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CERTAIN UNITARY REPRESENTATIONS OF THE
INFINITE SYMMETRIC GROUP, II

NOBUAKI OBATA

Introduction

The infinite symmetric group ©, is the discrete group of all finite
permutations of the set X of all natural numbers. Among discrete groups,
it has distinctive features from the viewpoint of representation theory and
harmonic analysis. First, it is one of the most typical ICC-groups as well
as free groups and known to be a group of non-type I. Secondly, it is a
locally finite group, namely, the inductive limit of usual symmetric groups
&,. Furthermore it is contained in infinite dimensional classical groups
GL(0), O(o0) and U(co) and their representation theories are related each
other.

Our present interest lies in irreducible unitary representations of ...
Its factor representations of type II have been studied considerably in [6].
While, its irreducible representations have been investigated only in a
few particular cases, see [1] and [4]. So it is important to have a large
stock of irreducible representations. The present paper is a continuation
of the author’s previous one [3], where we have discussed irreducible rep-
resentations of ©_ parametrized by certain automorphisms of X.

Let Aut (X) be the group of all automorphisms of X. For each fe
Aut (X) we denote by H(6) the subgroup of all finite permutations ge &,
which commute with 6. We define unitary representations U”* as the
induced representations Indgs,%, where X is a unitary character of H().
The results in [3] are restricted to particular automorphisms @ to discuss
their irreducibility and equivalence. In the present paper, we first de-
termine the class of automorphisms 6 € Aut (X) for which the unitary rep-
resentation U?%? is irreducible. Next we give a complete classification of
the irreducible representations U?z.
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We shall now give a brief sketch of the contents. In Section 1, we
recall the structure of the subgroups H(6).

In Section 2, we find the class of automorphisms § satisfying the
following property:

(A) |H(@): H(gbg™") N H(H)| = oo for all ge S, — H().
Let P be a subset of {2,3, .-}, possibly P= ¢ (the empty set). We
denote by Auty(X) the set of all automorphisms ¢ Aut(X) written in
cycle-notation as follows:

0 = n n (ignigl' * 'igp—l) ’
pPEP

n=1

where the cycles (12,2, - - -12,_,) are pairwise disjoint. If P does not contain
2, we denote by Aut: (X) the set of all automorphisms 6 ¢ Aut (X) of the
form:

0 = (oJ) T 1T @it~ -850,
PEP n=1

where the cycles (j,j,) and (&2, --i2,_,), p€ P, n > 1, are pairwise disjoint
and | X — supp 8| = 0 or co. If P contains 2, we tacitly understand Auth(X)
to be empty. Put Aut, (X) = Aut% (X) U Auti (X). Then it is proved that
6 € Aut (X) has the property (A) if and only if it belongs to Aut, (X) for
some P.

In Section 3, irreducibility of the unitary representations U?* will

be discussed. The property (A) is relevant to the following assertion, (see
Theorem 3.2).

THEOREM (Irreducibility). Let P be a subset of {2,3, ---} and let 6 be
a member of Autp (X). Then the unitary representation U®* is irreducible
for any unitary character X of H{(6).

The next step is to discuss unitary equivalence between two irreducible

representations U%* and U’"*. Section 4 contains a proof of the follow-

ing result, (see Theorem 4.12).

TreEOREM (Equivalence). Let 6 and 6 be members of Autr (X) and
Autp(X), respectively. And let X and ¥’ be unitary characters of H(0) and
H(@"), respectively. Then two unitary representations U”* and U® % are
equivalent if and only if the following three conditions are satisfied: (i)
P = P’; (ii) H@) = rHE)" for some 7e€G,; (i) X' (rhr~Y) = x(h) for all
h e H(®).

Finally, in Section 5, we shall discuss the relationship among three
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classes of irreducible representations I7*,II- and U. Here we denote by
IT* and II- the set of all irreducible representations px1 = Indg=s_,p X 1
and pxsgn = Indgx__, p X sgn, respectively, where p runs over all equiv-
alence classes of irreducible representations of &,, 0 < n < co. If 4 be-
longs to Aut, (X), the irreducible representations U”* are contained in
either /I* or II-. We denote by U the set of all irreducible representa-
tions U?*, where § ¢ Aut, (X) with non-empty P. Then we have the follow-
ing result, (see Theorem 5.3).

THEOREM. 7Two irreducible representations are not equivalent if they
belong to distinct classes I1*, 11~ or U.

In Appendix A we give an explicit expression of endomorphisms of
&... In particular, the result proves that Aut(X) is isomorphic to the
automorphism group Aut (&.).

Appendix B contains two remarks on representations of /7*. We shall
give irreducible decompositions of certain induced representations and
tensor products.

§1. The structure of the subgroups H(6)

Let X be the set of all natural numbers and let ©_ be the group of
all finite permutations of X. The group ©., equipped with the discrete
topology, is called the infinite symmetric group. If Y is a subset of X, we
denote by &(Y) the group of all finite permutations of X which act iden-
tically outside Y. For simplicity, we write &, and ©.,_, for ©({1, 2, - - -, n})
and &({n + 1,n + 2, - - -}), respectively.

