ALGEBRAIC K3 SURFACES
WITH FINITE AUTOMORPHISM GROUPS

SHIGEYUKI KONDÔ

Introduction

The purpose of this paper is to give a proof to the result announced in [3]. Let X be an algebraic surface defined over \mathbb{C}. X is called a $K3$ surface if its canonical line bundle K_X is trivial and $\dim H^1(X, \mathcal{O}_X) = 0$. It is known that the automorphism group $\text{Aut}(X)$ of X is isomorphic, up to a finite group, to the factor group $O(S_X)/W_X$, where $O(S_X)$ is the automorphism group of the Picard lattice of X (i.e. S_X is the Picard group of X together with the intersection form) and W_X is its subgroup generated by all reflections associated with elements with square (-2) of S_X ([11]). Recently Nikulin [8], [10] has completely classified the Picard lattices of algebraic $K3$ surfaces with finite automorphism groups.

Our goal is to compute the automorphism groups of such $K3$ surfaces. Let X be an algebraic $K3$ surface with finite automorphism group $\text{Aut}(X)$. By definition, there exists a nowhere vanishing holomorphic 2-form ω_X on X. Since an automorphism g of X preserves ω_X, up to constants, $g^*\omega_X = \alpha_X(g) \cdot \omega_X$ where $\alpha_X(g) \in \mathbb{C}^*$. Therefore we have an exact sequence

$$1 \longrightarrow G_X \longrightarrow \text{Aut}(X) \longrightarrow \mathbb{Z}/m \longrightarrow 1$$

where \mathbb{Z}/m is a cyclic group of m-th root of unity in \mathbb{C}^* and G_X is the kernel of α_X. Moreover the representation of the cyclic group \mathbb{Z}/m in $T_X \otimes \mathbb{Q}$ is isomorphic to a direct sum of irreducible representations of the cyclic group \mathbb{Z}/m over \mathbb{Q} of maximal rank $\phi(m)$, where T_X is a transcendental lattice of X and ϕ is the Euler function. In particular $\phi(m) \leq \text{rank } T_X$ and hence $m \leq 66$ ([6], Theorem 3.1 and Corollary 3.2).

An algebraic $K3$ surface X is called general if the image of α_X is of order at most 2, and X is called special if it is not general. The meaning of this definition is as follows: Let X be an algebraic $K3$ surface with

Received January 26, 1987.
a Picard lattice S_x. Let S be an abstract lattice which is isomorphic to S_x. Denote by M_s the moduli space for algebraic $K3$ surfaces whose Picard lattices are isomorphic to S. Then the dimension of M_s is equal to $20 - \text{rank}(S)$. A general $K3$ surface Y with $S_Y = S$ corresponds to a point of the complement of hypersurfaces in M_s.

Theorem. Let X be an algebraic $K3$ surface with finite automorphism group $\text{Aut}(X)$.

(i) If X is general, then $\text{Aut}(X)$ is as in the following table:

<table>
<thead>
<tr>
<th>S_X</th>
<th>$\text{Aut}(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U \oplus E_6 \oplus E_6 \oplus A_1$</td>
<td>$\mathbb{S}_3 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U \oplus E_6 \oplus E_8$, $U \oplus E_8 \oplus E_7$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U \oplus E_6 \oplus D_6$, $U \oplus E_6 \oplus D_4 \oplus A_1$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U \oplus D_8 \oplus D_6$, $U \oplus E_6 \oplus A_1$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U \oplus E_7 \oplus A_1$, $U \oplus D_6 \oplus A_1$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U \oplus D_8 \oplus A_1$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U(2) \oplus D_8 \oplus D_6$, $U \oplus A_1^2$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>$U(2) \oplus A_1^2$</td>
<td>$\mathbb{Z}/2 \times \mathbb{Z}/2$</td>
</tr>
<tr>
<td>otherwise</td>
<td>$\mathbb{Z}/2$ or ${1}$</td>
</tr>
</tbody>
</table>

where U (resp. $U(2)$) is the lattice of rank 2 with the intersection matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (resp. $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$), A_m, D_n and E_n are negative definite lattices associated with the Dynkin diagrams of type A_m, D_n and E_n respectively and A_1^k denotes the direct sum $A_1 \oplus A_1 \oplus \cdots \oplus A_1$ (k times).

(ii) If X is special, then $\text{Aut}(X)$ is a cyclic extension of the group in the above table.

We remark here that there exists a special $K3$ surface X with $\text{Aut}(X) \simeq \mathbb{Z}/66$. This automorphism acts on the Picard group of X as identity. In [4], we studied automorphisms with this property.

Also for Enriques surfaces with finite automorphism groups, we refer the reader to [2], [9].

To prove the above theorem we use the following phenomenon: In
the exact sequence (1), if \(\text{rank}(S_x) \) becomes smaller, then \(G_x \) too becomes smaller, and the group \(\mathbb{Z}/m \) grows bigger.

