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A CALCULUS APPROACH TO HYPERFUNCTIONS I

TADATO MATSUZAWA

To the memory of C Goulaouic

Introduction

In this paper, we shall give a new characterization of hyperfunctions
without algebraic method and apply to give simpler proofs to problems
discussed in [3], Chapter 9. In [3], the spaces of hyperfunctions A\K)
with compact support in K c Rn (n ^ 1) is considered as the dual of the
space A(K) of functions which are real analytic near K. Each element
u of A'(K) is characterized as a density of a double layer potential in
Rn X R.

We shall first give a simpler characterization of the element u of A\K)
in Theorem 1.2. We will consider u e A'(K) as an initial value of a unique
solution of the heat equation

(d/dt - Δ)U{x, t) = 0 in Rn

+

+1 = Rn X R+ .

The regularity of u — U( , 0) is described by the asymptotic behavior of
U as t -> 0. In fact, we characterize in Theorem 1.2 the asymptotic be-
havior so that u e A'{K). We will see Schwartz and ultradistributions are
characterized by the asymptotic behavior of U at the same time. The
advantage of our approach is to unify the theory of distributions and
hyperfunctions as well as to simplify proofs of important results. For
example, based on Theorem 1.2, we significantly simplify the proof of
Paley-Wiener-Schwartz theorem for hyperfunctions as well as Schwartz
distributions in Section 2. We discuss in Section 3 hypoellipticity of a
pseudodifferential equation

a(x, D)u = / in Ω c Rn ,

where u e Af(K), K <c Ω, f is a hyperfunction on Ω and a(x, D) is analytic
pseudodifferential operator considered in [1], [9] and [10]. Analytic and

Received March 17, 1986.

53



54 TADATO MATSUZAWA

C°°-hypoellpticity of the above equation will be proved in Theorem 3.2.

Our theory is based just on calculus. We never appeal to cohomology,

sheaves nor theory of several complex variables. The other problems

concerning hyperfunctions will be considered in a forthcoming paper.

The author expresses his profound gratitude to Y. Morimoto and Y.

Giga for valuable discussions during the preparation of this paper.

§ 1. Hyperfunctions

Let if be a compact set of Rn whose point is denoted by x = (xl9 , xn).

We use general notations such as \a\ = ax + + ocn for a multi-index

a = (al9 , an) and Da = Df1- Da

n

n, D3 = lli(dldXj),j = 1, , n, etc. Let

A(K) be the space of all real analytic functions in some neighborhood

of K. That is, if φ e A(K) φ is a C°° function in a neighborhood of K

and there are positive constants C and h such that

(1.1) lJ3^(x)l
hlala !

DEFINITION 1.1. We say φ1 -> 0 in A(K) as j —> oo if there is a con-

stant h > 0 such that

(1.2) sup ^Φ'WL >0 a s / >oo.
xeK hla]a !

DEFINITION 1.2 (cf. [3] and [8]). We denote by A'(K) the strong dual

space of A(K) and call its elements analytic functionals carried by K.

We denote by A the space of entire analytic functions in Cn.

THEOREM 1.1. Let u e A'(K) then for any h > 0 there exists a constant

C = C(h, u) such that

(1.3) I u(φ) I ̂  C sup ̂ ψf, φ e A.

This is equivalent to the condition such that for every complex neighborhood

ω of K

(1.4) \u(φ)\< Cω sup \φ\, φeA.

Proof. The equivalence of (1.3) and (1.4) follows easily from Cauchy's

integral formula and Taylor expansion of analytic functions. So we shall

prove (1.4) for u 6 A'(K). We suppose that the estimate (1.4) does not hold
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for some u e A\K). Then there must be a complex neighborhood ω of K

such that for any integer j there is a function φ} satisfying

\u(φj)\ ̂ .7 sup |0, | .

We may suppose sup \φό\ = 1, j — 1, 2, . Then we have

^/j > 0 in A(if) as j > oo .