Let Aut (X) be the group of all automorphisms of X. Each € Aut (X)
can be written in cycle-notation, i.e. as a product of pairwise disjoint cycles.
For each p = o, 2,3, ---, we denote by @, the product of all cycles of
length p appearing in the cycle-notation of 4, and by N(p, ) the number
of such cycles. Thus, each § € Aut (X) admits the expression: ¢ = 6..6,6;- - -,
where 6, is a product of N(p, §) cycles of length p. We call it the canonical
expression of 4.

For each 6 ¢ Aut (X) we denote by H(6) the subgroup of all finite per-
mutations of X which commute with 4:

H(O) = {ge©.; 80 = bg}.

In order to describe the structure of H(f), we introduce several subgroups.
We set
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H' () ={gec©..;80 =0g and suppg Csuppb},

where suppd = {i € X; 6(i) = i}. Obviously, H(f) = S(X — supp ) X H'(h)
and H'(A.,) = {e}. Let 6 = 0.6.0,--- be the canonical expression of fe
Aut (X) and let 6, = [[¥%?” (ingini- - Iup_1) be a cycle-notation of 6,, 2 <
p < oo. We define A(f,) to be the subgroup generated by all the cyclic
permutations (il - ly,-1), n=1,2, .-+, N(p,0). We denote by S(6,) the
subgroup of all permutations g€ &, having the following properties: (i)
supp g C supp 6,; (ii) there exists some o€ &y, such that g(i..) = i,c
for all n and k. Obviously, A(f,) is isomorphic to the restricted direct
product Z, X Z, X --- (N(p, 6)-times) and S(6,) is isomorphic to Sy, .
The following result was proved in [3].

ProposiTiON 1.1. Let 6 = 6..0,0, - - - be the canonical expression of 6 ¢
Aut (X). Then

H(f) = S(X — supp ) X H'(6,) X H' () X -

in the sense of restricted direct product. Furthermore, for each p, 2 < p <
oo, we have

H'@©,) = S@,) x A@,) (semidirect product) .

Remark. Since €., is a normal subgroup of Aut (X), for any 6§ € Aut (X)
the map g — 0g0~', g€ ., induces an automorphism § of S.. As is seen
in Appendix A, every automorphism of &, is obtained in this manner.
Therefore H(§) coincides with the subgroup of all permutations of &,
fixed under the automorphism 4.

§2. Characterization of certain automorphisms

This section will be devoted to the study of automorphisms 6 e Aut (X)
satisfying the conditions (A) and (B) below:
(A) |H(6): H(gbg ™) N H@)| = oo for all geS,, — HH) ;
(B) the normalizer of H(f) in &, coincides with H(f) itself, i.e.
gH(0)g™ = H(6) implies g < H(6).
Obviously, the condition (A) implies (B). The main results are the
following

THEOREM 2.1. The condition (B) is satisfied for 6¢ Aut(X) if and
only if the following three conditions are fulfilled:
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(ii) Mp,0) = 0 or o« for any p > 3;
(iii) |X — suppd| = 2 or N2, 0) = 1.

THEOREM 2.2. The condition (A) is satisfied for 6 € Aut (X) if and only
if the following three conditions are fulfilled:
(i) Moo, 8) = 0;
(ii) N(p,6) = 0 or oo for any p > 3;
(iii) one of the next three conditions:
(a) N(2,6) =0;
®) N@2,0) = ;
(c) N2,6) =1 and |X — suppf| = 0 or oo.
We begin with the following

PropositioN 2.3. The condition (B) is not satisfied for any 6 € Aut (X)
with N(oo, 6) > 1.

Proof. Take distinct i and j e supp §.. and consider the transposition
g = (ij). Then H(f) = gH(A)g ' though g does not belong to H(#). Q.E.D.

LeEmMA 2.4. Let 0 = [[X. (ucln * *bnp-r), 1 < N < 00, and let 7 = (jyj,
-+ Jjo-1) be a cycle of length p. Then v commutes with 6 if and only if (i)
supp7C X — supp 8; or (i1) 7 = (inln- -+ *lnp-1)? for some n > 1 and q, 1 <
q <p. In case of (ii), n and q are uniquely determined and (p, q) = 1.

LEMMA 2'5' Let 0 = n:r«l (imoiml' ‘ 'imp—l) and 0/ = n;?:l (jnojnl' * 'jnp—l)-
Assume that supp § = supp & = X. Then H(6) = H(¢') if and only if ¢ =
0° for some q > 1 with (p, q) = 1.

LEMMA 2.6. Let 6 = [[5.: Guolus® * *Tnp-1)y 1 < N < oo, Then the nor-
malizer of H'(6) in S(supp 6) is equal to H'(6) itself if and only if N = oo
orp=2.

The proofs of the above three lemmas are easy and omitted. The
following result is an immediate consequence of Lemma 2.6.

ProrosiTiON 2.7. Let ¢ Aut (X) with N(co,0) = 0. If 1 < N(p, ) <
> for some p > 3, the condition (B) is not satisfied.

LEmMA 2.8. Let 0e Aut(X) with N(co,0) = 0. Then the next three
conditions are eqivalent:

(i) the normalizer of H(6) in ©. is a subgroup of &(X — supp ) X
S(supp 6),
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(i1) gH(6)g™ = H(#) implies g(supp 6) C supp 6,
(iil) |X — suppb| = 2 or N2, 6) = 1.