In Section 1, we recall the Picard lattices of algebraic K3 surfaces with finite automorphism groups. Section 2 is devoted to the results on finite automorphisms of K3 surfaces due to Nikulin [6] and Mukai [5]. In particular from these results we obtain all the possible cases of \(G_x \) (Lemma 2.3). In Sections 4 and 5 we prove the above theorem. In case \(\text{rank}(S_x) \geq 15 \) we have the dual graph of all smooth rational curves on \(X \) ([8], Sect. 4, Part 5, Table 2) and hence we can compute \(\text{Aut}(X) \). In case \(\text{rank}(S_x) \leq 14 \) it follows from the result in Section 2 that \(G_x \) is a subgroup of \(\mathbb{Z}/3 \) or \(\mathbb{Z}/2 \times \mathbb{Z}/2 \). To determine \(\text{Aut}(X) \) we use the theory of symmetric bilinear forms (cf. [7]) and that of elliptic pencils due to Kodaira [1] and Shioda [12] (Sect. 3).

§ 1. Picard lattices of K3 surfaces with finite automorphism groups

In this section we recall the Nikulin’s classification [8], [10] of Picard lattices of algebraic K3 surfaces with finite automorphism groups.

A lattice \(L \) is a free \(\mathbb{Z} \)-module of finite rank endowed with an integral bilinear form \(\langle , \rangle \). By \(L \oplus L^* \) we denote the orthogonal direct sum of lattices \(L \) and \(L^* \). For a lattice \(L \) and an integer \(m \) we denote by \(L(m) \) the lattice whose bilinear form is the one on \(L \) multiplied by \(m \). Also we denote by \(U \) the lattice of rank 2 with the intersection matrix \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) and by \(A_n, D_n \) and \(E_8 \) the negative definite lattices associated with the Dynkin diagram of type \(A_n, D_n \) and \(E_8 \) respectively. A lattice \(L \) is called **even** if \(\langle x, x \rangle \in 2\mathbb{Z} \) for all \(x \in L \). Let \(S \) be a non degenerate lattice. We denote by \(S^* = \text{Hom}(S, \mathbb{Z}) \) the dual of \(S \). Put \(A_s = S^*/S \). Then \(A_s \) is a finite abelian group which is called the **discriminant group** of \(S \). We denote by \(l(S) \) the number of minimal generators of \(A_s \). A lattice \(S \) is called a **2-elementary** if \(A_s \) is a 2-elementary abelian group. For a 2-elementary lattice \(S \), we define a **parity** \(\delta(S) \) of \(S \) as follows:

\[
\delta(S) = \begin{cases}
0 & \text{if } q_s(x) = 0 \text{ for all } x \in A_s \\
1 & \text{otherwise}
\end{cases}
\]

where \(q_s \) is the quadratic form on \(A_s \) induced from the one on \(S \).

Proposition 1.1 ([8], Theorem 4.3.2). An indefinite 2-elementary even lattice is determined, up to isomorphisms, by the invariants \((\text{rank}(S), l(S)) \),
The following tables give the description of Picard lattices of rank \(\geq 9 \) of algebraic \(K3 \) surfaces with finite automorphism groups which we need for the proof of our theorem.

Table 2 (\(S_x \) is 2-elementary, rank \(S_x \geq 9 \).)

<table>
<thead>
<tr>
<th>rank((S_x))</th>
<th>(S_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>(U\oplus E_6\oplus E_6\oplus A_1)</td>
</tr>
<tr>
<td>18</td>
<td>(U\oplus E_6\oplus E_7)</td>
</tr>
<tr>
<td>17</td>
<td>(U\oplus E_6\oplus E_7)</td>
</tr>
<tr>
<td>16</td>
<td>(U\oplus E_6\oplus D_6)</td>
</tr>
<tr>
<td>15</td>
<td>(U\oplus E_6\oplus D_6\oplus A_1)</td>
</tr>
<tr>
<td>14</td>
<td>(U\oplus E_6\oplus D_6, U\oplus D_6\oplus D_6, U\oplus E_6\oplus A_1)</td>
</tr>
<tr>
<td>13</td>
<td>(U\oplus E_6\oplus A_1, U\oplus E_7\oplus A_1)</td>
</tr>
<tr>
<td>12</td>
<td>(U\oplus E_6\oplus A_2, U\oplus E_7\oplus A_2, U\oplus D_6\oplus A_1)</td>
</tr>
<tr>
<td>11</td>
<td>(U\oplus E_6\oplus A_1, U\oplus E_7\oplus A_1, U\oplus D_6\oplus A_1, U\oplus D_6\oplus A_2)</td>
</tr>
<tr>
<td>10</td>
<td>(U\oplus E_8, U\oplus D_8, U\oplus D_6\oplus D_6, U(2)\oplus D_6\oplus D_6, U\oplus E_7\oplus A_1, U\oplus D_6\oplus A_1, U\oplus D_6\oplus A_2, U\oplus A_1)</td>
</tr>
<tr>
<td>9</td>
<td>(U\oplus E_9, U\oplus D_8\oplus A_1, U\oplus D_6\oplus A_1, U\oplus A_1, U(2)\oplus A_1)</td>
</tr>
</tbody>
</table>

Table 3 (\(S_x \) is not 2-elementary and rank(\(S_x \)) \(\geq 9 \).)