On the other hand, we have \u(φj/j)\ :> 1, j = 1, 2, , which contradicts

with the continuity of u.

PROPOSITION 1.1 (cf. [3] Proposition 9.1.2.). For every φeA(K) let

φt(x) = (4πt)~n/2 [ exp ( - (x - y)2lU)l(y)φ{y)dy ,

where 1 e Co(Rn) such that 1 = 1 in a neighborhood of K. Then φt(x) ->

φ(x) in A(K) as t-+0+.

By virtue of this proposition, we can see that (1.3) is equivalent to

(1.3)' I u(φ) I ̂  C sup ̂ ψ , φ e A(K)
xeK hla]a\

with the same constant C in (1.3).

Now denote by E(x, t) the ^-dimensional heat kernel:

((4πt)-^exv(-\x\η4t) t > 0,
E(x, t) = {v ' 1 0 t<0

and set

(1.5) £/(x, t) = uy(E(x -y,t)), t > 0, x e Rn .

THEOREM 1.2. Let u e A\K) then U(x, t) e C~(R%+1), Rn

+

+1 = {(x, ί); x e

i?M, t > 0} and £/( , ί) e A for each t > 0. Furthermore U satisfies the heat

equation:

(1.6) (9/3ί - J)U(x, t) = 0 in Rn

+

+1

For every ε > 0 we have

(1.7) lE/foOI^C.e ^ m Rn

+

+1

We Λauβ /or aπ/y 5 > 0

(1.8) U(.,t) >0
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uniformly in {x e Rn; dis (x, K) >̂ δ} as t -> 0+ we have

(1.9) U( ,t) >u in A'(K) as t >0+, i.e.

(1.9)' u(φ) = lim ί U(x, t)X(x)φ(x)dx, 0 e A ,

/or α7?/y X e Cj5^71) such that X = 1 in a neighborhood of K. Conversely,

every C°°-function U(x, t) defined in Rn

+

+1 satisfying the conditions (1.6),

(1.7) and (1.8) can be expressed in the form (1.5) with unique element u e

Proof. Let u e A'(K). Then we have obviously U(x, t) e CO3(Rn

+

+1) and

(1.6). We take z = y + iη and observe that

(1.10) Re - {x - y - iηf = - (x - yf + yf ,

then by applying (1.4) we have (1.7) if we take |^| sufficiently small. We

have also (1.8) by the same argument. Now let

G(y, t) = J E(x - y, t)X(x)φ(x)dx , φ e A ,

where X e CQ(RU) such that X = 1 in a neighborhood of if. Then we have

by Proposition 1.1

(1.11) G( ,t) >φ in A(K) as t >0.

We have

J U(x, t)X(x)φ(x)dx - uy(G(y, t))

by taking limit of the Riemann sum of the left hand side. By applying

(1.11), we have (1.9)7. Now we will prove the converse. We shall use

some fundamental theorems on ultradistributions, though we will not re-

call here basic definition about ultradistributions. We refer the reader to

[5], [6] and [7], and will use notations of these papers such as @{S](Ω),

£{S}(Ω), @[S}'(Ω) and £{S]'(Ω\ s > 1. Let U = U(x, t) be a function defined

in Rn

+

+1 satisfying (1.6), (1.7) and (1.8). Then by (1.7) we can extend U

beyond the hyperplane t = 0 as an ultradistribution U e@{2}/ (Rn+1) such

that

u=ίU(x,t) ί > 0 ,

0 f < 0 .
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This follows from the fundamental property of ultradistributions, (cf. [7],

Theorem 2.27). We have Ue C°> (Rn+\(K X {0})) and

(3/9ί- Δ)U(x,t) =f inR*+1,

where /e Sm' (K X {0}). Then / is uniquely represented as

(1.12) f

with fk(x) e i{2]/ (K), k = 0, 1, , satisfying the following conditions:

For every L > 0 and h > 0 there is a constant C such that

(1.13) \f*(φ)\ £ CZ?/e!-2 sup W ^ , φ e g*\R«)

and

(1.14) supp/ = U supp/, X {0}, (cf. [6], Theorem 3.1).

