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STOCHASTIC DIFFERENTIAL GAMES AND VISCOSITY

SOLUTIONS OF ISAACS EQUATIONS

MAKIKO NISIO

§ 1. Introduction

Recently P. L. Lions has demonstrated the connection between the
value function of stochastic optimal control and a viscosity solution of
Hamilton-Jacobi-Bellman equation [cf. 10, 11, 12]. The purpose of this
paper is to extend partially his results to stochastic differential games,
where two players conflict each other. If the value function of stochatic
differential game is smooth enough, then it satisfies a second order partial
differential equation with max-min or min-max type nonlinearity, called
Isaacs equation [cf. 5]. Since we can write a nonlinear function as min-
max of appropriate affine functions, under some mild conditions, the
stochastic differential game theory provides some convenient representa-
tion formulas for solutions of nonlinear partial differential equations [cf.
1, 2, 3].

Now we will consider stochastic differential games on a finite interval
[0, T], for simplicity. Let Γt be a compact and convex subset of Rki.
B(t), £ > 0, denotes a standard d-dimensional Brownian motion, defined
on a probability space (Ω, F, P). A B-adapted process U is called a
control of player ί, if U^t) e Γi. We denote the totality of controls of
player i by Au equipped with L2([O9 T] X Ω) — topology.

For Ut e Au i — 1, 2, the system X is evoluted by the following con-
trolled stochastic differential equation (CSDE in short),

(dX(t) = a(X(t), UM U2(t))dB(t) + T(X(t), U&), U2(t))dt

\X(0) = X

where a and T are symmetric matrix and vector valued functions, defined
on Rd X Γt X Γ2, respectively. We assume some regularity, see (Al) and
(A2). The solution X of (1, 1) is denoted by X(t9 X, Uu U2\ if Z, U, and U2
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are stressed. Let c ( > 0) and / be real valued functions on Rd X A X A,

with conditions (Al) and (A2). Putting

(1.2) Φ(s,t9X9UuUiyφ;f)

= J 7 ( W , tW), ϋi(fl))exp(- J/(Xω, ^(z), U%{z))dz)άβ

+ φ(X(t)) exp ( -

where X(2) = X(t, X, Uu U2), we define the pay-oίϊ function J as follows

(1.3) J(t, X, Uu U2, φ;f) = EΦ(091, X, Uu U2, φ f).

Since we fix / in this paper, we can drop f in Φ and J without any con-

fusion, except Section 4. Here player 1 wants to maximize the pay-off by

a suitable control of At and player 2 wants to minimize it by a suitable

control of A2. Moreover both players act step-by-step with a small size

of step.

Now we introduce the upper and lower values of game in the following

way. Put I(NJ) = [j2~N, (j + 1)2""] and denote by At(NJ) the totality

of /Yvalued B-adapted processes on the time interval I(N,j). Then At

can be identified with At(N, 0) X At(N, 1) X in the usual way. Put

(1.4) Z?,(iV, j) = {Ue At(N, j) U(θ) - U(j2~η on I(N, j)}

Setting Ut = (U°i9 U\, . Ui), where Uf e A,(iV, Λ), we define the upper valve

V+ and the lower valve V' as follows, for I = [2Nt],

(1.5) y-(ί, X, φ) = lim sup inf sup inf J(t, %, E7J • 17{, E7S C7J, ^)
i^-oo Bi(NO) A2(N0) Bi(Nl) A%(Nl)

(1.6) y+(ί, X, φ) = lim inf sup . . . inf sup J(ί, Z, U\- C7{, C/̂  U\, φ)
N B(N0) A{N0) B2(Nl) At{Nl)

In this paper we always assume the following two conditions

(Al) \h(X, uu u2) - h(y, υu v2)f < K\X - yf + m(ZUi\ut - v$

where if is a positive constant and m is increasing and bounded con-

tinuous on [0, oo) with m(0) — 0.

(A2) || Λ || = sup2ttl, Ih{X, u, υ) \ < b for h = a, T, c, f.

For simplicity, we denote by BXJC(Rd) a Banach lattice of bounded and

uniformly continuous functions on Rd, with supremum norm || ||.

THEOREM 1. For φ e B U C ( ^ ) , V+(t, Z, φ) and V~(t, %, φ) exist More-

over V+(-,φ) and V-(>, φ) belong to BUC([0, T] X Rd)
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We define two transformations V+(t) and V~(t) on BΌC(Rd) by

(1.7) V+(t)φ = V+(t, ,φ) and V~(t)φ = V(ί, ., 0)

respectively. Setting C2 - C6

2CRd) = {φ e BUC(i2d); 3,0, 3,3,0 e BUC (i2d),

i, j = 1, , d}, where 3t = dldxi9 we see

THEOREM 2. V+(t) and V~(t) provide nonlinear semigroups on BUC(.Rd)

with the following properties

( i ) monotone; V+(t)φ < V+(t)φ, V~{t)φ 5 V~(t)ψ, whenever φ < ψ

(ii) contraction; \\ V+(t)φ - V+(ί)ψ|| < Hs& - ψ||,

l |V"( ίV- V-(t)ψ\\<\\φ-ψ\\

(iii) zi eαfe generator; Let G+ and G~ be weak generators of V+(t)

and V~(t) respectively. Then, under the mίn-max condition,

(+) Π

and, for φ e C6

2,

(1.8) G+φ(X) = G~φ(X) = sup inf (̂ t(w, ϋ)^(x) + f(X, u, υ))
uerλ υer2

= inf sup U(M, v)φ(ϊ) + f(X, u, v))

where

(1.9) A(u, v) = Σ α,,(%, M, 17)9,3, + Σ r,(X, w, u)3, - c(X, M, 1;)

with a = ^«2.

