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CALCULUS ON GAUSSIAN AND POISSON WHITE NOISES

YOSHIFUSA ITO AND IZUMI KUBO

§ 1. Introduction

Recently one of the authors has introduced the concept of generalized
Poisson functionals and discussed the differentiation, renormalization,
stochastic integrals etc. ([8], [9]), analogously to the works of T. Hida
([3], [4], [5]). Here we introduce a transformation £fP for Poisson fnnctionals
with the idea as in the case of Gaussian white noise (cf. [10], [11], [12],
[13]). Then we can discuss the differentiation, renormalization, multiple
Wiener integrals etc. in' a way completely parallel with the Gaussian case.
The only one exceptional point, which is most significant, is that the mul-
tiplications are described by

xG(t) = df + dt for the Gaussian case,

χp(t) = (9* + l)(3t + 1) for the Poisson case,

as will be stated in Section 5. Conversely, those formulae characterize the
types of white noises.

In Section 2, we will define Gaussian and Poisson white noises on
a general parameter space T, which is a separable topological space with
a (7-finite non-atomic Borel measure v. Let δ c L2(Γ, v) c £* be a GeΓfand
triplet satisfying the assumptions [A.I], [A.2], [A.3] in Section 2. Then
the measure of Gaussian white noise μG and the measure of Poisson white
noise μP are characterized respectively by their Fourier transforms

^exp [i<x, ξ}]dμG(x) = exp [ - | -

exp [i(x, ξ)]dμP(x) = exp [J^ (exp [iξ{t)] -

with ξ in δ. Then we introduce transformations £fG from L2(< *̂, μG) and
£f P from Ώ{β*, μP) to the same space ^ ( 0 ) which is a Hubert space with
the reproducing kernel exp [<£, η}]9 ηe δ.
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In Section 3, we will see fundamental properties of the space
Then we will construct a new GeΓfand triplet <F c f(0) c ^* in connec-
tion with the structure of the basic GeΓfand triplet « c L\T, v) c <f *.
Propositions, which will be used in later sections, are prepared. Any
functional U(ξ) in J^* is Frechet differentiate (Theorem 3.9). Moreover,
if U(ξ) is in ^ , then the n-th Frechet derivative U(n)(ξ ηu η2, , ηn)
defines an element Uw(ξ •) of £®n such that

and that C7(n)(f /) belongs to .F for fixed t = (̂ , ίz, , ίn) e Tn (Theorem

3.9, Corollary 3.14). The mapping U(ξ) -> | - ί - U(n\0; •)] defines an iso-

morphism from the GeΓfand triplet SF c iΓ ( 0 ) c ^ * to that of Fock's

spaces exp [®S] C exp [0L2(T, v)] C exp [(§)<?*].

In Section 4, a GeΓfand triplet j ^ z c ^ 0 ) c ^ 1 will be induced from
i^ c ,f(0) C ^ * through the mapping Sfx, X = G, P, respectively. A
continuous operator 9« on f̂ x is defined by

Then its dual 3f is a continuous operator on f̂ *, which satisfies

For fneU(Tn,vn), denote by Iβ(/») and by Γ{fn) the multiple Wiener
integrals with respect to the Gaussian white noise and the Poisson white
noise, respectively. Then Ix(fn) has the expression

(/n)= f ώ

(see Theorem 4.7). Some estimations of norms of operators related to dt

and df will be given.
In Section 5, we shall characterize the respective white noises by

means of multiplication operators, as stated above (see Theorem 5.3,
Theorem 5.4, Theorem 5.5).

In Section 6, we note that we can use the concept of Wick's normal
ordering : :, since {dt, df; te T} satisfy the canonical commutation rela-
tions. By using it, we have a new expression of the multiple Wiener inte-
gral Iξ(fn) as
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mfn) = f dv%t)fn(t): (x(td- - <*&)»• •(*«,)•- <«(<«)»: 1

x , X = G, P. The expression is convenient, because the relation

: (x(ί,) - <*(«,)»•• •(«(<.)•- <*(O»: Ψ= ί
J T

holds in ^ J (Theorem 6.4). The renormalization in the case of Gaussian

by T. Hida (or in the case of Poisson by one of the authors) coincides

with Wick's normal ordering after operating on the constant 1, which

may be called the vacuum (cf. [3], [9], [11]).

In Section 7, we will remark that the operator dt corresponds to the

difference Δtφ = φ(x + δt) — φ(x) and the transformation ^ P is closely

related to the semi-group with the generator Δt in the Poisson case. In

the Gaussian case dt corresponds to Gateaux derivative in the direction

of δt (see [13]).

§ 2. Gaussian and Poisson white noises

First of all, we give a setting of calculus on a Gaussian white noise

(cf. [10], [11], [12]). Let T be a separable topological space with a σ-fϊnite

non-atomic Borel measure v. Let £ be a dense linear subset of L2(T, v)

and let {(£, η)v\ ξ, η 6 ^}p^0 be a consistent sequence of inner products

such that

(2.1) p\\ξ\\P+i > llfllp for a n y ξe£, p > 0 ,

with a fixed p e (0,1) and

(ξ9η\ = \ ζ(t)η(t)dv(t).
J T

Let us identify Eo = L\T, v) with its dual. Let Ep be the completion of

£ with respect to the inner product ( , ) p and let E_p be the dual of Ep

with inner product ( , )_p, for p > 1. Then we have inclusions Ep+ίczEp,

p e Z. Suppose that £ = Γ)PEP and topologize £ as the projective limit

of Ep as p -> oo. Let £* be the dual of £, then £* is the inductive limit of

Ep asp—• — oo. We denote by < , ) the canonical bilinear forms between

any dual pairs. Then obviously, (ξ, η) = (ξ, η)0 holds if ξ, η 6 2?0. Addi-

tionally, we assume the following:

[A.I] The injection Eι^EQ is traceable; that is, the evaluation map

δt: £—•?(£) gives a continuous mapping t-^δt from ϊ 7 into £J_! Moreover,
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(2.2) || δ||2 ΞΞ ί ||̂ ||2_1
JT

Then the injection Eλ ci Eo is a Hilbert-Schmidt operator (see [10]).

Hence, by Bochner-Minlos-Sazanov's theorem, we can find a probability

measure μG on $* such that

(2.3) j^exp [*<*, f>l<W*) = exp [—|l l f llϊ]

Let us denote L\£*, μG) by (UG). Then the following transformation £fG

gives an isomorphism from (LG) onto JΓ ( 0 ) which is the Hubert space with

reproducing kernel exp [<£, )?>], ξ,ηei: For ^(x) e (!£), define

) = f ^ + ) )

( ) exp

by using a theorem on the density of Gaussian measure (see [14]).

Actually, put

(2.4) fG(ξ) = fG(ξ; x) = exp [<x, ξ} - i||e|β] for f e # .

Then we have

(yGfG(y))(ξ) = exp [<£, ^ > ] ,

(2.5) (

Since {/G(̂ ; x); ηe $} is α ίoία/ subset of (1^); that is, the set of all linear

combinations is dense in (L2

G), the above formulae imply that exp [{ξ, ^)]

is the reproducing kernel.

Let us introduce the Hermite's polynomials with parameter ϊ by the

generating function exp ωz — —ω2

(2.6) Σ -±-ω"Hn(z; ϊ) = exp \ωz - Lω'λ .
n=o nl L 2 J

Then we have

(2.7)
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more generally,

(2.8) <fG: Hn((xy η);r) > ffn«£, η) ϊ -

Therefore we have

(2.9) ' ' ' '

Now we come to Poisson white noise on T with intensity v. To

establish the calculus on Poisson white noise, it is convenient to require

that the basic function space has an algebraic structure. Hence we

assume additional assumptions:

[A.2] For ξ, ηei, ξη belongs to £ and satisfies

(2.10) 11^11,^^-11? II,-II9II, f o r p > l .

[A.3] The triplet S c L2(Γ, v) C ^ is a Gel'fand triplet and the

evaluating map δ satisfies

(2.11) | | a t = f 11^11.̂ (0 + sup \\δt\U < oo .

It must be noted that Schwartz space S?(Rd) admits a consistent

sequence of inner products which satisfy the assumptions [A.I, 2, 3].