We define an ultradistribution v e^12)/(i2n+1) as follows:

Σ
(1.15) v(x, t) =

0 t

Here the integrals in the right hand side are taken in the sen seof dis-

tributions. Namely, we have formally

v(x, t) - J J £ ( x -y,t- τ)f(y, τ)dydτ.

In [10], we have shown that E(x9 t) e @™'(Rn + i) and

(1.16) (djdt - Δ)E(x - y, t - τ) = δ(x - y, t - τ)

also in the ultradistribution sense. We have

(1.17) (3/3ί - J)v(x, t ) = f i n R n + ι .

We will show that U = υ. First we have U — ve@{2}(Rn+1) and

(3/3* - Δ){U - ϋ) = 0 in J2W+1.

Using the relation (1.16) and the well known fact that E(x, t) e S^f(Rn

or by Gevrey hypoellipticity for the heat equation proved in [10], we have

(1.18) U -ve£[2](Rn+ί).
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Furthermore, by applying (1.8) for U and v and by (1.18) we can easily

show that there is a number M > 0 such that

(1.19) I U(x, t) - υ(x, t)\^M, t^O.

By the well known uniqueness theorem for the solutions of Cauchy

problem of the heat equation we have U — υ = 0. It remains to prove

that there exists an element u0 of A\K) such that

(1.20) υ( ,i) > v0 in A'(K) as t >0+ .

For every t > 0, we have

υ(x, ί) = Σ \ΔkE(x - y, t)fk(y)dy.
fc = 0 J

Again the integrals are taken in the sense of distributions. Let X e C^(Rn)

and 1 = 1 in a neighborhood of if. We have for φ e A

(1.21) ί υ(x, t)X(x)φ(x)dx

= Σ

By using (1.13), we can show that the right hand side tends to

(1.22) Σ f*WkΦ) = vo(φ)

as t -> 0+ and we have u0 e A'(K). This completes the proof.

We set

A'(Rn) = U A\K).

THEOREM 1.3 (cf. [3], Theorem 9.1.6). If us A'{Rn) then there is a

smallest compact set K C Rn such that ueA'(K); it is called the support

of u.

Proof Let K be the intersection of all compact sets K' such that

u e A'(K;). By Theorem 1.2 a function U(x, t) is uniquely defined and satis-

fies the heat equation in Rn+1\(K X {0}). Noting that u = lim^0 + U( ,t)9

we have u e A'(K).

THEOREM 1.4 (cf. [3], Theorem 9.1.8). If Kl9 , Kr are compact subsets

of Rn and u e A'(KX U U Kr), then one can find Uj e A'(K3) so that
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u = ux + + ur.

Proof. It is sufficient to prove the statement when r = 2. Let Ϊ7(x, ί)

be the function defined by (1.5). The theorem will be proved if we can

split into a sum

u = ux + u2,

where Uj satisfies the conditions (1.6), (1.7) and (1.8) with respect to K3.

To do so we take the extention Ue &[2}/(Rn+1) as in the proof of Theorem

1.2:

E7(x, f) =

1 o t <o.
Then U satisfies the heat equation outside Kγ U K2 where Ks = Ki X {0}.

We take a function ψ e C ^ i ? ^ 1 ^ Π K2)) constructed in [3], Corollary

1.4.11 such that ψ = 0 for large \x\ + \t\ and near K 2 \ ( ^ Π K2), f = 1 neai

J^Λ(^! Π Jζj) and ψeL~CRn + 1). Here "near" means in the sense of the

slowly varying metric defined in [3], Chapter 1. We will split U as follows:

V, C 7 2 - ( l - ψ ) C 7 + V.