For any ueΓx and 1; e Γ2, two operators J(ί, u) and S(t, v) are defined

by

(1.10) I(t9 u)φ(l) - i n f J ( t , X, u , U, φ), 0 < t < T
ueA2

a n d

S(t, v)φ{X) = s u p J ( ί , X,U,v,φ), 0<t<T,
ueAx

respectively. These operators turn out semigroups on BUC^^), related

to stochastic optimal controls [cf. 14, 15]. The following theorem gives

connection between "V~ and Γ and "V+ and S"

THEOREM 3. (i)^"^) is the upper envelope of {I(t, u), uel\} i.e.

(1.11) V~(t)φ > I(t, u)φ, for any φ, t and u .

If a semigroup W(t) on BUC(i?d) satisfies (1.11), then
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(1.12) W(t)φ > V'(t)φ, for any φ and ί.

(ii) V+(t) is the lower envelope of (S(t, v), v e Γ2}, i.e.

(1.13) V+(t)φ < S(t, v)φy for any φ, t and v .

// a semigroup W(t) on BUC (Rd) satisfies (1.13), then

(1.14) W(t)φ < V+(t)φ, for any φ and t.

We will prove Theorems 1 ~ 3 in Section 3. In Section 4 we consider

the connection between the upper and lower values and viscosity solutions

of Isaacs equation, namely we will prove the following two theorems,

under the min-max condition.

THEOREM 4. V+(t, X, φ) and V~(t, X, φ) are viscosity solutions of Cauchy

problem of Isaacs equations,

( L 1 5 ) \v(0) = Φ

where dt = d/dtf d = (du , dd) and

(1.16) F(ξ,p,w,X)

= inf sup ( - Σi aij(χ> u> v)%ij ~ Σ r * ( χ > u> v)Pi + c(χ> u> υ)w ~ f(*> u, ^))
υer2 uerx

= sup inf ( - 2 atJ(X, u, υ)ξi3 - Σ Γ/%, u, v)pt + c(X, u, v)w - f(X, u, v)
ueΓi ver2

THEOREM 5. Assume (A3) —(A5), besides (Al) and (A2),

(A3) c = infZMy c(Z, u, v) > 0

(A4) supttt,|/(X, u, v)\ -> 0 and \φ(X)\ -> 0, as \X\ -* oo.

(A5) h( ,u9ϋ)e Q and \\\h\\\ = supWϋ ||A( , u, v)\\Ci < oo, for h = atJ, Tίy

c,f where \\ψ\\c* = ||ψ|| + maxjd.ψll + max,,. | | a ^ ψ||.

Then

(1.17) sup|V+(ί,X,^)|, suV\V-(t,X,φ)\-+0, αs|X|->cχD.

Moreover V+ and V~ are the maximum subsolutίon and minimum super-

solution of (1.15) respectively in the set

CQ = {WeC([0, T] x Rd); sup| W(t, X)\ -> 0, αs |%|->oo}.

Therefore V+ and V"~ are extremum viscosity solutions in Co. In

Section 5, we will deal with the so-called Verification Theorem in Isaacs

equation.
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§ 2. Preliminaries

First we summarize some propositions on CSDE, which we need in

later sections. Put X(t) = X(t, X, Uu U2) and X(t) = X(t, X, Πl9 Π2). Then

by the routine method, we have the following evaluation.

PROPOSITION 1.

( 2 . 1 ) E\X(t) - X(t)f <\X- χ f e i U + ί ) t

) [exp(26 + l)(ί - s)]ds .

(2.2) E\X(t) - X(s)\2 < 2\\a\f\t - s\ + 2\\Tf\t - s|2

PROPOSITION 2. For any ^ e BUG (Rd), J(-, φ) is a uniformly continuous

function on [0, T] X Rd X A1 X A2.

Proof. For ε > 0, there exists a positive £ such that m(£) < ε. Put

XA = indicator of i and yl = {(t, ω) e [0, T] X β; Σ L i ! ί/<(ί, ω) - C/̂ ί, ω)

Then we have

(2.3) E Γm(χ;i Ui(t) - Ut(t)\)dt <εT + E Γ

Hence we can complete the proof, appealing to Proposition 1.

Put aε — a + εl, where I is a d X d unit matrix. Replacing α by αe,

we denote a solution of (1.1) by Xε. Again by the routine method, we get

PROPOSITION 3. There is a positive constant Ku such that

(2.4) E\X,(t, X, Uu U2) - X(t, X, Uu U2)\2 < K,ε for any t, X, U, and U2.