Proof. Evidently, (i) and (ii) areequivalent. According to (iii), con-
sider the following three possibilities:

(I) |X — suppb| = 2;

(I) | X — suppf| =2 and N(2,6) = 1;

I) |X — suppf| = 2 and N(2,6) = 1.
In order to prove the assertion, we have only to show that (I) implies (i)
(or (ii)), that (II) implies (i) (or (ii)) and that (ii) fails under (III).

Case (I). Suppose that gH(f)g™' = H(f), g S... We first note that
&(X — supp 6) X H'(6) = S(X — g(supp 0)) X H'(gbg™).

If | X — suppd| =0, obviously (ii) is satisfied. We suppose that |X —
suppf| =1, say, X —suppd = {i}. It is sufficient to show that g(i) = i.
Suppose otherwise, then (g7'(Q)j.j,- - -j.) € H(6) for some j,,j,, - - -, j. € supp 6.
By assumption, (ig(j)g(j,)---g(,) also belongs to H(#). Since i is fixed
under 6, so are g(j), g0, ---,£(). This contradiction implies that
g@) = 1.

Finally we assume that |X — supp §| > 2. Consider arbitrary distinct
three elements i, i, i,€ X — supp . Obviously, (i,i,) and (i;i;) belong to
H(9). By assumption, (g(i,)g(i,)) and (g(i)g(i;) also belong to H(). This
implies that g(i,) and g(i,) are fixed under 6 or that # contains the cycle
(g(i)g(iy)). The latter is impossible because (g(i)g(iy) € H(6). Thus, g(@i,),
g(i,) and g(i,) are fixed under . Hence X — suppd C X — g(supp §) as
desired.

Case (II). Suppose that gH(f)g™' = H(), g€ S... We put X — supp§
= {i,j}. Viewing that (ij) € H(6) = gH(0)g™', we see that both g7'(i) and
g7Y(j) are fixed under 4 or that ¢ contains the cycle (g7'(1)g7'(j)). It is
sufficient to prove that the latter does not occur.

If N(2,8) = 0, obviously § contains no cycle of length 2.

We assume that N(2, §) > 2 and that # contains the cycle (g7'(2)g~*(j)).
Take another cycle (kk,) which is contained in 6 and put 7 = (g7'()k)
(g7'(j)ky) € H(6). Then, also grg™' € H(A). This implies that (i 6g(k))(j 6g(k,))
= (ig(k))(jg(k,)), therefore, g(k,) and g(k,) are fixed under 4. This con-
tradicts the choice of k, and k,.

Case (III). We put X — supp @ = {i;, i}, 6, = (jJj») and g = (i,j)(0:],).



INFINITE SYMMETRIC GROUP 149

Then, g(X — supp6) = {j;,J.} = X — suppd, namely, g(supp 6) 3 supp 6.
While, we have H(f) = gH(f)g™' because H(0) = S({i,, i,}) X &({j;, J.}) X
H'@G,) X ---. Q.E.D.

ProposiTioN 2.9. Let 6e Aut(X) with N(oo,6) =0. If |X — supp¥d)|
= 2 and N2, 6) = 1, the condition (B) is not satisfied.

This follows immediately from Lemma 2.8. With these preparations,
we now give a proof of our first main assertion.

Proof of Theorem 2.1. In view of Propositions 2.3, 2.7 and 2.9, we
have only to show that the conditions (i), (ii) and (iii) implies (B). Sup-
pose that gH(f)g™! = H(6),gc ©... By assumptions (i) and (iii) we see that
g€ S(X — supp 6) X S(supp §) with the help of Lemma 2.8. If suppfd = ¢
(the empty set), i.e. § = e, obviously the condition (B) is satisfied. We
assume that suppf = ¢. Let p be the smallest number with 6, = e and
put 6, = 12, (uelni- * *Tnp-1), Where N=o0 if p >3 and 1< N <L oo if
p = 2. The cycle (inln- - inp.1) belongs to H() = gH(6)g™' for every n,
so the cycle (g7'(i,0)8 '(in)- - -8 '(inp-1)) belongs to H(P). In particular,
87'(wo), 8'(r), -+, & '(1np-1) belong to supp , because of the choice of p.
In other words, we have suppd, = g(supp d,). In a similar way we can
show that supp @, is invariant under g for every p, namely, gec&S(X —
supp 0) X S(supp 6,) X S(supp #;) X ---. It follows from Lemma 2.6 that
geS(X — supp ) X H'(6,) X H'(6;) X --- = H(H). Q.E.D.

Now we come to a proof of Theorem 2.2. Since the condition (A)
implies (B), we may assume the conditions (i), (i) and (iii) in Theorem
2.1. According to the condition (iii), we shall divide Theorem 2.2 into
two propositions below.

ProposiTioN 2.10. Let 0¢ Aut(X) have the following properties: (i)
N(oo, 6) = 0; (i1)) M(p,d) =0 or oo for any p > 3; (iii) N2,6) x 1. Then
the condition (A) is satisfied if and only if N(2,60) = 0 or .

Proof. First we assume that N(2,60) = 0 or co. We put P = {p > 2;
N(p, 00) = 0. If P = ¢, i.e. § = e, the condition (A) is obviously satisfied.
We now assume that P 5 ¢. Then 4 can be written in the form:

0= n n (iﬁoigl' : ‘igp—l) .
PEP n=1

For a given ge &, — H(d), we choose a sufficiently large N such that
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supp g does not intersect with (J,cr Unsw {i8, &, -+, 12,.;}. For pe P,
n>Nand m, 1 <m <N, we put

o = n (@5415:) € H(O) .

