$$

for some non-zero constant a. In particular, (4.21) implies that both δ and r are functions of u. Combining (4.13), (4.16), (4.17), and (4.21), we find

$$
\begin{gather*}
\mu_{1}=-\frac{9}{2} a \delta^{-11}, \quad \mu_{2}=\delta+\frac{15}{4} a \delta^{-11}, \quad \mu_{3}=-\delta+\frac{15}{4} a \delta^{-11}, \tag{4.22}\\
\omega_{1}^{2}=\frac{\left(165 a \delta^{-12}-4\right) \delta^{\prime}}{33 a \delta^{-11}+4 \delta} \omega^{2}, \quad \omega_{1}^{3}=\frac{\left(165 a \delta^{-12}+4\right) \delta^{\prime}}{33 a \delta^{-11}-4 \delta} \omega^{3} . \tag{4.23}
\end{gather*}
$$

From (4.8), (4.10) and the fact $e_{i} \delta=e_{i} r, i=2,3$, we have

$$
\begin{equation*}
\omega_{2}^{3}=0 \tag{4.24}
\end{equation*}
$$

Taking exterior differentiation of the first equation of (4.23) and applying (2.11), (2.12), (4.22), (4.23) and (4.24), we may obtain

$$
\begin{align*}
\left(165 a \delta^{-12}\right. & -4) \delta^{\prime \prime}+\left(33 a \delta^{-11}+4 \delta\right)^{-1}\left(32-11352 a \delta^{-12}+21780 a^{2} \delta^{-24}\right)\left(\delta^{\prime}\right)^{2} \\
& =\left(33 a \delta^{-11}+4 \delta\right)\left(\frac{135}{8} a^{2} \delta^{-22}+\frac{9}{2} a \delta^{-10}-1\right) \tag{4.25}
\end{align*}
$$

Similarly, by taking exterior differentiation of the second equation of (4.23) we may obtain

$$
\begin{align*}
\left(165 a \delta^{-12}\right. & +4) \delta^{\prime \prime}+\left(33 a \delta^{-11}-4 \delta\right)^{-1}\left(32+11352 a \delta^{-12}+21780 a^{2} \delta^{-24}\right)\left(\delta^{\prime}\right)^{2} \\
& =\left(33 a \delta^{-11}-4 \delta\right)\left(\frac{135}{8} a^{2} \delta^{-22}-\frac{9}{2} a \delta^{-10}-1\right) \tag{4.26}
\end{align*}
$$

From (4.25) and (4.26) we get

$$
\begin{align*}
& 176\left(\delta^{\prime}\right)^{2}\left(208-92565 a^{2} \delta^{-24}\right) \tag{4.27}\\
& \quad=\left(1089 a^{2} \delta^{-20}-16 \delta^{4}\right)\left(8415 a^{2} \delta^{-24}-176 \delta^{-2}+16\right)
\end{align*}
$$

On the other hand, by taking the exterior differentiation of (4.24) and applying (2.12), (4.22) and (4.23), we obtain

$$
\begin{align*}
& 16\left(\delta^{\prime}\right)^{2}\left(16-27225 a^{2} \delta^{-24}\right) \\
& \quad=\left(1089 a^{2} \delta^{-22}-16 \delta^{2}\right)\left(225 a^{2} \delta^{-22}-16 \delta^{2}+16\right) \tag{4.28}
\end{align*}
$$

Combining (4.27) and (4.28) we know that both δ and β are constant on V. This is a contradiction. Consequently, V is empty.
(Q.E.D.)

References

[1] M. Barros and O. J. Garay, 2-type surfaces in S^{3}, Geometriae Dedicata, 24 nin (1987), 329-336.
[2] B. Y. Chen, Geometry of Submanifolds, M. Dekker, New York, 1973.
[3] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore-New Jersey-London-Hong Kong, 1984.
[4] B. Y. Chen, 2-type submanifolds and their applications, Chinese J. Math., 14 (1986), 1-14.
[5] B. Y. Chen, M. Barros and O. J. Garay, Spherical finite type hypersurfaces, Algebras, Groups and Geometries, 4 (1987), 58-72.
[6] T. Hasanis and T. Vlachos, A local classification of 2-type surfaces in S^{3}, preprint.
[7] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92 (1970), 145-173.
[8] T. Otsuki, A certain property of geodesics of the family of Riemannian manifolds $O_{n}^{2}(I)$, Minimal Submanifolds and Geodesics, Kaigai Publ., Tokyo, Japan, 1978, 173-192.
[9] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J., 21 (1969), 363-388.
[10] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824-1027
U.S.A.

