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CALCULUS ON GAUSSIAN AND POISSON WHITE NOISES
YOSHIFUSA ITO anp IZUMI KUBO

§1. Introduction

Recently one of the authors has introduced the concept of generalized
Poisson functionals and discussed the differentiation, renormalization,
stochastic integrals etc. ([8], [9]), analogously to the works of T. Hida
([31, [4], []). Here we introduce a transformation &, for Poisson fnnctionals
with the idea as in the case of Gaussian white noise (cf. [10], [11], [12],
[18]). Then we can discuss the differentiation, renormalization, multiple
Wiener integrals etc. in'a way completely parallel with the Gaussian case.
The only one exceptional point, which is most significant, is that the mul-
tiplications are described by

x%(t)- = oF + 9, for the Gaussian case,
xP(@)-= @F + D@, + 1) for the Poisson case,

as will be stated in Section 5. Conversely, those formulae characterize the
types of white noises.

In Section 2, we will define Gaussian and Poisson white noises on
a general parameter space T, which is a separable topological space with
a o-finite non-atomic Borel measure v. Let & € LXT,v) C &* be a Gel’fand
triplet satisfying the assumptions [A.1], [A.2], [A.3] in Section 2. Then
the measure of Gaussian white noise yp,; and the measure of Poisson white
noise pp are characterized respectively by their Fourier transforms

[ explicx, ©ldu® = exp [ -+ [ le0ru0)]

[ exp licx, ©)1dusx) = exp [ [ (exp lie))] — Daviy)] .

with ¢ in . Then we introduce transformations &, from L%&*, p;) and
& p from LYE*, pp) to the same space F© which is a Hilbert space with
the reproducing kernel exp [(&, »)], n € é.
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In Section 3, we will see fundamental properties of the space ZF©,
Then we will construct a new Gel’fand triplet # C #© C #* in connec-
tion with the structure of the basic Gel’fand triplet & c LXT,v) C &*.
Propositions, which will be used in later sections, are prepared. Any
functional U(¢) in & * is Fréchet differentiable (Theorem 3.9). Moreover,
if U) is in &, then the n-th Fréchet derivative U™(&; 9y, 1, - - -, 1)
defines an element U™(&; -) of &% such that

U 7 s 1) = [ P OUE D) - 7.t

and that U™(¢; ¢) belongs to & for fixed ¢ = (¢, 8, - - -, t,) € T" (Theorem
3.9, Corollary 3.14). The mapping U(§) — {% U™(0; -)} defines an iso-

morphism from the Gelfand triplet & C F© C F* to that of Fock’s
spaces exp [®&] C exp [RLYT, v)] C exp [R&E*].

In Section 4, a Gel'fand triplet #; C #Q C #% will be induced from
F C FO c F* through the mapping &y, X = G, P, respectively. A
continuous operator 9, on #y is defined by

2o = y;(a—;aww)@) .

Then its dual 98 is a continuous operator on %, which satisfies
0o = L (EQD) (L xp)8)).

For f,e L¥(T", v"), denote by I%(f,) and by I?(f,) the multiple Wiener
integrals with respect to the Gaussian white noise and the Poisson white
noise, respectively. Then I*(f,) has the expression

1X(f) = [ dr@f.wasor. - ox1

(see Theorem 4.7). Some estimations of norms of operators related to 9,
and 9F will be given.

In Section 5, we shall characterize the respective white noises by
means of multiplication operators, as stated above (see Theorem 5.3,
Theorem 5.4, Theorem 5.5).

In Section 6, we note that we can use the concept of Wick’s normal
ordering : :, since {d,, 3F; t € T} satisfy the canonical commutation rela-
tions. By using it, we have a new expression of the multiple Wiener inte-
gral I7(f,) as



WHITE NOISES 43

IX(f) = Ln A" (Of(0): () — (x(2)))- - - (x(t,) - — {x(t))): 1

in"#%, X = G, P. The expression is convenient, because the relation

I (f)e = Ln A" Of(0): (x(t)- — (x(2)))- - - (x(t,) - — {x(t))): ¢

holds in s##% (Theorem 6.4). The renormalization in the case of Gaussian
by T. Hida (or in the case of Poisson by one of the authors) coincides
with Wick’s normal ordering after operating on the constant 1, which
may be called the vacuum (cf. [3], [9], [11]).

In Section 7, we will remark that the operator 9, corresponds to the
difference 4,0 = ¢o(x + 0,) — ¢(x) and the transformation ¥, is closely
related to the semi-group with the generator 4, in the Poisson case. In
the Gaussian case 9, corresponds to Gateaux derivative in the direction
of 9, (see [13]).

§2. Gaussian and Poisson white noises

First of all, we give a setting of calculus on a Gaussian white noise
(cf. [10], [11], [12]). Let T be a separable topological space with a ¢-finite
non-atomic Borel measure v. Let & be a dense linear subset of LT, v)
and let {(¢, 7),; & n€6},., be a consistent sequence of inner products
such that

2.1 pllllper = 1I§ll,  for any §eé, p >0,
with a fixed p€(0,1) and

G o= €00,

Let us identify E, = LXT, v) with its dual. Let E, be the completion of
& with respect to the inner product ( , ), and let E_, be the dual of E,
with inner product ( , )_,, for p > 1. Then we have inclusions E,,,C E,,
peZ. Suppose that & = N, E, and topologize & as the projective limit
of E, as p— co. Let &* be the dual of &, then &* is the inductive limit of
E, as p— —oo. We denote by (, ) the canonical bilinear forms between
any dual pairs. Then obviously, (&, ) = (&, 7), holds if & pe E, Addi-
tionally, we assume the following:

[A.1] The injection E, S E, is traceable; that is, the evaluation map
0,: & — &(t) gives a continuous mapping t— 6, from T into E_,. Moreover,
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@2 81F = [ ladE o) < oo

Then the injection E, S E, is a Hilbert-Schmidt operator (see [10]).
Hence, by Bochner-Minlos-Sazanov’s theorem, we can find a probability
measure g, on &* such that

2.3) [ explicx, ©1duot) = exp [~ 118]

Let us denote L*(6*, ps) by (L%). Then the following transformation %,
gives an isomorphism from (L}) onto #© which is the Hilbert space with
reproducing kernel exp[{§, )], & ne &: For o(x) e (L%), define

o) = | ol + Ddpo®)
= [ @ exp [ & — Liit]du,

by using a theorem on the density of Gaussian measure (see [14]).
Actually, put

@2.4) F9©) = & = exp [ &) — 2gl]  for ges.

Then we have

(L)) = exp [§, ],
(2.5 (ZLs0)&) = (p(x), fOE; %)zzy »
(f9(&; x), f°(n; X))z, = exp [K&, ] .

Since {f%(y; x); n € &} is a total subset of (L%); that is, the set of all linear
combinations is dense in (L}), the above formulae imply that exp [{¢, »)]
is the reproducing kernel.

Let us introduce the Hermite’s polynomials with parameter ¥ by the

generating function exp [wz — %mz];

(2.6) i —l—w"Hn(z; 7) = exp [wz — _T_wz] .
=0 n! 2
Then we have

2.7 FLat H(Kx, 705 [191k) —> & »",
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more generally,
Therefore we have

K& ", (& O™z = (HL(x, 5 I, Hallx, £ 1810wz

2.9)
( = 8., n!I& ",

Now we come to Poisson white noise on T with intensity v. To
establish the calculus on Poisson white noise, it is convenient to require
that the basic function space has an algebraic structure. Hence we
assume additional assumptions:

[A.2] For & neé, & belongs to & and satisfies

(2.10) l&nll, < Cp-li§ll,-lInll,  for p>1.
[A.8] The triplet & ¢ LXT,v) C &% is a Gelfand triplet and the
evaluating map § satisfies

(211) 18]l = [ 121-d® + sup [3,].. < eo.

It must be noted that Schwartz space (RY) admits a consistent
sequence of inner products which satisfy the assumptions [A.1, 2, 3].
Since estimations

|E(t)| = [<5z, 5>| < ||l llE ]
[6@®) — &) < (16, — d,[-alI€lh,

hold for &c¢E, & is a continuous bounded function belonging to
LT, v) N LXT, v) with

1§11z + sup [EB] < 9] [1€]-1.

Furthermore, C,(§) = exp U (exp [i£(®)] — l)du(t)] is a positive definite
T

continuous functional on E,. Hence there exists a probability measure
pr on &* such that

@129 [ explicx ©ldp@ = exp|[ (exp liE®] — Datt)]

for any §e€ 6. We call p, the measure of Poisson white noise with intensity
v. Denote by (L}) the L*-space L*(&*, pp). To analyze (L%), we define
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an isomorphism &, from (L%) onto the reproducing kernel Hilbert space
F @ introduced above by

() = [ o) exp [(x, log(1 + ) — | sdutwldper()

for £ &. Since log(1l + &(t)) does not belong to € in general, we therefore
use a trick as follows. For simplicity of notation, we write

7=, 10800

Since I7(p) = I7(y; x) = {x, 9> — 7, p€ &, is a random variable with mean
zero and variance ||7{3, the mapping I”: & — (L%) can be extended to an
isometry from E, = LT, v) into (L%). Then

(2.13) f exp [iI7(7; 2)ldger(x) = exp U (exp li(@)] — in(w) — l)d»(u)]

holds for pe E,. For a given Borel set A with y(A) < oo, we define a Poisson
random measure P(A) by

(2.14) P(A) = I*(1,;x) and P(A) = P(A) + w(A).