<table>
<thead>
<tr>
<th>rank((S_x))</th>
<th>(S_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>(U\oplus E_8\oplus A_3)</td>
</tr>
<tr>
<td>12</td>
<td>(U\oplus E_8\oplus A_2)</td>
</tr>
<tr>
<td>11</td>
<td>(U\oplus E_8\oplus A_2)</td>
</tr>
<tr>
<td>9</td>
<td>(U\oplus A_7, U\oplus D_8\oplus A_3, U\oplus D_6\oplus A_3, U\oplus D_9, U\oplus E_8\oplus A_1)</td>
</tr>
</tbody>
</table>
§ 2. Finite automorphisms of K3 surfaces

Let X be an algebraic K3 surface. We denote by $\text{Aut}(X)$ the group of automorphisms of X. Let G be a finite subgroup of $\text{Aut}(X)$ and let ω_X be a nowhere vanishing holomorphic 2-form on X. Then for $g \in G$, $g^*\omega_X = \alpha_x(g) \cdot \omega_X$ where $\alpha_x(g) \in C^*$. Therefore we have an exact sequence

$$1 \longrightarrow K \longrightarrow G \longrightarrow Z/m \longrightarrow 1$$

where Z/m is a cyclic group of m-th root of unity in C^* and K is the kernel of α_x. Moreover the representation of the cyclic group Z/m in $T_X \otimes \mathbb{Q}$ is isomorphic to a direct sum of irreducible representations of the cyclic group Z/m over \mathbb{Q} of maximal rank $\phi(m)$, where ϕ is the Euler function. In particular $\phi(m) \leq \text{rank}(T_X)$ and hence $m \leq 66$ ([6], Theorem 3.1 and Corollary 3.2).

An automorphism g of X is called symplectic if $\alpha_x(g) = 1$. The classification of finite symplectic automorphism groups of K3 surfaces is recently given by S. Mukai [5], based on the study of abelian groups due to Nikulin [6].

Proposition 2.1 ([6], § 5, [5], (0.1)). Let g be a symplectic automorphism of finite order n of a K3 surface. Then $n \leq 8$ and the number of fixed points $f(n)$ depends only on n and is as follows:

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Let G be a finite symplectic automorphism group of a K3 surface. Put $f(1) = 24$ and $\mu(G) = (1/|G|) \sum_{g \in G} f(|g|)$. By the Lefschetz fixed point formula and an elementary representation theory, we have

Proposition 2.2 ([5], Proposition 2.4). $\mu(G) = 2 + \text{rank}(L^o)$ where $L = H^1(X, \mathbb{Z})$ and $L^o = \{ x \in L | g^*x = x \text{ for any } g \in G \}$.

In what follows we assume that $\text{Aut}(X)$ is finite. Then we have an exact sequence

$$1 \longrightarrow G_x \longrightarrow \text{Aut}(X) \longrightarrow Z/m \longrightarrow 1$$

where G_x is the kernel of α_x. In Section 5 we shall need the following:
Lemma 2.3. (i) If rank(S_x) ≤ 14, then G_x is a subgroup of Z/3 or Z/2 × Z/2; (ii) If rank(S_x) ≤ 12, then G_x is a subgroup of Z/2; (iii) If rank(S_x) ≤ 8, then G_x = {1}.

Proof. It follows from [6], Theorem 1.1 that \(L^{G_x} \) contains \(T_x \). Since \(G_x \) is finite, the signature of \(S_x^{G_x} \) is equal to \((1, r)\), where \(r \) is a non-negative integer. Hence rank(\(L^{G_x} \)) ≥ rank(\(T_x \)) + 1. Note that rank(\(T_x \)) + rank(S_x) = 22. Now the assertions easily follows from Propositions 2.1 and 2.2.

Proposition 2.4 ([6], § 10). Assume that \(G = G_x \) is a subgroup of Z/3 or Z/2 × Z/2. Then the discriminant group \(A_{L^G} \) of \(L^G \) is as follows:

\[
\begin{array}{|c|c|c|c|}
\hline
G & Z/2 & Z/2 × Z/2 & Z/3 \\
\hline
A_{L^G} & (Z/2)^8 & (Z/2)^8 × (Z/4)^2 & (Z/3)^6 \\
\hline
\end{array}
\]

§ 3. Elliptic pencils on K3 surfaces

Let \(X \) be a K3 surface. An elliptic pencil \(π: X → P^1 \) is a holomorphic map \(π \) from \(X \) to \(P^1 \) whose general fibres are smooth elliptic curves. An effective divisor \(D \) is called a \(m \)-section of \(π \) if \(D F = m \), where \(F \) is a fibre of \(π \) and \(m ∈ N \). A 1-section is simply called a section. All singular fibres of an elliptic pencil were classified by Kodaira [1]. We use the terminology of singular fibres in [1]. The following lemma follows from [11], § 3, Corollary 3, the Riemann-Roch theorem and the classification of singular fibres of elliptic pencils [1].

