M. Furushima and N. Nakayama Nagoya Math. J. Vol. 116 (1989), 111-122

THE FAMILY OF LINES ON THE FANO THREEFOLD V_5

MIKIO FURUSHIMA AND NOBORU NAKAYAMA

Introduction

A smooth projective algebraic 3-fold V over the field C is called a Fano 3-fold if the anticanonical divisor $-K_{\nu}$ is ample. The integer $g = g(V) = \frac{1}{2}(-K_{\nu})^3$ is called the genus of the Fano 3-fold V. The maximal integer $r \ge 1$ such that $\mathcal{O}(-K_{\nu}) \cong \mathscr{H}^r$ for some (ample) invertible sheaf $\mathscr{H} \in \operatorname{Pic} V$ is called the index of the Fano 3-fold V. Let V be a Fano 3-fold of the index r = 2 and the genus g = 21 which has the second Betti number $b_2(V) = 1$. Then V can be embedded in P^{ε} with degree 5, by the linear system $|\mathscr{H}|$, where $\mathcal{O}(-K_{\nu}) \cong \mathscr{H}^2$ (see Iskovskih [5]). We denote this Fano 3-fold V by V_{ε} .

 V_5 can be also obtained as the section of the Grassmannian G(2, 5) $\longrightarrow P^5$ of lines in P^4 by 3 hyperplanes in general position.

There are some other constructions of the Fano 3-fold V_5 (cf. Fujita [1], Mukai-Umemura [9] and Furushima-Nakayama [3]). But so obtained V_5 's are all projectively equivalent (cf. [5]).

The remarkable fact on V_5 is that V_5 is a complex analytic compactification of C^3 which has the second Betti number one (see Problem 28 in Hirzebruch [4]).

Now, in this paper, we will analyze in detail the universal family of lines on V_5 and determine the hyperplane sections which can be the boundary of C^3 in V_5 .

In § 1, we will summarize some basic results about V_5 obtained by Iskovskih [5], Fujita [1] and Peternell-Schneider [6]. In § 2, we will construct a P^1 -bundle $P(\mathscr{E})$ over P^2 , where \mathscr{E} is a locally free sheaf of rank 2 on P^2 , and a finite morphism $\psi: P(\mathscr{E}) \to V_5 \longrightarrow P^6$ of $P(\mathscr{E})$ onto V_5 applying the results by Mukai-Umemura [9]. Further, we will show that the P^1 -bundle $P(\mathscr{E})$ in fact the universal family of lines on V_5 . In § 3, we will study the boundary of C^3 in V_5 and the set $\{H \in |\mathscr{O}_V(1)|; V_5 \setminus H \cong C^3\}$.

Received March 1, 1988.

ACKNOWLEDGEMENT. The authors would like to thank the Max-Planck-Institut für Mathematik in Bonn, especially, Prof. Dr. Hirzebruch for the hospitality and encouragement.

§1. Basic facts on V_5

Let $V := V_5$ be a Fano 3-fold of degree 5 in P^6 (see Introduction) and $\ell \cong P^1$ is a line on V. Then the normal bundle $N_{\ell|V}$ of ℓ in V can be written as follows:

- (a) $N_{\ell|V} \cong \mathcal{O}_{\ell} \oplus \mathcal{O}_{\ell}$, or
- (b) $N_{\ell|V} \cong \mathcal{O}_{\ell}(-1) \oplus \mathcal{O}_{\ell}(1)$

We will call a line ℓ of the type (0, 0) (resp. (-1, 1)) if $N_{\ell|V}$ is of the type (a) (resp. type (b)) above.

Let $\sigma: V' \to V$ be the blowing up of V along the line ℓ , and put $L' := \sigma^{-1}(\ell)$. Then $L' \cong \mathbf{P}^1 \times \mathbf{P}^1$ if ℓ is of type (0, 0), and $L' \cong \mathbf{F}_2$ if ℓ is of type (-1, 1). Let f_1, f_2 be respectively fibers of the first and second projection of $\mathbf{P}^1 \times \mathbf{P}^1$ onto \mathbf{P}^1 , and let s, f be respectively the negative section and a fiber of \mathbf{F}_2 . Let H be a hyperplane section of V. Since the linear system $|\sigma^*H - L'|$ on V' has no fixed component and no base point and since $h^0(\mathcal{O}(\sigma^*H - L')) = 5$ and $(\sigma^*H - L')^3 = (\sigma^*H - L')^2 \cdot L' = 2$, the linear system $|\sigma^*H - L'|$ defines a birational morphism $\varphi := \varphi_{|\sigma^*H - L'|}$: $V' \to W \longrightarrow \mathbf{P}^4$ of V' onto a quadric hypersurface W in \mathbf{P}^4 , in particular, $Q := \varphi(L')$ is a hyperplane section of W. Let $E := E_\ell$ be the ruled surface swept out by lines which intersect the line ℓ and E' the proper transform of E in V'.

LEMMA 1.1 (Iskovskih [5], Fujita [1]). W is a smooth quadric hypersurface in \mathbf{P}^{*} and $Y := \varphi(E)$ is a twisted cubic curve contained in Q. In particular, $\varphi: V' \to W$ is the blowing up of W along the curve Y. Further, we have the following.

(a) If ℓ is of type (0,0), then $\varphi|_{L'}$: $L' \cong Q \cong P^1 \times P^1$, and $\overline{Y} \sim f_1 + 2f_2$ in L'.