Appealing to (2.13), we can see that P(A) is a Poisson random variable
with mean v(A), i.e.

pr(P(A) = k) = () "u(A) exp[—1(4)], £ =0,1,2, ---.

Conversely, any » in E, can be approximated by a sequence of step func-
tions 7, = 2 €y X4, and

I"(p) = e ;P(An ) —>I7(7)  in (L}) as n—oco.
Moreover, if 5, converges to 7 which is also in L'(T,v), then
226 P(A, ) —> IP() + 7 in (L7).

Thus, we introduce a notation of stochastic integrals:
[ 1wdP@=10) + 7 and [ 2(wdP) = 176).

Since P(A) is subjected to a Poisson distribution, f p(wdP(u) is a Z-valued
T

(a.s.) random variable, if 5(¢) takes its values only in Z. This guarantees
that the real valued random variable
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£7; 9 = exp | log (1 + n(w)aP@ — 1]
(2.15)
— (=D exp| [ log1 + 7(w)|dP@) — 7]

is well defined independently of the choice of branches of log (1 + »(2)),
since v({u; p(u) < — 1}) < oo for e &. By (2.13),

(2.16) Lf "(y; 2)dpp(x) = 1

is proved. Obviously, we have the relation

(2.17) frp; Of7(C: %) = fPOL + 9+ & x)-expl(n, O] as.
Hence we get the equality

(2.18) (F7(p; ), f1EC5 sy = exp [(p, O] = exp [y, £H].

For given 5 e E, = L¥(T, v), we can choose a sequence {y,} such that 7,
converges to 7 in E, and that f7(y»,; x) is well defined by (2.15). By (2.18),
we have that

”](‘P(vn) - fp(vm)”(L'}:) = exp [ll’?n ”g] + exp [va”ﬂ - 2 exp [(77719 7)m)0] —> 0
as n,m-— oo,

Therefore the non-linear mapping f? can be extended to LX(T, v) continuously,
and it satisfies the formulae (2.16), (2.17) and (2.18). On the other hand,
the expression

(2.19) f7(y; x) = exp [{x, log (1 + 7)) — 7]

is possible, if » belongs to the set & = {exp [({)] — 1; { € &}, which is a
total subset of & by virtue of Assumption [A.2]. Now we define an
isomorphism &, from (L%) onto &#© by

(20 = [ olf (& Do), € 6.

THEOREM 2.1. The two different L’-spaces (L) and (L%) are isomorphic
to the common functional space F© under the isomorphisms &; and &,
respectively;

220 (Zx9)® = | o@F G Ddpx®) = @ @y X =G P,



48 YOSHIFUSA ITO AND IZUMI KUBO

where f¢ and f* are defined by (2.4) and (2.19), respectively. In particular,
we have that

(2.21) (LxfX)E) = exp[(&, )], Fl=1

Proof. Let #, be the linear hull of {f*(y); e #(R)}. By (2.5), (21.6)
and (2.18), we have (2.21). Therefore &, is an isomorphism from the
closure of #, onto F©, because the equalities

& x (), x[*(D)sw = (exp [, D], exp [(§, )] 0
= exp [(7, O] = (F* (), FF Dy

hold for X = G, P. Suppose that a ¢(x) e (L%) is orthogonal to #,. Then

(Lxo)&) = (f*(©), )ut = 0 for any &eé. By the definition of f*(¢; X),
we can show that

~Lgo,(x) exp [i{x, £)]du (x) =0 for any £¢e6.

This implies that ¢(x) = 0. Therefore #, is dense in (LY), X =G, P. O

We now see some formulae related to &,. By (2.15), we have
@22 (#rexp [T O = exp [ [ (ex0 W] — D@ + D — 7]

Following [9], we define Generalized Charlier polynomials {C.(x; n)};-, of
Possion white noise as follows. For xe &*, there exists a p >0 such
that x belongs to E_,. Then for a given neé&, 50, log(1 + oy(?)),
lo| <1/(C,linll,), are analytic vectors in E, by the Assumption [A.2].
Therefore (x, log(1 + wp)) is analytic in small . Hence

(2.23) Clwin = D fron 3|

is defined as a continuous functional of x. By the proof of Proposition
3.4, it will be shown that the derivative in (2.23) exists in the strong
sense in (L%) and that

(2.29) (ZpCo(x; PXE) = <& "
Applying Proposition 3.4, we have that

(Cn(x; 77), Cm(x; C))(L’P) = (<E7 77>n, <Er C>m)§(°’
2.25
( ) = 5n,mn! <7]7 C>n ’
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(2.26) from 9 =35 Y Cn  in L),

n=0

Lastly we derive the recursive formulae of the C,(x; 5)’s from the equality

d‘i [ (og; x) = {<x, : > — ﬁ}f”(am; x) for small o,

14 oy

n . n!
Con(ws ) = 35 (=1 o, = 5C (3 ) — 7C.(x3 ),
(2.27) j=0 J!

Clx; ) =1, Cix; ) = {x, 9 — 7.
By the same way we define
Cnl,-n,nk(x; Bis 0y 77]c)

.2 n1 ng
229 =- o s o+ A o x)
awnl awnk o=

0,0ce,0p=0*
Then the following theorem is shown by Lemma 3.5 (cf. [9]).

THEOREM 2.2. Let {1} (CL(R)) be a c.omns. of L*(R). Then {(n,!---
) C, (X e )} B8 @ cons. of (L)
§3. Gel'fand triplet # C F© C F*

In this section, we will discuss the structure of the Hilbert space
F© given in Section 2. The same discussion has been given in [10]
mainly in connection with Fock’s spaces without details of proofs. Let
us begin with a basic triplet 6§ C E, = LX(T, v) C §* which satisfies (2.1)
and [A.2]. The inclusions E, S E, S E_,, p > 1, mean that every y € E, is an
element of the dual space E_, of E, and satisfies

(3.1 &y =(&7)  forany ek,
and that there exists an isomorphism 6, from E_, to E, satisfying
(3.2) &0 =(6100,=0,60., forfeck,lck .
We write 6_, = 6;'. Define a subset .# of #© by
7 =1{Lbexp (& 1)) 1,€ 6, by € R)
and introduce inner products ( , ), on % by

(3.3) (exp [<&, )], exp (&, DD = exp(y, O],



50 YGSHIFUSA ITO AND IZUMI KUBO

by the positive definiteness of exp [(3, {),]. Let #® be the completion of
% with respect to the inner product ( , )so.

ProposITION 3.1. F® is a Hilbert space with reproducing kernel
exp [(&, 9)_,l, & ne &, and hence each element U(¢) of ¥ is a continuous
non-linear functional which can be continuously extended to E_,.

Proof. Suppose that {{,} € & and ||, — ][, >0 as n— . Then, it
is easily seen that exp [{§, {,>] is a Cauchy sequence in F @, because of
the equality

”exp [<'§) Cn>] — exp [<$’ Cm>]”;<w
= exp [[|C. 1] + exp [IC. 1] — 2exp [(Ca Ca),] -

Let W, be the limit, W/(&) = lim,_.. exp[{§, £,)] in F®. Then for U(¢)
= 2. b,exp[(4, 9] in &, we have equalities

(Uv W’C)&’U” = }:}B(U(s)5 exp [<‘§s Cn>])$"17’
= 22b;exp[(C, 7),] = U@-,0,

which imply (U, W,,,)s» = U(y) for ne &. Therefore U,(y) = (U,, W,,,) s
converges to U(yp) = (U, W,,,);» for each fixed ne &, if U,(e &) converges
to Uin F® as n— o. Since 6,6 is dense in E,, {W,,,; n€ 6} is a total
subset of #®. Hence the values U(y), 5 € &, characterize the vector U in
F @ uniquely. Thus F® can be considered as a functional space on &.
Since the equalities

Wa,,c(’?) = (Wepc: Wo,,,;)wm = exp [€0,, »)] = exp[(, 7)-,]

are easily seen, together with U(y) = (U, W,,,),»», We can conclude that
Wo,(p) = expl(, »)_,] is the reproducing kernel of % ®. O

By (2.1), (& 9),.1 — (6, 7), is a positive definite functional on &.
Therefore exp [(£, 9),..] — exp[(¢, 7),] is also positive definite and hence

1Ullswen 2 |Ullp for Ue &
holds. Thus we have natural inclusions
gz‘(p+1) g y(p)’ pe Z.