Since estimations

hold for ξ e Eu ξ is a continuous bounded function belonging to

L\T, v) Π L\T, v) with

ter

Furthermore, CP(ξ) ~ exp (exp [iξ(t)] — ϊ)dv(t) is a positive definite

continuous functional on Eλ. Hence there exists a probability measure

μP on £* such that

(2.12) J^exp [i<x, ξ)]dμP(x) = exp [j^ (exp [ίξ(t)] - l)ώ(*)]

for any ξei. We call μP the measure of Poisson white noise with intensity

v. Denote by (LP) the L2-spaee L2(#*, μP). To analyze (Lp), we define
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an isomorphism ^P from (UP) onto the reproducing kernel Hubert space

JΓ ( 0 ) introduced above by

= f ^(x)exp[<x, log(l + ?)> - f ξ(u)dv(u)]dμP(x)

for ξeg. Since log(l + ξ(t)) does not belong to £ in general, we therefore

use a trick as follows. For simplicity of notation, we write

= ί η(t)dv(t).
JT

Since /P(J?) = /P0?; x) = (x, η} — η, η e #, is a random variable with mean

zero and variance ||^||o, the mapping Ip: S ->(LP) can be extended to an

isometry from E, = L\T, v) into (LP). Then

(2.13) J^exp [ilp(η; x)]dμP(x) = exp ^ (exp [iη(u)] - iη(u) -

holds for η e EQ. For a given Borel set A with y(A) < ex?, we define a Poisson

random measure P(A) by

(2.14) P ( A ) Ξ / P ( ^ ; X ) and P(A) = P(A) + v(A).

Appealing to (2.13), we can see that P(A) is a Poisson random variable

with mean v(A), i.e.

μp(P(A) = k) = (W\{Af exp [-v(A)l k = 0,1, 2, .

Conversely, any 97 in Eo can be approximated by a sequence of step func-

tions 7jn = Σi cn,^ΛnJ and

Jp(?n) = Σ CntJF(Antj) > Ip(rj) in (UP) *

Moreover, if ηn converges to η which is also in U(T, v), then

Σ cntJP(AntJ) • Ip{rj) + η in (UP).

Thus, we introduce a notation of stochastic integrals:

ί η(u)dP(u) = Ip(η) + η and f V(u)dP(u) ~ Ip(η) .
J T J T

Since P{A) is subjected to a Poisson distribution, η(u)dP(u) is a Z-valued

(a.s.) random variable, if η(t) takes its values only in Z. This guarantees

that the real valued random variable
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/*(?;*) = exp log(l + v(u))dP(u)-
(2.15) U τ

= (_i) i ««;»w<-ii) exp J log | l + 9(»;

is well defined independently of the choice of branches of log (1 + η(t)),

since v({u; η(u) < - 1}) < co for η e i. By (2.13),

(2.16) f fp(η; x)dμP{x) = 1

is proved. Obviously, we have the relation

(2.17) fp(η x)fp(ζ: x) = /P0?ζ + 9 + ζ x) exp [(?, ζ)0] a.s.

Hence we get the equality

(2.18) (fp(y; x), /P(C; X))(L2

P) = exp [(37, ζ)0] = exp [(η, ζ>].

For given η e Eo = L^Γ, p), we can choose a sequence {̂ n} such that ηn

converges to η in EQ and that fp(ηn; x) is well defined by (2.15). By (2.18),

we have that

\\fF(Vn) - fF(ym)\\(Lp) = e x p [Il7«llo] + e x p [\\ηm\\l] - 2 e x p [(ηn, ηm)0] >0

a s 72, m —> 00 .

Therefore the non-linear mapping/73 can be extended to L2(T, v) continuously,

and it satisfies the formulae (2.16), (2.17) and (2.18). On the other hand,

the expression

(2.19) fp(v; x) = exp [<*, log (1 + η)} - η]

is possible, if η belongs to the set i Ξ {exp[ζ(ί)] — 1; ζ e ^}, which is a

total subset of S by virtue of Assumption [A.2]. Now we define an

isomorphism £fP from (UP) onto JΓ ( 0 ) by

(<$fpφ)(ξ) = I φ(x)fp(ξ x)dμP(x), ξ 6 $ .

THEOREM 2.1. T/ie ίiϋo different V-spaces (UG) and (L2

P) are ίsomorphic

to the common functional space JΓ ( 0 ) under the isomorphisms 6^G and ^P1

respectively;

(2.20) (S?xφ)(ξ) = f ψ{x)fx(ξ x)dμx(x) = feΓ(?))(ώ, X=G,P9
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where fG and fp are defined by (2.4) and (2.19), respectively. In particular,

we have that

(2.21) {srxf*(ηM) = exp [<?, ηy\, srxι = l.

Proof. Let jfrx be the linear hull of {f*(η); η e Sf(R)}. By (2.5), (21.6)

and (2.18), we have (2.21). Therefore £f x is an isomorphism from the

closure of $x onto ^r{0\ because the equalities

(^χfx(v\ ^xfx{ζ))^ = (exp [<f, η)l exp [<f,

hold for X = G, P. Suppose that a ^(JC) e (Z/χ) is orthogonal to d?x. Then

t*VX?) = (/z(f)> Ψ\L\) = 0 for any £ e <T. By the definition of f*(ξ;X),

we can show that

φ ( x ) e x p [ i < x , ξ } ] d μ x ( x ) = 0 f o r a n y ξ e i .
J s*

This implies that φ(x) = 0. Therefore ^ is dense in (Lx\ X = G, P. Π

We now see some formulae related to £fP. By (2.15), we have

(2.22) (<?P exp [I*(v; •)])(?) = exp [J^(exp [,(«)] - l)(ξ(u) + l)dv -

Following [9], we define Generalized Charlier polynomials {Cn(x; η)}n=o of

Possion white noise as follows. For xe£*9 there exists a p > 0 such

that x belongs to E_p. Then for a given 276^, 37 ̂  0, log(l + ωη{t))y

\ω\ < l/(Cp||j7l|p), are analytic vectors in Ep by the Assumption [A.2].

Therefore (x> log(l + ωη)) is analytic in small ω. Hence

(2.23) Cn(x;η) = -^fp(ωη;
a

is defined as a continuous functional of x. By the proof of Proposition

3.4, it will be shown that the derivative in (2.23) exists in the strong

sense in (L2

P) and that

(2.24) (yPCn(x

Applying Proposition 3.4, we have that

(Cn(x; η), Cm(x; ζ)\Ll) =
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(2.26) Πωη; x) = Σ ^CΛ(x\ η) in (UP).
n = Q Til

Lastly we derive the recursive formulae of the Cn(x; η)'s from the equality

-fp(ωτ];x) =\(x, ~ ) — η\fp(ωη\x) for small ω,
αα> I \ 1 + ωη / J

(2.27)

By the same way we define

(2-28) = 3- . _ . 9- fP, .. ^ . ..

dωnι dωπt
; x)

=o,..., ω *=o

Then the following theorem is shown by Lemma 3.5 (cf. [9]).

THEOREM 2.2. Let {ηk} (cz^(R)) be a c.o.n.s. of L\R). Then {(n.l -

nk\)~1/2Cnu...tnk(x; ηu , ηk)} is a c.o.n.s. of (L%).

§ 3. GeΓfand triplet & c ^ 0) C ^ *

In this section, we will discuss the structure of the Hubert space

βrm g i v e n j n Section 2. The same discussion has been given in [10]

mainly in connection with Fock's spaces without details of proofs. Let

us begin with a basic triplet g C EQ ΞΞ L2(Γ, V) C g* which satisfies (2.1)

and [A.2]. The inclusions Ep S Eo S S_p, p > 1, mean that every η e Eo is an

element of the dual space E_p of Ep and satisfies

(3.1) <f, V) = (f, 37)0 for any £ e # , ,

and that there exists an isomorphism θp from E_p to ίJ^ satisfying

(3.2) <£, ζ> = (f, ^pζ)p - (^f, ζ)_, for f e Ep, ζ e £J_P.

We write θ_p = 0;1. Define a subset # of ^i0) by

# = {Σ 6̂  exp [<f, ^ >]; Vj e ί, 6, e if}

and introduce inner products ( , )ftp> on -f by

(3.3) (exp [(ξ, η)}, exp [(ξ, ζ)]),,,, = exp [(9, ζ)P],
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by the positive deίiniteness of exp [(η, ζ)J. Let JΓ(2>) be the completion of

# with respect to the inner product ( , ) ^ p u

PROPOSITION 3.1. έF{p) is a Hilbert space with reproducing kernel

exp [(ξ, η)-p], ξ, η e Sy and hence each element U(ξ) of tF{v) is a continuous

non-linear functional which can be continuously extended to E_p.

Proof. Suppose that {ζn} c £ and \\ζn - ζ | | p -*0 as n->oo. Then, it

is easily seen that exp [<f, ζn)] is a Cauchy sequence in ^{p\ because of

the equality

= exp DlCnlia + e χ P 0ICJ&] - 2 exp [(ζn, ζ J J .

Let Wc be the limit, Wζ(ξ) = l im n _ exp [<£, ζn>] in ^{p\ Then for U(ξ)
= Σ bά exp [<?, η^] in ^ , we have equalities

(U, Wζ),<» = lim([7(f), exp [<?, CnM ĉp,

which imply (C7, W ^ ^ c = U(η) for 7 e ί. Therefore Un(η) = (C7n, W^^c,,

converges to U(jj) = (U, Wβpη)^(Pi for each fixed η e $, if £7n( e J") converges

to C7 in J 2 r ( F ) as n—> CXD. Since 0P^ is dense in .Bp, {Wθpη; ηe £} is a total

subset of ^ ( p ) . Hence the values U(η), ηeS, characterize the vector U in

tF(p)-, uniquely. Thus tF{p) can be considered as a functional space on <?.