PROPOSITION 4. Under the condition (A5), X(t, X) = X(t, X, Uu U2) has

the first and second L\Ω) derivatives w, r, to X, i.e. setting βj = unit vector

for j th coordinate, Ytj (t, X) = l.i.m.s^0 (l/ε)(X^(ί, X + εe3) — Xt{t, X)) exists and

satisfies CSDE,

dYS) = Σ(dkaip)(X(t), Uu U2)Ykj(t)dBp(t) + Σ 0 * W T ω , UU U2)Ykj(t)dt
kp

Yis(0) = δij ( = Kronecker delta)

Ztjl(t, X) = Li.m. 1 (Yυ(t, X + εet) - Ytj(t, X))

exists and satisfies CSDE
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(dZiμ(t) = Σ (3tαlp)(X«), Ulf U2)Zkjl(t)dBp(t)
kp

, υu

+ Σ {dJ,aip)(X{t), Uu U2)Ykj(t)Yml(t)dBp(t)
mkp

+ Σ Q»djr<XX(t), uu u,)Ykj(t)Yml(t)dt
mk

ziμ(ϋ) = o .

Moreover J(t, , Ul9 U2, φ) e Cδ

2 and

(2.5) ||3*3,e7(*, , Uu U2, φ)\\ < K2(l + \\φ\\C2)

where K2 depends only on T and \\\h\\\, h — a, T, c, f.

As [8, Chap. 2, 6], we can prove solvability of CSDE, i.e.

PROPOSITION 5. Assume (A6), besides (Al) and (A2).

(A6) There exists a constant μ > 0, such that ^ ^ ais (X, u, v)yiyj > μ\yf9

for any X, u, v.

Let u; [0, T] X Rd-> I\ be Borel measurable. Then, for any UeA2, the

following CSDE.

(2.6) ίdξ(t) = am> u& ^> V(t))dB(t) + T(ξ(t\ u{ty ξ(t)\ U(t))dt

U(0) = 1

has a weak solution.

By a weak solution, we mean (f, U, B) on a suitable probability space

(β, F, P), such that

(i) (Π, B) has the same law as (U, B)

(ii) (I, C7, S) satisfies (2.6).

From the condition (i), B is a d-dimensional Brownian motion and U is

B-adapted.

Proof. Put Sw = sphere with center 0 and radius 2n. Since Γ1 is

compact and convex, we can choose an approximate smooth function uk;

[0, T] X Rd -> Γi, such that ^fc tends to u a.e., and

(2.7) lim||κfc - w||LΛ+1(C0,Γ]xfiAί) = 0
yt->oo

By virtue of smoothness of uk, the following CSDE

( 2 8 ) lf(θ) = i
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has a unique JB-adapted solution. ξk. Moreover, {ξk, k — 1, 2, •} is totally

bounded in Prohorov topology. So {(ξk, U, B), k = 1, 2, •} is also totally

bounded. Hence there exist (|fc, ί/fc, Bk) and (f, C7, JB) on a suitable proba-

ility space (Ώ, F, P), such that

(i) (ffc, £/fc, βfc) has the the same law as (ξH, U, B).

(ii) As k -* oo, f k -> I and Bfc -> B in C[0, Γ] and £7fc -> U in L2[0, T],

with probability 1.

For simplicity, putting ak(s, v) = a(ξk(s), υ(s, ξk(s)), Uk(s)) and α(s, ϋ) =

a^s, v) = a(ξ(s), v(s, ξ(s), U(s)) etc, we see, from (2.8)

(2.9) df k =-- ak(t, uk)dBk + Tk(t, uk)dt.

For ε > 0, we can choose D — Sn9 such that

(2.10) P(ξjc(t) € A for any t < T) > 1 - ε, k = 1. 2, oo .

Now Krylov's inequality derives that there is a positive K, such that

(2.11) E\T\HS, ξk(s))\ds < K3\\h\\Ld+mfT,XD) + e|| A|| Γ
J o

for any bounded continuous function h and k = 1, 2, , oo. Hence (2.11)

holds for any bounded Borel function h.

Next we evaluate

(2.12) Γ ak(s, uk)dBk(s) - P α(s, u)dB(s)
Jo Jo

= I (ak(s, uk) - c f̂c(s, up))dB(s)
Jo

+ αk(s, up)dBk(s) - I α(s, uv)dB(s)
Jo Jo

+ P (α(s, ωp) - a(s, u))dB{s)
Jo

= Λ + 72 + I..

For ε > 0, we take a positive δ such that m(d) < ε, and choose D = Sm

such that

(2.13) P(ξk(t) e D, for any t < T) > 1 - δε, k = 1, 2, . .

Moreover there exists a large £0 such that

(2.14) \\uh - up\\Ld+HίQyT2xD) < εδ for k,p > kQ

From (2.11) (2.13) and (2.14); we can see
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(2.15) E\Jt f = E \'\ak{s, ύ) - ak(s, up)?ds
Jo

< E\ m(\uk(s, ξk(s)) — up(s, ξk(s)y)ds
Jo

<εT+ ^ ^ E [ T \ u k ( s , ξk(s)) - up(s, ξk(s))\ds
δ Jo

< ε[T + m(oo)(Kz + (diam.

I3 has the same evaluation as (2.15). Now we deal with J2. For Δ > 0,

we put θ(s) = kΔ on [kΔ, (k + 1)Δ).

(2.16) EΓ|α*(s, up) - ccMs), up)fds < KE f ||fc(s) - ξMs))\2ds
Jo Jo

(2.17) £7 f I up(s, ξk(s)) - up(θ(s), ξk(θ(s))\ ds
JO

,(β) - U&(s))\ds

(2.18) E^Πtiβ) - Uk(θ(s))fds = E f|I7(β) - U(θ(s))\2ds.
Jo Jo

Combining (2.17) and (2.18) with (2.16), we have

(2.19) sup E [l\ak(s9 up) — ak(θ(s), uv)f ds -> 0, as Δ -> 0 .
λ = l ,2, ..,oo JO

Since, as k-> oo9

(2.20) Γ αfc(ί(s), αp)dSfc(s) -> f' a(θ(s), up)dB(s)
Jo Jo

with probability 1, (f, C7, β) satisfies (2.6). This completes the proof.