Let & be the projective limit of F® as p— co, and let F* be the
inductive limit of #® as p— —oo.
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ProposITION 3.2. Each &P is the dual of P, pe Z, and F* is the
dual of #. Moreover

U, exp [K&, 1> = U).
Proof. Define a transformation @, on % by
0,U(¢) = 2. by exp [(§, b,7,)]  for U(§) = 27 b, exp [(§, 7,)].
Then for V(&) = 3¢, exp [(& ¢ >l e &, it holds that
©,U(8), 0,V(E)swm = 3 byc exp [(0,7;, 6,80),]
= Z bjck exp [(77]" Ck)-p] = (U(E)y V(S))g&'(—l’) )

©,U), V(&)sw = 2, bycexp [(0,7;, Ci),)
= 2. byeiexp [y, Ced] = (UE), V(®)sw .
Therefore ©, can be extended to an isomorphism from F P to FP,

because O_, gives the inverse of 6,. By (3.5), #? is the dual space of
Fo 0

3.4)

(3.5

Thus we have a triplet & C F© C #*. We will show later that it
is a Gel’fand triplet, if so is the basic triplet & C E, C &* (Proposition
3.6). Now we discuss the decomposition of F®.

LemMA 3.3. Let {U,(&)} be a bounded sequence in F®. If the limit,
lim,_. U,(&) = U(®), exists for each &€&, then U(&) belongs to F® and
U.(&) converges to U(¢) weakly in F .

Proof. Since & is dense in & ‘-?, Proposition 3.2 implies the assertion
obviously. O

ProposiTioN 3.4. For any 3, L €&, (& p)" and (&, O™ belong to F©
and they satisfy the equality

(<$) 77>)n’ <5» C>m)§‘P’ = 5n,mn!(779 C)Z
Let #® be the subspace of @ spanned by {{§, n>"; ne ). Then we have

®» 5 @
F n§=0 DF
Proof. Obviously,

-exp [, ] — " = 27 35 ()= exp [<&, 2kn)]

k=1
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belongs to #® and converges to <&, »)" as 2—0 for each £e&. Since
we have

A "(eX6? — 1P = 272" kél <Z)<;}>(__1)2n—k-j PRI
= 1% 33 ()= DrHexo 2 gl — D"

k=1

5 5 (R) v el = ntigl,

(& p)™ is in F® and its norm is dominated by (n!)”*||7|[r. Therefore

exp [w(&, 7] = 3. Z—Z(E, "

=0
converges strongly in #®. Hence we have
exp [0A(y, 0),] = (exp [0(§, P, exp [&, {DDsw
= 3 2R D 6 O
Thus we have proved the first assertion, which assures the orthogonality

of F®’s. Suppose that U(f)e F® 1is orthogonal to every F®. By
Proposition 3.2, we have

Uty) = CUGE), exp &, dI> = 3 %(U(e), & )" s =0

n=0
for any 7€ é. O

LemmA 3.5.
(i) FOI‘?]'jGEp, n120:j=1,2"",k; n=n;+n,+ --- + ng

IIH;I &) lem < (0 LTl 15
(i1) If {y;}t., is an orthogonal system in E,, then
(IJ] <§, 771>nj’ U <&, ﬁj)mj)f‘m = 1;[ [5nj,mjnj!”77]”§’nj] .

(i) If {;};-: is a complete orthonormal system of E, then a col-
lection {[1,;[(n;)7/*C&, 9;>"]; n; >0, n = 3, n} forms a complete ortho-
normal system of F®.

Proof. By Proposition 3.4, we have the equalities
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((Z wj<$’ 77j>)ny (Z 2k<$> 77k>)n)y<p)
= nl (X om;, 22 Ay = nl S 04, 10,)",

which induce (i). If {;} is an orthogonal system, then the last term of
(3.6) is equal to n!(C; w,4,|9;Ik)". Therefore we see (ii). To show (iii),
the completeness must be proved. For any (e E,, put {, = 277, (&, 7).,
Then we can see that <&, {,>" converges to (& ()" in FP as m — oo,
Therefore the system given in (iii) spans F® by definition. O

(3.6)

ProposITION 3.6. If & C E, C &* is a Gel'fand triplet satisfying (2.1),
then & C F9 C ZF* is also a Gel’fand triplet.

Proof. For given p, we can find q (>p) such that the injection
¢: E,S E, is of Hilbert-Schmidt type. Then there exists a complete
orthonormal system {7,} of E, such that

(77j9 7]k)p = Zéaj,ky “‘“gls = Z 2§ < .
Since |2;] < p <1 by (2.1), we have that

5D ) E

On=ng+ng+eee

=% B M= 10-2"<e.

n=0n=n1+ng+--
This shows the assertion. O

Lemma 3.7. (i) The series
BN 5 L e O and 3 n)texp K8, O]
nm=0 nlm! #=0 n!
converge to the same limit exp [{&, 5 + {)] strongly in F® for any {, n€ E,.

(i) expe n+ 01— 52 nFex K6 DI = Ol

Gi) K& 7>+ <8 ) exp e Ol < 53 BT .
Proof. By Lemma 3.5 (i), we have the estimation

5L 78 O e

< 3 A P ey < 2exp 211 + 2021E]
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which assures the strong convergences. The assertion (i) follows from
Lemma 3.3. The assertions (ii) and (iii) are seen similarly by Lemma 3.3
and Lemma 3.5. O

DeriniTiON 3.8. Let U(¢) be a continuous functional on &. If there
exist symmetric multilinear functionals U®(&; 9, ---, ) of py, -+, 9 € &,
satisfying

B8 UE+D— U@ =3 U 0 + ollglh),

(3'9) IU(k)(E; Ny © 0y ”k)i g Cw)(&)“’?l”p' : '”%”p, 1 é k S n,

then U(¢) is said to be n-times E,-Fréchet differentiable and U™(§; v,
-+, n,) is called the n-th E,-Fréchet derivative of U(¢) at & If U(¢) is
arbitrary many times E -differentiable and the equality

(3.10) UE + 7) = gozlrU(“(f; 7o)

holds with U“(§) = U(§), then U(¢) is said to be E -Fréchet analytic.

TueoreM 3.9. If U() is in F@, then U(§) is E_,-Fréchet analytic
and the n-th E_ -derivative is expressed in the form

(3.11) U591, - -5 m0) = CUE), & my-- (& nayexp K& O

Moreover, U™(¢; ) can be extended to a symmetric continuous multilinear
functional on E_,.

Proof. Define U™(;ny, -+, 5.) by (3.11). Then U™’s satisfy (3.8),
(3.9) and (3.10) by Lemma 3.7 (ii), (iii) and (i), respectively. The second
assertion is obvious by (3.9). O

Suppose that U(¢) is in # . By the theorem, for each £€ & there
exists an element U™(¢; -) belonging to the n-fold symmetric tensor
product space E$" such that

(3.12) UD(E; gy -y ) = CUPE; D), @ - - D90,

where 7, ® - @9, =G ® - ®9uy 1, - -+, 7. € E_,. Here we denote by
&, the symmetrization on n-fold tensor product spaces. We introduce the
notation of functional derivative by

(3.19) 0 i 0 U®—> U ).

SE(t)  oE(t)
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If p>1, then U™(&; +) is a continuous symmetric function on 7™ given
by

5 -
GE(t) 5&(%)
by virtue of Assumption [A.1]. If p = 0, then U™(¢; -) belongs to the
symmetric L-space LAT™", ") = {fu e LT, vY); ©,f, = f.}, where &,f, is
the symmetrization of f,:

U™(g; -) = U@ =UE; 8,0 - ®35,,)

@nfn(tl’ ) tn) = % Z f(tv(1)7 Tty tu(n))
Nn. ¢€6y

with the symmetric group &, of degree n.
THEOREM 3.10." For U(&), V(&) e F® and W(E) e FP, we have the
following:

(i) U = 33 - SU0; ), 7 = 3 LU, 6,

n=0 n=0

with U™(0; -)e E?",

(ii) U©, V@, = 3, -},(Uwo; D, V03 s,

(iif) U@, W@ = 3 LUW0; ), Wo0; ).

(iv) If, in particular, p = 0 then

1
nl

(U, Vo = 3 [ UV 9V(0, 9dv®),

with t = (4, - - -, t.).