Lemma 3.1. Let \(X \) be an algebraic K3 surface and let \(S_x \) be the Picard lattice of \(X \). Assume that \(S_x = U ⊕ K \), where \(K \) is a negative definite lattice. Then

(i) there exists an elliptic pencil \(π: X → P^1 \) with a section.

(ii) If \(K = K_1 ⊕ N \), where \(K_1 \) and \(N \) are negative definite lattices and \(N \) is generated by elements with square \((-2)\), then \(π \) has a singular fibre \(F \) as in the following table:

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
N & A_1 & A_2 & A_n (n ≥ 3) & D_n (n ≥ 4) & E_6 & E_7 & E_8 \\
\hline
F & I_2 or III & I_3 or IV & I_{n+1} & I_{n-4}^* & IV^* & III^* & II^* \\
\hline
\end{array}
\]
The following will be used in the latter to prove the existence of symplectic automorphisms.

Proposition 3.2 ([1], Theorem 12.2, [12], Corollaries 1.5, 1.7). Let X be an algebraic $K3$ surface and S_X the Picard lattice of X. Let $\pi: X \to P^1$ be an elliptic pencil with a section and let F_ν ($1 \leq \nu \leq k$) be all singular fibres of π. We denote respectively by ε_ν, m_ν or μ_ν the Euler number of F_ν, the number of irreducible components of F_ν or the number of simple components of F_ν. Then

1. $\sum_{\nu=1}^{k} \varepsilon_\nu = 24$ (the Euler number of X),
2. $\text{rank}(S_X) = r + 2 + \sum_{\nu=1}^{k} (m_\nu - 1)$

where r is the rank of the group of sections of π,

3. when $r = 0$, let n denote the order of the group of sections of π.

Then we have

$$|\det(S_X)| = \prod_{\nu=1}^{k} \mu_\nu / n^2.$$

§ 4. **Proof of the Theorem—the case when $\text{rank}(S_X) \geq 15$**

In this section and the next we prove our theorem. By our proof in the following, we can see:

Proposition. Let X be an algebraic $K3$ surface with finite automorphism group $\text{Aut}(X)$. Then the subgroup G_X of symplectic automorphisms of $\text{Aut}(X)$ is uniquely determined by the isomorphism class of S_X.

The assertion (ii) in Theorem follows from this Proposition and the exact sequence (1). For simplicity, in the following, we assume that X is a general algebraic $K3$ surface with finite automorphism group.

Let X be a general algebraic $K3$ surface with finite automorphism group and $\text{rank}(S_X) \geq 15$. Then S_X is a 2-elementary lattice (see Table 2). By [8], Section 4, there exists an automorphism σ of order 2 such that $\sigma^*|S_X = 1_{S_X}$ and $\sigma^*|T_X = -1_{T_X}$. Therefore we have an exact sequence:

$$1 \longrightarrow G_X \longrightarrow \text{Aut}(X) \xrightarrow{\alpha_X} \mathbb{Z}/2 \longrightarrow 1$$

where $\mathbb{Z}/2$ is generated by σ. Since $g^*|T_X = 1_{T_X}$ for all $g \in G_X$, $g^* \circ \sigma^* = \sigma^* \circ g^*$. It follows from the global Torelli theorem [11] that $g \circ \sigma = \sigma \circ g$. Hence the above exact sequence splits: $\text{Aut}(X) \simeq G_X \times \mathbb{Z}/2$.

A **dual graph** of smooth rational curves is the following simplicial complex Γ: (i) the set of vertices is a set of smooth rational curves on
To determine the group G_X we use the dual graph of all smooth rational curves on X. Such graphs were found by Nikulin [8]. However for $S_X = U \oplus E_8 \oplus E_8 \oplus A_1$, his graph is not complete (compare the following graph in Figure 1 with the table 2 in [8], § 4, Part 5). It follows from [13], Proposition 1 and [14], Lemma 2.4 that the following graph represents all smooth rational curves on X.

Let Γ be the dual graph of all smooth rational curves on X (see Figures 1-5). Consider the natural homomorphism $\rho: \text{Aut}(X) \to \text{Aut}(\Gamma)$, where $\text{Aut}(\Gamma)$ is the symmetry group of Γ. Since S_X is generated by the classes of smooth rational curves in Γ, the kernel of ρ acts on S_X as identity. Hence the symplectic group G_X is regarded as a subgroup of $\text{Aut}(\Gamma)$.

(4.1) $S_X = U \oplus E_8 \oplus E_8 \oplus A_1$. The following diagram Γ is the dual graph of all smooth rational curves on X:

![Diagram](image)

Figure 1

Obviously the symmetry group $\text{Aut}(\Gamma)$ is isomorphic to \mathbb{Z}_3.

