THE MODULAR EQUATION AND MODULAR FORMS OF WEIGHT ONE

TOYOKAZU HIRAMATSU and YOSHIO MIMURA
Dedicated to Martin Eichler

§ 1. Introduction

This is a continuation of the previous paper [8] concerning the relation between the arithmetic of imaginary quadratic fields and cusp forms of weight one on a certain congruence subgroup. Let K be an imaginary quadratic field, say $K=\boldsymbol{Q}(\sqrt{-q})$ with a prime number $q \equiv-1 \bmod 8$, and let h be the class number of K. By the classical theory of complex multiplication, the Hilbert class field L of K can be generated by any one of the class invariants over K, which is necessarily an algebraic integer, and a defining equation of which is denoted by

$$
\Phi(x)=0 .
$$

The purpose of this note is to establish the following theorem concerning the arithmetic congruence relation for $\Phi(x)$:

Theorem I. Let p be any prime not dividing the discriminant D_{ϕ} of $\Phi(x)$, and \boldsymbol{F}_{p} the p-element field. Suppose that the ideal class group of K is cyclic. Then we have

$$
\#\left\{x \in \boldsymbol{F}_{p}: \Phi(x)=0\right\}=\frac{h}{6} a(p)^{2}+\frac{h}{6} a(p)-\frac{1}{2}\left(\frac{-q}{p}\right)+\frac{1}{2},
$$

where $a(p)$ denotes the pth Fourier coefficient of a cusp form which will be defined by (1) in Section 2.3 below. One notes that in case $p=2$, we have $(-q / p)=1$.

§ 2. Proof of Theorem I

2.1. Let Λ be a lattice in the complex plane \boldsymbol{C}, and define

[^0]\[

$$
\begin{gathered}
G_{k}(\Lambda)=\sum_{\omega \neq 0} \omega^{-k}, \quad\left(k \in \boldsymbol{Z}^{+}\right), \\
g_{2}(\Lambda)=60 G_{4}(\Lambda), \quad g_{3}(\Lambda)=140 G_{6}(\Lambda),
\end{gathered}
$$
\]

where the sum is taken over all non-zero ω in Λ. The torus \boldsymbol{C} / Λ is analytically isomorphic to the elliptic curve E defined by

$$
y^{2}=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda)
$$

via the Weierstrass parametrization

$$
C / \Lambda \ni z \longrightarrow\left(\mathfrak{p}(z), \mathfrak{p}^{\prime}(z)\right) \in E,
$$

where

$$
\mathfrak{p}(z)=\frac{1}{z^{2}}+\sum_{\omega \neq 0}\left\{\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right\}, \quad \mathfrak{p}^{\prime}(z)=\sum_{\omega}-\frac{-2}{(z-\omega)^{3}} .
$$

Let Λ and M be two lattices in \boldsymbol{C}. Then the two tori \boldsymbol{C} / Λ and \boldsymbol{C} / M are isomorphic if and only if there exists a complex number α such that $\Lambda=\alpha M$. If this condition is satisfied, then the two lattices Λ and M are said to be linearly equivalent, and we write $\Lambda \sim M$. If so, we have a bijection between the set of lattices in C modulo \sim and the set of isomorphism classes of elliptic curves. Let us define an invariant j depending only on the isomorphism classes of elliptic curves:

$$
j(\Lambda)=\frac{1728 g_{2}^{3}(\Lambda)}{g_{2}^{3}(\Lambda)-27 g_{3}^{2}(\Lambda)} .
$$