Proof. By Theorem 3.9, (3.9) and (3.10) hold for U(¢) ¢ . Applying
(3.12), we have the assertion (i). Take U(¢) = exp[({§, 7)] and V(§) =
exp [(& ¢>)]. Then U™(0; ¢, ---,t,) = 5(t) - - - 5{t,) = 77®" holds by Lemma
3.7 (ii). Therefore we have equalities

UE), V@) = exp [, 0,1 = 3 ;1_< o, £&n) 8

= 5 L we; ), voo; Mg
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Hence (ii) is true for U, V in 4. Since # is dense in F®, we can see
that (ii) is true for U, V in #®. (iii) and (iv) are proved similarly. [

In the following, we will show that {g,, £5™>U(&) and <U™(¢; ), G,.>
belong to F®@, if U(g)e F @+, gmeE,‘?’“ and GmeE@,". The help of
Fock’s space is useful for the proof. The direct sum

(3.14) exp [®Ep] = Z:,® (nl)2ES
with inner product

(315) ((fn)nzo’ (gn)nzo)cxp[@)EP] = ni;:o n!(fm gn)E?”

is called Fock’s space. Its dual space is exp [®E_p] with the canonical
bilinear form

(3.16) (Frzo (Gduzod = 3 nIfo, G

for (f.)aso € €Xp [®EP], (G.)ns, € €XP [®E_p]. Then we have natural inclu-
sions ES", S E%" and exp [®E,,H] C exp [®E,,] for p e Z by virtue of (2.1).
We denote by £%" and exp [ &] then projective limits of E%" and exp [®Ep],
respectively. Denote by &*®" and exp [0&*] their duals. By Theorem 3.10
and (3.15), we have an isomorphism 67~ from % ® to exp [® El;

(3.17) 67~¢: U(E) —> <_nl.' U®(0; -))

n=0

The inverse of 677¢ is given by

(3.18) 072 (foduas —> U®) = 35 (fun 657

For example, we can see that

(3.19) 07~ exp [(£, 7)) —> exp [Dy] = (%n@‘) ,

n>0

(3200 670 (&8 g, exp [(&, )] ( ( 1 gm®,7®<n-m))

n —m)!

n=m

for e E, and g, € ES™
For f, e E$® and g, € ES™, we define a symmetric tensor product f,®g,

by the symmetrization of f,®g,: f,®8&n = Cr.n(fa®g,). For G,,,e€
E$=+m_ define f,*G,,, as an element of E®" satisfying
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(B21) (8w foxGuin) = (fo®8p Guupy  for any g, e EJ™.
Then we obviously have the estimations

If ®8nllsdmsm =[S, W(fo ® )l zbnsm

(3.22) A A
SN ®gullegmrm | fallz@nllgnllzom = [Ifallzérllgnllzdm
and
“fn*Gn+m”E@;” = sup l<gm’ fn*Gn+m>|
ligm| r)m=
= Ssup |<fn®gm’ n+m>‘
(3.23) Iz mIIE®m
< sup I, ®gullednsm |Gy nllsyem
lenl &m=1

< ”fn”E‘(?"”Gmm”ECﬁémm) .
For & = (fu)uxo € €Xp [®EP], define a projection =, to Egln by
(8 =f..

For g, € E®™ and G, € E®7, define two operators:

«(G)E = (Q_t@iam x 7r,,,,m.5’)
(324) n! 720
a*(gm)E = (g%nn—mE)RZm .
LeEmMma 3.11.
( i ) 'la(Gm)ElleXP[®Ep] g ”Gm”E@%"”5”exp[®E,,+1]Pm((1 - pz)_m_lm !)1/2 ’
(ll) “a*(gm)E”exp[@)Ep] é “gm“Egbm“EHexp[@EpH]((l - p2)—m—1m!)1/2 ’
(iii) for Ecexp[RE,,], & cexp[RE_,.,],

(G,)E, B = (&, a*(G)E").
Proof. By (2.1), (3.21) and (3.22), we have

H a(Gm)‘E I|ZXP[®E‘;] = Gm Ty mE ”2E1®n

i ((n+ 'm) D
= n.

2 n+m)) G

m”E@L’LHTCner ”E®(n+m)
‘ = ~ A
< Gallzey e [M o] 1+ mll e,
TP ax0 n! P

and similarly
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Ha'*(gm 51|:Xp[®Ep] = Z (n + m)'”gm®”n5”§£®("+m)

< lgalign 33 * ”‘) Lt ML 2B [

D+1
Since the estimation

! 1
3.25) sup BEM o5 nl e A g g gy
n>0 n' n2m (n —_ m)' dtm

holds for 0 <t <1, we have the assertions (i) and (ii). The assertion
(ii1) is obvious by definition. O

PROPOSITION 3.12. Let & = (f,).s, be in exp[®E,,,] and put UE) =
(B, exp[®E&]>. Then for G,c E®" and g, ES™, it holds that

(3.26) (a(G,)E, exp [®E]) = CU™(E; -), G (),
(3.27) (a*(g,)E, exp [Q&]) = (&8, g, U(®).
Proof. By (3.16), (3.21) and (3.24), we have

(WG)E, exp®ely = 3 ("+ 2L (G s €57

n=0

- ;—"%@—«fm, G, &g

On the other hand, for G, = 771® e ®vm
U™(; G,) = <U®), <E, niy- - K&, 7a) €xp [K&, OD

= 5, GuBLE )

nm(n—— )'

holds by Theorem 3.9, (3.18) and (3.20). Therefore the equality (8.26) holds
for G,, in a dense subset of E@;’”, which is spanned by linear combinations
of ,®---®y,. By Theorem 3.9 and Lemma 3.10 (i), we can show (3.26)
for any G,. The proof of (3.27) is similar. O

TuEOREM 3.13. For U(§)e F**, g, e E¥™ and G, € E®7, (&8™, g >SU(®)
and {U™(; -), G, are in F®, and moreover their norms are estimated
as

1<&5™, g > UElrr < 18nlletmll Ullgir (@ — )™ *mY)2,
IKU™(E; ), Godllsr < N1 Gollsnll Ullsonp™(1 — )" 'ml)~.
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Further, for V(&) e F 79,

KE™, g U(E), V(&) = CU®), (V™(E; -), 8a(-))).
Proof is obvious by Lemma 38.10 and Proposition 3.12. O

5 PECEEY 5
0&(t) 3&(t,)
from F@ to F**" and it depends on t = (¢, - - -, t,), continuously. The mul-
tiplication

COROLLARY 3.14. For p > 1, is a continuous operator

§B)-: UE) —> eUE)

is a continuous operator from F® to F* and it depends on t continu-

ously, whenever p << 0. Moreover, &(t)- is the dual of the operator 6§(t) .

For arbitrary pe€ Z, and &£(¢)- have meanings as operator valued

5&( EZ0)

generalized functions;

(b 543 VO = CUSE: > = U ),
{9, EC-DUE) = (9, £HU(§).
For U(¢) in & (or F%*), V(&) = &(s)U(¢) belongs to #*. Then the equality

VOE; ) = E)UNE; n) + 3, pU®)
holds. Hence

0
E6)U©) = &(8)—-U(©®) + 3, 0DU©®)
6§(t)(() ©) 550) (
holds as operator valued generalized functions. In this sense, we have
commutation relations, which are called the canonical commutation rela-
tions;
i)
PN &(3] = 53@)3
o

g 5 _ _
[6&(0 ’ 5&(3)] =0 and [4@2), &s)] =0.

(3.28)
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§4. Calculus on white noises

We put the assumptions [A.1], [A.2] and [A.3] together with the
condition (2.1) on norms. In Theorem 2.1, we have seen that L*(&*, uy)
is isomorphic to #© under the isomorphism &, given by (2.20) for X = G,
P. In Section 3, we have established a Gel’fand triplet # C #© C F*.
For p >0, put #P = L7F® and induce inner product ( , ) #¥ from
F@; that is,

(4'1) (SD, ‘If)xfrp’ = (yXSD, yX\l/’)sr‘P’
for X = G, P. Let #; be the projective limit of #P as p— co. Obvi-
ously, we have inclusions #¢*" G #P, p > 0. Then #P is isomorphic

to F® and 'y is isomorphic to % under the common transformation
&y, which can be expressed by

(4.2) (Zx)8) = o, [*(§; x)y  for £e&,
where f¢(&; x) is given by (2.4) and f7(§, x) is by (2.15). Since

1F*(; DMy = WL <O = llexp [K&, PIlse = exp [l|7l}]

for any p > 0, f*(y, x) belongs to #x = (N,5, #P. Now let #¢? be the
dual of #P and let #% be the dual of #,.

ProposiTiON 4.1. The transformation &y given by (4.2) defines an
isomorphism from #P to F® for any pe Z. In particular, the element 1
in H#P is transformed to 1 in F® by it.

Proof. By definition, the assertion is true for p > 0. Let us discuss
the case of p < 0. Notice that the linear subset #, = {37, b,f*(y,; x); 7,
€&, b,eR} of #, is dense in H#P. For o(x) = Y b,f*(y,; x) € #, put
U®) = (#x9)(&) = . b,exp [(&, 7,)]. Then we have

lollegr = sup K@yl = = sup_ (g, ¥)il
= sup KUE, VO = UG-

Since #; is dense in #; and since (¥ xp)(§) is continuous in ¢ for each
fixed £¢ &, we can conclude that % is isomorphic. Obviously,

(00 = [ 7 Ddpr = 1. O

For g, e E$™ and G, € E&r, define operators A*(g,) and A(G,) by
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(4.3) {A*(g’")‘p = S g XS x0)©)

A(Ge = LYK x)™(E; +), G)) -
Then Theorem 3.13 implies the following theorem immediately:

TueorEM 4.2. (i) For pe #¢*", ge E$™ and G, e E®7, A%(g,)o and
A(G,)p belong to AP, and moreover their norms are estimated as follows;
| A*(gneller < N8nllzdmllolle@+o( — o) ™ 'm!)'”,

[AGDellew < NGullsbrllellegp™(1 — )™ 'ml)~
(ii) For g, ¢® = (MN,5 E$™ and G, e 6*¢™ = | J,., ES™, A*(g,) and
A(G,) are continuous operators on #y. Further A%(G,) end A(g,) are
continuous operators on #% for X = G, P.
(iii) A*(g,) (resp. A*(G,)) is the dual operator of A(g,) (resp. of
A(G,)).

