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STOCHASTIC DIFFERENTIAL GAMES AND VISCOSITY
SOLUTIONS OF ISAACS EQUATIONS

MAKIKO NISIO

§1. Introduction

Recently P.L. Lions has demonstrated the connection between the
value function of stochastic optimal control and a viscosity solution of
Hamilton-Jacobi-Bellman equation [cf. 10, 11, 12]. The purpose of this
paper is to extend partially his results to stochastic differential games,
where two players conflict each other. If the value function of stochatic
differential game is smooth enough, then it satisfies a second order partial
differential equation with max-min or min-max type nonlinearity, called
Isaacs equation [cf. 5]. Since we can write a nonlinear function as min-
max of appropriate affine functions, under some mild conditions, the
stochastic differential game theory provides some convenient representa-
tion formulas for solutions of nonlinear partial differential equations [cf.
1, 2, 3].

Now we will consider stochastic differential games on a finite interval
[0, T], for simplicity. Let I, be a compact and convex subset of R*:.
B(t), t > 0, denotes a standard d-dimensional Brownian motion, defined
on a probability space (2, F, P). A B-adapted process U is called a
control of player i, if U,(f)eI’;. We denote the totality of controls of
player i by A,, equipped with L,([0, TT X 2) — topology.

For U,e A,, i = 1, 2, the system X is evoluted by the following con-
trolled stochastic differential equation (CSDE in short),

@ dX(t) = a(X(t), U(t), U£))dB(t) + Y (X(0), U,(d), Us)dt
{X(O) =1

where « and 1 are symmetric matrix and vector valued functions, defined
on R? X I'y X I';, respectively. We assume some regularity, see (Al) and
(A2). The solution X of (1,1) is denoted by X(¢, X, U,, U,), if 1, U, and U,
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are stressed. Let ¢(>0) and f be real valued functions on R* X I'; X I,
with conditions (Al) and (A2). Putting

12) O, 1,1, U, Uy, ¢ 1)
= | F(X®), U(6), UL©) exp (_ J (X (), U@, Uz(z))dz>d6
+ §XO) exp (— [ X(@), U@, Ut@dz)
where X(5) = X(t,%, U, Uy, we define the pay-off function J as follows

(1.3) J@, U, U, 65 f) = EOQ, 4,2, U, Uy, ¢5 1) .

Since we fix f in this paper, we can drop f in @ and J without any con-
fusion, except Section 4. Here player 1 wants to maximize the pay-off by
a suitable control of A, and player 2 wants to minimize it by a suitable
control of A,. Moreover both players act step-by-step with a small size
of step.

Now we introduce the upper and lower values of game in the following
way. Put I(V,j) = [j27%, (j + 1D277] and denote by A,(d,,j) the totality
of I';-valued B-adapted processes on the time interval I(N,j). Then A,
can be identified with AN, 0) X A,(V,1) X --. in the usual way. Put

(1.4) B(N,j) = {Ue AN, j); U@ = U(j2")  on I(N, )}
Setting U, = (U}, U}, ---UY, where U} ¢ A, (N, k), we define the upper valve
V* and the lower valve V- as follows, for [ = [271],

(1.5) V-(t, % ¢) =lm sup inf --- sup inf J(@ X, UY--- UL, US--- Ui, ¢)

N—oo Bi(NO) 42(NO) By(N1) 42(N1)

(1.6) V*(t, % ¢)=lim inf sup --- inf sup J(@, X, U .- UL, Us--- U}, ¢)

N—oo Be(NO) A1(NO) B (N1) Ar(ND)

In this paper we always assume the following two conditions

(AD) A wy, w) — B(y, vy, 0[P < KX — yF + m(3i [ — v
where K is a positive constant and m is increasing and bounded con-
tinuous on [0, o) with m(0) = 0.

(A2) ||h] = sup,w b, u,v)|< b for h =a,T,¢,f.
For simplicity, we denote by BUC (R%) a Banach lattice of bounded and
uniformly continuous functions on R¢, with supremum norm | ||

TaeoreM 1. For ¢ e BUC(RY), V*(t, X, ¢) and V-(t, X, ¢) exist. More-
over V*(-,¢) and V-(-, ¢) belong to BUC ([0, T] X R?)
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We define two transformations V*(f) and V-(f) on BUC(R% by
.7 Viyp = V*(t, -,¢) and V()¢ = V(t, -, ¢)

respectively. Setting C; = C;(R?) = {¢ ¢ BUC(R%); d,¢, 9.0,¢ € BUC(R?),
i,j=1,---,d}, where 9, = 9/ox;, we see

TuEOREM 2. V*(¢) and V-(t) provide nonlinear semigroups on BUC(R?)
with the following properties
(i) monotone; V*(t)p < V*(t)p, V-(O)p < V-(t)y, whenever ¢ <
(i1) contraction; |V*@)¢ — V' (Ovl < g — vll,
IV-0p — V-@wll < llg — vl
(iil) weak generator; Let G* and G- be weak generators of V*(t)
and V-(t) respectively. Then, under the min-max condition,

2(G*) N 2(G~) D C;
and, for ¢ < C3,

(1.9) G4() = G~4(2) = sup inf (A(u, DY) + f(L, v, v)
= inf sup (A(u: ve(X) + f(X, u, v))

where S

(1.9) A(u, v) = Y a,,(%, u, V3.0, + VX, u, V)8; — c(i, u, v)

with a = d’.