Since the equalities

Wθpfy) = ( W v , W ^ ^ c , = exp [<0PC, 5>] = exp [(ζ, ,).p]

are easily seen, together with U(η) = (U, Wθpη)^P)9 we can conclude that

Wθpζ(τj) = exp[(ζ, 3̂ )_p] is the reproducing kernel of ^ ( p ) . Π

By (2.1), (f, 3 )̂p+1 — (ξ, η)p is a positive definite functional on S.

Therefore exp[(f, η)p+ί] — exp [(ξ, η)p] is also positive definite and hence

II £7|U«,+1> > II U\\,<,> for ί 7 e #

holds. Thus we have natural inclusions

p e Z.

Let & be the projective limit of ^ip) as p->oo, and let J^* be the

inductive limit of ^{p) as p~> — oo.
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PROPOSITION 3.2. Each ^{~v) is the dual of $F{V\ pe Z, and 2F* is the

dual of £F. Moreover

<E/(£), exp [<£,?>]> = U(η).

Proof Define a transformation Θp on 'β' by

ΘpU(ξ) = Σ bj exp [<ί, θpVj}] for U(ξ) = Σ 6, exp [<?,

Then for V(ξ) = Σ c* exp [<£, ζft>] e # , it holds that

= Σ V* exp
(3 4)

= Σ bjCk exp [(? i f

(<Wί), V t t ^ c , = Σ & f̂c exp [(θpVj, ζk)p]

= Σ &A exp [<9i, ζfc>] -

Therefore θ p can be extended to an isomorphism from ^{'p) to

because θ_p gives the inverse of Θp. By (3.5), J^ (-p ) is the dual space of

Thus we have a triplet IF c J^^5 C .?"*. We will show later that it

is a GeΓfand triplet, if so is the basic triplet £ c EQ C S* (Proposition

3.6). Now we discuss the decomposition of

LEMMA 3.3. Let {Un(ξ)} be a bounded sequence in ^{v\ If the limit,

l im n _ Un(ξ) = U(ξ\ exists for each ξei, then U{ξ) belongs to &{v) and

Un(ξ) converges to U(ξ) weakly in

Proof. Since 3F is dense in t^
r ("p ), Proposition 3.2 implies the assertion

obviously. •

PROPOSITION 3.4. For any η, ζeS, <?, η)n and (ξ, ζ>m belong to

and they satisfy the equality

L e i J ^ ^ όe ί/ie subspace of ^{p) spanned by {<£, η)n;ηe £}. Then we have

Proof. Obviously,
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belongs to &w and converges to (ξ,ηY as λ->0 for each ξeg. Since
we have

- D"

<£, J?>" is in P™ and its norm is dominated by (n!)1/2||)?|g. Therefore

converges strongly in ^{v\ Hence we have

exp [ωλ(η, ζ)p] = (exp [ω(ξ, η)], exp [λ(ξ,

= Σ -π^-(<e,7> ,<e,c>)%c,,.

Thus we have proved the first assertion, which assures the orthogonality

of J ^ ' s . Suppose that C7(f)GJr(p) is orthogonal to every P™. By

Proposition 3.2, we have

n=o γι\

for any ηeS. •

LEMMA 3.5.

( i ) For 7}j eEp, nό<> 0, j = 1, 2, , k, n = nx + n2 + + nk,

ιiiπ<f,^>^ΊU)<^!)1/2πιι^r

(ii) 7/ {̂ j}?=i is an orthogonal system in Ep, then

(iii) // {VJ}7=I is a* complete orthonormal system of Ep, then a col-

lection {]]j [(^!)"1/2<f, ηi)niY, ns > 0, n = Σj n3) forms a complete ortho-

normal system of J ^ .

Proof. By Proposition 3.4, we have the equalities
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", (Σ **<f, ?*»"U>

which induce (i). If {η3} is an orthogonal system, then the last term of

(3.6) is equal to n\(Σxωjλj\\ηj\\l)n. Therefore we see (ii). To show (iii),

the completeness must be proved. For any ζeEp, put ζm — Σ?=i (ί> VJ)PVJ-

Then we can see that <f, ζm}n converges to <f, ζ)w in SFψ as m—•oo.

Therefore the system given in (iii) spans IF^ by definition. Π

PROPOSITION 3.6. // δ c Eoa£* is a GeΓfand triplet satisfying (2.1),

then & C ^ ( 0 ) C ^ * is αZso a GeΓfand triplet

Proof, For given p, we can find q (>p) such that the injection

t: Eq^ Ep is of Hilbert-Schmidt type. Then there exists a complete

orthonormal system {3̂ } of Eq such that

Since \λ3\< p <1 by (2.1), we have that

Σ Σ
n=0 n=m + n2

= Σ Σ Π ̂ 2ϊIi = Π

This shows the assertion. •

LEMMA 3.7. ( i ) The series

(3.7) Σ -f-j-<e, 7>w<ft O-

converge to the same limit exp [<?, η + ζ>] strongly in <F(P) for any ζ, η e Ep.

(ii) exp[<£, η + ζ>] - Σ

(iii) ||<f, 37i> (ξ, ^n> exp [<f,

Proof By Lemma 3.5 ( i) , we have the estimation

-*- II / F- __\ rz / />• f \ m II

Σ
721 7721

. 2] U^ + m) s—||^||;||ζ||~ < 2exp
n,m nimi
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which assures the strong convergences. The assertion (i) follows from

Lemma 3.3. The assertions (ii) and (iii) are seen similarly by Lemma 3.3

and Lemma 3.5. •

DEFINITION 3.8. Let U(ξ) be a continuous functional on δ. If there

exist symmetric multilinear functionals U(ίc)(ξ ηί9 , ηk) of ηu , ηk e δ,

satisfying

(3.8) U(ξ + η)- U(ξ) - ± -̂ -E7<*>(e v, , η)

(3.9) I U^(ξ Vu , ηk)\ < c™(ς)\\ηι\\p. | |^ | | P , 1 < k < n,

then U(ξ) is said to be n-tίmes Ep-Frέchet differentiable and U(n)(ξ; ηl9

• , ηn) is called the n-th Ep-Frechet derivative of U(ξ) at ξ. If J7(f) is

arbitrary many times 2?p-differentiable and the equality

(3.10) U(ξ + η) = Σ -h-U«\S; η, 9η)

holds with C7(0)(f) = U(ξ), then C7(f) is said to be Ep-Frechet analytic.

THEOREM 3.9. // U(ξ) is in ^p\ then U(ξ) is E_p-Frέchet analytic

and the n-th E_p-derίvative is expressed in the form

(3.11) J7<">(ζ; ηl9 , ηn) = <J7(f), <f, ̂ > <f, ηn) exp [<

Moreover, Uin)(ζ; •) can be extended to a symmetric continuous multilinear

functional on E_p.

Proof. Define U^(ζ; ηί9 , ηn) by (3.11). Then C7(w)>s satisfy (3.8),

(3.9) and (3.10) by Lemma 3.7 (ii), (iii) and (i), respectively. The second

assertion is obvious by (3.9). •

Suppose that U(ξ) is in ^{p). By the theorem, for each ξeδ there

exists an element U(n)(ξ; •) belonging to the n-folά symmetric tensor

product space Efn such that

(3.12) U^(ξ; ηl9 , ηn) = (U^(ξ; •), ̂ ® ® ^ > ,

where ηx ® ® ηn = ©w^i ® ® yn, Vu * , Vn e E_p. Here we denote by

©„ the symmetrization on n-fold tensor product spaces. We introduce the

notation of functional derivative by

(3.13) * . . . _ * ; U(ξ)—>U^(ξ; •)•
oξ(t) oξ(tn)
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If p > 1, then ί/(n)(f; •) is a continuous symmetric function on Tn given

by

by virtue of Assumption [A.I]. If p = 0, then L/(r°(ξ; •) belongs to the

symmetric L2-space L\T\ vn)~ [fneL\T\vn)\<Bnfn ^ Q, where @n/n is

the symmetrization of fn:

with the symmetric group ©TO of degree n.

THEOREM 3.10. For U(ξ), V(ξ) e ^ip) and W(ξ)e^(-p\ we have the

following:

( i ) U(η) - Σ ^-(^""(O; •), ?*"> = Σ J

τ

wίίΛ C/(n)(0; )eEf\

(ii) ί

(iii) (U(ζ), W(ξ)) = Σ -^-(^'"'(O; •), W("'(0; •)>•

(iv) If, in particular, p — 0 ίΛe7z

(E7(f), V(f)),co, = Σ A " f ^ ( n )(0, t)V^(0, t)dv%t),
n = 0 711 J Γ "

= (tί9 , ί w ).