(b) If ℓ is of type (-1, 1), then $\varphi|_{L'}$: $L' \to Q \cong Q_0^2$ (a quadric cone) is the contraction of the negative section s of $L' \cong F_2$, and $\overline{Y} \sim s + 3f$ in L'.

In (a) and (b), we denote the proper transform of $Y \longrightarrow Q$ in L' by \overline{Y} .

COROLLARY 1.1. (a) If ℓ is of type (0, 0), then $E' \cong F_1$. (b) If ℓ is of type (-1, 1), then $E' \cong F_3$. Proof. Let $N_{Y|W}$ be the normal bundle of Y in W. Then $N_{Y|W} \cong \mathcal{O}_Y(3) \oplus \mathcal{O}_Y(4)$ if ℓ is of the type (0, 0), and $N_{Y|W} \cong \mathcal{O}_Y(2) \oplus \mathcal{O}_Y(5)$ if Y is of type (-1, 1). Q.E.D.

COROLLARY 1.2. (a) If ℓ is of type (0,0), then there are two points $q_1 \neq q_2$ of ℓ such that (i) there are two lines in V through the point q_i (i = 1, 2), and (ii) there are three lines in V through every point q of $\ell \setminus \{q_1, q_2\}$.

(b) If ℓ is of type (-1, 1), there is exactly one point q_0 of ℓ such that (i) ℓ is the unique line in V through the point q_0 , and (ii) there are two lines in V through every point q of $\ell \setminus \{q_0\}$.

Proof. (a) Let p_2 : $Q \cong \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^1$ be the projection onto the second component. Since $\overline{Y} \sim f_1 + 2f_2$, $p_2|_Y \colon Y \to \mathbf{P}^1$ is a double cover over \mathbf{P}^1 . Thus there are two branched point $b_1 \neq b_2$ in \mathbf{P}^1 . We put $q_i := \sigma \circ (\varphi|_L)^{-1}((p_2|_Y)^{-1}(b_i))$ (i = 1, 2). Then $\ell = \sigma(\overline{Y})$ and $\ell_i := \sigma(\varphi^{-1}(p_2^{-1}(b_i)))$ (i = 1, 2) are two lines through the point q_i for each i. For $b \in \mathbf{P}^1 \setminus \{b_1, b_2\}$, $\ell = \sigma(\overline{Y})$ and $\sigma(\varphi^{-1}(p_2^{-1}(b)))$ are three lines through the point $q \in \ell \setminus \{q_1, q_2\}$, since $p_2^{-1}(b)$ consists of two different points. This proves (a).

(b) We put $q_0 := \sigma(\overline{Y} \cap s) \in \ell$. Then $\ell = \sigma(\overline{Y}) = \sigma(s)$ is the unique line through the point $q_0 \in \ell$. For $y \in Y \setminus \varphi(s)$, $\ell = \sigma(\overline{Y})$ and $\sigma(\varphi^{-1}(y))$ are two lines through a point of $\ell \setminus \{q_0\}$. This proves (b). Q.E.D.

COROLLARY 1.3 (Peternell-Schneider [6]). Let E be a non-normal hyperplane section of V_5 . Then the singular locus of E is a line ℓ on V, in particular, E is a ruled surface swept out by lines which intersect the line ℓ . Further $V - E \cong C^3$ if and only if the line ℓ is of type (-1, 1).

Proof. By Lemma (3.35) in Mori [8], the non-normal locus of E is a line ℓ on V. Since $h^{\circ}(\mathcal{O}_{V}(1) \oplus \mathscr{I}_{\ell}^{2}) = 1$ and Pic $V \cong \mathbb{Z}$, the linear system $|\mathcal{O}_{V}(1) \oplus \mathscr{I}_{\ell}^{2}|$ consists of E, where \mathscr{I}_{ℓ} is the ideal sheaf of ℓ . By Lemma 1, ℓ must be the singular locus of E. Assume ℓ is of type (0, 0). Then, by Lemma 1, $V - E \cong \{(x, y, z, u) \in \mathbb{C}^{4}; x^{2} + y^{2} + z^{2} + u^{2} = 1\} \not\cong \mathbb{C}^{3}$.

Q.E.D.

\S 2. Construction of the universal family

1. Let (x; y), (u; v) be respectively homogeneous coordinates of the first factor and the second factor of $S := P^1 \times P^1$. Let us consider the diagonal SL(2; C)-action on S, namely, for $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2 := SL(2; C)$,

$$\begin{cases} x^{\sigma} = ax + by \\ y^{\sigma} = cx + dy, \end{cases} \quad \begin{cases} u^{\sigma} = au + bv \\ v^{\sigma} = cu + dv. \end{cases}$$

Let $\tau: S \to P^2$ be the double covering of P^2 given by

$$egin{cases} au^*X_0&=x\otimes u\ au^*X_1&=rac{1}{2}(x\otimes v+y\otimes u)\ au^*X_2&=y\otimes v \end{cases}$$

where $(X_0: X_1: X_2)$ be a homogeneous coordinate on P^2 . We can also define SL_2 -action on P^2 as follows:

$$egin{aligned} & X_0^{\sigma} = a^2 X_0 + 2ab X_1 + b^2 X_2 \ & X_1^{\sigma} = ac X_0 + (ad + bc) X_1 + bd X_2 \ & X_2^{\sigma} = c^2 X_0 + 2c d X_1 + d^2 X_2 \end{aligned}$$

 $ext{for } \sigma = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL_2.$

Then, the morphism τ is SL_2 -linear, that is, $\tau(p^{\sigma}) = \tau(p)^{\sigma}$ for $p \in S$ and $\sigma \in SL_2$. Further, τ is branched along the smooth conic $C := \{X_1^2 = X_0X_2\} = \tau(\varDelta)$, where $\varDelta := \varDelta_{P^1}$ is the diagonal in $P^1 \times P^1 = S$. Let f_i be a fiber of the projection $P_i: S \to P^1$ onto *i*-th factor (i = 1, 2). Let $\pi: M := P(\mathscr{E}) \to P^2$ be the P^1 -bundle over P^2 associated with the vector bundle $\mathscr{E} := \tau_* \mathscr{O}_S(4f_1)$ of rank 2 on P^2 .