For any ue ', and ve ', two operators I(, u) and S(¢, v) are defined
by

(1.10) I(t, w¢(X) = inf J(¢, X, u, U, ¢), 0<t< T
U€ Az
and
S, v)g(X) = sup J(¢, %, U,v,4), 0<t<T,
Uedy
respectively. These operators turn out semigroups on BUC (RY), related

to stochastic optimal controls [cf. 14, 15]. The following theorem gives
connection between “V- and I” and “V* and S”

THEOREM 3. (1)V-(¢) is the upper envelope of {I(t, u), uel'} ie.
(1.11) V-(Op > I(t, wp, for any ¢, t and u.
If a semigroup W(t) on BUC(R?) satisfies (1.11), then
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(1.12) Wty > V-(t)¢,  for any ¢ and i.

(i1) V*(®) is the lower envelope of (S(t,v), ve Iy}, ie.
(1.13) V(g < S vy, for any ¢, t and v.
If a semigroup W(t) on BUC (R?) satisfies (1.13), then
(1.14) Wty < V*(@t)p,  for any ¢ and t.

We will prove Theorems 1~3 in Section 3. In Section 4 we consider
the connection between the upper and lower values and viscosity solutions
of Isaacs equation, namely we will prove the following two theorems,
under the min-max condition.

THEOREM 4. V*(t, X, ¢) and V~(8,7, ¢) are viscosity solutions of Cauchy
problem of Isaacs equations, ‘

{aLV—l— F@'V,aV, V,1) =0, in (0, T) X R?

.15
(19 V() = ¢

where 3, = dfot, 9 = (0, - - -, 9,) and

(1.16) F(&,p,w,0)
= inf Sup (— Z aij(x, u’ v)éij - ZTZ(X, u’ v)pz + C(X, u: U)w - f(y" u’ U))

veEly uel

= Sup inf ('_ Z aij(x9 u> v)éi] - Z T’L(X’ u’ U)pl + C(X9 u9 U)w - f(X5 u9 U)

u€ly vel

THEOREM 5. Assume (A3)~(Ab), besides (Al) and (A2),

(A3) ¢ =inf,,,c(X, u,v) >0

(A4) sup,,|f(X, u,v)|— 0 and |¢(X)| — 0, as |X|— oo.

(AB) (-, u,v)e C} and |||h]]| = sup,, |A(-, &, V)|, < o0, for h = a;;, 1,
c, [ where ||y lc: = ||| + max, ||y || + max, [|3,0,4.
Then

(1.17) L:,ETpr“(t, X, ), f}lzp [V-(@, %, ¢)|—0, as |X]— oo.
Moreover V* and V- are the maximum subsolution and minimum super-
solution of (1.15) respectively in the set
C, = {We (0, T] x R%; ts<qu[W(t, ] —0, as |X|— oo}.
Therefore V* and V- are extremum viscosity solutions in C,. In

Section 5, we will deal with the so-called Verification Theorem in Isaacs
equation.
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§2. Preliminaries

First we summarize some propositions on CSDE, which we need in
later sections. Put X(¢) = X(¢, %, U, U,) and X(¢) = X(¢, %, U,, U,). Then
by the routine method, we have the following evaluation.

ProrosiITiON 1.
(2.1) E\X(®) — X(@)P < |X — TPeCr+ht
+2 ﬂEm (fll Uds) — Uf(s)l) lexp (2b + 1)(t — s)lds .

2.2) EIX(@®) — X' < 2[|alfit — s| + 2| [}t — s

PropositioN 2. For any ¢ €e BUC (R?), J(-, ¢) is a uniformly continuous
function on [0, T] X R* X A, X A,.

Proof. For ¢ > 0, there exists a positive § such that m(s) <e Put
%, = indicator of 4 and 4 = {(¢, w) € [0, T1 X 2; 32_,|U,(t, ) — U, 0)| >0}.
Then we have

23) E Lm(}:l Ut) — Ui(t)l)dt < T+ E f;m(ijllUi(t) — Ui(t)|)x,1dt

< eT + 2m(o0) 722,]']%22';,@ .