Here we define ψϋ e £{2]/(Rn+1) such that ψC7 = 0 near Z2\(XΊ Π K2) and

(1 — ψ)C7 = 0 near J?Λ(^i Π J^2), which is well defined by Theorem 2.27

of [7]. We have

where F and / are in £{2]/(Rn + 1) such that

~__ ((d/dt - d)(ψU) * > 0 ,

"jo ί <o
and fe £{2}/(Rn + ί), s u p p / c ^ . Now we define

V(x, t) = E* F(x, t) e ${2]/(Rn+i)

and V(x,0=V(x?ί) for t > 0. Then we have V e C - ^ Λ ^ Π ί2),
supp V c i ϊ r 1 and V( ,t)^>0 uniformly in {x; dis(x, K, f] K2) ̂  δ} for
any δ > 0 as ί ^ 0 + . Here we use the pseudolocal property of E * as a

pseudodifferential operator, (cf. [1] and [10]). Since we have

V(x, t) = ψU - E*f(x,t), t>0,

we have
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V(x, t) = O(eε/t) t > 0+

for any ε > 0. Thus we have the desired property for Uί — ψU — V and

C72 = (1 — ψ)U + V for t > 0. Q.E.D.

We define the general hyperfunctions following [3].

DEFINITION 1.3. If Ω C Rn is open and bounded we define the space

of hyperfunctions B(Ω) by

(1.23) B(Ω) = A'(Ώ)IA'(dΩ).

DEFINITION 1.4. Ler u e A\Ω) then the support of the class u of u

in B(Ω) is defined by supp u = Ω ΓΊ supp w.

Here we omit the precise argument on general hyperfunctions on Rn

and we refer the reader to [3], Section 8.2.

Remark 1.1. If ue£f(Rn) then u defines an element in A;(Rn) with

the same support. In fact, the function U{x, t) defined by (1.5) has the

& limit u as t -> 0+ and the condition (1.7) in Theorem 1.2 is replaced by

(1.7)* \U(x,t)\^CNt-», t>0,

for some integer N ^ 0 .

Remark 1.2. If w e ^{s}/(i2TC), s > 1, then zz also defines an element in

Af(Rn) with the same support. We can see that the condition (1.7) in

Theorem 1.2 is replaced by

(1.7). I U(x, i)\^Cε exp (ε/t^-1), t > 0 ,

for any ε > 0. This will be proved in a forthcoming paper.

Thus we have the characterization of Schwartz and ultradistributions

at the same time in such a way and we have the injections preserving

supports

£'(Rn) -—> S{s}/(Rn) -—> A'(Rn)

for any s, 1 < s < oo.

§ 2. The Fourier-Laplace transformation in A'(Rn)

As an application of Theorem 1.2 we shall give a simple proof of

Paley-Wiener-Schwartz theorem for hyperfunctions. The following method

can be applied in each case of @{Rn), £\Rn), £{s]/(Rn), 0 < s < oo, etc.
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Let u e A'(K)y K compact in Rn, then the Fourier-Laplace transform

is an entire function such that for every ε > 0

(2.1) |β(ζ)| ^ Cε exp(LM + ε\ξ|), ζ = ξ + ίveCn,

where L = sup^^x]. This follows from (1.4), (or (1.3)).

THEOREM 2.1. If F(ζ) is an entire analytic function satisfying the

estimates (2.1) with constant L ^> 0. Then F(ζ) is the Fourier-Laplace

transform of a unique element in A^SJ, where SL — {x e Rn \x\ <̂  L}.

Proof We define a function t7(ζ, 0 as follows:

(2.2) tf(ζ, ί) - F(Q exp ( - ίζ2), t > 0.

Then we have ί?(f, ί) = F(ζ) exp ( - t\ξf) e ̂ (iϊ?) for every ί > 0. Let

(2.3) U(x, t) = (2π)"w Je*<^€>ϊ7(e, ί)df , t > 0 .

Then E7(:JC, ί) € C°°(J?ί.+x) and satisfies

(2.4) (djdt - Δ)U{x, t) = 0 in JRΪ.+1.