Proo/. By Theorem 3.9, (3.9) and (3.10) hold for U(ξ) e 3F^\ Applying

(3.12), we have the assertion (i). Take U(ξ) = exp [<f, η}] and V(ξ) =

exp [<ί, ζ>]. Then ?7(7l)(0; ^, , tn) = ^ ) 7(ίn) = ^ holds by Lemma

3.7 (ii). Therefore we have equalities

(ί7(e), V(ξ))^ = exp
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Hence (ii) is true for U, V in J~. Since & is dense in ^r(p\ we can see

that (ii) is true for U, V in «^(p). (iii) and (iv) are proved similarly. •

In the following, we will show that (gmy ξ®m)U(ξ) and (U(m\ξ •), Gm>

belong to ^(p\ if U(ξ) e ^(p+1\ gme Efm and GmeE®™. The help of

Foek's space is useful for the proof. The direct sum

(3.14) exp [®EP] = Σ® (nl)1/2Efn

71 = 0

with inner product

oo

(3.15) ((fn)n>o, feλ>θ

is called Fock's space. Its dual space is exp[(x)2?_p] with the canonical

bilinear form

(3.16) <(/.)n>o, (Gn)n>o> = Σ nl(fn, Gny
n = 0

for (fn)n^o€ exp[(x)ίy, (Gn)n>0 e exp [®i?-J. Then we have natural inclu-

sions JEf*! 9 ί?fn and exp [&EP+1] S exp [ΘEP] for p e Z by virtue of (2.1).

We denote by £®n and exp [(x)«f] then protective limits of Efn and exp [&EP],

respectively. Denote by £*®n and exp [(§)<?*] their duals. By Theorem 3.10

and (3.15), we have an isomorphism Θ^^s from J Γ ( P ) to exp[(x)^p];

(3.17) β*-': C7(f) — > ( A 17<-)(O; •)) .

The inverse of Θ/~^i is given by

(3.18) 0 ' - ' : (/κ)^ 0 — * C7(f) = f ] </„ £*"
w=0

For example, we can see that

(3.19) Θ^: exp [<f, 9>] • exp [®

(3.20) 0 ' - ' : <ί®"\ &> exp [<£, 7>]
n>

for ηeEp and gm e Efm.

For /n € Efn and ^m e Efm, we define α symmetric tensor product fn®gm

by the symmetrization of fn®gm' fn®gm^Ξ <5n+m(fn<8>gm). For Gn+me

Ef(n+n\ define fn*Gn+m as an element of £®^ satisfying
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(3.21) (gm, fn*Gn+m) = (fn®gmy Gn+m} for any gm e Efm.

Then we obviously have the estimations

(3 22) H/»&*JU£( + ) = \\®n + n(
< \\f®g\\Ef^ra) < \\fn\\Ef*\\gn\\Ef* =

and

\(gm, fn*Gn + m

= sup \(fn®gm, Gn+m}\
(3.23) iii»n£|)m-i

< sup | |/B(§)^m |U| |(»+ m) | |

For 8 - (/π)κ>0 e exp [&EP], define a projection πn to ίJf'1 by

πn(Ξ) = U .

For gmeEfm and GmeE®%, define two operators:

(
(3.24) I V n !

LEMMA 3.11.

( i ) \\a(GJΞ\\exΛ&Ep, < \\GJE®f\\Ξ\\exΛ&Ep+ύP

m((l

(ii) l | o * ( ί J 5 | U * . , : < llί«IU*-ll^ll«pc<a*,«j((i -

(iii) /or Ξ e exp [<& Sp+,], Ξ' 6 exp [(§)£.p+J ,

<α(G r a )^F> = <1?)α*(GJ1ff'>.

Proo/. By (2.1), (3.21) and (3.22), we have

and similarly
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l|a*(£jS|!exP[®^ = Σ(n + m)\\\gm&πnΞ\\

< UsJIφ Σ {n+!ny- p

Since the estimation

( 3 . 2 5 ) s u p 1 ± ) L ^ f ^sup F < 2 r r t f ( l ί) m!(l t)
n>0 Π\ n>m (jl — 771)1 dt™

holds for 0 < t < 1, we have the assertions (i) and (ii). The assertion

(iii) is obvious by definition. •

PROPOSITION 3.12. Let Ξ = (fn)n>Q be in exp [&EP+1] and put U(ξ) =

(Ξ, exp [® f]>. ΓΛβn /or Gm 6 E?^ and ^ w e Efm, it holds that

(3.26) <a(GJΞ, exp

(3.27) <a*(gj^, exp

Proo/. By (3.16), (3.21) and (3.24), we have

(a(G)Ξ, exp [®f]>

- y (n +
— Z-ί ί

w=0 711

On the other hand, for Gm = η,® ®ηm

C/Cm)(C; Gm) -

Σ7

holds by Theorem 3.9, (3.18) and (3.20). Therefore the equality (3.26) holds

for Gm in a dense subset of E®™, which is spanned by linear combinations

of 3?i® ®3?m. By Theorem 3.9 and Lemma 3.10 (i), we can show (3.26)

for any Gm. The proof of (3.27) is similar. •

THEOREM 3.13. For U(ξ) e J^ + 1 >, gm e Efm and Gm e E% <f®m, gn}U(ξ)

and (U(m)(ξ; •), Gm> are in ^F{p\ and moreover their norms are estimated

as
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Further, for V(ξ) e &^-'\

Proof is obvious by Lemma 3.10 and Proposition 3.12. •

COROLLARY 3.14. For p > 1, — is a continuous operator
δξ(td δξ(t)

from ^(p) to ,^(p+ί) and it depends on t — (tl9 , tn), continuously. The mul-

tiplication

ξ(t) : U(ξ) >ξ(t)U(ξ)

is a continuous operator from J Γ ( P ) to ^(p-l) and it depends on t continu-

ously, whenever p < 0. Moreover, ξ(t) is the dual of the operator
δξ(t)

For arbitrary pe Z, — and ξ(t) have meanings as operator valued
δξ(t)

generalized functions;

) Ξ <UQ)(ξ; } ' ^ = U«Kξ; η),

For U(ζ) in & (or &*), F(f) = ξ(s)U(ξ) belongs to &*. Then the equality

holds. Hence

δ (ξ(s)U(ξ)) = f( s )_l_[/(ί) + δs{t)U(ξ)
δξ(t) ^ ' "" x ' δξ(t)

holds as operator valued generalized functions. In this sense, we have

commutation relations, which are called the canonical commutation rela-

tions;

Γ 8
L δξ(t) '

<3 2 8 ) r » » -,
= 0 and
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§ 4. Calculus on white noises

We put the assumptions [A.I], [A.2] and [A.3] together with the
condition (2.1) on norms. In Theorem 2.1, we have seen that L\S*, μx)
is isomorphic to «^(0) under the isomorphism £fz given by (2.20) for X = G,
P. In Section 3, we have established a Gel'fand triplet & c J^(0) C <F*.
For p > 0, put tfψ = ^x

x^{p) and induce inner product ( , ) tfψ from
<F(P); that is,

(4.1) (φ, ψhr = (srzψ, sr^w

for X= G,P. Let Jfx be the projective limit of tfψ as p->oo. Obvi-
ously, we have inclusions Jf(Γ1} 5 <^T, P > 0. Then tfψ is isomorphic
to JΓ(2)) and $?x is isomorphic to 3F under the common transformation
£fx, which can be expressed by

(4.2) (^χψ)(ξ) = <φ, f*(ξ; *)> for f 6 g,

where /G(f; x) is given by (2.4) and fp(ξ, x) is by (2.15). Since

) = ||exp[<f,

for any p > 0, /z(^, x) belongs to ^fx = Πp>o^?. Now let ^ ~ p ) be the
dual of Jfψ and let ^f| be the dual of tfx.

PROPOSITION 4.1. The transformation ^x given by (4.2) defines an
isomorphism from 2/fψ to JΓ ( P ) for any peZ. In particular, the element 1
in 2?T is transformed to 1 in ^(p) by it

Proof By definition, the assertion is true for p > 0. Let us discuss
the case of p < 0. Notice that the linear subset Jfx = {J^j bjf

x{j}j\ x); η3

eg, bjβR} of jex is dense in tfψ. For ψ(x) = Σ 6 / ( ? J ; x ) e Λ , put
I7(f) = (yxφ)(ξ) = Σ &i exp [<f, 7 i>]. Then we have

\\φ\\*r = S U P
I IΨII i r c_ p ) =

= sup

Since Jfx is dense in «afx and since (Sfzφ)(ξ) is continuous in φ for each
fixed ξeg, we can conclude that Sfx is isomorphic. Obviously,

= f fx(ξ;χ)dμx = l. Ώ
J g*

For gm e Efm and Gm e E&£, define operators A*(gm) and A(GJ by
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U(GJφ = •?