Hence we can complete the proof, appealing to Proposition 1.
Put @, = a + eI, where I is a d X d unit matrix. Replacing « by «.,
we denote a solution of (1.1) by X.. Again by the routine method, we get

ProrositionN 3. There is a positive constant K,, such that
(2'4) Ele(t) X; l]b U2) - X(t’ xy Ul) l-]2)l2 g Kle for any t) X’ Ul and UZ'

ProrositioN 4. Under the condition (A5), X(t, X) = X(, %, U,, U,) has
the first and second L*(2) derivatives w, r, to X, i.e. setting e; = unit vector
for j th coordinate, Y, (t, %) = Lim.._,(1/e)(X;(t, X + ee,) — Xi(t, X)) exists and
satisfies CSDE,

{in,.(t) = %(Bkaip)(X(t), U, Un)Y,,(0dB,(®) + 207 )X(®), Uy, U)Y,(H)dt
Y,,(0) = 4, (=Kronecker delta)

Zo(t, 1) = Lim. L (Y, % + ce) — Yi,(t, %)
e—~0 g

exists and satisfies CSDE
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dz,,(t) = ; @i )X (@), U, U)Z,;,(1)dB,(2)
i 2@ )X(®), U, UnZ,,(D)dt
< + %p(ama,,ozi,,)(X(t), U, U)Y,;,(0)Y,.()dB,(t)
+ Zk (00X HX (@), U,, Up) Y, (D) Y,,(t)dt
Z.,(0)=0. "

Moreover J(¢, -, U, U, ¢) € C; and
(2.5) 10:0,J(2, -, U, Uy, )| < Bo1 + || llo2)

where K, depends only on T and |||A]||, h=a, 7, ¢, [.
As [8, Chap. 2, 6], we can prove solvability of CSDE, i.e.

ProOPOSITION 5. Assume (AS6), besides (Al) and (A2).

(A6) There exists a constant p > 0, such that 3;; a;; (X, u, v)y,y; > plyl,
for any X, u, v.
Let u; [0, T] X R*— I', be Borel measurable. Then, for any Ue A,, the
following CSDE.

@6 {ds@) = a(8(0), ult, &), U@)AB() + Y (), ult, &), U@)de
§0) =

has a weak solution.

By a weak solution, we mean (&, U, B) on a suitable probability space
(2, F, P), such that

(i) (U, B) has the same law as (U, B)

(i) (&, U, B) satisfies (2.6).
From the condition (i), B is a d-dimensional Brownian motion and U is
B-adapted.

Proof. Put S, = sphere with center 0 and radius 2". Since [, is
compact and convex, we can choose an approximate smooth function u,;
[0, T] X R? — '}, such that u, tends to u a.e., and

(2.7) ilm e — wllrassqorixsy = 0
By virtue of smoothness of u,, the following CSDE

dé = al6@t), uu, &), U@NABQR) + Y (EWD), ut, £0)), U@)dt
@8 {5(0) =1
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has a unique B-adapted solution. &. Moreover, {¢,, k= 1,2, ---} is totally
bounded in Prohorov topology. So {(&, U, B), k = 1,2, ---} is also totally
bounded. Hence there exist (5., U,, B,) and (§, U, B) on a suitable proba-
ility space (@2, F, P), such that

(i) (&, U, B,) has the the same law as (&, U, B).

(i) As k—> 00,& — €& and B, — B in C[0, T] and U, — U in L*0, T},
with probability 1.

For simplicity, putting a,(s, v) = a(€.(s), v(s, E.(s)), U.(s)) and als, v) =
a.(s, V) = a(&(s), u(s, E(s), U(s)) etc, we see, from (2.8)

(2.9) dé, = a,(t, u)dB, + Y.(t, u,)dt .
For ¢ > 0, we can choose D = S,, such that
(2.10) PE.WHeD, forany t<T)>1—e, k=12 - -0,

Now Krylov’s inequality derives that there is a positive K, such that
T _
(2.11) EL | h(s, Ex(9))ds < K.i”h||Ld+1([0,T]><D) + el|h|| T

for any bounded continuous function A and £ = 1,2, ---, co. Hence (2.11)
holds for any bounded Borel function A.
Next we evaluate

(2.12) j (s, 1) dB,(s) — j a(s, w)dB(s)
= [/ @ls, w) = s, u,)dBO)
+ J:ak(s, u,)dB,(s) — f : «(s, u,)dB(s)

+ﬂm@uQ—M&wME@
=I1+IZ+I3‘

For ¢ > 0, we take a positive 6§ such that m(d) <e, and choose D = S,
such that

(2.13) P (t) e D, for any t<T)>1—6¢e, k=1,2, ---.
Moreover there exists a large k, such that

(2.14) lur — wplliarico,rixm < €0 for k,p >k,

From (2.11) (2.13) and (2.14); we can see
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(2.15) E|LP = Eﬁ;ak(s, 1) — (s, u)fds
< B[ m(ufs, 69 — us, &o))ds
<o+ " B[ ugs, £05) — uy(s, 6.6 ds

L [T + m(oo)(K + (diam I')T)] .

I, has the same evaluation as (2.15). Now we deal with I,. For 4 >0,
we put 6(s) = k4 on [k4, (k 4+ 1)4).

216)  E| |als, u,) — al0(s), u)ids < KE [ [5,(5) — £0@)fds

+ E[ milu,(s, £05) = u,6(6), E66)] + 1Us) — Tu6(s))ds.

