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DETERMINANTAL IDEALS WITHOUT MINIMAL

FREE RESOLUTIONS

MITSUYASU HASHIMOTO

Introduction

Let R be a Noetherian commutative ring with unit element, and xtj

be variables with 1 < i < m and 1 < j < n. Let S = R[xi3] be the poly-
nomial ring over R, and It be the ideal in S, generated by the t X t
minors of the generic matrix (xυ) e Mm,n(S). For many years there has
been considerable interest in finding a minimal free resolution of S/It,
over arbitrary base ring R. If we have a minimal free resolution P.
over R = Z, the ring of integers, then R ®z P. is a resolution of S/It

over the base ring R\ When does S/It have a minimal free resolution
over Z, then?

The resolution over Z has been found in the case t = min (m, ή)
(Eagon-Northcott complex, [3]) and in the case t = min (m, n) — 1 (Akin-
Buchsbaum-Weyman complex, [1]). Of course, in the case t = 1, we have
the resolution of S/It9 namely, the Koszul complex. Recently, we proved
that SIIt has a minimal free resolution over Z in the case m = n = t + 2
[5]. But our proof consists in showing that the Betti numbers of S/It

are independent of the characteristic of the ground field, so it does not
provide an explicit construction of a resolution.

In this paper, we prove that S/It does not have any minimal free
resolutions, if R is the ring of integers Z, and if 2 < t < min (m, ή) — 3,
as we announced in [5]. The third Betti number of S/It is independent
of the characteristic, if t = 1 or t > min (m, n) — 2 ([5]). To the contrary,
it depends on the characteristic if 2 < t < min (m, ή) —- 3. If the charac-
teristic is 3, then the Betti number gets larger than the characteristic
zero case.

The author would like to thank Professor H. Matsumura for his
valuable advice and encouragement. Special thanks are also due to

Received May 24, 1989.

203



204 MITSUYASU HASHIMOTO

Doctor J. Nishimura. This work was carried out under his conscientious

and patient instruction at Kyoto University. Special thanks are also due

to Doctor Kazuhiko Kurano, one of the best friends of mine, for much

valuable discussion about this topic. The author would like to appreciate

the advice of Professor D. A. Buchsbaum. He read the former version of

this paper and pointed out some mathematical and grammatical mistakes.

Finally, the author expresses his thanks to the referee for his many pieces

of valuable advice.

§ 1. Preliminaries

On the characteristic free representation theory of GL, including the

notion of partitions, Schur modules (Schur functors) and Schur complexes,

tableaux, and Cauchy formulae, we use the notation, the terminology

and the results of [2] and [5] freely. But we shall review some facts on

the characteristic free representation theory of GL, which will be used

later. For the details, see [2] and [5].

Let R be a commutative ring with unit, and a: 0 —> G —> F —> E -> 0

be a finite free complex of length two. We define the symmetric algebra

of a, to be the tensor product: Sa = SE® Λ F ® DG. Soc has a structure

of a graded bialgebra over R, with an appropriate anticommutative struc-

ture. Moreover, Sa has a structure of a chain complex. We define the

boundary map dSa to be the sum, dSψ <g> 1DO ± 18E <g) dAψ. The multiplication

and the comultiplication of Sa are chain maps (see [5, chapter I, § 2]).

Let ψ: Fί -+ FQ and ψ: Gx —> Go be two morphisms of finite free

modules, and k be a nonnegative integer. There is a unique universal

natural transformation θk, which makes the following diagram commuta-

tive;

/\kφ® Λfeψ > k(φ

\ \Δ\

Tkφ ® Tkψ > Tkφ

where J's in the diagram are appropriate diagonalizations, and the T in the

diagram is an appropriate twisting. We define θ: Λφ<8) Aψ -* S(φ(g}ψ)

given by θ = θk on Λfy<8> Λ*ψ, and θ = 0 on Λty® Λ'φ if i Φj. The

natural transformation θ is the composite map;