LEMMA 2.1. (1) det $(\tau_* \mathcal{O}_{\mathcal{S}}(kf_1)) \cong \mathcal{O}_{P^2}(k-1)$ and $c_2(\tau_* \mathcal{O}_{\mathcal{S}}(kf_1)) = \frac{1}{2}k(k-1)$ for all $k \ge 0$.

(2) $\mathscr{E} \otimes \mathscr{O}_{\mathcal{C}} \cong \mathscr{O}_{P^1}(3) \oplus \mathscr{O}_{P^1}(3), \text{ where } \mathcal{C} = \tau(\varDelta).$

(3) The natural morphism $S \to M$ corresponding to the homomorphism $\tau^* \mathscr{E} \to \mathcal{O}_s(4f_1)$ is a closed embedding, hence, S can be considered as a divisor on M.

(4) $\mathcal{O}_{\mathcal{M}}(S) \cong \mathcal{O}_{\mathfrak{s}}(2) \otimes \pi^* \mathcal{O}_{P^2}(-2)$, where $\mathcal{O}_{\mathfrak{s}}(1)$ is the tautological line bundle on M with respect to \mathscr{E} .

(5) $\mathcal{O}_{\mathfrak{s}}(1)$ is nef, i.e., \mathscr{E} is a semi-positive vector bundle

(6) We put $\mathcal{O}_{M}(1) := \mathcal{O}_{\mathfrak{s}}(1) \otimes \pi^{*} \mathcal{O}_{P^{2}}(1)$. Then

$$\begin{aligned} H^{0}(M, \mathcal{O}_{M}(1)) &\cong H^{0}(S, \mathcal{O}_{S}(5f_{1} + f_{2})) \\ &\cong H^{0}(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(5)) \otimes_{\mathbf{C}} H^{0}(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(1)) \,. \end{aligned}$$

Proof. (1) Let us consider the exact sequence:

$$0 \longrightarrow \tau_* \mathcal{O}_{\mathcal{S}}(kf_1) \longrightarrow \tau_* \mathcal{O}_{\mathcal{S}}((k+1)f_1) \longrightarrow \tau_* \mathcal{O}_{f_1} \longrightarrow 0.$$

Now $\ell_1 = \tau(f_1)$ is a line on \mathbf{P}^2 and $\mathcal{O}_{\ell_1} \cong \tau_* \mathcal{O}_{f_1}$. Thus, $\det(\tau_* \mathcal{O}_{\mathcal{S}}((k+1)f_1))$ $\cong \det(\tau_* \mathcal{O}_{\mathcal{S}}(kf_1)) \otimes \mathcal{O}(1)$ and $c_2(\tau_* \mathcal{O}_{\mathcal{S}}((k+1)f_1)) = (\det(\tau_* \mathcal{O}_{\mathcal{S}}(kf_1)) \cdot \mathcal{O}(1)) + c_2(\tau_* \mathcal{O}_{\mathcal{S}}((kf_1)))$. Since $\tau_* \mathcal{O}_{\mathcal{S}} \cong \mathcal{O} \otimes \mathcal{O}(-1)$, we are done.

(2) Let us consider the following diagram:

Since $\tau^*C = 2\Delta$, we have $\tau_*\mathcal{O}_{2\Delta}(4f_1) \cong \mathscr{E} \otimes \mathscr{O}_c$ and the exact sequence:

$$\begin{array}{cccc} 0 \longrightarrow \tau_* \mathcal{O}_d(3f_1 - f_2) \longrightarrow \mathscr{E} \otimes \mathcal{O}_c \longrightarrow \tau_* \mathcal{O}_d(4f_1) \longrightarrow 0 \\ & & & \\ & & & \\ & & & \\ & & & \\ \mathcal{O}_{Pl}(2) & & & \\ & & & \\ \end{array}$$

To show that $\mathscr{E} \otimes \mathscr{O}_{\mathcal{C}} \cong \mathscr{O}_{\mathcal{P}^1}(3) \oplus \mathscr{O}_{\mathcal{P}^1}(3)$, it is enough to prove that

$$H^0(C, (\mathscr{E}\otimes \mathscr{O}_C)\otimes \mathscr{O}_{P^1}(-4))\cong H^0(\mathscr{O}_{2d}(2f_1-2f_2))=0$$
 .