@2.17) E f :|u,,<s, EL(9) — u,(6(s), E(6(s))|ds

< (0.4, AT + 0w, | E [ |£.0) — E0(s))Ids

(2.18) E f :lUk(s) — O,0(s)pds = E j :1 U(s) — UE(s)ds.
Combining (2.17) and (2.18) with (2.16), we have
(2.19) __sup wEﬂla,c(s, u,) — a6(s), u,)f’ ds—0, as 4—0.
Since, as k& — oo,
(2.20) j :ak(ﬁ(s), u,)dB.(s) — j:a(o(s), u,)dB(s)
with probability 1, (§, U, B) satisfies (2.6). This completes the proof.

§3. Proof of Theorems 1~3

We prove these theorems for V-, because we can apply the same
method to V*.

Proof of Theorem 1. Put 4 = 2" and
3.1) VX, ¢) = sup inf J(4, %, u, U, §)

uerly Uc4s

= sup I(4, %, 1, ).
uel
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Then V,(-, ¢)¢ ¢ BUC(R?) by Proposition 2, and we can define V,; BUC(R?)
— BUC (R?%) by

(32) VN¢ = VN(" ¢)
Moreover,
(33) M(X) = {u el's; VN(X; 975) = I(A’ X, u, ¢)}

is non-empty and compact. Suppose that %, tends to % and u,e M(X,)
tends to u. Then uwe M) by the continuity of V, and I. Therefore a
Borel selector @(-) = T(-; 4, ¢) of M(X) exists [17], i.e. T is a Borel func-
tion on R? and #(X) € M(X).

Lemma 1. For Uie B(N,j) and Ujie A(N,j), j=0, -+, k—1, we
have

(3.4) sup inf J(k+ D4, 2, U}--- U0, U3- - - U0, ¢)

U1€B1(N,k) Uz2€ A2(N,k)

= J(kA’ X; U? t Uic—l’ Ug t U;C_ly VN¢)

Proof. Put W, = (U}---U!") and ¢, = ¢(B). Since U, e B\, k) is
g.,-measurable, we see

(35) E(O(k4, (k + D4, 1, W,U,, W,U,, ¢)/.)
> I(4, X(kd, X, W, Wy), U,, ¢) .

Therefore we have

J(k + D4, X, WU, WU, ¢) > Jkd, 2, W, W,, I4, -, U, ¢)).
Taking the infinimum with respect to U, e AN, k), we get
(3.6) inf )J((k + D4, x, WU,, W,U,, ¢) > J(kd, X, W,, W, I(4, -, U, ,¢)) .

Uz2€42(N,k

Since the right hand side of (3.5) turns out Vy¢(X(k4,X, W,, W) at U, =
(X k4, x, W,, W,)) by (3.3), we see

(8.7) left hand side of (3.4) > right hand side of (3.4).

For the converse inequality, we will choose a nearly optimal control
in the following way. Using Proposition 2, we can take, for ¢ >0, a
positive § = (e, ¢) such that

(3.8) sup |J(4, %, u, U, ) — J(4, 7, w, U, )| < =,
Ueds 3



172 MAKIKO NISIO

whenever [X — X'| < § and [u — w/|<4. Let {D,, n=1,2, .-} be a parti-
tion of R? X I'; with diam (D,) < 4. For any fixed (X,, u,) e D,, we can
choose U* e AN, 0) such that

(3'9) J(A5 xn’ Uy, U;rl.‘; ¢) - ’g‘ _é I(A’ X7 Uy, ¢) .
Since U} is B-adapted, there is a Borel function v,; [0, 4] X C([0, 4] — R%)
— I',, which is progressively measurable and U*(¢) = v,(¢, B).
Now define o = u(-, 4, ¢) by
B(t’ By X9 u) = Z Uﬂ(t7 B)XDn(X> u) .

Then v e A{N, 0) and we see, from (3.8) and (3.9),

(3.10) J4, 1, u, 0, ¢) — e < I(4, X, u, @)

For U, e B(N, k), put

(3.11) Uft) = o(t — k4, Biy, X(kd, %, W,, Wy), U)))
where B = B(- + s) — B(s). Then U, e AN, k) and

(3'12) E(@(kA’ (k + 1)A3 Xy VV1U1, W2U2’ ¢/akd)
é I(A, X(kAy X, Wh W2)9 l]b ¢) + 3
< VN¢(X(kA> X, Wn Wz) + e

This yields
(3'13) inf J((k + 1)4, x} Wl Ula WZU27 ¢) S. J(kA5 X: Wh WZ: VN¢) + €.
)

U2€42(N,k

Taking the supremum with respect to U, € B(N, k), we obtain the required
inequality and complete the proof.
Repeating the same argument, we have

(3.14) sup inf --- sup inf  J((k 4+ 1D4,%, U - U, W°. . W¥, ¢)
UOEB1(NO) WOE 49(NO) Uk B1(NK) WEE 42(NK)
= VE4(X) .

Lemma 2. V, has the following properties
(1) monotone; Vyp < Vi, whenever ¢ <
(1) contraction; || Vyd — Vbl < I — |l
i) Vyo < Vig.