THEOREM 4.3. For ¢ in P, there exists an element (f,)n>, Of €xp [®Ep]
such that

0= S AN  (Zx0®) = T &P £y and gty = 3 nlif s

n=0
Proof. Since & is an isomorphism from #P to ZF?, ¥x¢ belongs
to FO, if pe#P. Put f, = —(F2)™(0; ). Then (f.),s belongs to
n!

exp[QE,] and (L)@ = 3 (&%, f.> holds by (3.17) and (3.18). By the
definition of A*(f,) in (4.8) and Proposition 4.1, we have

SAFL = S SHE ) = 0.

The last equality of the theorem comes from Theorem 3.10 (iv). O

In the following, it is convenient to define A*(g,) and A(g,) even
for g, € E®™ by A*(g,) = A*(S,g,) and A(g,) = A(©,g,). As an special
case, observe 4, in E_,. Then we write, for simplicity

I}
0, = A@G,) = ¥ ——
(4.9 @) 3&(8)

0f = A*@) = SFED S,

'SpX’

and we use the notation of multi-indices;

0, =20, -9, and oFf =0a} -0

m
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for t =(t, ---,t,) € T™ By Theorem 4.2, estimations
9.0 — 3splle < N10: — Ol all@lleg+r @ — @) 7p727",
[Iazl‘go - 3;"90”,5[—?) < [|5t - 53||—1”S0”x,‘{”+”(1 - PZ)—1 ’

are obtained, for p > 1; that is, 9, and 9} depend on ¢ continuously in
H#y and #%, respectively, by virtue of Assumption [A.1].

ProposiTiON 4.4. For g, € %™ and ¢ #,
Agp = [, dr g0
holds in #y. For g, e E®™ = I:z(T"‘, V™) and ) € %,
Axg = | a0y

holds in #%. Here integrals are understood as Bochner integrals.

Proof. By Theorem 4.2 (i) and by (2.2), the existence of the Bochner
integrals are obvious. Since ¥ is an isomorphism, we have

(5’ X Lm du”‘(t)gm(t)atso)(&) = Lm g agtztl) o 5E?tm)

= (&,(*), (Lx)™(&; )) = (L (Al &)

(Lxp)&)

and
(25 [ drgaare)© = [ drg.e@) - - € XL
= (&%, g ML )@ = (L (AXg)NE).
Thus we have the assertions. O

For the calculus of Gaussian white noise, operators A(-) and A*(-)
are very powerful tools as seen in [11]. For the calculus of Poisson white
noise, we need more complicated operators. Let f,,.., be in &&@+k+m
and put

@45 Avpnfurein) = I " (OdV ()™ @)f s i1 (2, 5, U)OF DDy «
Ta+k+m
Let g, be in ¢%. Put

(4'6) fn+ k+m®m,kgj(t’ S: r) = @rH-j—m JT"L d”m(u)fn(ts S, u)gj(rs S, u)
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with ¢ = (t, -, t.), s=(8;, -, 8, u=(wy, -, u,)and r=(r,, -~ -, r;_,)
for 2+ m <j. If B+ m >j, then put f,H,H,,, wx8; = 0. Then we have
an estimate

(4'7) I|fn+k+m My ng“L Dt j—m) < Ck 1”5”2711- = 1)Hfi +I+mllL ‘('H'k"w"‘)jlg ”FO]

for p > 1, here C, is the constant in the assumption [A.2].

PROPOSITION 4.5. For f,, .., € &Y™ and g ,e&%, we have the

following assertions;

. ‘1
() Avslfoes DA @I = o T A O )L,
(j—m—h

” n,k nL(fn+k+ m)A (g])lﬂf(m

! — ! N . .
< St T = DT s en - e g, 590CE
(G —m—k)!

(i) for pe Hy,

I n,l m(fn+k¢m)SDfo’(\f” < “fn+k+m“EO(”””+m) ||g0”)%p+q)l(5 {Zm 2m (p~ l)CIc -1
X(n + B)I(m + B)I(1 — pa)-r-m-ysrgraomsm)

Proof. (i) Since (#yA*(g)1)(&) = (&%, g,>, it holds that

j! o
L 0, A*(g)1)E) = w-—.ff g, &) - - - Ev;)dy (D).
G = Jri-
Hence we have the equality. The estimation follows from (4.7).
(i1) By the results in (i) and Theorem 4.3,

2y = E 77,],:'“,,”7, 112 ‘p
An,k,m(fn+k+ m)soafllyfx i (J k)‘ A (fn+l+m [N kg])l )
“ ? - 9 a ‘ 19 A
UPn 4T =ML s gmgtn-n |, (B | g, [

TS (= m - R

i'(n —m)! ~ops . o A
< sup ST N gusgag g o nif, gt g gen
jzmak ((J —m — k)

The proof is completed by the estimation

sup MG +m! o iiq — i for 0< 2 <1,
620 Gy

which is shown similarly to (3.25). O
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For the convenience in later sections, we discuss a little more. Let
p be a natural number. Then by Assumptions [A.1], [A.3] and (2.1), we
can choose a natural number g = g(p) (> p) such that the injection ¢,,
from E, into E, is of Hilbert-Schmidt type with

(48) Cp“‘p,q”H.SA _<_ P-
Lemma 4.6. Let n,, -- -, n, be natural numbers and let f, be an element
ofE§" with n=n,+ --- + n,. Then
fk(t) = <6§m ® tee ®5%nk, fn>
belongs to ES* and its norm is estimated by

Ife ”Ef?" < p" ”fn”Eq®” .

Proof. Let {e;} be a complete orthonormal system of E, Then f,
can be expanded as

fo= 23 Chpen(t) e (t)  in E$,

Jistetsdn

By Assumption [A.2],
Il < 3 Crlenlienls - lesly

< Gy oG FIPS Mleg, Il - - - Nleg IB)
< Co N fallsrllen olies. < p"lIfallz$n - O

Let « = {A,} be a countable Borel partition of T such that 0 <wu(A,)
< co. Let a™ be the collection of subsets C’s such that C= A, X .-
X A;, with A, ea, A;,NA;, =@, if k+#i. Put

(a) _— 1 i .
fr0= 5 o [ fdr@ 1.0

CEaln)
for f, e L*(T",v"). Then

(4.9) f. = limf¥ as.
af

holds, here af means the refinement to the partition into the individual
points. Multiple Wiener integrals are defined as follows. For C = A, X
<o X Ay ea™, define

n

IXt) = 1] I¥(t,,)  for X =G, P.

k=1
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For f, e LXT", v"), put
1
IX(f@) = __f - A TX(L,) .
(=5, ey | T

= 2
Then we can see that
N M0 = RIS, [zacrn,um -

Therefore, we see that I[X(f) converges in #” as af. Define multiple
Wiener integrals IX(f,), for X = G, P, by

(4.10) L¥(f.) = im I(F)
at
TueoreMm 4.7. For f, e LX(T", v"), g, € L*(T™, v™), it holds that
IX(f) = AL = || & Of00¢1 = TG, 1)
in #%, and that

[ T Pe i = (A%, A%
= an.mn!(@nfm @mgm)ﬁ?(T",u”) .

Proof. Let o = {A,} be a partition as in above. Since we have
(9’ » €Xp [i:x IP2,(x, )])(5) = exp[ E(t)(exp L}i A4 j(t)] — 1)dv]
— exp| 35 (exp 1) — 1) [ 22000
for any N by virtue of (2.13),

P LENE) = (2 [117))@ = [1 [ 0dstt)

s

6y = (&%, G, X0)

is obtained for C= A, X --- X A;,. In the case of X = G, we have
similarly that

(e exp [ 2,070 ] )© = exp| (& 5 )]
and hence that

(oI5 = (Fo [T 10,0)® = [T (6 1> = (&5 @)
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Thus for both cases, we have

(LI NE) = Ln FR@ER) - - - §E)d @) = (€57, &, f )

which implies that IZ(f) = IX(S,f{) = A¥(E,fP)1 in #P. By (4.9) and
(4.10), we can see that

(ZxL(f)E) = lim (L L(f37)(§) = lim &8, B, f)
= (89", Bufo)

Hence IX(f,) = IX(©.,f.) = AX©,f,)1. By Theorem 3.10, (3.20) and (4.11),
we get

(4.11)

(Iﬁ(fn)’ Iv)‘r;,(gm)).at’&“’ = (<$®n’ 6nfn>; <$®m’ @mgm>).9"°’
= an,mn!(@nfm @mgm)E‘)@" .

THEOREM 4.8. The both spaces (L%), X = G, P, are isomorphic to
FO and to exp[® E,] as is shown in the following diagram:

@) = #%

UE) = (£:9)6) o= ST = 3 A%

fo= 2 U0;9)

U@esF® 3 ————— (fucexp[QE].
UE = % % fo

The diagram shows that both L*-spaces (L%) and (L%) have the same
structure connecting with Z#©@, the Fock’s space and multiple Wiener
integrals. Are there any differences between these spaces? In the next
section, we will see the multiplication has different expressions in the two
cases.