§ 3. Proof of Theorems 1-3

We prove these theorems for V~> because we can apply the same

method to V\

Proof of Theorem 1. Put Δ = 2~N and

(3.1) VN(X, φ) = sup inf J(Δ, X, u9 U, φ)
ueΓi ueA2

= sup I(Δ, 1, u, φ).
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Then VN(-9φ)φ e BXJC(Rd) by Proposition 2, and we can define VN; BUC(i?d)

-•BUC(Λd) by

(3.2) VNφ = VN(.,φ)

Moreover,

(3.3) M(X) = {ueΓu VN(X, φ) = I(Δ, X, u, φ)}

is non-empty and compact. Suppose that Xn tends to X and &n € M(Xn)
tends to &. Then u e M(X) by the continuity of V^ and I. Therefore a
Borel selector u( ) = U(- A, φ) of M(X) exists [17], i.e. ΰ is a Borel func-

tion on Rd and S(χ) e M(X).

LEMMA 1. For U{ e Bλ(N, j) and Ό( e A2(N,j), j = 0, , k - I, we

have

(3.4) sup inf J((k + I K X, [/?• C/r 1 ^, £/2° . C/f^t/,, ^)

= J(kΔ, 1,U\..- Uϊ~ι, m Ut\ VNφ)

Proof. Put W4 = (C7J. t/f-α) and σt = σt(B). Since 17, e 5,(iV, A) is
σtj-measurable, we see

(3.5) £(Φ(£Λ, (A + 1)J, X, W.E/,, VF2[

> /(J, Z(A4, X, Wu Wt), Uu φ).

Therefore we have

J((k + 1)Δ, X, W1U1, W2U2, φ) 2> J{kΔ, X, Wlt Wt, I{Δ, , Ult φ)).

Taking the infinimum with respect to Ϊ72 e A2(iV, ^), we get

(3.6) inf J((k + 1)J, χ, W U ; , W2C/2) φ) > J(kΔ, X, Wu Wt, 7(4 , Ux ,φ)).
U2eA2(N,Jc)

Since the right hand side of (3.5) turns out VNφ(X(kJ, X, Wu W2) at Ux =

U(X(kΔ, X, Wl9 W2)) by (3.3), we see

(3.7) left hand side of (3.4) > right hand side of (3.4).

For the converse inequality, we will choose a nearly optimal control

in the following way. Using Proposition 2, we can take, for e > 0, a

positive δ = δ (ε, φ) such that

(3.8) sup \J(Δ, X, u, U, φ) - J{Δ, X', u\ U, φ)\ < ± ,
ueA2 ό
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whenever \X - Y/\ < δ and \u - uf\ < δ. Let {Dn, n = 1, 2, •} be a parti-

tion of Rd X Γ1 with diam (Dn) < δ. For any fixed (Xn, un) e Dn, we can

choose C7* e A2(AΓ, 0) such that

(3.9) J(J, Xn9 aw, £/*, 0) - i - < /(J, χ, an, φ).
o

Since f7* is B-adapted, there is a Borel function υn [0, Δ] X C([0, J] -> Rd)

—> Γ2, which is progressively measurable and C7*(ί) = vn(t, B),

Now define ϊ; = v( , J, 0) by

ϋ(ί, B, X, u) = Σ u«(ί, 5 ) ^ , ( ^ a)

Then ϋ e A,(N, 0) and we see, from (3.8) and (3.9),

(3.10) J(A, 1, u,v,φ)-ε< I(Δ, X, u, φ) .

For U, e B,(N, k), put

(3.11) Ό0) = ϋ(ί - kΔ, BiΛ, X{kΔ, X, Wu Wd, Ud)

where J5S

+ = B( + s) - B(s). Then Ϊ72 e A2(N, k) and

(3.12) E{Φ(kΔ, (k + 1)Δ, X, W1UU W2Uΐt φlσKd)

< I(Δ, X(kΔ, X, Wu WO, Uu φ) + e

< VNφ(X(kΔ, X, Wu W2) + ε

This yields

(3.13) inf J((k + ΐ)Δ, X, W,UU W2U2, φ) < J(kΔ, X, Wu Wt, VNφ) + ε .

Taking the supremum with respect to Uλ e B^N, k), we obtain the required

inequality and complete the proof.

Repeating the same argument, we have

(3.14) sup inf sup inf J((k + 1)J, χ, U° U\ W° W\ φ)
UθeBi(NO) WθβAz(NO) U^GBi(NK) W*eAi{NK)

LEMMA 2. VN has the following properties

( i ) monotone; VNφ < VNψ, whenever φ < ψ

(ii) contraction; \\ VNφ — VNψ\\ < \\φ — ψ\\

(iii) VN^ώ < V\φ.

Proof, (i) is clear from the definition of J.
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Usingjsup Xa — supj>α| < sup|Xα — ya\ and |inf Xa — infyα| < sup|Xα — ya\,

(ii) is clear, by the following evaluation,

(3.15) I J(t, X, Ul9 U2, φ) - J(t, χ, Ul9 U2, ψ)\ < \\φ - ψ | | .