Proof. (i) 1is clear from the definition of oJ.
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Using|sup %, — supy.| < sup (X, — .| and |infZ, — infy,| < sup|%, — y.|,
(i1) is clear, by the following evaluation,
(3.15) [J@ U, U, ¢) — J@ 2, Uy, Uy < lg — el

From the semigroup property of I(f, u), we have
(3.16) I24, uy¢ = I(4, wI(4, wy¢ < I(4, w)Vyé
Taking the supremum with respect to ue [",, we have

V, () < V. Vig(h) = Vig(h).

So we conclude (iii).

Define V(t)¢ = Vi, for t = 2"k, Then Lemma 2 (iii) guarantees
that, for any binary ¢, Vy(£)¢ is increasing, as N — co. Since Proposition
2 and (3.14) imply that {V, ()¢, N >j} is a totally bounded subset of
BUC (R?) for t = 277k,

(3.17) V@, 1, ¢) = lim V(§)p(%)

exists. Recalling the definition of V-, we obtain
Vi, 1,9 = V(7% ¢) for binary t.

Namely V-(¢, X, ¢) exists for binary ¢. Hence appealing to Proposition 2
again, we can easily prove that V-(f, %, ¢) exists for any f. Now we
complete the proof of Theorem 1.

Proof of Theorem 2. (i) and (i1) are clear. Since V(¢ % ¢)e BUC
([0, T1 X R%), by Proposition 2, we have

(3.18) NV-(Op — V-(s)p|| —> 0, as t —s—0.
Putting V= V-, we show semigroup property of V. For binary ¢ and s,
(3.19) V(t + s)¢ = lim V(t + s)¢ = lim V(£) Vi(s)¢

N—oo N—oo

Using the following calculation,

(3.20) V&) Vi(s)p — VOV (s)gll
<NV Vi) — Vi@ V(s)gl + | Vi@ V(s)p — V) V(s)pll
< Val9)g — V(oI + | Vi) V(s)g — VO V(s)gll

we see V() V(s)¢ = lim, ... V,(£) V,(s)p. Recalling (3.19) we have
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(3.21) Vit + 8)p = V(OV(s)p for binary ¢ and s.

Let ¢, and s, be approximate binary of ¢ and s respectively. Then V(s,)$
tends to V(s)¢ by (3.18). Again using the similar argument as (3.20), we
can show

(3.22) Vit + 8)g = lim V(t.)§Vis)g = VOV (©)g

Next we will calculate its weak generator. For ¢ € C;, (1/0)(I(¢, w)p(X)
— ¢(X)) tends to inf,.,, (A(w, v)¢(X) + f(%, u, v)), as t— 0, [cf. 15]. There-
fore, for we I,

t—0

(3.23) lim

Nl’—"

(V) — 9@ = inf (A, D) + 10 u, v)
This yield

(3:20)  lim - (V0§ — 601) = sup inf (AGw, vg(1) + F(L, u,v) .
In the same way we get

(3.25)  Tm (V09 — $00) < inf sup (A, 1s(2) + (1, 4, V).

Since ['; is convex and compact, the right hand sides of (3.24) and (3.25)
coincide. Hence we get

(20 Lim—(VO§) — g(1) = Tm 2 (V9 — 9(0)
(3.26) turns out, by “V(@)s() < V*(5)s(X)”,
(20 Tim (V) — g = lim = (V@400) — 4(0).

Thus ¢ € 2(G7) N 2(G*) and (1.8) holds. This completes the proof of
Theorem 2.

Proof of Theorem 3. (1.11) is clear. For 4 = 2%, we see
W(d)¢ > sup I(4, wyg = Vy(d)¢
Hence

W2d)g = WHW(D = V(W (g = V(D Vi(d)g = Vi2d)g .
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Repeating this calculation, we get
W(kd)p > V(R .
This derives
Wityg > V(s , for binary ¢.

Since both sides are continuous in #, (1.12) holds. Now we can complete
the proof of Theorem 3.

§4. Proof of Theorems 4 and 5

First we recall the definition of viscosity solution of equation (1.15),
according to [11]. Let We C([0, T1 X R%) satisfy W(0) = ¢. W is called
a viscosity solution, if the following holds, for any + € C3((0, T) X R?),

4.1 0ur(ty, %o) + F(BPty, %o) 5 Or(to, %)y Wy, %), %) >0,
at any local minimum point (¢, %) € (0, T) X R? of W — 4, and
(4.2) (e, %) + F(@(ly, %), dp(to, Xo), Wk, %), %) < O,
at any local maximum point (¢, %) € (0, T) X R? of W — .
Remark. Equivalent definition is obtained by replacing the above

statement “local” by “global”. If W satisfies (4.1) (or (4.2) respectively),
then W is called a subsolution (or supersolution respectively).

We will apply the similar method as [13]. Put V(¢ %) = V-(0)¢().
Let (¢, %) € (0, T) X R? be a global maximum point of V — . For the
proof we may assume

(4-3) V(tm Xo) = \lf(to, Xo) .
Hence
4.4) V<.