§5. Multiplication and characterization of white noises

In LY&*, pyx), X = P, G, the multiplication (p-y)(x) = ¢(x)-y(x) has
meaning if ¢ or y» belongs to L=(6*, #x). How can we treat the multiplica-
tion in our formulation? In the case of Gaussian, the operator

(5.1) x%()+ = 8F + 8,

describes multiplication (see [11]). Actually,
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(5.2) &y = [ dOnOr®-  in 7

holds for g € #;, and ye€ . One of the authors ([9]) has shown that
(5.3) xF(@)- = @ + DG, + 1)

describes multiplication for Poisson white noise. More precisely,
(5.4) e = | dOmx"©-¢  in 3

holds for ¢ in /#, and 7 in . The idea of (5.2) and (5.4) can be stated
as follows. For ¢ in Sy, put U(§) = (FLrp)&). By (2.4) and (2.17), we
have

(& (73 DO = [ £ DF 05 Dol@dpss

_ {U(é + ) exp [€§, p)] for X = G,
UE +7+épexp[, ] for X=P.

(5.5)

Substitute » with wy and differentiate them at o = 0. Then we have

Fo(%, Pe(0))(E) = (x, £HUE) + UV(E; )

(5.6) k
= L dv(t)v(t)(&‘(t) + F(t)) U@

and

(5.6 & p((x pe()E) = (& > + DUE) + UVE A + )

_ b
= [, im0 + s)(1 + 75 ) U

by (2.4) and (2.17). By (4.4) and by Proposition 4.4, we have (5.2) and
(5.4).

To complete the proof of (5.2) (5.4), now we must guarantee that
f2(p; x)p(x) belongs at least to #% and that the differentiation has meaning
in /#%. Here we discuss for the Poisson case. If ¢ is in #p, then fF ()
belongs to #, (C#;) by (2.17) and then (5.5) holds. Actually,

(5.7 &L p(fF(on; ©)fE; 0)E) = exp [(§, wnl + oy + &) + oy, {)]

holds. Hence, from the definition (3.3), it follows that
Iim | 2 (7(on; 0 — DF7 )

= {I7C€ + DI + (&, 7€ + ), + {n, )b,

2
73
*p
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Thus the derivative of (5.7) at » = 0 exists in the strong sense in %,
since the derivative exists for each £e & and since % is a nuclear space
by Proposition 3.6. Thus {x, 7)>¢ belongs to #, and (5.6) holds for ¢ € H .
Similarly we can see for the Gaussian case. Remember that

Al = | dy®p, and Axe) = [ dulomoar

are continuous operators on #, by Proposition 4.4 and Theorem 4.2 (ii).
By Proposition 4.5,

Ausel) = [ dko(epora,
is a continuous operator on .. Therefore
[, dOn0x® = Aus) + A%0) + AG) + 1
(vesp. [ oo = 4%t + A)

defines a continuous operator on #, (resp. on ;). For a given ¢ € #,,
there exists an approximating sequence {p,} C #x such that on—¢ in
#y and that

2 llon — ollep < oo
=1

Then we see that ¢.(x) conveges to ¢,(x) (a.s. py), and hence that
lim,_... {x, P)¢,(x) = {x, n)p(x) (a.s. p#x). On the other hand, the continuity
of A(yp), A*(p) and A,,.(y) implies that

lim (x, 75, = L dtyy®)x*())-¢  in #x, X =P, G.

Thus we have completed the proof.

THEOREM 5.1. For g e #y, {x, nyp belongs to #y and

G5 o = [ dlom@r )

holds. The operator {x, n)>-: ¢ — {x, 7)¢ is continuous in #y. Moreover
{x, 9D — x*(8)-¢ in H¥ as n— 4, in E_, with neé, 7= 1.

Proof. By Theorem 4.2 and by similar discussion to the proof of
Proposition 4.5, we see
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A le-v < lI9ll-ill@llewo@ — )7,
lA*@ele-v < Inll-illollewo@ — p)™'  and
”Ao,:;o(’?)SD”x‘—v < ”77||—1”90||x<q+1>

for ne &, pe # with g = q(1) satisfying (4.8). These estimates imply the
last assertion which completes the proof. I

For fe E_, and 7€ E,, multiplication 5f is defined by
Of, € =<finy for LeE,.

Then the norm of 7f is evaluated as

Iofll-» = Sup KA, 2N < A= l19E ], < CollFll-, 1E 1, -

This observation show that A,, ;) acts on 5%, continuously, too. Thus
we have:

ProrosiTiON 5.2.

()= Agidln) + A¥() + AQy) + 1
(resp. {x, 7). = A*(n) + Aly)

acts on #% (resp. on %) continuously, and it is self-dual; that is,

K¢ 77>'90’ ‘!">=<90’ 2, )y forwe%z\”‘!’e'yf:{i'

Now we show that the multiplication operators x%(f)-= ¢F 4+ 9, and
xP(®)- = (@F + 1)@, + 1) characterize the measures of white noises.

Let p be a probability measure on &*. Suppose that there exists an
isomorphism & from L*&*, p) onto . Then put # = ¥'% and induce
the topology from #. Let s#* be the dual of #, then & can be con-
tinuously extended to s#* in such a way that #* is isomorphic to F*
under . Put #® = ¥-'F® and give it the topology induced from % ®.
Operators 9, 3, te T, are defined by

0 &
O&(t)

Operators A(f,) and A*(f,) on  (or on s#*) can be defined by (4.3). For
f. € LX(T*, v"), the multiple Wiener integral I,(f,) is defined by

L(f)) = A*(f)1 (cf. Theorem 4.7.).

(5.8) 0, =" 0f = SEW)- &L

THEOREM 5.3. Let u be a probability measure on &*. Suppose that ther2
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exists an isomorphism & form L*&*, p) to F© satisfying
(i) &£1=1,
G) x(t)-=0, +of on H =S F;

that is, {x, p)p = L dv(®)y(D)x(t)-¢ holds for o e #. Then p is the measure
of Gaussian white noise.

Proof. Let ¢ be in # and put U(§) = (¥¢)(&). Then

(5.9) FLKx e)E) = & pUE) + U5 )

holds by the assumption (ii) and by Theorem 3.13. Therefore {x, y)¢p € H#.
By the assumption, 1 belongs to 5, and hence it is recursively shown
that (x, )" € # C LY6*, p). Thus any polynomials of {x, > belongs to
#. Remark that the Hermite’s polynomials defined by (2.6) satisfy the
additive formula

H(z;7) — nrH,_(2;7) = H,.,(2; 7),

5.10
(510 {Ho(z; =1 and H(z;7)=z.
Of course, H,({x, 7); |I5|}) belongs to #. Put

U.(§) = LH.(x, 705 (171X ,

then U, &) =1 and U®(¢; t) = 0 hold by (i) and (5.10). By (5.9), U(¢) =
(&, ) is obtained. Assume that U, (¢) = <E, nY* for k < n. Then by (5.10)
and (5.9).

Uaede) = (s DL 3 1DNE) — iU 0
= <& U + [ dli®2e " = nllalie,

p— <€’ 77>n+1 .

By Proposition 3.4, {U,} is an orthogonal system with (U,, U,)sm» =
6, 0! lIE]F. Therefore

52‘:‘(t)

exp K&, 7)) = 31U = 3 S 1 710X
converges in #. Since & is an isomorphism, the series
o HCx i B = exp [<x, 7> — i)

obtained by (2.6) converges in #. Hence it holds that
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Lexp [<x, 7 = %Hnllz]d# = (exp [<x, = —;—Hrztlﬁ], 1)

= <9Xp [<§; 7]>], 1>§'(0J =1.

#(0)

This implies that
[ exo licx, 1w = exp [~ Z1718]

and hence y = y;. O

THEOREM 5.4. Let p be a probability measure on &* whose support is
included in E_, with r > 0. Suppose that there exists an isomorphism &
from LX&*, p) to F© salisfying

(i) #£1=1,

G) x@®)- =@+ DO, +1) on # =5"'F.

Then p is the measure of Poisson white noise.

Proof. The Charlier polynomials C,(x; ) can be defined by (2.23)
as continuous functionals of x and 7, irrespectively of measures on &*.
We now show the equality

(5.11) L(Colx, P)E) = <& ™
that is, C,(x; 7) = A*#®)1 = L(;®"). If ¢ is in #, then (L)(&) is in F

and

619 (#x OO = [, B0 + )1+ 55N

belongs to &#. Therefore {(x, {>¢ is in #. By (2.27) and by the condition
(i), we have

(FCilx; P)§) = S1 =1.

Assume that C,(x; 5) is in # and (¥Cy(x; p)E&) = (&, )" holds for 0 < &
< n. Then applying (5.12),

(Fx, 7+ Cyloe; MNE)
= j{& "y + T TRE YT+ K& D 4 K, )

By the recursive formulae (2.27), we have

(S Coils DO = 2. (—1)"“’7.—!!1'{(5, "I 4 gt KE

=0
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n ! —_—
+ ]4?::0(_1)n-177?"_{<&-’ 77>n-—j«¢—l + nn-—j+l}<5, 77>j _ ﬁ<$’ 7)>n

— <E, 7}>n+1 .