In fact, $j(\alpha \Lambda)=j(\Lambda)$ for all $\alpha \in \boldsymbol{C}$. Take a basis $\left\{\omega_{1}, \omega_{2}\right\}$ of Λ over Z such that $\operatorname{Im}\left(\omega_{1} / \omega_{2}\right)>0$ and write $\Lambda=\left[\omega_{1}, \omega_{2}\right]$. Since $\left[\omega_{1}, \omega_{2}\right] \sim\left[\omega_{1} / \omega_{2}, 1\right]$, the invariant $j(\Lambda)$ is determined by $\tau=\omega_{1} / \omega_{2}$ which is called the moduli of E. Therefore we can write the following:

$$
j(\Lambda)=j(\tau) .
$$

The lattice Λ has many different pairs of generators, the most general pair $\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}\right\}$ with τ^{\prime} in the upper half plane having the form

$$
\left\{\begin{array}{l}
\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2} \\
\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}
\end{array}\right.
$$

with $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, Z)$. Thus the function $j(\tau)$ is a modular function of level one. It is well known that

$$
j(\sqrt{-1})=1728, \quad j\left(e^{2 \pi \sqrt{-1 / 3}}\right)=0, \quad j(\infty)=\infty .
$$

The modular function $j(\tau)$ can be characterized by the above properties.
2.2. The classical theory of complex multiplication (M. Eichler [2], H. Hasse [4], and [13]). Let there be given a lattice Λ and the elliptic curve E as described in Section 2.1. If for some $\alpha \in \boldsymbol{C}-\boldsymbol{Z}, \mathfrak{p}(\alpha z)$ is a function on C / Λ, then we say that E admits multiplication by α; and then α and ω_{1} / ω_{2} are in the same quadratic field. If E admits multiplication by α_{1} and α_{2}, then E admits multiplication by $\alpha_{1} \pm \alpha_{2}$ and $\alpha_{1} \alpha_{2}$. Thus the set of all such α is an order in an imaginary quadratic field K. Consider the case when E admits multiplication by the maximal order \mathfrak{o}_{K} in K. Then the invariant j defines a function on the ideal classes $k_{0}, k_{1}, \cdots, k_{h-1}$ of K (h being the class number of K) and the numbers $j\left(k_{i}\right)$ are called "singular values" of j. Put

$$
A=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a d=n>0,0 \leqq b<d,(a, b, d)=1, a, b, d \in \boldsymbol{Z}\right\}
$$

and consider the polynomial

$$
F_{n}(t)=\prod_{\alpha \in A}(t-j(\alpha z)) .
$$

We may view $F_{n}(t)$ as a polynomial in two independent variables t and j over \boldsymbol{Z}, and write it as

$$
F_{n}(t)=F_{n}(t, j) \in Z[t, j] .
$$

Let us put

$$
H_{n}(j)=F_{n}(j, j) .
$$

Then $H_{n}(j)$ is a polynomial in j with coefficients in Z, and if n is not a square, then the leading coefficient of $H_{n}(j)$ is ± 1. This equation

$$
H_{n}(j)=0
$$

is called the modular equation of order n. Now we can find an element w in \mathfrak{o}_{K} such that the norm of w is square-free:

$$
w=\left\{\begin{array}{l}
1+\sqrt{-1}, \text { if } K=\boldsymbol{Q}(\sqrt{-1}) \\
\sqrt{-m}, \text { if } K=\boldsymbol{Q}(\sqrt{-m}) \text { with } m>1 \text { square-free }
\end{array}\right.
$$

Let $\left\{\omega_{1}, \omega_{2}\right\}$ be a basis of an ideal in an ideal class k_{i} such that $\operatorname{Im}\left(\omega_{1} / \omega_{2}\right)$ >0. Then

$$
\left\{\begin{array}{l}
w \omega_{1}=a \omega_{1}+b \omega_{2} \\
w \omega_{2}=c \omega_{1}+d \omega_{2}
\end{array}\right.
$$

with integers a, b, c, d and the norm of w is equal to $a d-b c$. Thus $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is primitive and $\alpha \omega=\omega$. Hence $j(\omega)=j\left(k_{i}\right)$ is a root of the modular equation $H_{n}(j)=0$. Therefore we have the following
(i) $j\left(k_{i}\right)$ is an algebraic integer.

Furthermore we know
(ii) $K\left(j\left(k_{i}\right)\right)$ is the Hilbert class field of K.