We now claim that $G_X \cong \mathbb{Z}_3$. First consider the elliptic pencil $|A_1| = |\sum_{i=1}^{18} E_i|$ which has a section and a singular fibre of type I_{18}. By the formulas in Proposition 3.2, we can see that $|A_1|$ has only one reducible singular fibre of type I_{18} and the group of sections of $|A_1|$ is isomorphic to $\mathbb{Z}/3$. These sections act on X as a symplectic automorphism of order 3 which is a rotation of Γ of order 3. Next consider the elliptic pencil $|A_2| = |E + E_{11-19}|$ which has a section and two singular fibres of type I_5 and of type I_{15}^*. Again it follows from the formulas in Proposition 3.2 that $|A_2|$ has only two reducible singular fibres of type I_5 and of type...
I^*_{12} and the group of sections of $|\Delta|$ is isomorphic to $\mathbb{Z}/2$. Therefore $G_x \simeq \mathbb{Z}/2$.

(4.2) $S_x = U \oplus E_8 \oplus E_6$. The following diagram Γ is the dual graph of all smooth rational curves on X:

![Figure 2](Image)

We claim that $G_x \simeq \text{Aut}(\Gamma) \simeq \mathbb{Z}/2$. Let φ be an isometry of S_x defined by $\varphi((x, y, z)) = (x, z, y)$ where $(x, y, z) \in U \oplus E_8 \oplus E_6$. Note that the second cohomology lattice $L = H^2(X, \mathbb{Z})$ is the direct sum of S_x and T_x. Put $\bar{\varphi} = (\varphi, 1_{T_x}) : S_x \oplus T_x \to S_x \oplus T_x$. Then by the global Torelli theorem [11], there exists an automorphism g of X such that $g^* = \bar{\varphi}$ on L. By construction, g is symplectic and generates Aut(Γ). Hence $G_x \simeq \mathbb{Z}/2$ and $\text{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(4.3) $S_x = U \oplus E_8 \oplus E_6$. The following diagram Γ is the dual graph of all smooth rational curves on X:

![Figure 3](Image)

Obviously $\text{Aut}(\Gamma) \simeq \mathbb{Z}/2$. By considering the elliptic pencil $|E_1 + E_2|$ with a section, we have a symplectic automorphism of order 2 which acts on Γ as a symmetry of order 2. Hence we have $\text{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(4.4) $S_x = U \oplus E_8 \oplus D_6$. The following diagram Γ is the dual graph of all smooth rational curves on X:

![Figure 4](Image)
We can see $\text{Aut}(\Gamma) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$. We select a generator $\{\gamma_1, \gamma_2\}$ of $\text{Aut}(\Gamma)$ as follows; γ_1 is the reflection of Γ with $\gamma_1(E_i) = E_i$ and γ_2 is the reflection with respect to the middle horizontal line. By considering the elliptic pencil $|E_1 + E_2|$ with a section, we have a symplectic automorphism g whose action on Γ coincides with γ_1. On the other hand, if γ_2 is represented by a symplectic automorphism g', then g' preserves 15 smooth rational curves respectively (see Figure 4). Hence the number of fixed points of g' is greater than 8 which is impossible (Proposition 2.1). Thus we have $G_x \simeq \mathbb{Z}/2$ and $\text{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(4.5) $S_x = U \oplus E_1 \oplus D_1 \oplus A_1$. The following diagram Γ is the dual graph of all smooth rational curves on X:

![Diagram](image)

Figure 5

We can see that $\text{Aut}(\Gamma) \simeq \mathbb{S}_3 \times \mathbb{Z}/2$ where $\mathbb{Z}/2$ is generated by the reflection γ with $\gamma(E_i) = E_i$ and \mathbb{S}_3 is the permutations of the set $\{E_i, F_i, L_i\}$. By considering the elliptic pencil $|E_1 + E_2|$ with a section, γ is represented by a symplectic automorphism of order 2. On the other hand, any element of \mathbb{S}_3 is not represented by a symplectic automorphism because a symplectic automorphism of order 2 (resp. of order 3) has exactly 8 (resp. 6) isolated fixed points (Proposition 2.1). Therefore we have $G_x \simeq \mathbb{Z}/2$ and $\text{Aut}(X) \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

§ 5. **Proof of the Theorem—the case when $\text{rank}(S_x) \leq 14$**

(5.1) First we remark that G_x is trivial if $\text{rank}(S_x) \leq 8$ (Lemma 2.3, (iii)). Hence it suffices to consider the case that $9 \leq \text{rank}(S_x) \leq 14$. In these cases, G_x is a subgroup of $\mathbb{Z}/2 \times \mathbb{Z}/2$ or $\mathbb{Z}/3$ (Lemma 2.3). Consider a primitive embedding $T_x \subseteq \mathcal{L}_{ax}$ and denote by T_x^{\perp} the orthogonal complement of T_x in \mathcal{L}_{ax}. Then $T_x \oplus T_x^{\perp}$ is a sublattice of \mathcal{L}_{ax} of finite index and $A_{\mathcal{L}_{ax}}$ is a quotient group of $A_{T_x \oplus T_x^{\perp}}$, and hence $l(T_x \oplus T_x^{\perp}) \geq l(\mathcal{L}_{ax})$.