Therefore C,,(x;7) belongs to # and SLC,..(x; p)&) = <& p)"*'. Since
& is an isomorphism,

(Cox; 7)), Co(x; )t = 8, ! (g, O

holds for 5, { € & by virtue of Proposition 3.4. Therefore the series

(5.13) ) = >°'j_n1—,c,,<x; )

n=0
converges strongly in s and the equality
(L1NE) = exp [<§, n)]
holds. Since
“ Cn(x; 7])”141(4’*,;:) g “Cn(x? v)”Lﬂ(s*,p) = ”(Ev 7)>n[|f‘0’ = (n')m”?”ga

the series (5.13) converges almost surely px. On the other hand, by the
definition of C,(x; 7)’s,

ful®) = 2,25 Co(x; 7) = exp(a, log (1 + wp)) — 7]
holds, if xe E_, and |0|C,|y| <1. By the assumption,

(5.14) exp[(x, 7) — (@ — D] = 3, -+

Cn(x, er — 1) a.s.
n=0 n!

holds for »e & with C,{exp [C,|5|,] — 1} < 1. Therefore, for |o| <1,
[ exofoxnm = [ @ = Dddp = cexpie, e - DY 1y =1
is obtained. Hence we have
[ exp lot 1y = exo || (exp lon®] — Do)

for || < 1. We can easily see that both sides are analytic in ». Thus
we have the equality

[ ex0 lic, e = exp || (explin] — Dabtd)],

&%



WHITE NOISES 73

which implies that g is the measure of Poisson white noise.

THEOREM 5.5. If the basic triplet & C LT, v) C &* satisfies the following
property, then Theorem 5.4 is true without the assumption on the support
of the measure p: For any Borel set A with v(A) < oo, there exists an
approximating sequence {{,} included in & such that

[ 160 - n@IdO-—0 a5 koo

and that {,’s are uniformly bounded, i.e.
sup (L) < oo
teT k>0

Proof. We can follow the counterpart of the stages before (5.14) in
the proof of Theorem 5.4, in the same way. Let {5} and {{,} be uniform
bounded sequences in & such that »,—%, {—¢ in L'Y(T,v). Since
& i — <& " and (&, {y)™ — (&, O™ in F©, the following limits exist
in LHE*, p);

Cu(x; 7)) =1lim C(x; n) and  C(x; 9) = lim C(x; Co),
k—oo k—oo
even if 5, {2 &. By using the recursive formulae (2.27), we get
n X ! -
(5.15) Croilx; ) = Z}(—D""J%‘A{Cl(x; 7t )+t G (s ) — 7Ca(x; 1)
J= .

Notice that
Cu(x; DC(x; ©) = lim C,(x; 7)C(x; &) in L(E*, p).
k—o

Then by (5.12), we have that
(L(Cix; 9)Co(x; TMNE) — <& 7:0<E, L™ = mCL + &, L) {8, L™
Appealing to (2.27) by induction, we have that
(F(Colx; 7 Colx; ENNE) — <&, 260"<E, Ed™

is a polynomial whose terms include either (&, 5it{> or (1, 5it{> with
i,j >1. Now we assume that 5(#){(f) = 0 a.e. £ (v). Then letting k— oo,
we get

(5.16) (F(Culxe; DCrlx; ONE) = <&, 7)™, O™

Therefore the equalities
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n |, n-mm
I N 7 YoR ¢ 28e)

mn=0 (n — m)!m!

(517 = (5 M e e )

n=0 (n — m)!m
= L& o + 28)") = Culx; (0p + )
hold. Let A;, 1< j< L, be disjoint Borel sets with v(4,) < co, and let

0;, 1< j< L, be real numbers. By the property (ii), we can apply (5.17)
to X3, %4(t), and we get

L lo™. . . @™
619 CuNot,)= T PR E ) Ol
=1

Nitee+nL=N nl!. ceng!

On the other hand, we have

n 1
(19 Conlws 1) = 2 (=1 SH{C 10 + HAJC,(x; 1)

J= .

— U(A)Co(x; X)
by (5.15). Define the usual Charlier polynomials C,(u; ) with parameter
2 by the generating function

(5.20) exp [ulog (1 + 0) — 0i] = i ;';—7:0,,(14; 2.

n=0

Then C,(u; 2)’s satisfy the recursive formulae

Cousu; ) = 35 (=11 PLuC,(us 2) — 2C, (w5 D),
(5.21) = j!

C(u; )=1 and Cfu;2)=u—A2.
Put P(A) = Ci(x;x,) + v(A), then we have by (5.19)

and more generally by (5.18)

1 L
Cn<x, Z wkxAk)
! =1

n

0
2
n=_0

= 3 Y0P 0 (P(A); w(AY)- - - Col(P(AL); W(AL))

nitecc+NL=n n‘ ! .. 'nL!
L L
= exp [ P(4) log (1 + @) — 3 0l -

Hence
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j exp [L: P(A) log (1 + o) — z va(Ak)]

(o5 1 s Gonors).
(

exp [<$, Z o4, ] )ym =1,

applying (5.16) with £ = 0, m = 1. Therefore for any reals w,, 1<k<L,
we have

l

L L
f exp [7;1 ka(Ak)] dy = exp [;1 (exp [w,] — l)v(Ak)] .
This implies that p is the measure of Poisson white noise. a

§ 6. Wick’s normal ordering
By (2.8), the canonical commutation relations

0., 3¥] = 6,(®),

(61) {[ah as] =0 and [aik, a;k] =0 ’

are given. Hence Wick’s normal ordering is applicable to our calculus
as pointed out in [11] for Gaussian case.

Let 7,,=09,, or 9f,j=1,2,---,n, and put J={j;7,=20,}, J*=
{j; 1., =5}}. Then Wick’s normal ordering is defined by

(6.2) T Tni= 11 a;’;hga,,.

JEJ*

Then :7,, ---7,: is a continuous operator from £, into #% (or more
precisely from 9 into #¢, though 7, ---7, has meaning only as
an operator valued generalized function. For any formal power series
P@.y, -+, 00, 0F, -+, 0F) of free algebra generated by 4., - -+, d.,, 0%, + - -, 0%

TPy, v vy Osgy 08y v 0, 0F):
is defined by operating : : to each term.
ExaMpPLE 6.1. As an operator valued generalized function,
O%o% = 3,(0% + 5,(0)3* + 5*5%a,
holds by (6.1), but

0F0¥0, = :0,050F: 51 6,(0)3F + 0,.(t)oF + 0¥d70,:.
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To see the action of 9, - -- 3,,, we want to rewrite it similarly to the
example. Here we introduce a notation: let [/, J*] be the collection of all sets
of pairs [K, K*] = {(k,, k})}j-, such that k, < k¥ and that K= {k, ---, k,}
are distinct elements of J and K* = {kf, - --, k}} are distinct elements of
J*. Then applying (6.1), we have

m

(6.3) Togooo 1oy = 2 n 5tk*(tkj) ) I1 ai ﬂ 0er, -
[K,K¥]C[J,J*] j=1 £l 1€ JH\K* heJ\K
Thus for f.(t, - - -, t.) € £%*, a continuous operator

[ fwarar, -1,

on #y is well defined by Lemma 4.6 and by Proposition 4.5 for X = P
and G.
Let us observe x7(t)---x7(t,)- on #p,, here we denote x7(¢)-=
@F 4 1)@, + 1). By the definition of : :, we have
(6.4) 1xP(t) - xP(E,) = > 11 a% ];[J 0.,
J

I J*C{L, 00 ym) k€T

@) — 1) - (@) — D)
- % eR]lon

J*+K+J={1,0+4,n} t€J* ke

(6.5)

” atk ﬂ atj'

€K JjedJ

Therefore, for f, € &,

[ & 0f@ @ — - @) -
(6.6) = Z A]J*l,lKl,lJl(fn)

J¥+K+J={1,-++,n}

— n!
- j*+kz_:‘j_;nWAj*,k.j(fn) .

In particular, we have

(xPE)-—1) - (xP@)-— D1 =0F--- 851,
6.7
C0 0RO - @) - D= A

THEOREM 6.2. For f, e 6%, the following holds in #%:
IZ(f.) = AX(f)l = Ln " Of(0): (x7()- —1) - - (x7(@) - — D : 1.

Moreover for ¢ € # 5, the multiplication I(f,)p belongs to #» and
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IE(fe = [ 0@ (@) = D - (7(t) = Dig
= (A*(f)Vp # A ([ g

Proof. The first assertion follows from the above discussion and
from Theorem 4.7. Since (5.7) holds for » and ¢ in &, we have

(& p(Colxc; PFEE; NE) = (&, 78 + 7> + (g, )" exp [(§, )]
by (2.21) and (2.23). On the other hand,

yP(J‘T" v (On(t) - - - ﬂ(tn) (@) —1) - - (xP(@) =) R x))(g)

= 725 AT A A7 D)

= ]ukZH,:n ’Jfg}‘:,’j,@, (&, nlYE, £ exp [(§, O]
= (& ) + & 90> + (& O)" exp [K§, O]

holds by (6.6), (4.5) and Proposition 4.4. Therefore the assertion in the
theorem holds for f, = 77®" on #p, because C,(x; 7) = A*(77®”)1. By Prop-
osition 4.5, we can show that the assertion is true on #,, similarly to the
proof of Theorem 5.1. Therefore it is true for f, = > cgy?", n, € £. Applying
Proposition 4.5 again, we complete the proof. O

The corresponding theorem for Gaussian case is given in [12].