We now pose the following hypothesis:
(H) for all pe P and for all m, 1 < m < N, there exist two distinct
numbers n and n’ > N such that (¢2,) '02, € H(g0g™").
If (H) is false, the set {02, (H(6) N H(gfg™")); n > N} contains infinitely many
cosets for some peP and m, 1 <m < N and this implies (A). Now
suppose (H). Since (0%,,.) '¢%, commutes with gfg*,

IRCERCEAN

T_Io (g087'(i%s) 8087 (L)) (8087 (i) 8087 (i%0))

ﬁl (8087 (ihs) 12,4, (808 (i0) 12s1) -

Hence
p=1 . .
’Do (B 4ieit ) = ﬂ (8087 '(10_y) iBii2) .

This implies that gﬁg”l(z W =12, 0<<E<p—1, and that 4 contains
the cycle (g7'(12.)g '(i%,) - - -& '(imp-1)). Then there exists some m’ = m’(m),
1 < m’ < N, such that

(g—l(l O)g—l(l 1) _l(l mp-— 1)) - (I‘m Ol : m’p l)
or equivalently,
(@5t - - ?np—l) = (g(iguo)g(igz'l)' : 'g(i'zr)n’p—l)) .

Since the correspondence m <> m’ is one-to-one, we conclude that

N
= ﬂ ﬂ @@2gi0; - - 'l%p—l) n (@212, - - 'l%p—l)
m>N

PEP m=1
N .,
= T I1 (&) - 88s-0) TT (it o)
= ghg'.

This contradicts the assumption ge &, — H(d), namely, (H) is false.
Next we assume that 2 < N(2, §) < co. We take two cycles of length
2 contained in 6, say (i,i;) and (j,j;). Consider the cycle g = (i,j,) € ©,, —
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H(#). Obviously we have
H(6) N H(gbg™) D &(X — supp §) X H'(6,) X H'(6,) X ---,

which implies that |H(6): H(6) N H(gfg™")| < |H'(f,)] < . Consequently,
the condition (A) is not satisfied. Q.E.D.

ProrosiTioN 2.11. Let 6 € Aut (X) have the following three properties:
(1) Moo, 6) = 0; (i1) N(p,60) = 0 or o for all p > 3; (iii) |X — supp | = 2
and N2, 6) = 1. Then the condition (A) is satisfied if and only if | X —
supp 6| = 0 or oo.

The proof is modeled after the previous one. Theorem 2.2 is a direct
consequence of Propositions 2.10 and 2.11.

§ 3. Irreducible representations

In this section we shall discuss irreducibility of the induced representa-
tion U”* = Indgs,X, where X is a unitary character of H(6), 6 € Aut (X).
With the help of Proposition 1.1, we can describe a complete stock of
unitary characters of H(6).

By virtue of Theorem 2.2, any automorphism €< Aut(X) satisfying
the condition (A) can be written in the following forms:

(1) 0 = [lper [1p=1(iBoity- - -i%,_,), where PC{2,3, ---};

(ii) 0= (juj») [Trer [Ty @Bty - - - 15,.,), where PC{3,4, ---} and

|X — suppf| = 0 or co.
If P = ¢ (the empty set), 6 is e (the identity) or a transposition according
as (i) or (ii). We denote by Aut} (X) and Auth (X) the sets of all auto-
morphisms 6 € Aut (X) of the form (i) and (ii), respectively. For any subset
PC{23, .-}, we set Aut, (X) = Aut} (X) U Aut} (X) with the convention
that Autl (X) is empty if 2¢ P.
The following general result is easy to see, (e.g. [2] or [3]).

LemMmA 3.1. Let G be a discrete group and H a subgroup such that
every H-orbit in the quotient space G/H is an infinite set except {H}. Then
the induced representation Ind% X is irreducible for any unitary character I
of H. Moreover, two representations Ind} ¥ and Ind% Y’ are equivalent if
and only if X = Y.

From Theorem 2.2 and the definition of Autp(X) we see that
U Aut,(X), where P runs over all subsets of {2,3, ---}, coincides with
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the set of all automorphisms 6 € Aut (X) satisfying
(A) every H(f)-orbit in &,/H(f) is an infinite set except {H(6)}.
The following result is then immediate from Lemma 3.1.

THEOREM 3.2. If §¢ Aut, (X), PC{2,3, ---}, the unitary representation
U®* is irreducible for any unitary character X of H(6). Moreover, two
unitary representations U%* and U”* are equivalent if and only if X = X'.

In the rest of this section, we shall give several remarks on repre-
sentations U%*, where @€ Aut(X) does not enjoy the property (A), i.e.
6 & Aut, (X) for any subset P of {2,383, ---}.

Some notation is needed. Let Y be an infinite subset of X. If 4 is
an automorphism of Y, we set H(@) = {g e &(Y); gf = dg). Identifying &(Y)
with €., we agree to put U’* = Ind§})%, where 7 is a unitary character
of Hf). IfY is an arbitrary countable set, we denote by &(Y) the group
of all finite permutations of Y. After usual terminology of finite sym-
metric groups (e.g. [5]), we give the following

DerFINITION. Let Y and Z be disjoint countable sets. Let U and V
be unitary representations of &(Y) and ©&(Z), respectively. The outer
product UxV is the induced representation Ind&{y32 ;U X V.