Then Theorem 3.13 implies the following theorem immediately:

THEOREM 4.2. (i) For φ e 2tf{pλ\ g e Efm and Gm e E®%, A*(gm)φ and

A(Gm)φ belong to J^(P, and moreover their norms are estimated as follows;

(ii) For gm e £®m = Γ\P>o Efm and Gm e ,< ί

A(Gm) are continuous operators on Jί?x. Further A*(Gm) and A(gm) are

continuous operators on 2tf% for X = G, P.

(iii) A*(gm) (resp. A*(Gm)) is the dual operator of A(gm) (resp. of

A(GJ).

THEOREM 4.3. For φ in 2tf{i\ there exists an element (/n)n>0 of exp [®EP]

such that

®% fn> and \\φ%τ = ± nl\\fn\\%fn.
71=0 n = 0 n = 0 y

Proof, Since ^ x is an isomorphism from 2tfψ to 2P{V\ Sfxφ belongs

to JF(*\ if φetfψ. Put fn = -\(^xφYn\0; •). Then (fn)n^ belongs to
n\

and (<?»(£) = Σ <f^π. Λ> holds by (3.17) and (3.18). By the
definition of A*(fn) in (4.3) and Proposition 4.1, we have

The last equality of the theorem comes from Theorem 3.10 (iv). D

In the following, it is convenient to define A*(gm) and A(gm) even

for gm e Efm by A*(gJ = A*(®mgJ and A(gJ = A(@mgJ. As an special

case, observe ^f in E,t. Then we write, for simplicity

ίdt = A(δt) = Λ
(4.4)

and we use the notation of multi-indices;

dt Ξ 9(1 3ίra and df = 3t* 9fm
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for / = (tu - , tm) e Tm. By Theorem 4.2, estimations

are obtained, for p > 1; that is, 9t and df depend on t continuously in

tfx and Jf$, respectively, by virtue of Assumption [A.I].

PROPOSITION 4.4. For gm e £®m and φ e j f x ,

A(gm)φ = f dvm(t)gm{t)dtφ

holds in Jex. For gm e Efm = L\Tm, vm) and ψ e <^$,

A*(gjψ = f dv™(i)gJt)dΠ

holds in 3f%. Here integrals are understood as Bochner integrals.

Proof. By Theorem 4.2 (i) and by (2.2), the existence of the Bochner

integrals are obvious. Since Sf\ is an isomorphism, we have

and

x ί dvmgjfψ)(ξ) = f dvmgmξ(t1)

Thus we have the assertions. Π

For the calculus of Gaussian white noise, operators A( ) and A*( )

are very powerful tools as seen in [11]. For the calculus of Poisson white

noise, we need more complicated operators. Let fn+k+m be in

and put

(4.5) Antk%n(fn+k+J = f dv«(t)dvk(s)dv™(u)fn+k+m(t, s, u)dΐd*dβu .

Let gj be in S®1. Put

(4.6) /„+*+„&»,*£/*, s, r) = © n + J - m f dvm(u)fn{t, s, u)g}(r, s, u)
J Tm
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w i t h t = (tl9 - , t n ) , s = (sl9 - , s k ) 9 u = ( u u , u m ) a n d /- = (r , , , ^ _ f c _ J

for k + m <Cj. If k + m >j, then put fn + k+m®m,kgj = 0. Then we have

an estimate

(4.7) ι iΛ + f c + w C^ιur-^-)< cr^i^iivw(p"1}ii/:;+.+?juf^^-)!i^iu^

for p > 1, here Cp is the constant in the assumption [A.2].

PROPOSITION 4.5. For fn+k+m e s^n+k+m) and gje^\ we have the

following assertions;

(i) An,ktn(fΛ + k+m)A*(gj)l = — =?J_^.A*(/ n + f c + w (§) W i f c ^)l,
(j - m - k)\

(ii) for φ e ^ ,

X(n + k)\(m + k)\(l - p2*)—™-vffipW***).

Proof, (i) Since (^A*(^)l)(f) = <f®j, ^ > , it holds that

^AduA*(gj)l)(ξ) = - Λ Γ Γ ί ft(», «)£fa) f(^-i)^- 4 (»)

Hence we have the equality. The estimation follows from (4.7).

(ii) By the results in (i) and Theorem 4.3,

X j>m + k (j — m — k)\

j>m + k ((j — m — k)\f

< sup ilί??Jlίll^C?-V^||3| |Vm t o

3>m + k ((j — ΊΎl — k)l)2

The proof is completed by the estimation

sup _(!_+ n)KJ_±™)lz2J < n l m l ( 1 _ zym-n-2 for 0 < z < 1,
A:>0 (j!)2

which is shown similarly to (3.25). •
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For the convenience in later sections, we discuss a little more. Let

p be a natural number. Then by Assumptions [A.I], [A.3] and (2.1), we

can choose a natural number q = q(p) ( > p ) such that the injection cp%q

from EQ into Ep is of Hilbert-Schmidt type with

(4.8) Cp\UPJκ.s.<p.

LEMMA 4.6. Let nu , nk be natural numbers and let fn be an element

of Efn with n = n, + + nk. Then

belongs to Efk and its norm is estimated by

Proof. Let {e3} be a complete orthonormal system of Eq. Then fn

can be expanded as

fn= Σ cJu..,ueJί(t1) eu(tn) inEf.

By Assumption [A.2],

IIΛIUf*< Σ Cj-*|c,1,...,,J||β ί l | |1,.. ||eΛ|l1,

< C;-k\\fn\\Ef4<P,Λ.s. < Pn\\fn\\Ef». D

Let a = {Aj} be a countable Borel partition of T such that 0 < v(Aj)

< oo. Let ain) be the collection of subsets C's such that C = AH X

X Ajn with Ajk e α, Ajkf] AH = 0, if kΦ ί. Put

for/,

(4.9)

/ n V*/ —

). Then

U =

•(O J

«τ
} a.s.

holds, here a\ means the refinement to the partition into the individual

points. Multiple Wiener integrals are defined as follows. For C = AH X

• X Ajn e a(n\ define

Iξ(Xc)= f\Ix(XAjk) for X - G , P .
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For /, e L\T\ vn\ put

Then we can see that

Therefore, we see that Iξif^) converges in Jfm as a]. Define multiple

Wiener integrals Iξ(fn), for X = G, P, by

(4.10) Iί(/,) = limlί(/ίr>).
«ί

THEOREM 4.7. For fn e L\Tn, vn\ gm e L\Tm, vm\ it holds that

Iξ(fn) = A*(/n)l = f dv«(t)fn(t)dfl = /ί(©n/n)

Proof. Let α — {AJ be a partition as in above. Since we have

= exp[g(exp U,] -

for any N by virtue of (2.13),

P ft /p(W)(f) = Π ί

is obtained for C = Ai]t X X Ajn. In the case of X = G, we have

similarly that

and hence that
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Thus for both cases, we have

{?xH(f(na)W) = f f(na)(t)ζ(tx) ξ(tn)dv\t) = (ξ®\ ©„/<«>>

which implies that Iξ(f^) = /?(©«/«) = A*(@,/£")l in sfψ. By (4.9) and

(4.10), we can see that

( ( Λ X
(4.11) <"

= {&, ®nfn> •

Hence !*(/„) = 7f(©«Λ) = A*(@,/,,)l. By Theorem 3.10, (3.20) and (4.11),

we get

(iί(A), l i teJ)^. . = «€*", ©,A>, <?®m, ©^»>V...

THEOREM 4.8. The both spaces (L\), X = G, P, are isomorphic to
and to exp[(χ)£J0] as is shown in the following diagram:

The diagram shows that both L2-spaces (L2

G) and (L2

P) have the same

structure connecting with 1FΦ\ the Fock's space and multiple Wiener

integrals. Are there any differences between these spaces? In the next

section, we will see the multiplication has different expressions in the two

cases.

§ 5. Multiplication and characterization of white noises

In L\δ*,μx)9 X=P, G, the multiplication (φ ψ)(x) = φ(x) ψ(x) has

meaning if φ or ψ belongs to L°°($*y μx). How can we treat the multiplica-

tion in our formulation? In the case of Gaussian, the operator

(5.1) xG{ty - 3* + dt

describes multiplication (see [11]). Actually,
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(5.2) <*, η)φ = ί dv{t)η(t)xG(t).φ in tf*
J T

holds for #> e JfG and 27 e £. One of the authors ([9]) has shown that

(5.3) x*(ty = o ? + iχaί + i)

describes multiplication for Poisson white noise. More precisely,

(5.4) <x, η)φ = ί dv(f)η(t)xp(t)'ψ in W%
J T

holds for φ in Jf P and 37 in <f. The idea of (5.2) and (5.4) can be stated

as follows. For φ in jex, put U(ξ) = (^p)(£). By (2.4) and (2.17), we

have

( 5 5 )

 = p ( f + ,) exp [<f, 9>] for X = G,

\U(ξ + η + ξη) exp [<ί, 9>] for X = P.