From the semigroup property of I(t, u), we have

(3.16) I(2Δ, u)φ = I(Δ, u)I(A, u)φ < I{Δ, u)VNφ

Taking the supremum with respect to u e Γu we have

VN^φiX) < VNVNφ{l) = V*φ(l) .

So we conclude (iii).

Define VN(i)φ = V£φ, for t = 2~Nk. Then Lemma 2 (iii) guarantees

that, for any binary t, VN(t)φ is increasing, as 2V—> oo. Since Proposition

2 and (3.14) imply that {VN(t)φ, N > j} is a totally bounded subset of

BUC(Bd) for ί = 2- Ά,

(3.17) V(ί, χ, φ) = lim

exists. Recalling the definition of V~, we obtain

V(t, X, φ) = V~(t, X, φ) for binary t.

Namely V~(t, X, φ) exists for binary t. Hence appealing to Proposition 2

again, we can easily prove that V~(t, X, φ) exists for any t. Now we

complete the proof of Theorem 1.

Proof of Theorem 2. (i) and (ii) are clear. Since V~(t, X, φ) e BUC

([0, T] X Rd), by Proposition 2, we have

(3.18) || V~(t)φ - V-(s)φ\\ > 0, as t - s -> 0.

Putting V — V~, we show semigroup property of V. For binary t and s,

(3.19) V(t + s)φ = lim VN(t + s)φ = lim VN(t)VN(s)φ
i\Γ—oo Λ r —co

Using the following calculation,

(3.20) || VN{t) VN(s)Φ ~ V(t) V(s)φ ||

< || VN(t)VN(s)φ - VN(t)V(s)φ\\ + II VN(t)V(s)φ - V(t)V(s)φ\\

< II VN(s)φ - V(s)φ\\ + || VN(t)V(s)φ - V(t)V(s)φ\\

we see V(t)V(s)φ = lim^^^ VN(t)VN(s)φ. Recalling (3.19) we have
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(3.21) V(t + s)φ = V(t)V(s)φ for binary t and s.

Let tn and sn be approximate binary of t and s respectively. Then V(sn)φ

tends to V(s)φ by (3.18). Again using the similar argument as (3.20), we

can show

(3.22) V(t + s)φ = lim V(tn)φV(sn)φ = V(t)V(s)φ

Next we will calculate its weak generator. For φ e Cδ

2, (llt)(I(t, u)φ(ϊ)

- φ(X)) tends to inίλeΓ2(A(u, υ)φ{l) + f(X, u, υ))9 as ί-*0, [cf. 15]. There-

fore, for ue Γu

(3.23) lim 1 (V(t)φ(ϊ) - φ(X)) > inf (A(u, x)φ(X) + /(X, u, υ)) .
t-*0 ί υ€Γ 2

This yield

(3.24) lim — (V(t)φ(X) - φ(X)) > sup inf (A(u, v)φ(X) + /(%, M, I;)) .
ί-»o t ueΓi υer2

In the same way we get

(3.25) Πm λ(V+(t)φ(X) - φ(X)) < inf sup (A(u, v)φ(X) + f(X, u, υ)).
«->o t vβΓo uerx

Since Γ^ is convex and compact, the right hand sides of (3.24) and (3.25)

coincide. Hence we get

(3.26) lim ±( V(t)φ(X) - φ(X)) > lim ± (V+(t)φ(X) - φ(X)).
ί0 ί ί0 ίί-»0

(3.26) turns out, by "V(t)φ(ϊ) < V+(t)φ(X)",

(3.27) lim i ( V(t)φ(X) - ^ ) = lim 1 (V+(t)φ(X) - φ(X)).

Thus ^ e ̂ (G~) Π 9(G+) and (1.8) holds. This completes the proof of

Theorem 2.

Proof of Theorem 3. (1.11) is clear. For Δ = 2~ ,̂ we see

W{Δ)φ > sup 7(J, M)0 = VN(Δ)φ

Hence

> VN(Δ)W(Δ)φ > VN{Δ)VN(Δ)φ = VN(2Δ)φ.
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Repeating this calculation, we get

W{kΔ)φ > VN{kΔ)φ.

This derives

W(t)φ > V(t)φ , for binary t.

Since both sides are continuous in t, (1.12) holds. Now we can complete

the proof of Theorem 3.

§ 4. Proof of Theorems 4 and 5

First we recall the definition of viscosity solution of equation (1.15),

according to [11]. Let We C([0, T] X Rd) satisfy W(0) = φ. W is called

a viscosity solution, if the following holds, for any ψ 6 Cδ

2((0, T) X Rd),

(4.1) 3tψ(ί0, χ0) + F(32ψ(*0, χ0), dψ(tQ, χ0), Wfo, χ0), χ0) > 0,

at any local minimum point (t0, Xo) e (0, T) X Rd of W — ψ, and

(4.2) g.ψfo, %0) + F(a2ψ(^o, %o), 3^(ίo, 3Co), W(ίo, %o), 5Co) < 0 ,

at any local maximum point (ί0, Xo) e (0, Γ) X Rd of W — ψ.

Remark. Equivalent definition is obtained by replacing the above

statement "local" by "global". If W satisfies (4.1) (or (4.2) respectively),

then W is called a subsolution (or supersolution respectively).

We will apply the similar method as [13]. Put V(t, 1) = V~(t)φ(X).