Suppose that 8 € Aut (X) does not satisfy the condition (A). To begin
with, we shall give a result for the case of N(oo,d) > 1.

ProprosiTION 3.3. Let 0c Aut(X) be such that N(oo,0) > 1. Then
6 = 663" is an automorphism of X — supp .. and any unitary character 1
of H() is of the form X = 1 X 1 according to the decomposition H(6) = {e}
x H(@). Moreover.

Ut ~ RU™,

where R denotes the regular representation of ©(suppf.) ~ S.. In par-
ticular, U%* is not irreducible.

Assume that 6€ Aut (X) does not satisfy the condition (A) and that
N(co, ) = 0. Viewing Theorem 2.2, we shall consider the following three
cases:

(I) 1< Np,6) < oo for some p > 3;

(II) 2< N2,60) < o0;

(I N2,6) =1 and 1 <|X — supp | < oo.

The following result is corresponding to (III).
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ProposiTiON 3.4. Let 6 € Aut (X) satisfy X — suppf = {1,2, ---, N} and
0, =(N+1N+2) with 1 <N<oo. Then any unitary character % of
H(0) is of the form %, X X, X ¥, according to H(f) = S, X &({N + 1, N + 2})
X H'(), where § = 00;'. Furthermore, we have

UPt o= Lpsdpx U2 = 37 [XxXy: ploxUP2
peel/\>+1
where &), denotes the set of all equivalence classes of irreducible rep-
resentations of ©y,,. In particular, U”* is not irreducible.

Proof. The decomposition is obtained from transitivity of induced
representations. With the help of the branching rule ([4], Chapter III),
we can see the representation XxX, of &, ., is never irreducible. Therefore
U?* is not irreducible. Q.E.D.

In case of (I) and (II), it can be verified that U%* is a sum of repre-
sentations of the form pxU’* where p is an irreducible representation of
finite symmetric groups ©,. However, we can not conclude that U®* is
not irreducible with the help of indices only, as we did in Proposition
3.4. We conjecture that U”* is not irreducible if pN is large.

Remark. The question of irreducibility of pxU%? is left to be solved.
For particular cases, see Corollary 3.5 below and Appendix B.

The following two results are immediate from Theorem 3.2.

CoroLLARY 3.5. Let e Autl (X) and Y a countable set. Let X and ¢
be unitary characters of H(f) and S(Y), respectively. Then exU%* is ir-
reducible whenever supp § = X.

COROLLARY 3.6. Let e Autlh (X) and Y a countably infinite set. Let
¢, and ¢, be unitary characters of ©, and ©,_,, respectively. Identifying
S(Y) with S.., we regard e xe, as a representation of &(Y). Then, for any
unitary character % of H(6), exe,xU”* is irreducible whenever suppf = X
and 2¢& P.

§4. Equivalence

Having in Section 3 proved irreducibility of the unitary representa-
tions U”%, 6 e Aut, (X), PC{2,3, ---}, we shall now discuss equivalence
among them. The following general result plays an essential role. The
proof is modeled after that of Lemma 3.1.
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Lemma 4.1. Let K and H be subgroups of a discrete group G and let
X and X' be unitary characters of K and H, respectively. If |H: HN gKg™"
= oo for all ge G, or if |K: KN gHg™'| = o for all ge G, then two rep-
resentations Ind$ X and Ind$ X’ are disjoint.

Accordingly, for two automorphisms ¢ and ¢ € Aut (X) we consider
the following condition:
(C) |H(6): H(6) N H(gt'g™")| = oo for all ge S,
or |H(#"): H@) N H(ghg™")| = o for all ge ..
Our first aim is to show the following

ProposiTiON 4.2. Let 6 € Aut, (X) and 6’ € Aut, (X). And let X and
X' be unitary characters of H(6) and H(¢'), respectively. Then two unitary
representations U%* and U’'* are not equivalent whenever P = P’

Obviously, this is a direct consequence of Lemma 4.1 and the follow-
ing

LemMA 4.3. Let 6e Autp (X) and 6 € Aut,, (X). Then the condition
(C) is satisfied whenever P x P’.

Proof. We may assume that one of the following two possibilities
occurs:

(I) there exists some p > 3 such that pe P — P’;

(II) 2eP and P— {2} = P.
In order to avoid repeating almost the same proof twice, we only show
that (I) implies (C).

Let 6, = [];-; a, be the cycle-notation of ¢,, where each a, is a cycle
of length p. Then we have (I-a) a, ¢ H@#’) for infinitely many n; or (I-b)
a, € H(@®’) except finitely many n.

Case (I-ra). Given ge @, we put J = {n > 1; a, € H¢') and supp a, N
supp & = ¢}, which is an infinite set by assumption. Suppose that a;'a,
e H(gt’'g™") for distinct n and n’eJ. Then, as is easily seen, we have
0'a,0’* = a;* In particular, n’ is uniquely determined by n if it exists.
This shows that the set {a,(H(f) N H(g6's™")); neJ} contains infinitely
many cosets. Hence the condition (C) is satisfied.

Case (I-b). Since a, is a cycle of length p > 3, the condition a, €
H(¢) implies that a, € &X — supp &) or a, € H'(9,) for some ge P’ which
is necessarily a divisor of p. Thus, infinitely many a,’s belong to &(X —
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supp ¢') or H'(6)) for some q.