Substitute ij with ωiy and differentiate them at α> — 0. Then we have

yo«x, v>φ(x))(ξ) = <*, f >U(ξ) + C7"»(ί v)
(5.6)

and

^ P «
(5.6)'

by (2.4) and (2.17). By (4.4) and by Proposition 4.4, we have (5.2) and

(5.4).

To complete the proof of (5.2) (5.4), now we must guarantee that

f(η; x)ψ(x) belongs at least to ^f| and that the differentiation has meaning

in #C§. Here we discuss for the Poisson case. If ψ is in Jvr, then fp{η)ψ

belongs to $P (d^P) by (2.17) and then (5.5) holds. Actually,

(5.7) yP{fp{ωη; x)fp(ξ; x))(ξ) = exp [<f, ωηζ + ωη + ζ> + ω(v,

holds. Hence, from the definition (3.3), it follows that

ΠE ; x) - l)Γ(ζ; x)[
ω

- mi
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Thus the derivative of (5.7) at ω = 0 exists in the strong sense in &",

since the derivative exists for each ζ € $ and since $? is a nuclear space
by Proposition 3.6. Thus (x, η)φ belongs to tf P and (5.6) holds for ψ e &P.

Similarly we can see for the Gaussian case. Remember that

A(η) = ί dv{t)η(t)dt and A*(η) = f dv{t)η{t)df
J T J T

are continuous operators on £FP by Proposition 4.4 and Theorem 4.2 (ii).

By Proposition 4.5,

A,I,O(J?) = f dv(s)η(s)d*ds

J T

is a continuous operator on Jf P. Therefore

ί dv(t)rj(t)xp(t)'= A0,Uv) + A*(9)
J T

(resp. J^ dv{t)η(t)xG{t) = A*(η)

defines a continuous operator on ^f P (resp. on ^f G). For a given 9 € Jf Z9

there exists an approximating sequence {φn} c ^ x such that φn->φ in

Jf x and that

Σ ll?>n — φ\\jr<°> < °°

Then we see that φn(x) conveges to φn(x) (a.s. μx), and hence that

liπitt..^ (x, η}φn(x) = <#, η}φ(x) (a.s. j«x). On the other hand, the continuity

of A(rj), A*(η) and AOiho(τf) implies that

lim<JC, η}φn = ί dv{t)η(t)xx{t)-φ in Jfx, X = P, G.

Thus we have completed the proof.

THEOREM 5.1. For ψ e 3fx, <x, η)ψ belongs to jfx and

(X,η)φ= ί dv(t)η(t)xx(t).φ
J T

holds. The operator (x, η) : φ ~> <Λ, >̂p> is continuous in Jfx. Moreover

<x, 2̂ )9 -> xz(ί) ^ in J^χ as η -> δt in E_x with η € <f, η = 1.

Proof. By Theorem 4.2 and by similar discussion to the proof of

Proposition 4.5, we see
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-^ < IMUIMU^α - p2)-1 and

for 37 e i, φeJ? with g = q(ί) satisfying (4.8). These estimates imply the

last assertion which completes the proof. •

For feE.p and ηeEp, multiplication ηf is defined by

<?/, ζ> = </, ?ζ> for ζeEp.

Then the norm of ηf is evaluated as

\\ηf\\.p = sup ||</, 37CMI < 11/ll-pllτCllp < CP||/||.P||CIIP.
IICIIj> = i

This observation show that AQM(η) acts on Jff, continuously, too. Thus

we have:

PROPOSITION 5.2.

(X, 9> = Λo.i.o(9) + A*(9) + A{η) + 1

αcte on j f j (resp. on Jf$) continuously, and it is self-dual; that is,

«*, 37> ^,ψ> = <P> <Λ, 9> ψ> /or p6Jfχ, ψ 6 J f $ .

Now we show that the multiplication operators xG(t) = 9* + 9« and

xp(t) = (9f + ί)(dt + 1) characterize the measures of white noises.

Let μ he a. probability measure on <?*. Suppose that there exists an

isomorphism S? from L2(<r*, /i) onto <F(0). Then put ^f = £f-χ3F and induce

the topology from &. Let ^ * be the dual of tf, then ^ can be con-

tinuously extended to ^f * in such a way that ^ * is isomorphic to J^*

under ^ . Put ^ ( p ) = ^~^{v) and give it the topology induced from

Operators dt9 9f, ί e ϊ7, are defined by

(5.8) dt ΞΞ sr-i-J—y, 3* = ^-^( ί ) ^ .
5f(0

Operators A(/n) and A*(/n) on ^ (or on Jf*) can be defined by (4.3). For

fn e L\Tn, vn), the multiple Wiener integral /«(/«) is defined by

In(fn) = A*(/n)l (cf. Theorem 4.7.).

THEOREM 5.3. Let μ be a probability measure on £*. Suppose that there
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exists an isomorphism S? form Π(£*, μ) to JΓ ( 0 ) satisfying

(i) ^ 1 = 1,

(ii) x(t) = dt + 3* O7i <#> = y - 1 ^ ;

ί/iαί is, <X 37)99 = dv(t)η{t)x{t)-ψ holds for φβJf. Then μ is the measure
J Γ

0/ Gaussian white noise.

Proof Let 9 be in ^ and put t/(f) = (Sfφ)(ξ). Then

(5.9) ^ « x , 7>pXf) = <£, η>U(ξ) + U*\ξ; η)
holds by the assumption (ii) and by Theorem 3.13. Therefore (x,

By the assumption, 1 belongs to Jf, and hence it is recursively shown

that <x, 7]}n € Jf C L2(<?*> i") T h u s a n y polynomials of <x, ̂ > belongs to
2tf. Remark that the Hermite's polynomials defined by (2.6) satisfy the
additive formula

(Hn(z; 7) - nΐHn^(z; γ) = Hn+1(z; ϊ),
( ' [H0(z;r) = l and Hx(z\f) = z.

Of course, Hn((x, η}; \\η\\D) belongs to MT. Put

then U0(ξ) = 1 and U^(ξ; t) = 0 hold by (i) and (5.10). By (5.9), Ux{ξ) =

<f, η) is obtained. Assume that Uk(ξ) = <?, ̂ >fc for A < τι. Then by (5.10)

and (5.9).

Un+1(ξ) = ^ « ^ > ̂ >^n«^, y>; \\v\\ϊ))(ξ) - n\

f
δξ{t)

By Proposition 3.4, {Un} is an orthogonal system with (Un9 Um)^p)

δn,mn\\\ξ\\f. Therefore

converges in IF. Since £f is an isomorphism, the series

= exp
n=0 nl

obtained by (2.6) converges in JP. Hence it holds that
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j^exp [<*,?> - ~\\η\\2]dμ = (

This implies that

exp [<*, η) - 1 | | 5 | B

exp [i(x, η)]dμ = exp [--^

and hence μ — μG. •

THEOREM 5.4. Lei μ be a probability measure on $* whose support is

included in E_r with r > 0. Suppose that there exists an isomorphism £f

from L2(δ*9 μ) to ^φ) satisfying

(i) ^ 1 = 1,

(ii) x(t)- = (3* + 1)0, + 1) on JT = y - 1 ^ .

/£ is ί^e measure of Poisson white noise.

Proof. The Charlier polynomials Cn(x; η) can be defined by (2.23)

as continuous functionals of x and η9 irrespectively of measures on <?*.

We now show the equality

(5.11) ^(Cn(x, ,))(£) = <f, ^>w

that is, Cn(x; η) = A*(^ w )l = Λ^®'1). If 9 is in tf, then (^)( f ) is in ^

and

(5.12) (<n<x, ζ>0)(f) = J dv(t)ζ(t)(l

belongs to 3F. Therefore <x, ζ)φ is in f̂7. By (2.27) and by the condition

(ii), we have

Assume that Ck(x; η) is in ^ and (^Cfc(x; η))(ξ) = <£, ̂ >fc holds for 0 < k

< n. Then applying (5.12),

By the recursive formulae (2.27), we have
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^}(ξ, ηy - η(ξ, ηy

Therefore Cn+1(x; η) belongs to Jf and SfCn>ίx\ η)){ξ) = <f, η)n+i. Since

Sf is an isomorphism,

(C%(x; η), CJx; ζ)),,,, = 3,,mn!(7, ζ%

holds for η,ζe$ by virtue of Proposition 3.4. Therefore the series

(5.13) / , ( Ϊ ) Ξ Σ - \ C , ( I ; ? )

converges strongly in f̂ and the equality

TO•))(?)-exp [<?,?>]

holds. Since

\\Cn(x; ? ) IU .rt < l|Cn(x; ^lU,^,,,

the series (5.13) converges almost surely μ. On the other hand, by the

definition of Cn(x; η)'s,

/-,(*) = Σ^jCn(x; η) = exp [<x, log(l + ωη)) - ωrj]

holds, if xeE_r and |α>|Cr||^||r < 1. By the assumption,

(5.14) exp [(x, η} — (eη — 1)] = Σ —C n (x; eη — 1) a.s.

holds for η e $ with Cr{exp [Cr | |^||r] - 1} < 1. Therefore, for |ω| < 1,

Γ Γ Γ 1
exp \ω(x, η)> — (eωη — l)dv\dμ = <exp [<f, eωη — 1)], 1> = 1

J ** L J T J

is obtained. Hence we have

exp [ω(x, η}]dμ = exp (exp [ω^(ί)] — l)dv(ί)
J g* U T J

for |o)| < 1. We can easily see that both sides are analytic in ω. Thus

we have the equality

j.^exp [ί(x, 7}}]dμ = exp jj ^ (exp [iη(t)] -
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which implies that μ is the measure of Poisson white noise.