Let (tQ, Λ/o) € (0, T) X Rd be a global maximum point of V — ψ . For the

proof we may assume

(4.3) V(ί0, χ0) = ψ(ί0, χ 0 ) .

Hence

(4.4) V<ψ.

Now the monotone property of V" implies

(4.5) ψ(*o, Zo) = V(ίo, *o) = V-WVtt - Λ, 0A) < V'WψCίo - Λ, )

for h <tQ.

On the other hand, there is a positive function δ on (0, t0), such that

(4.6) ψfo - A, % ) < ψ(ί0, t) - hdtψ(t0, 1) + hδih)
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and δ(h) is decreasing to 0, as h —> 0. So, for ε0 > 0, there exists h0 such

that

(4.7) δ(h) < ε0, for h < h0.

Combining (4.6) and (4.7) with (4.5), we have

(4.8) ψ(tQ, χ0) < V-(h)(ψ(tQ, •) + ΛΦ)(χ0), for h < t0,

where

(4.9) Φ(χ) - - 3ίΨ(ί0, χ) + e0. e C2(fld)

Hereafter stressing the dependence on /, we denote VN or V~(t) by

V^(-; /) or V'(t; f) respectively.

LEMMA. Putting λ = supχMυ|A(α, u)Φ(X)|, we have

(4.10) || V-(λ;/)(ψ(ίo, •) + ΛΦ) - V"(Λ;/ + Φ)ψ(ί0. Oil < λΛ2, for h<h,.

Proof. Using Ito's formula we see

(4.11) E \sΦ(X(s)) exp (- {*c(X, Uu U2)dθ)

-\Sφ(X(t)) exp(-£c(X, Ul9 U2)dθy^

- EΓΓ<P(X(S)) exp(-Γc(X, Ul9 U2)dθ\ - Φ(X(ί))exp(-Γc(X, Uu U2)dθj\dt

- EfTΓAίt/^), U2(z)Φ(X(z)) exp(- Cc(X, Ul9 U2)dθ)dz\dt

< λs2

Hence, for s < hQ,

(4.12) \J(s, X, Uί9 U29 ψ(ίo, •) + ΛΦ;/) - J(β, %, C/̂  ?72, ψ(ί0, •

< I J(s, %, Ul9 U2, ψ(ίo, •) + ΛΦ;/) - J(s, X, 17,, E72, ψ ^ , •)

+ I J(s, χ, ?715 C72, ψ(*0, .) + sΦ; /) - «/(», z, C7i, C/2, ψt t , •)

By the definition of V", this yields

(4.13) I V~(s, X, ψ(t0, •) + hΦ;f)V-(s, X, ψ(ί 0 , •); / + Φ)\ < (h - s)\\Φ\\ + λs2.

Now, setting 5 = h, we complete the proof of Lemma.

Since ψ(ί0, ) 6 C6

2, we see, as h ~> 0,
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(4.14) 1 (V-(h; f + Φ)ψ(ί0, • )(*) - ψ&, X))
n

• supinf A(u, lOψfe, •)(%) + f(X, u, v) + Φ{1).

Combining (4.14) with (4.8) and (4.10), we obtain as h —> 0,

0 < j(V-(h;f)(ψ(t», •) + hΦ)(X0) - f(t0, Zo))

> sup inf A(u, u)ψ(ί0, •)(%„) + f(X0, u, v) + Φ(X0) .

Hence, from (4.9).

(4.15) 0 < - F(32ψ(Ό, χ0), dψ(tQ, χ0), ψ(ί0, χ0), χ0) - g£ψ(ί0, χ0) + ε 0.

Since ε0 is arbitrary, (4.3) and (4.15) conclude that V is a subsolution.

In the same way we can prove that V is a supersolution. Hence V

is a viscosity solution. Applying the same argument to V+, we complete

the proof of Theorem 4.

Proof of Theorem 5. For ε > 0, there is a large I = Z(ε) such that

P(sup|X(ί, X, Ή, U2) -X\>l)<ε

for any X, J7i and £72. Hence (A4) implies

(4.16) sup I J(ί, χ, ϋ;, ?72, ^)| > 0 , as [X| -> oo .
C / " 7

This derives (1.17).

Let WeC 0 be a supersolution of (1.15). For any fixed ue Γu we put

q(t,%) = q(t,X; φ) = I(t, u)φ(X).

LEMMA. W(t, X) > q(t, X)

Proof. By (A4), there exists an approximate smooth function φn, with

compact support, such that

(4.17) \\φ-φn\\<2-n.

Now we choose a small positive number e(n), such that

(4.18) (1 + WφnWcMn) < 2-* .

We put an = a + ε(?z)/. Replacing α by an, we define Φ7l5 Jn, An and 7n(ί, M)

in the same way as Φ, J, A and J(ί, u) respectively. Setting
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qn(t, X;φ) = In(t, u)φ(X) ,

we can easily see, from Proposition 3,

(4.19) \\q»( ; Φ ) - Q( ;φ)\\ > 0, a s n ^ o o .

Moreover qn( ) = qπ{ φu) turns out a classical solution of Bellman equa-

tion and qn e Cξ+3((0, T) X Rd) with some δ > 0, according to [9].

Suppose that W — q has a negative value at (f, V) e (0, T) X Rd, say

(4.20) W(t', V) - q(t', V) = - 2/ι < 0 .