First we assume that infinitely many «a,’s belong to &(X — supp &).
Then, for a given ge®©, the set J={n>1;a,e SX — suppd) and
supp a, N supp g = ¢} is infinite. We put a, = (uln- * *lp-1), B > 1, and fix
an arbitrary NeJ. Now we consider the cycles b, = (iyi,.), n€dJ — {N},
which belong to H(6’). Since b;'b, = (iyylnino) for distinct n and n’ed
— {N}, b;*b, does not belong to H(gfg™'). This implies |H(¢"): H(#') N
H(gbg™)| = oo.

Next we assume that infinitely many a,’s belong to H’(¢)), where g
is a divisor of p and belongs to P’. For a given g€ @, we put J = {n
>1; a,€ H'(#,) and supp a, N supp & = ¢}, which is an infinite set by as-
sumption. Let 6, = [[;.. b, be the cycle-notation of §,. For each nedJ
there exists some m = m(n) such that supp b,, Csupp a,. Obviously, m(n)
xm(n) if nxn’. We see that b}, b,. does not belong to H(gfg™")
whenever n % n’. In fact, b,}, b, € H(gf0g ") implies 6b,,,,0" = by, Or
= b,i,y, but both are impossible because supp b, Csuppa,. Thus we
conclude that |H(#"): H(") N H(gfg™™)| = oo. Q.E.D.

We are now in a position to discuss the case when both 4 and ¢’
belong to Autp(X),PC{2,83,---}. Let 6 =¢[,cr0, be the canonical
expression of ¢, where ¢ denotes the identity or a transposition according
as 0 Aut} (X) or 6ecAuty (X). Similarly we put ¢ = ¢ [[,cr 6, Let
0, = [li-1a,, and 6, = [[m-: b,n be the cycle-notations of 4, and 6, re-
spectively. Put

J,0,0) = {n>1;a,, = (b,,)" for some m and ¢},
J0',6) = {m >1; b,, = (a,,)" for some n and q}.

Then we have a natural bijective correspondence between J,(4,6) and
J, (0, 6), namely, for each me J(¢,0) there exist a unique n = n(m)e
J,(0,6") and a unique g = g(m), 1 < ¢ < p, such that b,, = (a,,)% In this
case, necessarily g is relatively prime to p. The complement of J,(4, §’)
will be denoted by K6, ¢’).

LeMMA 4.4. Let 6 and 6 € Autp (X). If > ,r|K,0,0) = o or if
Sper [ K@, 0)] = oo, the condition (C) is satisfied.

Proof. Without loss of generality we may assume that >, ., |K, @, 6)]
= oo. Then there occurs (I) |K,(0, 6)| = o for some p € P; or (I) |K,(6, ¢')|
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< oo for all pe P.

Case (I). If a,, & H(¢') except finitely many ne K (6, 6’), we can show
that |H(6): H@) N H(g’'g™")| = oo for all g€ S,. Otherwise, one can verify
that |H(0"): H(#') N H(gfg™")| = oo for all geS,,.

Case (II). We put P, = {peP; K,(6,6) is not empty}, which is an
infinite set by assumption. For each p € P, choose and fix an ne K4, ¢)
and put ¢, = a,, € H'(#,) C H@). If c,e &(X — supp#’) for infinitely many
p € P, or if there exists some g € P such that ¢, e H(¢,) for infinitely many
pe P, we can see that |H(#): H(¢) N H(g0g™")| = oo for all ge &... Other-
wise, we can show that |H(#): H(6) N H(g#'g™")| = oo for all geS,. Q.E.D.

Keeping the notations introduced before Lemma 4.4, we note that
bym = (@puim))™™ for each me J(¢’,6). Put

M(q,p) = {meJ (0, 6); q(m) = q} .
Then we can easily prove the following result.

LeEmMA 4.5. If there exists some pc P such that |M(q;p)| = |M(q’, p)|
= oo with distinct q and q’, then the condition (C) is satisfied.

Viewing Lemmas 4.4 and 4.5, we have only to consider two auto-
morphisms § = ¢ [[,cp 0, and 6’ = ¢’ [[,c» 0, € Aut, (X), where 6, and 6, are
given by

k

(»)

)

=

I e

(p
b 1l d ) > q,

al
P

u:]8 ﬁ:]s

% [1 0,
0, = ﬁ
where 0 < A(p), C(P), D(p) < oo and 3 ,er {C(p) + D(p)} < oo.

LEmMMA 4.6. If there exists some pe P such that C(p) 2 D(p), the
condition (C) is satisfied.

Proof. Assume that 0 < D(p) < C(p) < co. Then one can show that
|H(0): H(6) N H(g0’'g™")| = oo for any ge .. Q.E.D.

Lemma 4.7. If 3 ,c» A(p) = oo, the condition (C) is satisfied.

Proof. We can show that |H(A): H(6) N H(g0'g )| = o« for all ge &,
Q.E.D.

Suppose now that the condition (C) is not satisfied for 6 and ¢’ e
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Aut, (X). Then it follows from Lemmas 4.6 and 4.7 that 6, and 6, are
related as follows:

0, =1,00?1;", 1,66, peP,
where 7, = e except finitely many p. The following result is then immediate.