THEOREM 5.5. If the basic triplet $ c U{T, v) c £* satisfies the following

property, then Theorem 5.4 is true without the assumption on the support

of the measure μ: For any Borel set A with v(A) < oo, there exists an

approximating sequence {ζk} included in $ such that

\Ut) - Ut)\dv(t) > 0 as k->oo

and that ζks are uniformly bounded, i.e.

sup |ζfc(Z)| < oo .
teτ,k>o

Proof We can follow the counterpart of the stages before (5.14) in

the proof of Theorem 5.4, in the same way. Let {ηk} and {ζfc} be uniform

bounded sequences in $ such that ηk-+η, ζk-+ζ in L\T, v). Since

<?, VicT -* <£, V>n and <?, ζfc>
m -> <f, ζ>m in ^ ( 0 ) , the following limits exist

inU(£*,μ);

Cn(x; η) ΞΞ lim Cn(x; ηk) and Cm(x; rj) = lim Cm(x; ζk),
fc kk-*o

even if η, ζ & $. By using the recursive formulae (2.27), we get

(5.15) Cn+1(*; η) = ± (-ly-^iClx; η«->+1) + ψ^C^x; η) - ηCn(x; rj).

Notice that

Cn(x; η)Cm(x; ζ) - lim Cn(x; ηk)Cm(x; ζk) in L\g*> μ).

Then by (5.12), we have that

{^{Cx{x; ηk)Cm(x; ζfc)))(f) - <f, ̂ fc><?, ζfc>
w = m<l + f, ^ζfc><f, C*)*"1.

Appealing to (2.27) by induction, we have that

(y(Cn(x; Vk)CM(x; ζk)))(ξ) - <ξ, %>'<?, O m

is a polynomial whose terms include either <f, ̂ ^Ci) or <1, 37fcζ0 with

i, j > 1. Now we assume that η(t)ζ(t) = 0 a.e. t (v). Then letting k—> oo,

we get

(5.16) ( W n ( *

Therefore the equalities
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n _ . | B - m 5771

Σ ( * , C,-.(a;; η)Cm(X; ζ)

m=o (n — m)\m\

Σ n.ω λ < g > > β < f > ζ > m > \

™=o (π, — m)!/n! /

hold. Let AJ9 I <j < L, be disjoint Borel sets with v{A3) < 00, and let

ωj9 1 <j < L, be real numbers. By the property (ii), we can apply (5.17)
t o ΣuχAj(t), and we get

(5.18) Cjx; ± ωμΛ = Σ ^ ' f *' "ωf Cnι(x; XAl)- CWL(x; χ.£).
\ 3=1 / m + '"+nL=n n^.' ' 7lL\

On the other hand, we have

(5.19) Cn+ί(x; KA) = Σ i-iy-^iCάx; XA) + *A)}Cs{x; XA)

- v(A)Cn(x; XA)

by (5.15). Define the usual Charlier polynomials Cn(u; X) with parameter

λ by the generating function

(5.20) exp [idog (1 + ω) - ωλ] = Σ - ^ Cn(w; Λ).
o !

Then Cn(u; λ)9s satisfy the recursive formulae

{Cn+1(u; ) = Σ (~l)n-j~uCn(u; λ) - λCn(u; λ),
(5.21) I j=0 Jι

[[Cϋ(u; λ) = 1 and Ct(u; λ) = w — λ.

Put P(A) = CJ(Λ;; XA) + v{A\ then we have by (5.19)

Cn(x; XA) - Cn(P(A);

and more generally by (5.18)

0 0 1 / L

w=C 7l ! \ feel

= Σ

Hence

??i ϊll^ΓCni(P(Λ1)-; P(Λ)) -C^PίAJ; v(AJ)

= exp """ ^ '
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f exp [ Σ P(Ak) log (1 + o),) - Σ ωκv(Ak)]dμ

applying (5.16) with ξ — 0, m = 1. Therefore for any reals ωk, l<k<L,

we have

r r L ~ι r L -i

exp 2 <*>kP(Ak) \dμ = exp 2 (exp [ωfc] — 1)P(A&) .

This implies that μ is the measure of Poisson white noise. •

§ 6. Wick's normal ordering
By (2.8), the canonical commutation relations

[3t, 3*] = *.(*),
[3,, 3,] = 0 and [3*, 3*] = 0,

are given. Hence Wick's normal ordering is applicable to our calculus

as pointed out in [11] for Gaussian case.

Let ϊtj = dtj or 3*, j = 1, 2, , n, and put J={j; ϊtj = dh], J* =

{j; γtj = 9*}. Then Mcfe's normal ordering is defined by

(6-2) :r'' r' :=,B.3δ<P/««

Then : Γίχ Γίn: is a continuous operator from M*x into #P% (or more

precisely from f/fψ into ^fi~υ, though ϊh - 7ίn has meaning only as

an operator valued generalized function. For any formal power series

-,dtn, 3*, , 3*J of free algebra generated by 3ίχ, , 3ίn, 3*, , d*m,

3 £ l , •• , 3 ί m f 3 ? 1 , •• , 3 £ ) :

is defined by operating : : to each term.

EXAMPLE 6.1. As an operator valued generalized function,

3,3*3* = δs(t)d* + δr(t)d* + d*d*dt

holds by (6.1), but

3*3*3* = : 3*3*3*: Φ: ί,(ί)3* + ίr(ί)3* + 3*3*3ι:.
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To see the action of dtl 3Cn, we want to rewrite it similarly to the

example. Here we introduce a notation: let [J, J*] be the collection of all sets

of pairs [K, K*] = {(kj9 kf)}J=1 such that kj < kf and that K = {ku --9km}

are distinct elements of J and K* = {kf, , A*} are distinct elements of

J * . Then applying (6.1), we have

(6.3) rtι- r l n = Σ \~\\Xh) Π 3* Π 9«»

Thus for /„(<!, , tn) e ̂ ®n, a continuous operator

f fn{t)dv%t)rtι---rtn

on / z is well defined by Lemma 4.6 and by Proposition 4.5 for X — P

and G.

Let us observe xp(tι) xp(tn) on «2fP, here we denote #p(£) =

(3f + l)(3ί + 1). By the definition of : :, we have

(6.4) :x*<0 •••**(«.)•:= Σ Π 3£ Π ̂ -
/,/*C{l, ,n} fc€J* jβJ

/ β κ , :(xί>(O - l ) (xί>(ί,) - l ) :
(b.o)

Σ Π 3X113X11 a , Π 9o
j-*+ϋ:+jr={i, ,n} iej* keK iceκ jeJ

Therefore, for fn e £®n,

f dv*(t)fn(t) : (x ' f t) - 1) ... ( ^ ( O - 1):

(6.6) = Σ AtJ^Kl,
J* + K + J={l,...yn}

j * k j =n J*\k\jl

In particular, we have

(: (xp(td- - 1) ( x p ( O - 1): 1 = a* . . . 3*1,

( 6 * 7 ) f dv\t)fn{t): ( ^ ( O - 1) . . . (xp(tn) - 1): 1 = A*(A) l .

THEOREM 6.2. For fneS®n, the following holds in

Iζ(fn) = A * ( / n ) l - f Λ " ( / ) / n ( / ) : (xp(U) - 1 ) . . . ( x ^ ( O - 1 ) : 1
Jψn

Moreover for φ e ̂ fP, ίΛe multiplication Iζ(fn)φ belongs to $fP and
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Ip

n(fn)ψ = \τn dv"(t)fn(t): (xp(td- - 1) • • (*'«„)•- 1):

Proof. The first assertion follows from the above discussion and

from Theorem 4.7. Since (5.7) holds for η and ζ in £, we have

(•$%(£,(*; v)Γ(ζ; x)))(ξ) = «?, J?C + ?> + <?, C»« exp

by (2.21) and (2.23). On the other hand,

? ( O : (*"(*.)• - D • (*p(t«) - i ) :

Σ "'
= n J*\kljl

= «£, 7̂> + <f > Ĉ> + <f, ζ» w exp [<£, C>]

holds by (6.6), (4.5) and Proposition 4.4. Therefore the assertion in the

theorem holds for fn = η®n on ^f P, because Cn(x; η) = A*()y®n)l. By Prop-

osition 4.5, we can show that the assertion is true on ^f p, similarly to the

proof of Theorem 5.1. Therefore it is true for fn = Σχ cjvfny VJ e &• Applying

Proposition 4.5 again, we complete the proof. D

The corresponding theorem for Gaussian case is given in [12].