DGί
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— * ΛF 0 ® ΛF 0 (x) DFγ ® DF{ ® ΛG0 ® ΛG0

Λ Fo ® Λ Go ® Zλfi ® Λ Go ® Λ Fo

^ ^ ^ (x) Go) ® Λ(FX <g> Go) ® Λ(Ffl ® G,)

where Δ is the diagonalization, Γ is an appropriate twisting. φs, φA

9 ψA,

and ψD are the unique universal natural transformations determined as

follows. We define φξ(F, G): Λ f cF® ΛfcG -> Sk(F® G) for any nonnegative

integer k to be the unique universal natural transformation which makes

the following diagram commutative.

(**)

Λ f c G ~—> Sk(F® G)

Δ (X) Δ \Δ

TkF® TkG =—> Tk(F® G)

We define φs - φf. on Λ f eF® ΛfcG and φs - 0 on A*F® Λ jG if i Φj. Thus

0^ is a natural transformation which maps Λ F ® ΛG to S{F®G). The

definitions of ^Λ, ψΛ, and \lrD are quite similar (see [5, chapter III]). Note

that φξ is given by

for /i, , fk e F and gΊ, , ̂  e G. Since the diagram (*) commutes, θk is

a chain map.

For a partition Λ with lg(λ) = ς' and |^| = r, we define θλ\ /\λψ® Λλψ

—>Sr(φ®ψ) to be the composite map;

T

> /\λlφ® /\\y® ® Aλqφ® ΛSjr

-^— >̂ Sj^p ® ψ) ® ® Sλq(φ ® ψ) —^> Sr(φ ® ψ)

where T is an appropriate twisting, and m is the (iterated) multiplication.

We also define:

Mλ{θ) = Σ Im θa and Mλ(θ) = Σ I m «̂

For re/Vo, {Mλ(^)}μ, = r gives a filtration of Sr(φ®f).
The Cauchy formula holds for S(φ ® ψ) via the pairing .̂
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LEMMA 1.1 ([5, Proposition III, 2.6]). Let λ e Ωt and μ e SD(λ). The
following diagram is commutative.

ψ < A φ ® Aψ

THEOREM 1.2 ([5: Theorem III. 2.7]). Let keN0, and φ: F1->F0 and
ψ: Gί-^Go be morphίsm of finite free R-modules. If 2 e flfc", then θλ induces
the isomorphism of complexes βλ: Lxφ®Lλ<y\r -> Mλ(θ)IMλ(θ) which makes the
following diagram commutative;

n

A λφ ® A λψ — > M\θ)

proj.

>Mλ(θ)/MK0)

where Lλ is the Schur complex with respect to the shape λ. Hence, the
associated graded complex of the filtration {Mλ(θ)}ieΩ- is XLtea*- Lxψ® Lxψ.

Now we fix positive integers m, n, and t with t < min (m, ή), and
we consider free i?-modules F and G with rank F = m and rank G = n.
We let S — S(F® G) so that S is isomorphic to the polynomial ring with
m-n variables over i?. We define It to be the ideal of S generated by
Im^f and call It a determinantal ideal. For reiV0, we denote Sr(F®G)
by Sr9 and Srf]Ir by It>r. We denote the complex It ®s S{\άF(S)G) (resp.
It ® s S(iάF ® idσ)) by Jι (resp. Jι\ The complex Jι (resp. I1) is a graded
S-complex so that J>1 (resp. Jι) is decomposed into the direct sum; */' =
ΣreNQ^r (resp. I1 = ΣreiVo^'O Since S ( i d w ) = S®Λ(F®G) is a
graded minimal free resolution of R = S/ii, HiiJ1^) is the degree r com-
ponent [Torf (/„ S/i)],. of the graded S-module Torf (It, S&) for any i > 0
and r > 0. On the other hand, we have an isomorphism H^fttr) ~
HiJ^r) for any i and r [5, Lemma IV. 1.4]. In case R = if is a field of
characteristic p, we denote dimx[Torf (S/It9 S/ii)]r, which is invariant under
an extention of the base field K, by βlr. We have the following lemma.