By the above diagram, we have the exact sequences:

$$\begin{array}{cccc} 0 \longrightarrow P_{2*}\mathcal{O}_{\mathcal{S}}(-4f_2) \xrightarrow{\varphi} P_{2*}\mathcal{O}_{\mathcal{S}}(2f_1 - 2f_2) \longrightarrow P_{2*}\mathcal{O}_{\mathcal{I}_4}(2f_1 - 2f_2) \longrightarrow 0 ,\\ & & & & \\ & & & & \\ & & & & \\ \mathcal{O}_{\mathbf{P}\mathbf{1}}(-4) & & & \\ \mathcal{O}_{\mathbf{P}\mathbf{1}}(-2)^{\oplus 3} \end{array}$$

and

Hence $P_{2*}\mathcal{O}_{2d}(2f_1 - 2f_2)$ is locally free and the dual homomorphism φ^* : $\mathcal{O}_{P^1}(2)^{\oplus 3} \to \mathcal{O}_{P^1}(4)$ is surjective. Therefore φ^* is obtained from the natural surjection $H^{0}(\mathbf{P}^{1}, \mathcal{O}(2)) \otimes \mathcal{O}_{\mathbf{P}^{1}} \longrightarrow \mathcal{O}_{\mathbf{P}^{1}}(2)$ by tensoring $\mathcal{O}_{\mathbf{P}^{1}}(2)$. Thus we have $P_{2*}\mathcal{O}_{2d}(2f_{1}-2f_{2}) \cong \mathcal{O}_{\mathbf{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbf{P}^{1}}(-1)$. Therefore we have $H^{0}(\mathcal{O}_{2d}(2f_{1}-2f_{2})) = 0$.

(3) It is enough to show that the natural homomorphism $\operatorname{Sym}^k \mathscr{E} \to \tau_* \mathscr{O}_s(4kf_1)$ is surjective for $k \gg 0$. Since τ is finite morphism, $\tau_* \mathscr{O}_s(4kf_1) \otimes \tau_* \mathscr{O}_s(4f_1) \to \tau_* \mathscr{O}_s(4(k+1)f_1)$ is always surjective. Thus we are done.

(4) Since $\tau: S \to \mathbf{P}^2$ is a double covering, there is a line bundle \mathscr{L} on \mathbf{P}^2 such that $\mathscr{O}_{\mathfrak{s}}(2) \otimes \mathscr{O}_{\mathfrak{M}}(-S) \cong \pi^* \mathscr{L}$. By the exact sequence:

$$0 \longrightarrow \pi^* \mathscr{L} \longrightarrow \mathscr{O}_{\mathfrak{s}}(2) \longrightarrow \mathscr{O}_{\mathfrak{s}}(2) \otimes \mathscr{O}_{\mathfrak{s}} \cong \mathscr{O}_{\mathfrak{s}}(8f_1) \longrightarrow 0,$$

we have det $(\operatorname{Sym}^2 \mathscr{E}) \cong \mathscr{L} \otimes \det(\tau_* \mathscr{O}_S(8f_1))$. Therefore, by (1), $\mathscr{L} \cong \mathscr{O}_{P^2}(2)$, hence, $\mathscr{O}_M(S) \cong \mathscr{O}_{\mathscr{E}}(2) \otimes \pi^* \mathscr{O}_{P^2}(-2)$.

(5) We put $D := \pi^{-1}(C)$. Then, by (2), $D \cong P^1 \times P^1$ and $\mathcal{O}_s(1) \otimes \mathcal{O}_D$ $\cong \mathcal{O}_D(s_1 + 3s_2)$, where s_2 is a fiber of $D \to C$ and s_1 is a fiber of another projection $D \to P^1$. By (4), we have $\mathcal{O}_s(2) \cong \mathcal{O}_M(S + D)$. Assume that there is an irreducible curve γ on M such that $(\mathcal{O}_s(1) \cdot \gamma) < 0$. Then, $\gamma \subseteq D$ or $\gamma \subseteq S$. Since $\mathcal{O}_s(1) \otimes \mathcal{O}_s \cong \mathcal{O}_s(4f_1)$ and $\mathcal{O}_s(1) \otimes \mathcal{O}_D \cong \mathcal{O}_D(s_1 + 3s_2)$, this is a contradiction.

(6) By the exact sequence

$$\begin{array}{cccc} 0 \longrightarrow \mathcal{O}_{\scriptscriptstyle M}(1) \otimes \mathcal{O}_{\scriptscriptstyle M}(-S) \longrightarrow \mathcal{O}_{\scriptscriptstyle M}(1) \longrightarrow \mathcal{O}_{\scriptscriptstyle M}(1) \otimes \mathcal{O}_{\scriptscriptstyle S} \longrightarrow 0 , \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \mathcal{O}_{\scriptscriptstyle \mathcal{S}}(-1) \otimes \pi^* \mathcal{O}_{\scriptscriptstyle \mathcal{P}^2}(3) & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

we have $\pi_* \mathcal{O}_M(1) \cong \tau_* \mathcal{O}_S(5f_1 + f_2)$. Therefore $H^0(M, \mathcal{O}_M(1)) \cong H^0(S, \mathcal{O}_S(5f_1 + f_2))$. Q.E.D.

Remark 2.1. There is a SL_2 -action on $(M, \mathcal{O}_M(1))$ compatible to $\tau: S \to \mathbb{P}^2$. The last isomorphism in (6) is an isomorphism as a SL_2 -module.