Now the monotone property of V- implies

(4-5) \!f(to, xo) = V(th Xo) = V_(h) V(to - h’ ')(Xo) < V_(h)\V(to - h, ')(Xo) ’
for h <t¢,.

On the other hand, there is a positive function § on (0, ¢,), such that

(4.6) Pty — b, 0) <ty X) — hdplrl(y, 1) + ho(h)
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and 6(h) is decreasing to 0, as h — 0. So, for ¢ > 0, there exists k, such
that

4.7 oh) <e, for h < h,.
Combining (4.6) and (4.7) with (4.5), we have

(4.8) Ylte, %) < V-(R)(ylto, -) + hD)X),  for h <1,
where
(4.9) ) = — 3ty X) + &, € CHE?)

Hereafter stressing the dependence on f, we denote V, or V-(f) by
V(-5 f) or V-(t; f) respectively.

LEmMMA. Putting 1 = supy..| A(u, v)@Q)|, we have
(4.10) | V- (h; )yt -) + RD) — V(hs f + D)ty )| < 2R*,  for b < hy.

Proof. Using Ito’s formula we see
(4.11) B [s(D(X(s)) exp (— [ax u, Ug)d6’>
~ [ ox@y exp (_ | (X, U, Uz)dﬁ)dt]
- EJZ[(D(X(S)) exp(— [ex, U, Uz)d0> — O(X(t)) exp <—L X, U, U»dﬁ)]dt

= EISUSA( U(2), U(2)0(X(2)) exp(— IZ X, U, Ug)d0> dz] dt
0 t 0

< 28*

Hence, for s < h,,

(412)  |Js, 1, Uy, Uy ity ) + R®;f) — J(s, %, Uy, Uy, e, ) f+ D))
< |8, 2, Uy, Upy Al -) + ROD5 f) — J(s, %, U, Uy, (e, -) + 595 )]
+ s, X, Uy, Uy ety +) 4 805 f) — s, X, Uy, Uy, 4ty )5 f + D)
< (b —9)lP] + 25"

By the definition of V-, this yields
(4'13) lV—(s’ Xy l!/‘(tm ) + hd};f)v_(sy X) ‘}/‘(tm ); f + Q)‘l é (h - S)HQH + 282 .
Now, setting s = h, we complete the proof of Lemma.

Since (¢, -) € C;, we see, as h— 0,
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(4.14) %(V—m; £+ Oty O — oty 1)
e Sul-_p lnl-f A(u’ v)\#(tn’ )(X) + f(x’ u, U) + @(X) .

Combining (4.14) with (4.8) and (4.10), we obtain as h — 0,

0< %(V-(h;w(to, ) + hO)) — Wt 1)

—> sup inf A(u’ v)\lf(to, )(Xn) + f(xo, u, v) + @(XO) .

u€ly veEl;

Hence, from (4.9).
(4-15) 0 S - F(aztlf(to, xo)a a‘]f(to, Xo)’ \V(to, Xo), Xo) - azllf(to, Xo) + & -

Since ¢, is arbitrary, (4.3) and (4.15) conclude that V is a subsolution.

In the same way we can prove that V is a supersolution. Hence V
is a viscosity solution. Applying the same argument to V*, we complete
the proof of Theorem 4.

Proof of Theorem 5. For ¢ > 0, there is a large [ = I(c) such that
P(sup | X, X, U, U) — % >D<e

t<T
for any %, U, and U,. Hence (A4) implies
(4.16) sup |J(¢, X, U,, U, ¢)—> 0, as |[Xj— oo .

tULU2

This derives (1.17).
Let We C, be a supersolution of (1.15). For any fixed u e I',, we put

qt, n) = q@t, 1; ¢) = I(¢, w)e(0).
Lemma. W, X) > q(t, X)

Proof. By (A4), there exists an approximate smooth function ¢,, with
compact support, such that

4.17) g — gnll < 27"
Now we choose a small positive number ¢(n), such that

(418) (1 + Hgﬁ"llcz)e(n) < 2",

We put «, = a + e(n)l. Replacing « by «,, we define @,, J,, A, and I,(¢, u)
in the same way as @, J, A and I(t, u) respectively. Setting
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a.(t, 15 ¢) = L, wyg(x) ,
we can easily see, from Proposition 3,
(4.19) g.(-5 ¢) — a(-; Pl —>0, asn—oo.

Moreover q.(-) = q.(-; ¢,) turns out a classical solution of Bellman equa-
tion and g, € C3*%(0, T) X R?) with some § > 0, according to [9].
Suppose that W — ¢ has a negative value at (¢, X") e (0, T) X R?, say

(4.20) W@, 1) — qt, 1) = — 2h < 0.

(4.21) la — @1l < q(-5¢) — qu(-5 DN + 11a.(-5 ) — qa(- 5 )l
<llg(-;¢) — q.(-5 D) + ¢ — ¢all -

Since the right hand side of (4.21) tends to 0, as n —> oo, we can choose
a large N such that “2-¥ < 2h” and

(4.22) W, x) — q.t, 1)< — h, for n > N.