LEMMA 1.3. There is a minimal free resolution of S/It in the case
R = Z, if and only if βv

ί+Ur = rankJ3<(./ ί' r) is independent of the charac-
teristic p of the base field R = K for any i > 0.

For the proof of the lemma, see [9, Proposition 2 of chapter 4] or
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[5, Proposition II. 3.4].

Now we shall prepare some additional notation. We define π: idF ® idG

-> idF(g)G and c: idF(g)G —> idF (x) idG to be the morphisms of complexes given

by:

and

1CI pv$?\r; ~ ~ ^

ide = 0 » F ® G -1-H. F ® G Θ F ® G - ^ > F ® G > 0

It is easy to see that π°c = idM . For reN,,, Srπ maps y r onto
F&)G

J^\ and Sr̂  maps J^r into y^7". Since HtχJ^r) ~ H%{J^T) and H*(Srπ)o
H*(Srή = id, H*(Srπ) gives an explicit isomorphism between them. We

define of: Λ r id^ ® Λ r idG —> Sr(idF(g)G) to be the composition Srπ°θr for

reiV0. It is clear that ar maps Lι

k

Λr) = Σii+j=*LlT to ^ ' r for t9keNQ

(for the definition of L j (Λ a partition), see [5, Definition IV. 1.5]). Note

that LtΛr) is nothing but the complex {U'(F9 G), 3'} defined in [1, Defini-

tion 3.7]. The map ar coincides with the map defined in [1, Remark 3.19].

If R contains Q, then a^t + 1i: L[/(e + fc) -> Z^U = dϊW-Y**) is surjective,

but this is not true in general (see section 3).

We fix ordered bases X = Xo [JXι of idF: Ft -• FQ and Y = yo U Yt of

idG: G! -> Go, where Zo = {xt < < xm), X, = {x[ < < x'm}y Yo = {y, <

• < yn} and Yx = {̂ ί < < ^} are bases of Fo, Fl9 Go and Gl9 respec-

tively. The ordering is given by Xo < Xx and YQ < Yi. For simplicity of

notation, we may denote xt and yt by i, and x̂  and y[ by ir, if there is

no danger of confusion.

For a tableau S e Tabi/Ai(Z) and subsets I a X and N d N9 we denote

# {(ί, j) 6 J;/iB I i e iV and Γ(i, j) e /} by ^(T 7,1). In this notation, an element

xeX (resp. £ eN) may stand for the singleton {x} (resp. {£}). We denote

nt(S, Xx) by nXS), and nN(S, X^ by n(S). We will use a similar conven-

tion for a tableau TeTabλ/μ(Y).

Let Λe£?~, SeTabAX, and TeTab^Y. We use the bitableau notation

as in [2]. We denote θλ(S0 T) by (S\ ϊ7). More generally, we will denote
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θλ(a®b) by (a\b) for αeΛ^id F and beΛλidG. The set of tableaux,

{SeTab XIS is row-standard modXi}, is denoted by Xλ. The set Yλ is

defined similarly.

Let R = K be an infinite field, and M be a polynomial representation

of GL(F) (i.e., M be a if [End OF)]-module with dim i ,M<oo, and the

representation map p: End (F) -» End (M) be a regular morphism). We

identify End(F) with Mn(K) via the basis X = {xl5 •• ,xm}. For a se-

quence # = (αΓi, , am) eNo\ we define the subspace Ma of M by

Ma = {α e Af I*(*,, , tm) e if"1 ^ Θ Θ tj a = ίί1 «r α}

where ^ © ® tm is a diagonal matrix whose (i, i) content is ti% We

call Ma the a-weight submodule of M, and <̂  its weight. The representa-

tion M is decomposed into the direct sum of Ma. Any morphism of

polynomial representations of GL(F) preserves weight. So any chain

complex of polynomial representations of GL{F), say P, is decomposed

into the direct sum; P = ][]αPα.