2. Let us consider the subvector space $L \subseteq H^0(S, \mathcal{O}_S(5f_1 + f_2))$ generated by the following 7 elements (cf. Lemma (1.6) in [9]):

$$\begin{cases} e_0 := x^5 \otimes u \\ e_1 := x^4 y \otimes u + \frac{1}{5} x^5 \otimes v \\ e_2 := x^3 y^2 \otimes u + \frac{1}{2} x^4 y \otimes v \\ e_3 := x^2 y^3 \otimes u + x^3 y^2 \otimes v \\ e_4 := \frac{1}{2} x y^4 \otimes u + x^2 y^3 \otimes v \\ e_5 := \frac{1}{5} y^5 \otimes u + x y^4 \otimes v \\ e_6 := y^5 \otimes v \end{cases}$$

Then L is an SL_2 -invariant subspace. By the isomorphism $H^0(M, \mathcal{O}_M(1)) \cong H^0(S, \mathcal{O}_s(5f_1 + f_2)), L$ can be considered as a subspace of $H^0(M, \mathcal{O}_M(1))$.

LEMMA 2.2. (1) The homomorphism $L \otimes \mathcal{O}_{M} \to \mathcal{O}_{M}(1)$ is surjective. Especially, we have a morphism $\psi \colon M \to \mathbf{P}(L) \cong \mathbf{P}^{\mathfrak{s}}$, which is SL_{2} -linear.

(2) The image $V := \psi(M)$ is isomorphic to the Fano 3-fold V_5 of degree 5 in P^6 .

Proof. (1) We have only to show that $g: L \otimes \mathcal{O}_{P^2} \to \mathscr{E} \otimes \mathcal{O}_{P^2}(1)$ is surjective. Since SL_2 acts on g, the support of Coker (g) is SL_2 -invariant. Now SL_2 acts on P^2 with two orbits $P^2 \setminus C$ and C. First, take a point $p \in P^2 \setminus C$. Then $g \otimes C(p): L \to (\mathscr{E} \otimes \mathcal{O}_{P^2}(1)) \otimes C(p)$ is described as follows:

Let $\alpha: L \otimes \mathcal{O}_S \to \mathcal{O}_S(5f_1 + f_2)$ be the natural homomorphism and let $\alpha(q): L \to \mathcal{O}_S(5f_1 + f_2) \otimes C(q) \cong C$ be the evaluation map for $q \in S$. Then $g \otimes C(p): L \to C^{\oplus 2}$ is nothing but $\alpha(q_1) \oplus \alpha(q_2): L \to C^{\oplus 2}$, where $\{q_1, q_2\} := \tau^{-1}(p)$. For example, take a point $p = (0:1:0) \in P^2$. Then $q_1 = ((1:0), (0:1))$ and $q_2 = ((0:1), (1:0))$ in $S = P^1 \times P^1$. Then the calculation is as follows:

$$\begin{cases} \alpha_1(e_0) = \alpha_1(e_2) = \cdots = \alpha_1(e_6) = 0, & \alpha_1(e_1) = \frac{1}{5} \\ \alpha_2(e_0) = \cdots = \alpha_2(e_4) = \alpha_2(e_5) = 0, & \alpha_2(e_5) = \frac{1}{5}, \end{cases}$$

where $\alpha_1 := \alpha_1(q_1), \ \alpha_2 := \alpha_2(q_2).$

Therefore $g \otimes C(p)$ is surjective for any $P \in P^2 \setminus C$.

Next take $p := (1:0:0) \in C$, $q = ((1:0), (1:0)) \in S$. Let $z_1 = y/x$, $z_2 = v/u$ be the local coordinate around q. Then $\mathfrak{m}_p \mathcal{O}_s = (z_1 + z_2, z_1 \cdot z_2) \subseteq \mathfrak{m}_q$. The evaluation map $q \otimes C(p): L \to C^{\oplus 2}$ is now the composition

 $\beta\colon L \longrightarrow L \otimes \mathcal{O}_s \longrightarrow \mathcal{O}_s/\mathfrak{m}_p \mathcal{O}_s \cong C1 \oplus C\overline{z}_1.$

Since we have isomorphisms

 $\beta: g \otimes C(p)$ is calculated by evaluating x = u = 1 and $y = \overline{z}_1 = -v = -\overline{z}_2$. Therefore $\beta(e_0) = 1$, $\beta(e_1) = \frac{4}{5}\overline{z}_1$, $\beta(e_2) = 0$, $\beta(e_3) = 0$, $\beta(e_4) = 0$, $\beta(e_5) = 0$, $\beta(e_6) = 0$. Thus $g \otimes C(p)$ is surjective for any $p \in C$.

(2) Let $h_0, h_1, \dots, h_6 \in L^{\vee}$ be the dual basis of $\{e_0, e_1, \dots, e_6\}$. Since $P(L) \cong L^{\vee} \setminus \{0\}/C^*$, we denote the point of P(L) corresponding to $\sum_{j=0}^6 \lambda_j h_j$

 $\in L^{\vee}\setminus\{0\}$ by $[\sum_{j=0}^{6}\lambda_{j}h_{j}]$. If $\psi(M)$ contains the point $[h_{1} - h_{5}] \in P(L)$, then $\psi(M)$ contains the SL_{2} -orbit $SL_{2}[h_{1} - h_{5}]$ and its closure $\overline{SL_{2}[h_{1} - h_{5}]}$. On the other hand, we know that the closure $\overline{SL_{2}[h_{1} - h_{5}]}$ is isomorphic to V_{5} by $[\S 3, 7]$. Here $h_{1} - h_{5}$ corresponds to $f_{6}(x, y) = xy(x^{4} - y^{4})$ in their notation. Therefore we have only to show that $\psi(M)$ contains $[h_{1} - h_{5}] \in P(L)$. Let $P := (0:1:0) \in P^{2}$. Then by (1), the evaluation map $g \otimes C(p): L \to C \oplus C$ with $(g \otimes C(p))(e_{1}) = (\frac{1}{5}, 0)$, $(g \otimes C(p))(e_{5}) = (0, \frac{1}{5})$, and $(g \otimes C(p))(e_{j}) = (0, 0)$ $(j \neq 1, 5)$. Therefore the point $q \in \pi^{-1}(p) \cong P^{1}$ corresponding to the linear function $C \oplus C \ni (a, b) \mapsto a - b \in C$ is mapped to $[h_{1} - h_{5}]$ by ψ .