Since W and q, vanish at X = oo, there is a compact set, [6, T] X 4 C
[0, Tl x R?, such that, by virtue of (4.21)

(4.23) W—gq,>— _;5 outside [5, T] X 4, for n> N.

A global minimum point (¢,, X,) (€[5, T] X A) of W — ¢, exists and
(4.24) W(t,, %) — qu.(t, 1) < — h, for n > N.
Moreover we have

(4.25) 0:qn(tn, X2) + F(3°qu(ts, 12), 3qu(tn, 10), W(tay X,), %) >0
because W is a supersolution and ¢, is smooth. Thus

(4.26) 0< 2.q.(t,, %)
—125 [A(u, v)q.(t,, 1) + ey, u, VI(Qalts, %) — W(ta, X)) + O, u, V)] .

On the other hand ¢, satisfies Bellman equation,
(4.27) 0 = 08,9, — inf (A,(u, v)q, + (L, u, V).
vel

Substracting (4.27) from (4.26), we obtain
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(428 0L inrf (A.(u, )q.(t., L.) + (L, u, V)
— 12{ (A(u, V)qu(ta, L) + (X, u, VNQ(t,, L) — W(t,, Z2)) + f(Le, u, V)

g S;JFP [An(u; U)qn(tn, Xn) - A(u’ v)qn(tm xn) - C(Xn, u, v)(Qn(tn> Xn) - W(tny xn))]

< sup (A,(u, V)q.(t., L.) — Au, v)q.(t., X,)) — ch

vels

by (4.24). On the other hand

< inf (J,& XL+ y,u, U ¢) + L.t % —y,u, U ¢) —2 inf J (¢, %, u, U, ¢)
Ueg A

g:s:é}:) (S X+ y,u, U @) + .7 —y,u, U o) — 2J,(2, %, u, U, ¢))
< sup [0, -, U, @)y < 21+ gl 5
where a constant 2, is independent of ¢, u and n, by (2.5). Appealing to
“¢e Cy’, (4.29) yields
(4.30) 0:0,4.(t, 1) < 41 + [ @allco) -
Thus we get, setting 4 = Laplacian
(4.31) A, (u, V)q.(t, 1) — A(u, v)q.(t, %)
= 2e(n) 3 i, (X, u, x)0,9,9..(t, X) + e(n)’dq. (2, ¥)
< 2e(n)(d*||all + de(m)A(L + lIgullce) -

Combining (4.31) with (4.28), we get, with 2, = 2d(d||«| + 1)4,
(4.32) 0 < Ae(m)(L + [ gullos) — Th.

Recalling (4.18), (4.32) yields contradiction, as n — oo.

Now we will prove Theorem 5. Setting W(¢, %) = W(t + s, %) for t <
T — s, W turns out a supersolution of (1.15) with initial value W(s).
Hence Lemma derives

W, x) > I(t, wyW(s)(%), for any uel.
Thus we get
W + s, %) > sup I(t, u) W(s)(X) .
uerl

So we have

W@, 1) = V(2 )g(x)
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and
WE 1) > Vi@ WE)X) = V(2 V(2 )g(X) = V(27 +)g(X) .

Repeating this calculation, we have

W, x) > Vy()eX), for t = 2"k
Tending N to oo, we see, for binary ¢
(4.33) W, 1) = V(©sX) .

Since both sides of (4.33) are continuous in ¢, (4.33) holds for any ¢ This
means that V- is a minimum supersolution.
For V* we can apply the same argument, using the inequality

“sup X, — supy, + sup z, > inf (X, — y, + 2.)”’

instead of (4.29). Now we complete the proof of Theorem 5.

§5. Verification Theorem

In this section we prove the following Verification Theorem.

THEOREM 6. Besides (Al) and (A2), we assume non-degeneracy.

(AB) there is p > 0, such that a(x, u, v) > pl, for any x, u, v.
Suppose that We Wi (= WL*(0, T) X R?)) is a solution of Cauchy problem
of Isaacs equation (1.15), with W(0) = ¢. Then

(5.1) Wt =V-(@¢x¢) = V(L)
= Sup inf J(ts x, [Jl, UZ’ ¢)

Ui€41 U2EA2

—inf sup Jt,7, U, U, 9).