By (2.1) we have for every ε > 0

= C.f +C.f
ΞUί

We have

Ji ^ Cε ί exp (ε2/ί)df S C; exp (ε/ί), ί > 0
J ISI^e/ί

and

l ί l^e/t

= Cε exp (ε2/ί) if e-^dξ < C'/ exp (e/ί), t > 0 .
J J If l^e/ί

Thus we have for every ε > 0 the estimate
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(2.4) I U(x, t)\<C£ exp (ε/t) in Rn

+

+1.

Now shifting the integration in (2.3) into the complex domain, we have

U(x, t) = (2π)~n fe«* «+<*>tf(£ + a?, ί)df

for an arbitrary fixed vector η e Rn. Estimating the integral by using

(2.1), we have

\U(x, i)\ ̂  Ce exV(L\v\ -xη + tη2)Jexp(|ξ\(ε - t\ξ\))dξ

^ C'l exp (L\η\ - Xη + tη2 + ε/t) .

We choose η = x/(VTI^I) for xeRn\SL + δ and ε = 5/2, δ > 0. Then we

have

(2.5) I C/(x, ί)| ^ C'/ exp ( - ^/2VT + 1), t > 0.

Hence by Theorem 1.2 there exists ueA'(SL) such that £/(•, t) ->u in

Ar(SL) in the sense of (1.9). We have

ί U(x, t)e-ί<x>ξydx > u{e-ι<x^) = ύ{ξ) as t > 0+

and

f U(x, t)e-^^dx = F(f)e-ί|el" >F(f) as ί ^0+ .

Thus we have F(ξ) = ύ(ξ). The uniqueness follows from the fact that

u(P) = P ( - D)ώ(0) = P ( - Z))JP(O)

for every polynomial P. Q.E.D.

§ 3. Hypoellipticity of pseudodifferential equations in hyperfunction
spaces

We recall first a symbol class of analytic pseudodifferential operators

considered in [1], [9], [10] and [12].

DEFINITION 1.1. Let — oo < m < oo. We denote by Sί^M(β X Rn)

the set of all a(x, ξ) e C°°(ί3 X Rn) such that for every compact set K of

Ω there are positive constants Co, Cx and B such that

(3.1)
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where

a%(x, ξ) = da

ξDfc(x, ξ).

We associate with such a symbol a(x, ξ) a pseudodifferential operator

a(x, D) as usual:

(3.2) a(x, D)u(x) = (2π)-n f f e*<*-^>φ;, ξ)u(y)dydξ , u e 2{Ω).

It is well known that a(x, D) is a linear continuous form from @(Ω) into

£(Ω), and it is extended to a continuous mapping from Sf(Ω) into &{Ω)

(cf. [2]). We define the transpose of a(x, D) as follows:

(3.3) ιa{x, D)v(y) = (2π)-π ί JV<*-^>α(x, f)u(x)dxdf , v e ^(fl).

Then we have

(3.4) <α(x, D)u(x), v(x)} = (u(x), έa(x, D)v(x)} , u,υe ®(Ω).

Furthermore as a special case of the results of [9] and [10], we know

that α(x, D) and έα(x, D) are extended to continuous mappings from £{S}/(Ω)

into @{s]/(Ω) for every s, 1 < s < oo.

Now let w e A\K), if compact in β. Take a function 1 e C^(Ω) such

that 1 = 1 in a neighborhood of if. Let t/(x, t) be the function defined

by (1.15):

U(x, t) = wy(E(x - y, ί)), t > 0 .

Then for every 0 e A, we have

f Xa(x, D)XU(x, t)φ(x)dx = f X(x)t/(x, ί ) ' ^ , D)(Xφ)(x)dx, ί > 0.

By virtue of the analytic pseudolocal property of za(x, D) proved in [1],

we have ca(x, D)(Xφ)(x) e A(K) and the right hand side tends to

(u, <a(x,D)(Xφ)(x)y

as t-+0, (cf. (1.9)0. We define Xa(X, D)u by the formula

(Xa(x, D)u, φ) - (u, <a(x, D)Xφ) , φ e A .