Remark 2.2. (1) By Lemma (1.5) in [8], $V := \psi(M)$ has three SL_2 orbits $\psi(M) \setminus \psi(S)$, $\psi(S) \setminus \psi(\mathcal{A}_{P^1})$, and $\psi(\mathcal{A}_{P^1})$, in particular, $\psi(\mathcal{A}_{P^1})$ is a
smooth rational curve of degree 6 in V.

(2) $\psi|_s \colon S \to \psi(S)$ is the same morphism as in Lemma (1.6) in [8]. Especially, $\psi|_s$ is one to one and $\operatorname{Sing} \psi(S) = \psi(\mathcal{A}_{P^1})$, where $\operatorname{Sing} \psi(S)$ is the singular locus of $\psi(S)$.

Let us denote $\psi(S)$ and $\psi(\Delta_{P^1})$ by B and Σ .

LEMMA 2.3. (1) ψ is a finite morphism of degree 3.

(2) ψ is étale outsides B

(3) $\psi^*B = S + 2D$, hence ψ is not Galois.

(4) We put $M_t := \pi^{-1}(t)$ for $t \in \mathbf{P}^2$. Then $\ell_t := \psi(M_t)$ is a line of $V \subseteq \mathbf{P}^6$ and $\psi|_{M_t} : M_t \to \ell_t$ is an isomorphism.

(5) For $t_1 \neq t_2 \in \mathbf{P}^2$, we have $\ell_{t_1} \neq \ell_{t_2}$.

(6) Let ℓ be a line in $V \subseteq \mathbf{P}^{\mathfrak{s}}$. Then there is a point $t \in \mathbf{P}^{\mathfrak{s}}$ such that $\ell = \ell_{\iota}$.

Proof. (1) By Lemma (2.1)-(5), $\mathcal{O}_{M}(1)$ is ample. Therefore ψ is a finite morphism and $\psi^{*}\mathcal{O}_{V}(1) \cong \mathcal{O}_{M}(1)$. Thus deg $\psi = (\mathcal{O}_{M}(1))^{3}/(\mathcal{O}_{V}(1))^{3} = 15/5$ = 3.

(2) Since $V \setminus B$ is an open orbit of SL_2 , ψ is étale over V - B.

(3) Since $(\mathcal{O}_{\nu}(1)^{2} \cdot B) = (\mathcal{O}_{M}(1)^{2} \cdot S) = (\mathcal{O}_{S}(5f_{1} + f_{2}))_{S}^{2} = 10$, we have $\mathcal{O}_{\nu}(B)$ $\mathcal{O}_{\nu}(2)$. Therefore $\mathcal{O}_{M}(\psi^{*}B - S) \cong \pi^{*}\mathcal{O}_{P^{2}}(4)$. Since $\psi^{*}B - S$ is a SL_{2} -invariant effective divisor, its support must be D. Thus $\psi^{*}B = S + 2D$.

(4) It is clear since $(\psi^* \mathcal{O}_v(1) \cdot M_t) = (\mathcal{O}_M(1) \cdot M_t) = 1$.

(5) Assume that $\ell_{t_1} = \ell_{t_2}$. Since $\psi|_S \colon S \to B$ is one to one, we have $M_{t_1} \cap S = M_{t_2} \cap S$. Hence $t_1 = t_2$.

(6) Let ℓ be a line of V. If $\ell \not\subset B$, then ℓ contains a point $p \in V \setminus B$.

By Corollary (1.2) in § 1, we have $\sharp \{ \text{lines through } p \} \leq 3$. Thus by (4), (5) above, $\{ \text{lines through } p \} = \{ \ell_{t_1}, \ell_{t_2}, \ell_{t_3} \}$, where $\{ t_1, t_2, t_3 \} = \pi(\psi^{-1}(p))$. Therefore $\ell = \ell_{t_2}$. If $\ell \subseteq B$, then $\ell = \ell_t$ for some $t \in C$, because $\psi|_D$: $D \to B$ is one to one by (3) and $\mathcal{O}_M(1) \otimes \mathcal{O}_D \cong \mathcal{O}_D(s_1 + 5s_2)$ by Lemma 2.1– (2).

THEOREM I. The P^1 -bundle $\pi: M \to P^2$ is the universal family of lines on $V = V_5$.

Proof. Let T be the space of lines on V, that is, T is a subscheme of the Grassmannian G(2, 7) parametrizing lines of $V \subseteq P^6$. Since $N_{\ell|V} \cong$ $\mathcal{O} \oplus \mathcal{O}$ or $\mathcal{O}(-1) \oplus \mathcal{O}(1)$ for any line ℓ on V, we have $H^1(\ell, N_{\ell|V}) = 0$ and $H^0(\ell, N_{\ell|V}) \cong \mathbb{C}^2$. Therefore T is smooth surface. By the universal property of T, we have a morphism $\delta \colon P^2 \to T$ corresponding to the family $(\pi, \psi) \colon M \longrightarrow P^2 \times V$. By Lemma (1.3)-(5), (6), δ is one to one surjective. Therefore δ must be isomorphic.