By the class field theory, there exists a canonical isomorphism between the ideal class group C_{K} of K and the Galois group G of $K\left(j\left(k_{i}\right)\right) / K$, and we have the following formulas which describe how it operates on the generator $j\left(k_{i}\right)$:
(iii) Let σ_{k} be the element of G corresponding to an ideal class k by the canonical isomorphism. Then

$$
\sigma_{k}\left(j\left(k^{\prime}\right)\right)=j\left(k^{-1} k^{\prime}\right)
$$

for any $k^{\prime} \in C_{K}$.
(iv) For each prime ideal \mathfrak{p} of K of degree 1 , we have

$$
j\left(\mathfrak{p}^{-1} k\right) \equiv j(k)^{v_{\mathfrak{p}}} \bmod \mathfrak{p}, \quad k \in C_{K}
$$

where $N \mathfrak{p}$ denotes the norm of \mathfrak{p}.
(v) The invariants $j\left(k_{i}\right), i=0,1, \cdots, h-1$, of K form a complete set of conjugates over \boldsymbol{Q}.
2.3. Let q be a prime number such that $q \equiv-1 \bmod 8, K=\boldsymbol{Q}(\sqrt{-q})$ and let h be the class number of K, which is necessarily odd. For $0 \leqq$ $i \leqq h-1$, we denote by $Q_{k_{i}}(x, y)$ the binary quadratic form corresponding to the ideal class k_{i} (k_{0} : principal class) in K and put

$$
\theta_{i}(\tau)=\frac{1}{2} \sum_{n=0}^{\infty} A_{k_{i}}(n) e^{2 \pi \sqrt{-1} n \tau} \quad(\operatorname{Im}(\tau)>0)
$$

where $A_{k_{i}}(n)$ is the number of integral representations of n by the form $Q_{k_{i}}$. Then the following lemma is classical:

Lemma 1. 1) If p is any odd prime, except q, then we have

$$
\frac{1}{2} A_{k_{0}}(p)+\sum_{i=1}^{n-1} A_{k_{i}}(p)=1+\left(\frac{-q}{p}\right) .
$$

2) If we identify opposite ideal classes by each other, there remain only $A_{k_{0}}(p), A_{k_{1}}(p), \cdots, A_{k_{(n-1) / 2}}(p)$, among which there is at most one nonzero element.

Moreover, for each ideal class k in K, we have
Lemma 2. 1) $A_{k}(n)=2 \sharp\left\{\mathfrak{a} \subset \mathfrak{o}_{K}: \mathfrak{a} \in k^{-1}, N \mathfrak{a}=n\right\}$,
2) $2 A_{k}(m n)=\sum_{\substack{k_{1}, k_{2}=k \\ k_{1} k_{2} \in C_{K}}} A_{k_{1}}(m) A_{k_{2}}(n)$ if $(m, n)=1$.

Proof. 1) If $\mathfrak{b} \in k$ and $b \subset \mathfrak{o}_{K}$, then

$$
\begin{aligned}
A_{k}(n) & =\sharp\{\alpha \in \mathfrak{b}: N(\alpha)=n N \mathfrak{b}\} \\
& =\sharp\{\alpha \in \mathfrak{b}:(\alpha)=\mathfrak{a b}, N \mathfrak{a}=n\} \\
& =2 \sharp\left\{\mathfrak{a} \subset \mathfrak{o}_{K}: \mathfrak{a} \in k^{-1}, N \mathfrak{a}=n\right\} .
\end{aligned}
$$

2) For m, n coprime, take an ideal \mathfrak{a} such that $\mathfrak{a} \in k^{-1}, \mathfrak{a} \subset \mathfrak{o}_{K}$ and $N a=m n$. Then we have the following unique decomposition of \mathfrak{a} :

$$
\mathfrak{a}=\mathfrak{m} \mathfrak{n}, \quad N \mathfrak{m}=m, \quad N \mathfrak{n}=n .
$$

If $\mathfrak{m} \in k_{1}^{-1}$, then $\mathfrak{n} \in k_{2}^{-1}\left(=k_{1} k^{-1}\right)$, and \mathfrak{m} and \mathfrak{n} are both integral. Therefore

$$
\frac{1}{2} A_{k}(m n)=\sum_{k_{1} k_{2}=k}\left(\frac{1}{2} A_{k_{1}}(m)\right)\left(\frac{1}{2} A_{k_{2}}(n)\right) .
$$

Q.E.D.