THEOREM 6.3. (i) For fn e £®n,

IG

n(fn) = A*(fn)l = ί dv%t)fn(t): x%U) xG(tn).: 1

holds in J^G. Moreover, for φ e J^G9 IG{fn)φ belongs to ^ 0 and

IG

n(fn)φ - ί dv%t)fn{t): xG(t{) . . x%tn).: φ

J Tn

= {A*(fπ)l)ψ φ A*(fn)Ψ •
(ii) The multiplication (ψ, ψ)—>-fφ is continuous in 3f0, actually,

\\ψφmp» < δllψll̂ p+^Hpll̂ p+d)

holds, if p%4 + || 51|2) < 1.

Let us define the vacuum expectation of an operator A by
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Then (xG(t) > = 0 and (xp(t) > = 1 hold. Hence the following common

expression of the multiple Wiener integrals holds:

THEOREM 6.4. For fn e £*®, φ e tfx, X = P, G, it holds that

( 6 . 8 ) Iξ(fn) = ί dtfn(t): (xx(tx) - < * * ( * x ) » (x*(tn) - (x*(tn) } ) : Ψ .

Unfortunately, the assertion (ii) of Theorem 6.3 is not true for the

Poisson case. For example, take φ = fp(η; x) and ψ = fp(ζ; x). Then

the norms of ψφ — fp{ζη + ζ + η; x) exp [<ζ, η}] is calculated as

= exp [||C, + ζ + ,||J + 2<ζ, v}].

Actually, it is not bounded by constant times of ||ψ||̂ (;p+g>IMI5fCp+<z>

PROPOSITION 6.5. (i) If ψ = Σin^Inifn) e^fP satisfies

with some a = α(p)>0 for any p, then the mapping

ψ-lφ >ψφ

is continuous on J^P.

(ii) For ηe$, φ-^fp(η;x)φ is a continuous mapping on Jf P.

Proof. By (6.6), Theorem 6.2 and Proposition 4.5 (ii), the assertion

(i) is easily seen. Since

fP(v;x) = tAW'n) and

(ii) is obvious by (i). •

Let fn be in $®n, then (x®n

9 fn) is a continuous functional defined

on <?*. Can we show that <*®w, /n> belongs to JfP (resp. to ^fG)? Firstly,

we see that for ηu , ηn e $,

belongs to Jf P by Theorem 6.2. Further we can prove
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η, (X) ® ηn) = d^iήη^tjη, ^(O*F(*i) * ' * **XO' 1

For /n e <^n, we have an expression

(6.9) \τndvn(t)fn(t)xP{U) XP(tn)'ψ = ,, + Jfc<Σ n^*,i(/n;y*,*,> ,

by using (6.3), with the continuous linear mappings defined by

In * Jn;j*tk,j fc 6 9

— k — j * ) ! ( m — k — j)\

" ! " « 8 * i * . . . ( Π

Applying Proposition 4.5, we can see:

PROPOSITION 6.6. For fn e S®n, it holds that

J Tn

on 2ft?x for X = P and also G.

Proof. In the case of Poisson, the assertion is clear by the above

discussion. We can check for the Gaussian case similarly. Q

Remark 6.7. For the Gaussian case, we have

(6.io) < χ , / „ > Σ ,in-ΐk(U

fc=o (n — 2k)\k\

with

tn\n-2k\yi9 ' ' *> tn_2k) — I tn\yu ' ' *> ^n-2fc> ^1> ^1>
J Γ2ft

Remark 6.8. For /n e ̂ (i?)®n, we have that

ί dtfn(t): xp(tλ) xp(tn): 1 = ± (f)

where /% is defined by

(6.11) f k ( t u - - , t k ) = ί f n ( t u - ,tk,uu ' , un_k)du.
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§ 7. Remarks

In the Gaussian case, the transformation £fG has a beautiful expres-

sion

= f φ(x + ξ)dμG(x) ,

which clarifies the reason why dt gives a derivation (cf. [11]). It should

be an essential point that the generator of the shift x + ξ is the derivative.

Are there any similar explanations of the transformation SfPΊ We now

discuss on the problem. Let us consider a Poisson random variable X

with mean λ. In the analysis of φ = <p(X), shift φ(x + ξ) does not have

meaning, because X takes its values only on Z+ = {0, 1, 2, } with

probabilities

(7.1) /ι,(Xx)

X

However, the unit shift (σφ)(x) = ^(Λ; + 1) and difference

(7.2) (ΔΨ)(x) = (a - lM*) = p(χ + l) - ,<*)

should be useful. Let τ( be the semi-group generated by the difference

n=0 Til

(7.3) = exp [ξ(σ - I)]φ(x) = (exp [ξσ]φ)(.x) exp [-ξ]

Then, the expectation of φ is given by

(7.4) ^ φ(X)dμP =--(τιφ)(0) .

Now we define a transformation y by

(7.5)

Then, by (7.3), (7.4) and by the group property of {τ(}, we have

= (r1(l+e)9.χβ)

_ v + f))
(7.6) ~ίΛ xλ
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= jφ(X) e x p [ Z l o g ( l + ξ ) - λξ]dμP .

The last expression corresponds to the definition of SfP. Put U(ξ) = (£fφ){ξ),

then

holds. Therefore

(7.7) dφ = &-*-
dξ

Since

j(σφ)(X)ir(X)dμP = ±j^ exp [-

ί=Ί k\

the dual of unit shift is given by

(7.8)

= 0.

Therefore we have

(Xφ(χ — 1) — λφ(x) X(7.9) 3* = (λΔ)*φ = λ(σ* - I)ψ =

For example, for Charlier's polynomials given by (5.20), we have

d*l = x- λ,

d*d*l = x2 - (2λ + ΐ)x + λ2,

(d*)nl = Cn(x; X).

Our transformation 6^P can be considered as a continuous version of ^ .

Then St should be the difference operator;

(7.10) 3tφ(x) = φ(x + δt) - φ(x)

on J4?P. We have not yet known whether φ in JfP is a continuous

functional on <?* or not (for JfG, a positive answer has been given [13]
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Remark 12.6). However, for densely many continuous functionals in Jf'P
(7.10) is true.

EXAMPLE 7.1. For η in $, the equalities

dt exp [<x, 7]}] = (exp [η(t)] - 1) exp [<x, η)]

= exp [<x + δt, 7})] - exp [<x, η)],

hold in jfP. For η e £, the equality

djp(v; x) = y(t)fp(v; x)

holds. If η e £, then we have

Proof, Since <x, ̂ > = Ip(η; x) + η holds for η e $, we get

(^P exp [<x, 7>]Xf) = exp [J^ (exp [^] - lXf(*)

by (2.22). Therefore

1 P exp [<x, ?>])(?) = {exp [^ί)] - 1}(^P exp [
δξ(t)

Thus we have the first assertion. By (2.21), it holds that

and hence that

*<?Pr(η; x)Xf) = ^ ) exp [<£, 9 > ] .

These imply the second assertion, ϊΐ η ei, then we have that

fp(v; x + δt) = exp [<* + St, log(l + 9)> - 5]

= exp [log (1 + η(t))]fp(η; x) = (1 + ^ ) ) Γ ( ? ; x)

by (2.19). •

EXAMPLE 7.2. For ηeS, fneS®n, we have

3(CB(Λ:; η) = n

in ?fp.
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Proof. By the recursion formula (2.27), we see that Cn (x; rj) is a

continuous functional of x in <?*. Suppose that

Cs(x + δt;η)- Cs(x; η) = jφ)Cs_x{x; η), 1 < j < n.

Then, by (2.27) again,

Cn+1(x + δt; η) — Cn+1(x; η)
n ΊΊ ϊ

~~" / i \ — 1 / — —YJ\P) |vj\XJ Ύj) ~\~ j7]\J')^fj-i\Xj V/\
j = 0 7

71 77 J

.7=0 j ! ^

n Σ (-
j \

= v(t)(n + ϊ)Cn(x; η).

On the other hand, by (2.24) we have that

(<?PCn+1(x; V))(ξ) = (n

) ( 0 ( C ( ) ) ( ) D

Thus we have the second assertion. Applying (2.27) we can see that <x, η}n

can be represented by a linear combination of {Cj(x; ηk); 0 < j, k < n}

(see [9]). Therefore the first assertion is true. The last one is proved

by applying (6.9).
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