We put $U_n := \{x \in V; \text{ there is at most } n \text{ lines through } x\}$. Then,

COROLLARY 2.1. $U_3 = V$, $U_2 = B$ and $U_1 = \Sigma$.

§ 3. Compactifications of C^3

Take any point $t \in C \longrightarrow \mathbf{P}^2$ and put $\ell_t := \psi(\pi^{-1}(t))$. Then ℓ_t is a line of type (-1, 1). Let $\sigma : V' \to V$ be blowing up of V along the line ℓ_t and \overline{E}_t be the proper transform in V' of the ruled surface E_t swept out by lines which intersect the line ℓ_t . Then, by Lemma 1.1-(b), we have the birational morphism $\varphi: V' \to W_t$ of V' onto a smooth quadric hypersurface $W_t \cong \mathbf{Q}^3$ in \mathbf{P}^4 , a quadric cone $Q_t := \varphi(\sigma^{-1}(\ell_t)) \cong \mathbf{Q}_0^2$, and a twisted cubic curve $Y_t := \varphi(\overline{E}_t) \longrightarrow Q_t$. Let g_t be the unique generating line of Q_t such that $Y_t \cap g_t = \{v_t\}$, where v_t is the vertex of Q_t . Take any point $v \in g_t \setminus \{v_t\} \cong C$. Let Q_v be the quadric cone in W_t with the vertex v, and put $H_t^v := \sigma(\varphi^{-1}(Q_v))$.

Then, by (4.3) in [2] and [6] (see also §1), we have the following

LEMMA 3.1. (1) For any $t \in C$, (V, E_t) is a compactification of C^3 with the non-normal boundary E_t . Conversely, let (V, H) be a compactification of C^3 with a non-normal boundary H. Then there is a point $t \in C$ such that $H = E_t$.

(2) For any $t \in C$ and any $v \in g_t \setminus \{v_t\} \cong C$, (V, H_t^v) is a compactification of C^3 with the normal boundary H_t^v . Conversely, let (V, H) be a compactification of C^s with a normal boundary H. Then there is a point $t \in C$ and a point $v \in g_t \setminus \{v_i\}$ such that $H = H_t^v$.

Remark 3.1. Let Z_t be the line P^2 which is tangent to C at the point $t \in C$. Then $E_t = \psi(\pi^{-1}(Z_t))$ and $\pi^{-1}(Z_t) \setminus (s_t \cup \pi^{-1}(t)) \cong E_t \setminus \ell_t$, where s_t is the negative section of $\pi^{-1}(Z_t) \cong F_3$.

We put

- $\Lambda_1 := \{\lambda \in \check{P}^6; H_\lambda \text{ is a non-normal hyperplane section of } V \text{ such that} V \setminus H_\lambda \cong C^3\}$, and
- $egin{aligned} & arLambda_2:=\{eta\inec{P}^{s};\ H_{ar\lambda}\ ext{is a normal hyperplane section of }V\ ext{such that }Var{H}_{ar\lambda}\ &\congegin{aligned} & \congegin{aligned} & \congegin{aligned} & \otimesegin{aligned} & & \otimesegin{aligned} &$

where $\check{P}^{\epsilon} := P(\check{L})$.

Then we have

COROLLARY 3.1. $\dim_c \Lambda_1 = 1$ and $\dim_c \Lambda_2 = 2$.

COROLLARY 3.2. For each $t \in C$, $\{\lambda \in \Lambda_1; \ell_t \subseteq H_{\lambda}\} = \{\text{one point}\}$ and $\{\lambda \in \Lambda_2; \ell_t \subseteq H_{\lambda}\} \cong C$.

Now, take a point $t_0 = (1:0:0) \in C$. Then $\ell_{t_0} \longrightarrow P^6$ is written as follows:

$$\ell_{t_0} = \{h_2 = h_3 = h_4 = h_5 = h_6 = 0\}$$

(see the proof of Lemma 2.2-(1)).

Since V is SL_2 -invariant, Λ_1 and Λ_2 are also SL_2 -invariant

By Lemma (1.4) of [9], the 2-dimensional SL_2 -orbits are $SL_2x^3y^3$, $SL_2x^4y^2 = SL_2x^2y^4$, $SL_2x^5y = SL_2xy^5$, and further $SL_2y^6 = SL_2x^6$ is the only one SL_2 -orbit of dimension one on P^6 . Therefore we have $\Lambda_1 = SL_2y^6$. By an easy calculation, we have

$$egin{aligned} &\{\lambda\in SL_2x^3y^3;\ \ell_{t_0}\subseteq H_\lambda\}\cong C\cup C\,,\ &\{\lambda\in SL_2x^2y^4;\ \ell_{t_0}\subseteq H_\lambda\}\cong C\cup C\,,\ &\{\lambda\in SL_2xy^5;\ \ell_{t_0}\subseteq H_\lambda\}\cong C\,. \end{aligned}$$

Thus, by Corollary 3.2, we must have $\Lambda_2 = SL_2xy^5$. We put $\Lambda := \Lambda_1 \cup \Lambda_2$. Then $\Lambda = \overline{SL_2xy^5}$. Therefore, by Lemma (1.6) of [9], Λ is the image of $P^1 \times P^1$ with diagonal SL_2 -operations by a linear system L of bidegree (5, 1) on $P^1 \times P^1$.