Since \(\text{rank}(T^\perp_x) \geq l(T^\perp_x) \) and \(l(T^\perp_x) = l(S^\perp_x) \), we have \(l(S^\perp_x) + \text{rank}(T^\perp_x) \geq l(L^{\perp_x}) \). Therefore it follows from Proposition 2.4 that:

\[G^\perp_x = \{1\} \text{ or } \mathbb{Z}/2 \text{ if } S^\perp_x = U \oplus E_8 \oplus D_4, \ U \oplus D_4 \oplus D_4, \ U \oplus E_8 \oplus A^+_8, \ U \oplus E_8 \oplus A^+_4, \ U \oplus D_4 \oplus A^+_4, \ U \oplus E_8 \oplus A^+_4, \ U \oplus E_4 \oplus A^+_4, \ U \oplus E_4 \oplus A^+_4, \ U \oplus A^+_4, \ U \oplus A^+_8, \ or \ U(2) \oplus A^+_4 \text{ and } G^\perp_x = \{1\} \text{ if } S^\perp_x \text{ is otherwise.} \]

Moreover, if \(G^\perp_x = \mathbb{Z}/2 \) and \(S^\perp_x = U \oplus E_8 \oplus D_4, \ U \oplus A^+_4, \ U \oplus D_4 \oplus A^+_4, \ U \oplus A^+_4, \ U \oplus A^+_8, \ U \oplus D_4 \oplus A^+_4, \ U \oplus A^+_4, \ U(2) \oplus A^+_4 \) or \(U(2) \oplus A^+_4, \) then \(A^\perp_{L^\perp_x} = A_{T^\perp_x} \) and hence \(L^{\perp_x} = T^\perp_x \oplus T^\perp_x \). This is a contradiction because \(L^{\perp_x} \) is a 2-elementary lattice with \(\delta_{T^\perp_x} = 0 \) and, on the other hand, \(T^\perp_x \) is a 2-elementary lattice with \(\delta_{T^\perp_x} = 1 \). Also, if \(S^\perp_x = U \oplus E_8 \oplus D_4 \) and \(G^\perp_x = \mathbb{Z}/2 \), then \(l(L^{\perp_x}) = l(T^\perp_x) + l(T^\perp_x) \) and hence \(L^{\perp_x} = T^\perp_x \oplus T^\perp_x \). Hence \(T^\perp_x \) is a 2-elementary lattice with \(\text{rank}(T^\perp_x) = 6, \ l(T^\perp_x) = 6 \) and \(\delta_{T^\perp_x} = 0 \). However, by [7], Theorem 3.6.2, such lattice does not exist.

Hence \(G^\perp_x = \{1\} \) if \(S^\perp_x = U \oplus E_8 \oplus D_4, \ U \oplus E_8 \oplus A^+_8, \ U \oplus E_8 \oplus A^+_4, \ U \oplus D_4 \oplus A^+_4, \ U \oplus D_4 \oplus A^+_4, \ U \oplus A^+_4, \ U \oplus A^+_8, \) or \(U \oplus A^+_4 \).

In the following we shall see that \(G^\perp_x = \mathbb{Z}/2 \) if \(S^\perp_x = U \oplus D_4 \oplus D_4, \ U \oplus E_8 \oplus A^+_8, \ U \oplus E_8 \oplus A^+_4, \ U \oplus D_4 \oplus D_4, \ U \oplus A^+_4, \) or \(U(2) \oplus A^+_4 \).

(5.2) \(S^\perp_x = U \oplus D_4 \oplus D_4 \). Note that there exists an elliptic pencil with a section whose reducible singular fibres are of type \(I^*_8 \) and of type \(I^*_8 \) (Lemma 3.1). Hence we have the following dual graph of smooth rational curves on \(X \):

[Diagram of smooth rational curves]

where \(E_i \) is a section of this pencil and others are components of singular fibres. Let us consider the elliptic pencil \(|D| = |2E_1 + 4E_2 + 6E_3 + 3E_4 + 5E_5 + 4E_6 + 3E_7 + 2E_8 + E_9| \). Then \(E_{10}, E_{11}, E_{12} \) and \(E_{13} \) are components of a singular fibre \(F \) of this pencil \(|D| \). By Proposition 3.2, \(F \) is of type \(I^*_8 \) and hence there exists a smooth rational curve \(E_{14} \) with \(E_{10} + E_{11} + E_{12} + E_{13} + 2E_{14} \in |D| \). Since \(E \) is a 2-section of \(|D| \), \(E \cdot E_{14} = 2 \). Then the elliptic pencil \(|E_{14} + E| \) has two sections \(E_{13}, E_9 \) and these two sections define a symplectic automorphism. Therefore \(G^\perp_x \simeq \mathbb{Z}/2 \).