THEOREM 6.3. (i) For f, e &%,
Ii(f) = A¥(f)l = f Ao (O f. (0 x°(t) - - x°(2,)- 1 1
Tn
holds in #,. Moreover, for ¢ e #,, I°f,)p belongs to #, and

Life = [ dr@f@:x@) - x°(t) i ¢
= (A*(f)Dp # A*(f.)e .
(i1) The multiplication (y, ¢)— ¢ is continuous in #;, actually,
Vel < Sl llegro ll@lleg+o
holds, if p(4 + ||5]) < 1.
Let us define the vacuum expectation of an operator A by

(A = (A1, 1.
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Then {(x%(f)-> = 0 and {xP(f)-> = 1 hold. Hence the following common
expression of the multiple Wiener integrals holds:

THEOREM 6.4. For f, € %%, o e #y, X = P, G, it holds that
6.8) I{f)= fm def,(2) : (x%(t) - — {xF(@)-)) - - (¥ () - — {xF() D) i o

Unfortunately, the assertion (i1) of Theorem 6.3 is not true for the
Poisson case. For example, take ¢ = f7(y;x) and + = f?({; x). Then
the norms of o = f7({y + £ + »; x) exp [{{, )] is calculated as

lollm = exp &y + ¢ + 9l + 2, p].

Actually, it is not bounded by constant times of ||V |bo+ollofhwia =
exp [[IC1fvq + 171fd)-

ProposiTioN 6.5. (1) If ¢ = D v o IZ(f.) € #'» satisfies
> nla | IE ()l < oo
n=0
with some a = a(p)>0 for any p, then the mapping

Yrio——>Yp
is continuous on S p.
(ii) For peé, o—fT(y; x)¢ is a continuous mapping on Hp.

Proof. By (6.6), Theorem 6.2 and Proposition 4.5 (ii), the assertion
(i) is easily seen. Since

(%) and

fr o =3

2 g+ 7D ILG e = 2+ 7l < oo

1)2
(ii) is obvious by (i). O
Let f, be in &%, then <(x®",f,)> is a continuous functional defined

on &*. Can we show that (x®", f,> belongs to #, (resp. to #,)? Firstly,
we see that for 7, ---, 9, €6,

G @ - Q= (g - K, el
=T +7) - - TP() + 72)

belongs to #, by Theorem 6.2. Further we can prove
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<x®n, 771 ® ct ® 77n> = J.Tndyn(t)vl(tl)nl e 7]rz(tn):’cP(tl) vt xp(tn)l .

For f, € £, we have an expression

69 | &OLOFW ) o= T Apffure)es
rn J*¥+kLZn,j+k<n
by using (6.3), with the continuous linear mappings defined by
fo—> e € EOU*+k+1) ,

fﬂ;j*.k,j(tb Tty tj*+lc+j)

m!(m — k)! j e fh ke
= nymlls dy™! ! ’
v B m — ke — i — & =1 J Do 9P ®

fn;m(tls tZ’ Y tm)

n! 1, m N
= _ P 5% )f,
Tﬁ_.;“:m m!(kl !)71 . (ks !)73 ZU1 t; ¥ (i:ml_[““ t; *)f

Eiri+eec+kgrg=n

Applying Proposition 4.5, we can see:

PrOPOSITION 6.6. For f, € 6%, it holds that
@ e = [ OLOFE) - 2.

on #yx for X = P and also G.

Proof. In the case of Poisson, the assertion is clear by the above
discussion. We can check for the Gaussian case similarly. 0

Remark 6.7. For the Gaussian case, we have

6.10) Gy = 5 M2 g
( . <x ’ n> = ]{;]*(‘n—_—*z—k*)m n-—Zk(ntn—‘:k)

with

fn(n—zk(tu cy tn-?k) = [ falty =+ oy tacons 81 Sy + ¢ Sy spdv* .

J T2k

Remark 6.8. For f, e #(R)®", we have that
[ Latt@ixr@ w1 =3 (R,
where f, is defined by

(6‘11) fk(tly Tty tk) = fﬂn—kfn(tb R tln Uy =00y un—k)du .
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§7. Remarks

In the Gaussian case, the transformation ¥, has a beautiful expres-
sion

(Lo = | olx + D@,

which clarifies the reason why 0, gives a derivation (cf. [11]). It should
be an essential point that the generator of the shift x 4 & is the derivative.
Are there any similar explanations of the transformation &,? We now
discuss on the problem. Let us consider a Poisson random variable X
with mean 2. In the analysis of ¢ = ¢(X), shift ¢(x + &) does not have

meaning, because X takes its values only on Z, ={0,1,2, ---} with
probabilities

ZX
(7.1 pr(X = x) = Pl exp [—4].

However, the unit shift (sp)(x) = ¢(x + 1) and difference
(7.2) (do)(x) = (@ — Dp(x) = p(x + 1) — p(x)

should be useful. Let r, be the semi-group generated by the difference
4;

) = 3 EV o)
(7.3 — exp [&(a — D)lo(x) = (exp [6alo)(x) exp [—€]
= 52 & otx + By exp[—¢].

Then, the expectation of ¢ is given by

(1.4) Isa(X)d;tp = (20)0) -

Now we define a transformation & by

5) PO = [ () X)dpr

Then, by (7.3), (7.4) and by the group property of {r.}, we have

(& SD)(E) = «Tzfze)?)(o) = (Tz(1+e)§0)(0)

= Q1+ ) _
(1.6) =L e exp =1 — ]
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- j A + &"p(X) exp [—2¢1dy»
- f o(X) exp [Xlog (1 + &) — A&ldpx .

The last expression corresponds to the definition of #,. Put U(€) = (Fe)(§),
then

Uh(E) = Z((ad)e)E)
holds. Therefore

(7.7) dp = Y“Edg o = Ado.
Since
[ @U@ = 352t + Dy exp (1
= 5 A ) e — Dexn -1,

the dual of unit shift is given by

Tox—1 x>1
(7.8) o*p(x) = { 4 =

0 x=0.
Therefore we have

; 2p(x — 1) — Jp(x) x>1

7.9 * = (Ad)*o = Aa* — Do =
1.9) Ay = 10— g = {7 =

For example, for Charlier’s polynomials given by (5.20), we have
¥l =x— 2,
%%l = x* — (22 4 Dx 4+ 22,
@)1 = Cy(x; 2).

Our transformation &, can be considered as a continuous version of %.
Then 2, should be the difference operator;

(7.10) 2.0(x) = p(x + 8,) — p(x)

on #p,. We have not yet known whether ¢ in ., is a continuous
functional on &* or not (for #,;, a positive answer has been given [13]
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Remark 12.6). However, for densely many continuous functionals in J#,,
(7.10) is true.

ExampLE 7.1. For y in &, the equalities

d, exp [{x, »)] = (exp [»(H)] — 1) exp [{x, 7]
= exp [{x + 3, )] — exp [{x, p)],

hold in #p. For e é&, the equality
0.f"(p; %) = 9(Of “(n; x)
holds. If pe &, then we have
Of (5 %) = [F(p; x + 8) — [7(y; %) .
Proof. Since {x,7n)> = I*(y; x) + 7 holds for ye &, we get

(& » exp [ O = exp [ [ (exp 0] — DE® + Dasto)]
by (2.22). Therefore

ot e L DO = fex0 O] — 1 exp [ D).

Thus we have the first assertion. By (2.21), it holds that
(ZL2fF(p; 0))E) = exp [(§, p)]
and hence that
0
— (L (n; = y(t , .
50 (ZpfF(n; ©NE) = 1(2) exp [KE, )]
These imply the second assertion. If 5e &, then we have that
fr(p; x + d,) = exp [{x + 6, log (L + 7)) — 7]
= exp [log (1 + p@O)1f7(p; x) = A + 7O (n; x)
by (2.19). O
ExampeLE 7.2. For yeé&, f, e &%, we have
at<xy 77>” = (<JC, 77> + 77(t))n - <x’ 7]>n ’
at<x®n’ fn> = <(x + 5t)®n, fn> - <x®"’ fn>
in #p.



WHITE NOISES 83

Proof. By the recursion formula (2.27), we see that C, (x;7) is a
continuous functional of x in &*. Suppose that

Cix + a5 m) — Cylx; ) = jn)C,_i(x; 1), 1<j<n.
Then, by (2.27) again,

Coui(x + 055 7) — Coalas )
= 5 (=0 Bl (O ) + IOC, -5 )

+ é(—n""%u, 7" @) C-i(5 1) — rp()Coi(; )

= 10{C.es ) + n 5 (0 B D G g i ) — miCis )
= pt)(n + DC,(x; 7).
On the other hand, by (2.24) we have that

-55-(5(5” Cusi(x; PXUE) = (n + )&, "™

= (n + DL »Cu(x; DIE) . O

Thus we have the second assertion. Applying (2.27) we can see that {(x, )"
can be represented by a linear combination of {C,(x;7*); 0 <j, k< n}
(see [9]). Therefore the first assertion is true. The last one is proved
by applying (6.9).
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