(4.21) | | 9 -qn\\< ll<?( Φ) - ς . ( ^)ll + Ilg»( 95) - ς , ( ^ ) l l

<llg( ; ^ ) - ^ ( ; 011+ l l ^ - ^ l l

Since the right hand side of (4.21) tends to 0, as n -> oo, we can choose

a large JV such that "2~N < 2h" and

(4.22) W(t', X') - qn(t', ϊ.')< - h, for n > N.

Since W and gn vanish at X = oo, there is a compact set, [5, T] X A C

[0, Γ] X Ra, such that, by virtue of (4.21)

(4.23) W - qn > - — outside [δ, T] x /I, for n > N.

A global minimum point (tn, Xn) (6 [δ, T] X A) of W — q-M exists and

(4.24) W(ίπ, %„) - gn(ίπ, Z.) < - Λ , for n > iV.

Moreover we have

(4.25) dtqn{tn, Xn) + F(d2qn(tn, Xn), dqn(tn, Xn), W(tn, Xn\ Xn) > 0

because W is a supersolution and qn is smooth. Thus

(4.26) 0 < dtqn(tn, Xn)

- i n f [A(u, v)qn(tn, Xn) + c(Xn, u, v)(qn(tn, Xn) - W(tn, Xn)) + f(Xn, u, v)].
ver2

On the other hand qn satisfies Bellman equation,

(4.27) 0 = dtqn - inf (An(u, v)qn + f(X, u, v)) .
ver2

Substracting (4.27) from (4.26), we obtain
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(4.28) 0 < inf (An(u, v)qn(tn, Xπ) + /(*„, u, v))
ver2

- inf (A(u, v)qn(tn, Xπ) + c(Xn, u, v)(qn(tn, Xπ) - W(tn, Xn)) + f(Xn, u, v))
ver2

< sup [An(u, v)qn(tn, Xτ) - A(u, v)qn(tn, Xn) - c(Xn, u, υ)(qn(tn, ln) - W(tn, Xn))]
ver2

< sup (An(u, v)qn(tn, Xv) - A(u, v)qn(tn, Xn)) - ch
»er2

by (4.24). On the other hand

(4.29) qn(t, X+y)- 2qn(t, X) + qn(t, X - y)

< inf (Jn(t, X+y,u, U, φ) + Jn(t, X - y, u, U, φ)) - 2 inf Jn{t, X, u, U, φ)
UGA2 UZAΊ

< sup (Jn(t, X+y,u, U, φ) + Jn(t, X - y, u, U, φ) - 2Jn(t, X, u, U, φ))
ueAa

< sup||32Jn(ί, -u, U,φ)\\\yf < λtf. + | | ^ |
UGA

where a constant λi is independent of ί, u and n, by (2.5). Appealing to

"φ e C?\ (4.29) yields

(4.30) 3<3,gn(ί, X) < ^i(l + IWIc)

Thus we get, setting A = Laplacian

(4.31) An(u, v)qn(ty X) - A(u, υ)qn(t, X)

- 2ε(n) Σ α<i(χ, u, x)dίdjqn(t, X) + ε(n)2Aqn(t, X)

< 2ε(n)(d2\\a\\ + de(n)M + \\φn\\c>).

Combining (4.31) with (4.28), we get, with λ2 = 2d(d||α|| + 1)^

(4.32) 0 < λ2ε(ή)(l + \\φn\\c.) - ch .

Recalling (4.18), (4.32) yields contradiction, as n-> oo.

Now we will prove Theorem 5. Setting W(t, X) = W(t + s, X) for t <

T — s, W turns out a supersolution of (1.15) with initial value W(s).

Hence Lemma derives

W(t, X) > lit, u)W(s)(X), for any u e Λ .

Thus we get

W(t + s, X) > sup I(t, u)W(s)(X) .

ueΓi

So we have

W(2-\ X) > VN{2~N)φ{X)
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and

+\ X) > VN(2

Repeating this calculation, we have

W(t, X) > VN(t)φ(X), for t = 2~Nk

Tending N to co, we see, for binary t

(4.33) W(t, X) > V(t)φ(X).

Since both sides of (4.33) are continuous in t, (4.33) holds for any t. This

means that V~ is a minimum supersolution.

For V+ we can apply the same argument, using the inequality

"sup Xa - supx, + sup za > inf (χα - yβ + za)"

instead of (4.29). Now we complete the proof of Theorem 5.

§ 5. Verification Theorem

In this section we prove the following Verification Theorem.

THEOREM 6. Besides (Al) and (A2), we assume non-degeneracy.

(A6) there is μ > 0, such that a(x, u, v) > μl, for any x, u, υ.

Suppose that We Wb2(= WY((0, T) X Rd)) is a solution of Cauchy problem

of Isaacs equation (1.15), with W(0) = φ. Then

(5.1) w(t, x) = v-(t, x, φ) = y+(ί, χ, ^)

= sup inf J(t, X, Uu U2, φ)

= inf sup J(t, X, Uu U2, φ).
U2eA2 Ui6A!

Proof. We fix bounded Borel measurable versions of dtW and dtdjW

arbitrarily and put

(5.2) G(t, χ, u, v) = A(u, υ)W(t9 X) + f(X, u, v)

and

(5.3) M(t, X) = {(u, v) e Λ X Γ2; for any (M, U) e Γ, X Γ 2 ,

G{t, χ, π, ϋ) > G{t, X, U, ϋ) > G(t, X, u, v)} .