(5.3) \(S^\perp_x = U \oplus E_8 \oplus A^+_4 \). First we remark that \(U \oplus E_8 \oplus A^+_4 \) is isomor-
phic to $U \oplus E_r \oplus D_i \oplus A_i$ (Proposition 1.1). Therefore there exists an elliptic pencil with a section which has three reducible singular fibres of type Π^*_a, I^*_b and I_c (Lemma 3.1). Hence we have the following dual graph of smooth rational curves on X:

![Dual Graph](image)

where E_g is a section of this pencil and others are components of singular fibres. Consider the elliptic pencil $|\mathcal{A}| = |E_1 + E_2 + E_3 + 2(E_2 + E_3)|$. Then E_j, $9 \leq j \leq 14$, are contained in some singular fibre F of $|\mathcal{A}|$. It follows from Proposition 3.2 that F is of type I^*_c. Hence there exists a smooth rational curve E with $E + E_9 + E_{10} + 2(E_9 + E_{10}) \in |\mathcal{A}|$. Since E_9 is a 2-section of $|\mathcal{A}|$, $E \cdot E_9 = 2$. Then the elliptic pencil $|E + E_9|$ has two sections E_3 and E_{10} which define a symplectic automorphism of order 2. Therefore we have $G_x \simeq \mathbb{Z}/2$.

(5.4) $S_x = U \oplus E_r \oplus A_i^i$. First note that $U \oplus E_r \oplus A_i^i \simeq U \oplus D_i \oplus D_i \oplus A_i$ (Proposition 1.1). Since there exists an elliptic pencil with a section which has three reducible singular fibres of type I^*_a, I^*_b and I_c (Lemma 3.1), we have the following dual graph:

![Dual Graph](image)

where E_g is a section of this pencil and others are components of singular fibres. Consider the elliptic pencil $|\mathcal{A}| = |E_1 + E_2 + E_3 + 2(E_2 + E_3)|$. Then E_j, $8 \leq j \leq 12$, are components of singular fibres of $|\mathcal{A}|$. Since K is a section of $|\mathcal{A}|$ and $K \cdot E_g = K \cdot E_9 = 1$, E_9 is not a component of a singular fibre containing E_g. It now follows from Proposition 3.2 that the reducible singular fibres of $|\mathcal{A}|$ are of type I^*_a, I^*_b and I_c. Hence there exists a smooth rational curve E with $E + E_9 + E_{10} + 2E_{10} \in |\mathcal{A}|$. Since F is a 2-section of $|\mathcal{A}|$, $E \cdot F = 2$. The elliptic pencil $|E + F|$ has two sections E_3 and E_{10}, and hence $G_x \simeq \mathbb{Z}/2$.
(5.5) $S_x = U \oplus D_6 \oplus A^4_4$. First note that $U \oplus D_6 \oplus A^4_4 \simeq U \oplus D_5 \oplus D_5 \oplus A^4_4$ (Proposition 1.1). Since there exists an elliptic pencil with a section which has 4 reducible singular fibres of type I^*_o, I^*_o, I_2, and I_2 (Lemma 3.1), we have the following dual graph:

![Diagram](https://example.com/diagram)

where E_5 is a section of this pencil and others are components of singular fibres. Then the elliptic pencil $|E_1 + E_2 + E_3 + E_4 + 2E_5|$ has two sections. Hence $G_x \simeq \mathbb{Z}/2$.

(5.6) $S_x = U \oplus D_6 \oplus A^6_4$. Since there exists an elliptic pencil with a section which has one singular fibre of type I^*_o and 6 singular fibres of type I_2 (Lemma 3.1), we have the following dual graph of smooth rational curves:

![Diagram](https://example.com/diagram)

where E_5 is a section of this pencil and others are components of singular fibres. Consider the elliptic pencil $|A| = |E_1 + E_2 + E_3 + E_4 + 2E_5|$. Then E_j, $6 \leq j \leq 11$, are components of singular fibres of $|A|$. By Proposition 3.2, the following two cases occur: (a) $|A|$ has reducible singular fibres of type I^*_o, I^*_o, I_2, and I_2; (b) $|A|$ has two reducible singular fibres of type I^*_o and I^*_o. In case (a), we may assume that there exists a smooth rational curve E with $E + E_6 \in |A|$. Since E_{12} is a 2-section of $|A|$, we have $E \cdot E_{12} = 2$. Then the elliptic pencil $|E + E_{12}|$ has two sections E_5 and E_9, and hence $G_x \simeq \mathbb{Z}/2$. In case (b), we may assume that there exists a smooth rational curve F with $E_5 + E_9 + E_{11} + 2E_3 + 2E_{10} + 2F \in |A|$. Then the elliptic pencil $|E_5 + E_{10} + E_{11} + E_{12} + 2E_9|$ has two sections E_5 and F, and hence $G_x \simeq \mathbb{Z}/2$.
\[(5.7) \quad S_x = U \oplus D_4 \oplus A_1^i. \text{ In this case, the same argument as in (5.6) shows } G_x \simeq \mathbb{Z}/2.\]

\[(5.8) \quad S_x = U(2) \oplus D_4 \oplus D_v. \text{ First we claim that } S_x \text{ is isomorphic to } U \oplus K, \text{ where } K \text{ is a negative definite lattice of rank 8. Let } \{e, f\} \text{ be a basis of } U(2) \text{ and } \{e_j, f_j\} \text{ the two copies of a basis of } D_i \text{ as in the following dual graphs:}\]

\[\begin{array}{c}
 e_1 & e_2 & e_3 & e_4 \\
 f_1 & f_2 & f_3 & f_4
\end{array}\]