We will consider complexes of polynomial representations of GL(F)

X GL(G) in section 3. Such a complex, say C, is decomposed into the

direct sum of biweight subcomplexes Ca corresponding to the bi weight

a = (a(F); a(G)). For example, the biweight (au - , am; βu , βn) sub-

module of Sk(idF(x) idG) is generated by:

{(S\T)\*λeΩ-k, SeXλ, TeYλ, vf (l < ί < m)

nN(S, {x,, xβ) = ai9

 VJ (1 < j < n) nN{T, {yp yfi) - β,}

Any universally free functor L on F and G that we will consider will

always be a polynomial functor. So L(F, G) is a polynomial representa-

tion of GL(F) x GL(G).

§2. The filtration of Jι*r

We have calculated βξ in the case t > min (/n, n) — 2, in [5], using

the natural filtration {MM}A e β Γ of βt%r. We can associate with this filtra-

tion the usual spectral sequence whose jB^term is E\tyλ = H^(Mtiλ[Mt%λ).

We use the following facts on the homology of the associated graded

complex of this filtration.

PROPOSITION 2.1. Let m, n, r and t be positive integers with min(/n, n)

> t, and λeΩ~. Then we have:

(1) E\M = 0, except for the case λ = (t + 1). In particular,
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= 0 except for the case r = t + 1.

(2) E\tiλ — 0, except for the following three cases.

( i ) λ = (t + 2)

(ii) r = 2t + l, λ = (t + l, t), l/(t + 1) e R, and min(m, ή) > r

(iii) t < r < 2t, λ = (t,r — f), l/(r — t) £ R, and min (m, n) > r

(3) // the following two conditions hold, then E¥*λ = 0.

( i ) λx = t or λ2 < t

(ii) lg(λ) > 3, or equivalently, λz Φ 0

Proof. (3) is [5, Proposition IV. 3.1]. (2) is a little stronger than [5,

Proposition IV. 2.3]. We have to show that £^ ' M = 0 if λ Φ (t + 2) and

if r — ί is invertible in R.

We use the same spectral sequence argument used in the proof of

[5, Proposition IV. 2.3]. By Lemma IV. 2.4 and Lemma IV. 2.7 of [5], we

have only to show that E\Λ = H?(Hζ(M%λJM%λ^)) = 0.

First we consider the case t < r < 2t, and λ — (t, r — £). In this case

the same argument as in the proof of [5, Lemma IV. 2.8] works. In fact,

any element of E\Λ is represented by A = Σls,τCs,τ(S\ T), where S is

standard modX^ Tis standard mod Yu and nλ(S) = n^T) — 0. So we can

write ΣsCs,τdλ

FS = Σ,eβD<a) Π f « ) , where < e Λ / But since Dίr)(αfr)) =

l/(r — OD^'^^ίDίr-^D^fr))), we may assume that αfr) = 0, after replacing

αfr-i.D by α[r-i,D + l/(r — *)D(r-i,i)(αίr)) So this case is clear.

We consider the case λ = (ί + 1, ί) Any element of JE?^ is represented

by A = Σ s >2.c 5 > Γ(S|Γ), where SeX ; , T e Y,, S is standard m o d J b ϊ 7 is

standard mod Yu and n(S) = n(T) = 1. We claim that for each pair (S, T),

which appears in the sum with nι(S) = nx(T) = 1, it holds

(SI Γ) e θtiLllϊ1) + M\i + 3,(ΛΓS;ί) + 3σ(M{;D .