ProposiTiON 4.8. Let§ = ¢ [[,cr 0, and 6’ = & [],cr 0, be the canonical
expressions of 0 and 0’ € Aut, (X), respectively. Assume that both 6 and ¢’
belong to Auth (X) (resp. Auth (X)). Then the condition (C) is not satisfied
if and only if there exist a sequence (¢(p)),.r and 7€ S, such that 0 =
T(T1,ep 05) " (resp. 0" = 1(e []per 27D 7Y).

Lemma 4.9. Let 6 € Auth (X) and 0’ € Aut} (X). Assume that 0, and
6, are related as follows:

0, = 1,001, 1,€8,, peP,

where 7, = e except finitely many p. Then the condition (C) is satisfied if
and only if | X — supp §’| = oo.

Proof. Without loss of generality, we may put 6; = ¢ = (1 2). First
we assume that |X — supp§’| = . In order to see that |H(6): H(H) N
H(gt'g™")| = « for any ge &, it suffices to consider the following two
cases: (I) g(1)e X — suppd; (II) g(1) € supp @, for some p e P.

Case (I). We put Y={ie X — suppd; g(t) =1, i = g(1) and i = g(2)},
which is an infinite set by assumption. We put ¢, = (g(1)i), i€ Y. Assume
that o;'s; € H(g#’g™") for distinct i and je Y. Then we have

Qog@) g () = 1g'@) g ().

This implies that ¢’g™'()) =1 or #’g"'(j) = 1. But this is impossible be-
cause I % g(1) and i % g(2). Thus we have |H(#): H@) N H(gf'g™")| = co.

Case (I). Let 6, = [[y_1 (Cuoln1- - *1np-1) be the cycle-notation of 4,.
We may assume g(1) = i,,. We fix a sufficiently large N such that supp g
and supp 7, do not intersect with {i,, i, -+, i,,.1} for any n > N. Now
we put o, = []425 (iini), > N. Suppose that o;'g, € H(gf'g™") for distinct
n and n’. Then by a standard argument, we get contradiction. Hence
|H(0): H() N H(g0'g™")| = oo.

Next we assume that | X — supp #’| = 0. Then, obviously |X — supp 6]
= 2. Therefore we conclude that H(¢") = TH(@)r ' with 7 = [[,er 7, € S...



158 NOBUAKI OBATA

Hence (C) is not satisfied. Q.E.D.

ProposITION 4.10. Let § = [],cr0, and 6/ = ¢’ [],cp 0, be the canonical
expressions of 6 € Auty (X) and 6’ € Auth (X), respectively. Then the condi-
tion (C) is not satisfied if and only if | X — supp &’| = 0 and there exist a
sequence (q(p)),cr and 7€ S, such that ¢/ = &'T([] e 05 .

This follows directly from Lemma 4.9. Combining the results of Pro-
positions 4.8 and 4.10, we have

COROLLARY 4.11. Let 6 and 0’ € Autp (X). Then the condition (C) is
satisfied if and only if H(6) and H(0’) are not conjugate in S,

With these preparations, we can now discuss equivalence relation
between two unitary representations U?* and U’"*, where 6 and ¢’ belong
to Aut, (X). It follows from Lemma 4.1 and Corollary 4.11 that they can
be equivalent only when H(f) and H(§’) are conjugate in &.. Conse-

quently, by Lemma 3.1 and Proposition 4.2 we have the following final
result.

THEOREM 4.12. Let 6 € Auty, (X) and ¢ € Aut,, (X). Let X and X' be
unitary characters of H(6) and H(§’), respectively. Then two unitary rep-
resentations U”* and U®* are equivalent if and only if (i) P = P’; (ii)
there exists 7€ ©, such that H(§) = rH(@)r™*; (i) X' (rhr~") = U(h) for all
h e H(0).

§ 5. Relationship among /I*,1]- and U

For an irreducible representation p of &,, 0 < n < o, we form the
outer products pxl and pxsgn, where 1 is the trivial representation and
sgn the alternating representation of ©,_,. In the author’s previous paper
[3], p*1 and pxsgn were denoted by z* and ¢, respectively. We denote
by II* and II- the collections of pxl and pxsgn, respectively. As was
shown in [1] and [4], the representations in /I* are irreducible and mutu-
ally inequivalent. The same assertion is true for I7- and it can be shown
that any two representations of II* and II- are mutually inequivalent.
Here we recall the following fact proved in [1] and [4].

ProrosiTION 5.1. Introduce the weakest topology in &, in such a
way that ©, X ©,_, is an open set for alln = 0,1,2, ---. Then II* coincides
with the set of all equivalence classes of continuous irreducible unitary rep-
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resentations.

The following result is easily verified.

ProposiTiON 5.2. (1) If 6 € Aut} (X), i.e. 6 = e, unitary characters of
H@) = S are 1 and sgn. Furthermore,

U*' =~ 1 (the trivial representation),

Uesen ~ sgn (the alternating representation).

(2) If Aut}(X), i.e. 6 = transposition, H(f) is isomorphic to &, X ©,,_, by
an inner automorphism of &, and its unitary characters are ¢ X 1 and ¢ X
sgn, where ¢ is a unitary character of ©,. Moreover,

Ut Xl ~ exl, U?exs8n ~ exsgn .