Ug€Ag Ui€4:

Proof. We fix bounded Borel measurable versions of 3, W and 9,0, W
arbitrarily and put

(5.2) G, X, u, v) = A(u, YW(E, X)) + f(X, u, v)
and
%.3) M(t, 1)y = {@,v)el, X I'y; for any (u,v)el’; X Iy,

G, 1, 7, v) > G, X, B, 0) = GG, 1, u, 0)}

Since G(¢, X, -) has a saddle point, M(Z, %) is a non-empty compact subset
of Iy X I',, Moreover its graph = {(¢,X, &, 0); inf,ep, G, X, T, V) = G(, X,
T, 0) = sup,er, G&, X, u, U)} is a Borel set. Therefore a Lebesgue measurable
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selector (@I, 0) of M(t, %) exists. Thus we can choose a Borel function
(u*, v*), such that

(5.4) w*(t, 1) = u(t, x) and v*(t, X)) = 0(t, X) a.e.
According to Proposition 5, following two CSDE have weak solutions;

di() = al8(), w*(t, £(0), v¥(t, E@NAB(D)
(5.5) + Y(&(@), u*(t, £@1), v*(t, &@)dt
§0) =%

and for Ue A,

(5.6) {dX(‘) = a(X(®), w¥(t, X@), U@)B®) + Y (X@), w t, X(1)), Ut)dt
X(0) = 1.

Since we can apply Ito’s formula to W, by (A6), we get
G Wt 1) = B[ f(6(6), ur(s, 66, vi(s, €6 exp (= [ (e, w, v)ds)ds
+ () exp (— [ (&(0), w0, 0N, v*(0, EODas)

Put J(, X, u*(-), v*(-), ¢) = the right hand side of (5.7). By (5.3) and (5.6),
(5.8) W, 0 < Ji, X, u (). U, ¢), for Ue A,.
Hence we get

(5‘9) W(ty X) évinf J(t, x’ u*()7 U’ ¢) .

Let u, be an approximate smooth function of u*, such that u,(f, X) e
I, and

(510) ]lu* — ukHLd+1 < 27k )

(0,18 —
where S, = sphere with center 0 and radius 2*. Again using Krylov's
inequality, we have, as & — oo

(5'11) SuP IJ(t9 X’ u*(')7 l]’ ¢) - J(t) X7 uk(')> ljy ¢)|_—> 0.

Replacing u* by u,, CSDE (5.6) has a unique strong solution X,, which
is B-adapted. So u,(t, X, (1)) e A,. This derives, by (5.9) and (5.11)

(5.12) Wi(t, ¥) < lim inf J(¢, %, u,(-), U, ¢)

k—co U€EAg

< sup inf J@, %, U, U, ¢) .

U1€ A1 Us€ A2
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Replaing u* by v*, we obtain

(5.13) W(t, %) > inf supJ(¢, X, U, U, ¢).

Uz€ds Us€ A

By virtue of “supy,c4, infy,cq, J&, X, U, U, ¢) < infy,c 4, supp,eq, J@&, %, U, U,
#)” (5.12) and (5.13) imply

(5.14) W(t, x) = inf sup J(, X, U, U, ¢)

U2€A4z Ur€4;

= sup inf J(t, X, U, U, ¢).

U1€4; Ug€Ae

On the other hand Proposition 2 guarantees

(5.15) W(t, 1) = inf sup J@, X, U, U, ¢) > V', 1, ¢)

U2€ds Ur€d
where B, = U B(N), B(N) = {Ue A,, U@®) = U@-"[2])),
(5.16) W(t, %) =sup inf J(t, % U, Uy, ¢) < V(8,4 ¢).

U1EBy Uz€ 42
Since V*(t,%, ¢) > V-(t,7, ¢) holds, we complete the proof.

Remark. By (5.7), a Borel modification (u*, v*) of selector of M(t, X)
provides a min-max policy i.e. for any U, e A, and U, € A,

J(t) X, u*()7 U2a ¢) 2 J(t, x> u*(): U*(')y ¢) Z J(t, x) Ub U*('), (]5) .
By the monotone property of V-, we have

CoroLLaRY 1. Let W(-; ¢)e WL be a solution of (1.15) with initial
function ¢. Then

W(t, %; ¢) < W(E, X; ), whenever ¢ < .
By the contraction of V-, we have

CoROLLARY 2. If Isaacs equation has a solution in WY, then it is
unique and depends continuously on initial function.

ExampLE (Bang-Bang control). Suppose that (A5) and (A6) hold and
« is independent of u and v. Then (1.15) turns out a quasi-linear parabolic
equation,

JatW = > a;,; (030, W
(5.17) + supinf O 7Y%, u, v)o,W — c(X, u, )W + f(¥, u, v))

u€rl'y vel?

W) = ¢ (& C3)
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(5.17) has a unique solution in W42 Furthermore we assume

(1) T u,v)=1T0u+ T,
(11) c(X, u, v) is independent of w and wv.
(i) f(, u,v) is convex in u and concave in v.

Then g(t, X, u, v) = >V (X, u, v)a;, W(t, %) + f(X, u, v) is convex in u and con-
cave in v, and continuous in (¢, X, u, v). Hence

K(t, %) = {(@, 0)} edbyl'y, X dbyl',; for any (u,v)el’y X I,
g(t’ X’ ﬂ’ v) Z g(t, X’ u_’ D) 2 g(t9 X) u’ 5)}

is a non-empty compact subset. Moreover there is a Borel selector (u*, v¥*)
of K(t, %), which is a min-max policy by Remark. Since u*(¢, %) e bdy I,
and v*(¢, 1) € bdyl',, this is called a bang-bang policy [6].
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