If the claim is true, we may assume that A eflXL^'1) + dβ(Mi\i). So we

can write A = A' + d^B with A ' e ^ L ί ί'1) and SeMija. It is easy to see

that there exists some Bf eθλ(L[\\Λ) such that dF(B — Bf) e Mfci (see the

proof of [5, Lemma IV. 2.4]). Replacing A = A' + 3GB by A! + a^S', we

may assume A eθλ(L[\λ{1). So the proof of [5, Lemma IV. 2.8] is still valid

by [5, Lemma IV. 2.6], and it suffices to prove the claim.

We shall prove the claim.

We put;

atatλ.x a n d



210 MITSUYASU HASHIMOTO

where a{ and 6 ; are elements of Xθ9 and at and βj are elements of Yo.

We may assume that at ans βό are all distinct (if not, then the claim is

(essentially) proved in [5, Lemma IV. 2.5]). If we set;

(Xj * * *

-b

then we have

(S\T)-(S'\T) =
t + 1

t + 1

where each symbol i indicates the deletion of the j-th member in the

sequence. Hence, it suffices to show that the element

c = —-—(
t + i \

(s

is contained in dF(Ml\ί). We shall calculate C. If we put

ί + l

Σ
CL\ CCt

then using Lemma 1.1, we have

ax - - a.
C =

3 Σ(-]
ί + 1 \ί=Ί

^ ί ^ ί + l ί + l #1

• bt - Σ ( - i ) ! - ^ i
. 7 = 1

where D e M ^ ' ' " is of the form D = (V\daU). Since

£/
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I
ί+l a\ ' ' ' &t+l

and

Σ (-iy- i + 1tfi Λ Λ α ί+i ® otj = J fe Λ Λ α ί+1)

it holds that D e M|; j . Hence,

i i
/ t \ a&Ui t+i aι

Σ (-1)'-^ 61 bt - Σ (-i)4"' 61

V 1 j i 1 }
U) + D

is a cycle of MtΛttttl)/Mt%λ. By (3) of this proposition (see also Proposi-

tion 2.3 below), C - D is a boundary of M^λ so that C e S^MS ί). This

proves our claim, so we have completed the proof of (2).

(1) can be proved quite similarly to (2), and so we omit the proof.

Remark 2.2. From (1) of (2.1), we can conclude that β2>r = 0, unless

r = t + 1. Furthermore, we can see that X\ = H^J1^1) = E\'tΛt + 1) is a

homomorphic image of Hλ{LtΛt + 1)) by the morphism iϊi(αM + 1). Using this

fact, it is not difficult to see that X\ is generated by the elements of the

following form;

3(̂ 2 hiii't+i I h ' ' ' Jt+ι) with ι> ' " lt and jx j t + 1 are both standard
lt+l

and

d(h - - - h+\i'i\jt ' ' ' JJt+i) with h it+1 and Z1 ' ' '^* are both standard
Jt+l

where 3 is the boundary map of S(idF ® idG). Since

rank^α = rank [L(lil)F<g> Λ ί + 1 G 0 Λ ί+1F(g)L ( ί>1)G],

these elements are a free basis of X\.

These facts were first proved essentially by Kurano [6].

PROPOSITION 2.3. We let λ, = (3, 2) if t = 2, α^d ^0 = (*, 3) ί/ ί > 3.

Then El'1'*0 ^ E?'*'10. In particular, if we have E\*'x* Φ 0, then /33) ί+3 φ 0.

Proof. If μ is a partition of weight t + 3 with μ < λ0 in the lexico-

graphic order, then μ satisfies the conditions (i) and (ii) of (3) in Pro-
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position 2.1, so that El'ttμ = 0. We have E\itiV = 0 for any partition v of

weight t + 3 by (1) of the proposition. With these facts and the standard

spectral sequence argument, it is easy to see that E\ta* ~ E?'6'*0. The

second assertion is now clear and the proof is complete.

By Lascoux's resolution [7], we know that βlt+i = 0. Furthermore,

we can see that βξtt+Ά = 0 if p is a prime number with p Φ 3 by (2) of

Proposition 2.1. We shall show that $, ί + 3 Φ 0, if 2 < t < min(ra, ή) — 3.