Thus we have

THEOREM 3.1. $\Lambda_1 = SL_2y^{\delta}$, $\Lambda_2 = SL_2xy^{\delta}$ and $\Lambda = \overline{SL_2xy^{\delta}}$. In particular, $\Lambda_1 \cong \mathbf{P}^1$ and $\Lambda_2 \cong \mathbf{P}^1 \times \mathbf{P}^1 \setminus \{\text{diagonal}\}.$

We will show explicitly below that for any $\lambda \in \Lambda$, $V \setminus H_{\lambda} \cong C^{3}$. By p. 505 in [9], $V := V_{5} \longrightarrow P^{\delta}$ can be written as follows:

$$egin{cases} h_0h_4 &- 4h_1h_3 + 3h_2^2 = 0\ h_0h_5 &- 3h_1h_4 + 2h_2h_3 = 0\ h_0h_6 &- 9h_2h_4 + 8h_3^2 = 0\ h_1h_6 &- 3h_2h_5 + 2h_3h_4 = 0\ h_2h_6 &- 4h_3h_5 + 3h_4^2 = 0 \ , \end{cases}$$

where $(h_0: h_1: h_2: h_3: h_4: h_5: h_6)$ is the homogeneous coordinate of P^6 .

We have $(0:0:0:0:0:1) \in SL_2y^{\delta}$. In $V \cap \{h_{\delta} \neq 0\}$, we consider the following coordinate transformation

$$egin{aligned} & \left(egin{aligned} x_0 &= h_0 - 9h_2h_4 + 8h_3^2 \ x_1 &= h_1 - 3h_2h_5 + 3h_3h_4 \ x_2 &= h_2 - 4h_3h_5 + 3h_4^2 \ x_3 &= h_3 \ x_4 &= h_4 \ x_5 &= h_5 \ h_6 &= 1 \ . \end{aligned}
ight)$$

Then we have

$$V \cap \{h_6
eq 0\} \cong \{x_0 = x_1 = x_2 = 0\} \cong C^3$$
 ,

and the line $\{h_2 = h_3 = h_4 = h_5 = h_6 = 0\}$ is the singular locus of the boundary $V \cap \{h_6 = 0\}$.

We have $(0:0:0:0:1:0) \in SL_2xy^5$. In $V \cap \{h_5 \neq 0\}$, we consider the coordinate transformation

$$egin{split} & \left(egin{split} x_0 \,=\, h_0 \,-\, 3h_1h_4 \,+\, 2h_2h_3 \ x_1 \,=\, h_1 \ x_2 \,=\, 3h_2 \,-\, h_1h_6 \,-\, 2h_3h_4 \ x_3 \,=\, 4h_3 \,-\, h_2h_6 \,-\, 3h_4^2 \ x_4 \,=\, h_4 \ x_6 \,=\, h_6 \ h_5 \,=\, 1 \;. \end{split}
ight)$$

Then we have

$$V \cap \{h_{\scriptscriptstyle 5}
eq 0\} \cong \{x_{\scriptscriptstyle 0} = x_{\scriptscriptstyle 2} = x_{\scriptscriptstyle 3} = 0\} \cong C^{\scriptscriptstyle 3}\,,$$

and the boundary $V \cap \{h_5 = 0\}$ has a singularity of A_4 -type at the point

(1:0:0:0:0:0:0).

Therefore, for any $\lambda \in SL_2y^{\mathfrak{s}}$ (resp. $SL_2xy^{\mathfrak{s}}$), H_{λ} is non-normal (resp. normal with a rational double point of A_4 -type), and further $V \setminus H_4 \cong C^{\mathfrak{s}}$.

Since Λ_1 and Λ_2 are SL_2 -orbits, we have the following

COROLLARY 3.3 (cf. [6]). Let (V, H) and (V, H') be two compactifications of C^3 with normal (resp. non-normal) boundaries H and H'. Then there is an automorphism α of V such that $H' = \alpha(H)$.

References

- T. Fujita, On the structure of polarized manifolds with total deficiency one, II, J. Math. Soc. Japan, 33 (1981), 415-434.
- [2] M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3dimensional complex affine space C³, Nagoya Math. J., 104 (1986), 1-28.
- [3] N. Furushima N. Nakayama, A new construction of a compactification of C³, Tôhoku Math. J., 41 (1989), 543-560.
- [4] F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. Math., 60 (1954), 213-236.
- [5] V. A. Iskovskih, Fano 3-fold I, Math. U.S.S.R. Izvestija, 11 (1977), 485-527.
- [6] Th. Peternell M. Schneider, Compactifications of $C^{3}(I)$, Math. Ann., 280 (1988), 129-146.
- [7] M. Miyanishi, Algebraic methods in the theory of algebraic threefolds, Advanced study in Pure Math. 1, 1983 Algebraic varieties and Analytic varieties, 66-99.
- [8] S. Mori, Threefolds whose canonical bundle are not numerical effective, Ann. Math., 116 (1982), 133-176.
- [9] S. Mukai-H. Umemura, Minimal rational threefolds, Lecture Notes in Math., 1016, Springer-Verlag (1983), 490-518.

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 West Germany

Current address

M. Furushima Department of Mathematics Faculty of Education Ryukyu University Okinawa, 903-01 Japan

N. Nakayama Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo, 113 Japan

122