We denote by U the collection of all unitary representations U®?,
where 6 € Aut, (X) with non-empty subset P and X is a unitary character
of H(6).

TrEOREM 5.3. Two irreducible representations are not equivalnt if they
belong to distinct classes II*, I~ or U.

Proof. It is sufficient to prove that U%*e U does not belong to II*.
We realize the representation U®* on the Hilbert space of all complex-
valued square summable functions on &./H(f), (see [3]). We denote by ¢
the delta-function concentrated at the single point H(#) of ©./H(6). Then,

Wg)  if ge H@),
0 otherwise.

(U (g)s, 8) — {

On the other hand, as is easily shown, H(f) is not open with respect to
the topology introduced in Lemma 5.1. Therefore U%* is not continuous
with respect to this topology and does not belong to I7-. Q.E.D.

Appendix A. The structure of endomorphisms of &,

Here we shall give an explicit expression of endomorphisms of ©..
Let .. be the subgroup of all even permutations in &, namely, the kernel
of the alternating representation: g+~ sgng. The group . is called the
infinite alternating group. We write ¥, _, for A, N S, _,.

Lemma Al. (1) The only normal subgroups of S, are {e}, U, and
©., itself.
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(2) The only subgroups of ©., of finite index are U, and S, itself.
(8) The only subgroups of &, containing U._, are H., Dw-1, D2
(12)9...,(12), S, X Y.._, and UA.._, U (12)(34)N.._;, where © denotes S or .

This follows by an elementary observation of generators. With the
help of Lemma A.1 we get the following

Lemma A.2. Let K be a subgroup of &, and 2 the quotient space
S./K. Assume that s(g) = {we 2; 8o = o} is finite for any ge©.. Then
the subgroup K is necessarily equal to ©.,U., or conjugate subgroups of
T

Let End (©.) denote the set of all endomorphisms of ©.. Given fe
End (8.), an action of &, on X is defined by means of the maps i — f(g)i,
i€ X. Under this action X is decomposed into a disjoint union of &_-orbits
0. It follows from Lemma A.2 that |0| =1, 2 or oo.

LeMMA A.3. Let O be an orbit containing infinitely many points. Then
the points of O are parametrized so that f(g)i, = i,u, for all R =1,2, - ..

Proof. Since 0 is a transitive ©_-space, there exists a subgroup K
such that 0 ~ S_,/K. Since s(f(g)) in 0 is finite, we see by Lemma A.2
that K is a conjugate subgroup of ©,_,. The desired assertion is then
immediate. Q.E.D.

Since supp f(g) is finite for all ge ©,, the number of orbits contain-
ing two or infinitely many points is finite. We denote by 0, ,, - - -, 0, , the
orbits containing two points and 0..,, ---, 0., the orbits containing in-
finitely many points. We denote by @, the set of all points fixed under
the action i —f(g)i, ie X. Then we have a partition of X:

s t
X=0,UU0,Uuo0.,.
m=1 n=1

Viewing Lemma A.3, we regard 0., , as an infinite (ordered) sequence. With
these observations, we have the following

THEOREM A.4. For each fe End(S.) there exist unordered pairs of
points Oy = {jnisJms}, m =1,2, ---,s, and ordered sequences 0., = {in,
lngy -, n=1,2, -+, % (possibly s =0 or t = 0) having the following prop-
erties:

(1) Opyy -y 04 0pry -+, 0., are mutually disjoint as subsets of X;

(ii) for any g€ S,
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f&) = |G| 1L (32 ),

n=1 ng(l) ng@)" "
where ¢(g) = 0 if ge ., and «g) = 1 otherwise.

This theorem has many applications. For example, we can determine
certain extensions of ©_-spaces. Here we only mention the following

TugorEM A.5. Let fe End (©.). Then f is an automorphism of &, if
and only if f(g) = 686" for some 6¢ Aut(X). In particular, Aut(X) is
isomorphic to the automorphism group Aut (&.).

Appendix B. Some remarks on representations of I+

Let p be an irreducible representation of €,, 0 < n < o, and U an
irreducible representation of ©,. As we remarked in Section 3, the ques-
tion of irreducibility or irreducible decomposition of the outer product
p+xU is open in a general situation. If Ue I7*, however, we can give a
decomposition formula for pxU with the help of transitivity of induced
representations.

TueorREM B.1. Let p and o’ be finite dimensional unitary represenia-
tions of ©, and ©,, respectively. Then we have
ox(0'x1) = (oxp)x1 = 3 [pxp’: c]exl.
1'6(57/1.\+m

Applying the above result to the regular representation, we have the
following

CoroLLARY B.2. If t is an irreducible representation of ©,,,, the fol-

lowing identity holds:
dimz = 3 > (dim a)(dim p)[axfB: ] .
age) ges)

Finally we shall give a decomposition formula for the tensor product
of representations of I7*. The proof is omitted because we need rather
complicated and combinatorial arguments about orbits of certain ©,-spaces.
An analogous assertion for /7~ can be obtained easily.

THEOREM B.3. Let p and p’ be finite dimensional unitary representa-
tions of ©, and ©,, respectively. Then

n (n

(D ® (sl = > <),
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where <(j) is a unitary representation of €, ., _, given by

T(]) = Indg?;g[_ijxgm_j 035 Pj(o'l, Opy 03) = P(O'xo'z) ® Pl(‘fﬁs) .
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