Put \(\delta = e + f + e_i + f_i\). Then \(\delta^2 = 0\) and \(\langle \delta, e_i \rangle = 1\). Hence \(\delta\) and \(e_i\) generate a sublattice of \(S_x\) isomorphic to \(U\). So we have \(S_x \simeq U \oplus K\). Therefore there exists an elliptic pencil \(|\Delta|\) with a section (Lemma 3.1). It follows from Proposition 3.2, (ii) that \(K\) has a sublattice \(K'\) of finite index which is generated by some components of singular fibres of \(|\Delta|\). Since \(K\) is a 2-elementary lattice with rank \(K = 8\), \(\det K = 2^6\) and \(\delta_x = 0\), we can see that \(K \neq K'\). Hence the group of section of \(|\Delta|\) is not trivial (Proposition 3.2, (iii)). Therefore \(G_x \simeq \mathbb{Z}/2\).

\[(5.9) \quad S_x = U(2) \oplus D_4 \oplus A_1^i. \text{ In these cases, to prove } G_x \simeq \mathbb{Z}/2, \text{ we give a lattice theoretic construction of a symplectic automorphism.}\]

In case \(S_x = U \oplus A_1^i\), consider a sublattice \(\langle 2 \rangle \oplus \langle -2 \rangle \oplus A_1^i\) of \(S_x\). Since a 2-elementary lattices \(S\) is determined by \(\text{rank}(S_x), l(S)\) and the parity of \(S\), this sublattice is isomorphic to \(\langle 2 \rangle \oplus \langle -2 \rangle \oplus E_8(2)\) (Proposition 1.1). By this isomorphism, we consider \(\langle 2 \rangle \oplus \langle -2 \rangle \oplus E_8(2)\) as a sublattice of \(S_x\). Let \(\iota\) be an involution of \(\langle 2 \rangle \oplus \langle -2 \rangle \oplus E_8(2)\) such that \(\iota|\langle 2 \rangle \oplus \langle -2 \rangle = 1\) and \(\iota|E_8(2) = -1\). Since \(\langle 2 \rangle \oplus \langle -2 \rangle\) and \(E_8(2)\) are 2-elementary, \(\iota\) extends to an involution \(\iota'\) of \(S_x\). By construction, \(\iota'\) acts on the discriminant group \(A_{s_x}\) as identity. Hence \(\iota'\) extends to an involution \(\iota\) of \(L_x\) with \(\iota|T_x = 1\). \(\iota\) preserves a period of \(X\) and the Kähler cone because \(E_8(2)\) contains no \((-2)\)-elements. Hence by the global Torelli theorem [11], \(\iota\) is represented by a symplectic automorphism of order 2.

In case \(S_x = U(2) \oplus A_1^i\), we define two involutions \(\sigma\) and \(g\) of \(L_x\) as follows: let \(\{\alpha_i, \beta_i\}\) be a copy of a basis of \(U(1 \leq i \leq 3)\) and let \(\{e_j, f_j\}\) be copies of a basis of \(E_8(1 \leq j \leq 8)\). Then \(\{\alpha_i, \beta_i, e_j, f_j\}\) \((1 \leq i \leq 3, 1 \leq j \leq 8)\) is a basis of \(L_x = U \oplus U \oplus U \oplus E_8 \oplus E_8\). Put \(g|U \oplus U \oplus U = 1\) and

\[\begin{array}{c}
 e_i & e_i \\
 f_j & f_j
\end{array}\]

\[\begin{array}{c}
 \alpha_i & \beta_i \\
 e_j & f_j
\end{array}\]
$g(e_j) = f_j, \ 1 \leq j \leq 8, \ \sigma(\alpha_i) = \beta_i, \ \sigma(\beta_i) = -\alpha_i, \ \sigma(\gamma_i) = -\beta_i, \ 2 \leq i \leq 3,$ and $\sigma(e_j) = -f_j, \ 1 \leq j \leq 8$. Then $L^{(\sigma)}$ is isomorphic to $\langle 2 \rangle \oplus E_8(2) \cong U(2) \oplus A_1$ which is generated by $\{\alpha_i + \beta_i, e_j - f_j | j = 1, \ldots, 8\}$. On the other hand $L^{(\sigma)}$ is isomorphic to $U \oplus U \oplus U \oplus E_8(2)$ which is generated by $\{\alpha_i, \beta_i, e_j + f_j | i = 1, 2, 3, j = 1, \ldots, 8\}$. How we consider $L^{(\sigma)}_X$ as a Picard lattices S_X. Then we can easily see that g preserves the Kähler cone of X and a period of X. Hence by the global Torelli theorem [11], g is represented by a symplectic automorphism. Thus we have $G_x \simeq \mathbb{Z}/2$.

References

Department of Mathematical Sciences
Tokyo Denki University
Hatoyama-machi, Hiki-gun,
Saitama-ken, 350-03 Japan