§ 3. The main result

This section is devoted to prove the next theorem.

THEOREM 3.1. Let m, n and t be positive integers with 2 < t < min(m, ή)

— 3. Then the third Bettί number βΆ of S/It depends on the characteristic.

In this case, S/It does not have any minimal free resolutions over Z.

Proof. By the argument in section 2 and Lemma 1.3, we see that

it sufficies to show that El'tti0 Φ 0 when R is an infinite field K of char-

acteristic three, where λQ is the partition defined in Proposition 2.3. Each

Mta is decomposed into the direct sum of the summands indexed by the

bίcontents (see section 1). So it is sufficient to show that the biweight

α = ( l , l , -- , l ,0, •••,0; 1,1, -. , l ,0, -.-,0)

•—t + 3—' '—t + 3—!

submodule of E\^λQ is not zero. We shall show that E = E\\^h = [JBJ 1 ;°]α

is not zero. To this end, we construct a non-zero linear form h: E-^-K.

(i) case 1. t = 2.

First, we construct a linear form g: Ll\\% -> K. Note that LJ;ί°α =

Llit1® Lilt2- It holds that

C1 /O\ Λ 2 171 /O\ΓΛ 2/°» /O\ Π P / Q \ Λ 2Γ<Λ
«(G)Λ2F]α ( F )(g)[Λ2G® A G ® Λ2G]a

where [ ]Λ ( F ) and [ ]Λ ( G ) indicates the weight (1, 1, 1, 1, 1, 0, 0, )-sub-

module. Hence, the basis element of Ll]l%2 is of the form

= (74(75 ®τ4τ5

with σ, τ e ©5, and S and T both row-standard (mod Xί or mod Yi). For

such a basis element, define g(S®T) = (—l)σr. We define ^ to be zero

on Lί ίά1. This gives the definition of g. We shall see that g induces a
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linear form g; Mi βJMi l',, -> K. To see this, it suffices to prove that g

vanishes on

(Ker θ)

= [D^(Λ4F® D,F) + Π^KΛ'FΘDiF® Λ'F)]® [Λ2G® AG® Λ2GL(G)

+ [ΛΨ® A F ® Λ 2 F U , ® [D^(Λ4G® AG) + D^'υ(Λ3G® AG® Λ'G)]

+ (Ker θ) Π Uit1

where θ is the composite map:

The equation is a consequence of Theorem 1.2. We consider the linear

form: gF: [AλoidF]Ua{F) -> K defined by:

gF is zero on [ΛΨ® ΛΨ® DxF]

{F)

The linear form ga: [Λ i o id 0] l i β ( β ) -> if is denned similarly. It holds that

g = gF®go on L5;ί°a. We see that;

Q = 0

by a straightforward computation. Hence, g> vanishes on

[Di?(Λ4F® A F ) + Dίo

4'υ(Λ8F(g) ΰ / ® Λ1^)] ® [Λ2G® A G ® Λ2G]α(G),

Similar calculation will show that g G vanishes on

It is clear that g vanishes on Lί;}^1. We conclude that g induces g. We

extend the definition of g. We define g is zero on M^JM^U θ ^ έ ία/Mo ία

so that g is defined over M^/M^a

Now we shall show that g induces h: E—>K. To see this, it is

sufficient to show that g is zero on [M^ 0 + B2{Mt^h)]IMt

2\
λ

a\ To see this,

it is sufficient to show that g vanishes on

since g vanishes on
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[Mί;? + Afί;ί;β + M' t + ^(Lί

But this is clear from the facts that

= ( - i ) o - ( - i ) a = ° a n d

(r2)' (τ3)'\ n

for a, r e ©5.

We shall show that h is a nonzero linear form. We let;

1 2 3 1 2 3/ __12 3\
4 5 4 5 / /

Then dA = 0 and g(A) = 1. This shows that h is non-zero.