Since G(t, X, ) has a saddle point, M(t, X) is a non-empty compact subset

of Λ X Γ2. Moreover its graph = {(t, X, U, v); infυeΓa Git, X, U, υ) = G(ί, χ,

ϊZ, ΰ) = sup π € Γ l G(ί, X, ί̂ 5 D)} is a Borel set. Therefore a Lebesgue measurable
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selector (ΰ, v) of M(t, X) exists. Thus we can choose a Borel function

(u*, u*), such that

(5.4) u*(t, X) = U(t, X) and v*(t, X) = v(t, X) a.e.

According to Proposition 5, following two CSDE have weak solutions;

(dξ(t) = a(ξ(t), u*(t, f(*)), v*(t, ξ(t)))dB(t)

(5.5) + T(ξ(ί), u*(t, ξ(t))> v*(t9 ξ(t))dt

If(0) - %
and for U e A2

( 5 6 ) (dX{t) = α(X(ί), M*(ί, X(ί)), U(t))dB(t) + T(X(t), u*(t, X(t)\ U{t))dt

lx(o) - x.
Since we can apply Ito's formula to W, by (A6), we get

(5.7) W(t, 1) = £,]/(?(«), "*(s, f(s)), ϋ*(β, ί(s))) exp ( - J*c(f, «*, u*

), v*(θ,

Put J(ί, 1, u*{ ), v*( ), φ) = the right hand side of (5.7). By (5.3) and (5.6),

(5.8) W(t, Z) < J(t, 1, u*{ •). U, φ) , for Ue A2.

Hence we get

(5.9) W(t, X) < inf J(t, X, «*(•), U, φ) .
UGA2

Let uk be an approximate smooth function of w*, such that uk(t, X) e

Γ1 and

(5.10) V χ k

where Sk = sphere with center 0 and radius 2fc. Again using Krylov's

inequality, we have, as k —> cχ>

(5.11) sup I J(ί, Z, «*(•), ϋ, Φ) - «/«, Z, «*(•), U, φ)\ > 0 .

Replacing w* by uk, CSDE (5.6) has a unique strong solution Xk, which

is B-adapted. So uk(t, Xk(i)) e A,. This derives, by (5.9) and (5.11)

(5.12) W(t, X) < lim inf J(t, X, uh{ \ U, φ)

< sup inf J(t, X, Uί9 U2, φ).
UGA UeA
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Replaing u* by u*> we obtain

(5.13) W(t, X) > inf sup J(t, X, Uu [72, ό).
ΐ/2θA2 UiGAχ

By virtue of " s u p ^ e ^ i n f ^ ^ J(t, X, Uu U2, φ) < i n f ^ e ^ s u p ^ ^ J(t, X, Uu U2,

φ)" (5.12) and (5.13) imply

(5.14) W(t, X) = inf sup J(t, X, Uu U2, φ)
U2BA2 UtβA!

= sup inf J(t, X, Ul9 U2, φ).
UiGAi UzGAz

On the other hand Proposition 2 guarantees

(5.15) W(t, χ) = inf sup J(t, X, Uu C72, φ) > V+(ty X, φ)

where B, = U^S4(iV), 54(iV) - {UeAu U(t) = Γ7(2-*[2wί])},

(5.16) W(t, X) = sup inf J(t, X, Uu U2, φ) < V~(t, X, φ).
UiGBi U2βA2

Since V+(t, X, φ) > V~(t, X, φ) holds, we complete the proof.

Remark. By (5.7), a Borel modification (z/*, u*) of selector of M{t, X)

provides a min-max policy i.e. for any U1 e A2 and U2 6 A2

J(ί, X, M*(.), C7S, ψ) > J(ί, X, u*( ), u*( ), Ψ) > Λfo ̂  C7i, w*( ), Ψ)

By the monotone property of V~, we have

COROLLARY 1. Let W(-; φ) e Wλf be a solution of (1.15) with initial

function φ. Then

W(t, X; φ) < W(t, X; ψ), whenever φ < ψ.

By the contraction of V~, we have

COROLLARY 2. If Isaacs equation has a solution in W1^2, then it is

unique and depends continuously on initial function.

EXAMPLE (Bang-Bang control). Suppose that (A5) and (Aβ) hold and

a is independent of u and v. Then (1.15) turns out a quasi-linear parabolic

equation,

(5 17) J + sup inf ( Σ r,(X, u, v)3ίW - c(X, u9 v)W + f(X, u, υ))
V * ' \ UGΓ! veΓ2
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(5.17) has a unique solution in Wιf. Furthermore we assume

( i ) T(X, u, v) = rfflu + T2(l)v

(ii) c(X, u, v) is independent of u and υ.

(iii) f(X, u, υ) is convex in u and concave in v.

Then g(t, X, u, v) = J ] T^X, u, υ)dtW(t9 X) + /(X, u, v) is convex in u and con-

cave in υ, and continuous in (t, X, u, v). Hence

K ( t , X) = {(U, v)} e dbyl\ X dbyΓ2; f o r a n y ( a , υ ) e Γ 1 X Γ2,

g(t, X, 3, u) > g(ί, X, ̂ , v) > g(t, X, M, ϋ)}

is a non-empty compact subset. Moreover there is a Borel selector (w*, u*)

of iί(ί, X), which is a min-max policy by Remark. Since u*(t, X) e bdy ΓΎ

and v*(t, X) e bdyΓ2, this is called a bang-bang policy [6].
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