Then we have Xa(x, D)u e Af (supp X). On the other hand we have

(1 - X)α(x, D)u(x) = J ( l - X(x))K(x, y)u(y)dy e C°°(fi),
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where K(x, y) is the kernel of a(x, D) which is real analytic i n f i x Ω\J,

Δ = {(*, x); x e β}, (cf. [1]). We define

(3.5) a(x, D)u = Xa(x, D)u + (1 - X)a(x9 D)u e B(Ω).

We can easily see that this definition is independent of such a function

1 and agrees with the usual definition of a(x, D)u e ®'(Ω) when u e £'(Ω).

THEOREM 3.1. The analytic (and C°°) pseudolocal property holds for

a(x, D) in Ω. Namely, if ue A'(K), K compact in Ω, is real analytic (C°°)

in some open set ω C K, then a(x, D)u is also real analytic (C°°) in ω.

Proof. Take an arbitrary open set α̂  C ω such that ωx C ω and

devide u so that

u = uλ + u2, supp ux C ωx, supp u2 C K\ω1 .

(cf. Theorem 1.4.)

Then obviously ux e <$f(ω^) and ux is analytic in ωx. By the analytic

pseudolocal property of a(x, D) in the sense of Schwartz distributions

proved in [1], we see a(x, D)^ is analytic in ωx. On the other hand we

have

a(x, D)u2 \ωι - J K(x, y)u2(y)dy, xeω,

and this is also analytic in ω19 where K(x, y) is the kernel of a(x, D).

Summing up, we see α(x, D)u is analytic in ωx. Hence a(x, D)u is analytic

in ω. The proof in C°° case is obtained similarly.

As a supplement of the results of [10], Theorem 2.2 and [9], Theorem

3.1 we shall give the following theorem.

THEOREM 3.2. Let a(x9 ξ) e S^0)1(β X Rn) and assume that there are

positive constants c and B and — oo < m! < oo such that

(H,) \a(x,ξ)\^c\ξr, xeΩ, \ξ\^B.

Also assume that for any compact set K c Ω, there are positive constants

Co and Cj such that

(H2) | α ^ , f ) I ^ C 0 C ί β + ^ ! i 8 ! | α ( x , f ) l | f | - | β l , xeK, | f | ^ B | α | .

Then if ue A'(K), K compact of Ω, and a(x, D)u is real analytic (C°°) in

an open set ω C K, we see u is also real analytic (C°°) in the same set ω.
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Proof. Let u e A'(K) and a(x, D)u is analytic in ω, ω C if. Take a

function h e C Γ(β) such that h = 1 in a neighborhood of K Then

Λα(x, D)w is also analytic in ω. In [1], we have proved that there is a

parametrix b(x, D) of α(x, D) such that it's smybol b(x, ξ) e Sr£[(Ω X Rn)

and

(3.6) &(*, Z>)/m(*, D) = I + R in β', K a Ω'a Ω ,

where i? is an integral operator with kernel R(x, y) which is analytic in

Ωf X β; (cf. [11]). The equality (3.6) also holds in the hyperfunction sense.

In fact, choose 1 e C^(Ω) such that 1 = 1 in a neighborhood Ω' of iΓ and

suppZ c {x; Λ(x) = 1}. Then by [1], Theorem 3.1, we have

b(x, D)ha(x, D)XU(x, t) = %[7(x, ί) + Ji?(x, y)X(y)U(y, t)dy,

where [/(#, 0 = uy(E(x — y, t)) t > 0. Taking the limit as £->0+, we see

b(x, D)ha(x, D)u = u + ϊ R(x, y)u{y)dy in Ω'.

On the other hand, by Theorem 3.1 we have the left hand side is real

analytic in ω. Hence we have u is analytic in ω. This completes the

proof.
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