(ii) case 2. t > 3.

We define a linear form g: Lί ί^1—>if as in (i). We define:

/ </l (72 <rf ~ r l r2 τt
g\σ(t + 1) σ(t + 2) ^(ί + 3X ^ τ(ί + 1) τ(t + 2) τ(ί + 3)/

= f ( - l ) - (if {1, , ί - 2} C {*1, • , at) Π {rl, , τt}
I 0 (otherwise)

for row-standard bitableaux of shape λ0 = (t, 3) in L[\\°£. Note that g

admits an expression g = gF<8) gG in an obvious manner as in case (i).

It holds that

- ° and

σ(t +

(which can be shown by straightforward computation). Using [5, Lemma

1.3.9], it is easy to see that

Im D ί0Π Λ'F® Λ2F(g) D,F

Hence, we have gF is zero on [Im Dio(Ί Λ4 F ® Λ2F® DxF]aikF)i where

a(F) is the weight (1,1, , 1, 0, 0, •)• Similarly, we have gG is zero on

[Im ΠxQΓ\ A'G® Λ2G® AG] α ( G ) , where a(G) is also the weight (1,1, ••-,

1, 0, 0, •). Since 0,(Lί;ί;i) + Mί;} fβ = M{;ί,β by [5, Lemma IV. 2.2], g induces

a linear form g: Ml^JMl^^ -> K, and we extend the definition of g as in
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case 1. By an argument similar to the proof in case (i), it is easy to see

that g induces h: E -> K.

We shall show that h is nonzero. If we put

A —
σt τt

[t + 1) τ(t + 2) τ(t + 3)'

(remember that ©ί<i7 = {(je ©i + J |σ l < < σί, σ(i + 1) < < σ(i + j)})

then dA e M M o , and g(A) = u J = 100 =£ 0. Hence, we have h φ 0.

By case 1 and case 2 above, we have completed the proof of Theorem

3.1.

COROLLARY 3.2. The rank of the module X\ does not depend on the

characteristic, if and only if t = 1 or t > min(m, n) — 2.

Proof. The 'if part is [5, Corollary IV. 2.12]. Since t /
ί ' ί + 3 is a uni-

versally free complex, and Hί(ί/
t't+3) = 0, if i Φ 2, 3, the rank of ΛΓ4 =

Jg3(e/M + 3) depends on the characteristic if rank £Γ2(^'ί'ί + 3) = A,ί+3 depends

on the characteristic. So the (only i f part follows from the theorem.

Remark 3.3. An argument quite similar to the proof of the theorem

shows that E?'1'^ Φ 0, and E^tΛtA) Φ 0 for 2 < t < min (m, n) - 2, if

i? = F2. It follows that the natural map H2(UΛt+2)) -> Xι

2 is not surjective,

if t < min(m, n) — 2 (even if t = l!) and if i? = F2. In fact, if we put

A __ yπ ί σl σ2 - - - σt r l r2 rA

then dA 6 ./ ί + I i + 2, so Sττ(A) e Z^ ( = Z ^ , in the notation of [1]). But Sπ(A)

is not contained in the image of α ί > ί l 2 : L ί ) ( ί l 2 ) -> ZJ. Since aSτr(A) e Xi+1,

there exists β e I m α ί i U 2 such that dSπ(A) = 3B, by Kurano's first syzygy

theorem. Hence, Sπ(A) - B e XI but Sττ(A) - B £ Im H2(aut+2).

Therefore, X3 does not have a standard basis as ATί, has, although

Xi is universally free.

Remark 3.4. We have seen that X[ is not a universally free GL(F)

X GL(G) complex in the case 2 < t < min (m, rc) — 3. Recently, the author

[4] proved that the Betti numbers of It are independent of the charac-

teristic in the case t = 1 or t > min(m, n) — 2. So X[ is universally

free in this case, and is the linear part of the resolution.
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