Let χ be any character $(\neq 1)$ on the group C_{K} of ideal classes and put

$$
A(n)=\frac{1}{2} \sum_{k_{\imath} \in C_{K}} \chi\left(k_{i}\right) A_{k_{i}}(n) .
$$

Then we have the following multiplicative formulas.
Lemma 3. 1) $\quad A(m n)=A(m) A(n)$ if $(m, n)=1$,
2) $A(p) A\left(p^{r}\right)=A\left(p^{r+1}\right)+(-q / p) A\left(p^{r-1}\right)$ for prime $p(\neq q)$ and $r \geqq 1$,
3) $A(q n)=A(q) A(n)$.

Proof. These follow immediately from Lemma 2 by the direct computation.

We define here two functions f and F as follows:

$$
\begin{equation*}
f(\tau)=\theta_{0}(\tau)-\theta_{1}(\tau), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F(\tau)=\sum_{i=0}^{n-1} \chi\left(k_{i}\right) \theta_{i}(\tau)=\sum_{n=1}^{\infty} A(n) e^{2 \boldsymbol{z} \sqrt{-1} n \tau}, \tag{2}
\end{equation*}
$$

where $\theta_{0}(\tau)$ is the theta-function corresponding to the principal class k_{0}. Then $f(\tau)$ is a normalized cusp form on the congruence subgroup $\Gamma_{0}(q)$ of weight one and character ($-q / p$), and moreover, by Lemma 3, $F(\tau)$ is a normalized new form on $\Gamma_{0}(q)$ of weight one and character ($-q / p$) (cf. Hecke [7]). From now on, we assume that the ideal class group C_{K} of K is cyclic. By Lemma 1 we shall calculate the Fourier coefficients of $f(\tau)$ and $F(\tau)$. Let

$$
C_{K}=\left\langle k_{1}\right\rangle \quad \text { and } \quad \chi\left(k_{1}\right)=e^{2 \pi \sqrt{\sqrt{-1} / h}}
$$

Then we can write the function $F(\tau)$ as

$$
F(\tau)=\theta_{0}(\tau)+2 \sum_{i=1}^{\frac{1}{2}(h-1)} \cos \frac{2 \pi i}{h} \theta_{i}(\tau),
$$

where $k_{i}=k_{1}^{i}\left(1 \leqq i \leqq \frac{1}{2}(h-1)\right.$. If $(-q \mid p)=-1$, then $A_{k}(p)=0$ for all $k \in C_{K}$. If $(-q / p)=1$, then

$$
(p)=\mathfrak{p} \bar{p} \quad(\mathfrak{p} \neq \overline{\mathfrak{p}}) \quad \text { in } K,
$$

where \mathfrak{p} denotes a prime ideal in K and \mathfrak{p} a conjugate of \mathfrak{p}. We denote by $k_{\mathfrak{p}}$ the ideal class such that $\mathfrak{p} \in k_{\mathfrak{p}}$. If $k_{\mathfrak{p}}$ is ambigous, then

$$
A_{k}(p)= \begin{cases}4, & \text { for } k=k_{p}^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

If k is not ambigous, then

$$
A_{k}(p)= \begin{cases}2, & \text { for } k=k_{p} \text { or } k=k_{p}^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

In the case $p=q$, put

$$
(p)=\mathfrak{p}^{2}(\mathfrak{p}=\overline{\mathfrak{p}}), \quad \mathfrak{p} \in k_{p} .
$$

Then we know

$$
A_{k}(p)= \begin{cases}2, & \text { if } k=k_{p} \\ 0, & \text { otherwise }\end{cases}
$$

Let $a(n)$ be the nth coefficient of the Fourier expansion for $f(\tau)$:

$$
f(\tau)=\sum_{n=1}^{\infty} a(n) e^{2 \pi \sqrt{-1} n} .
$$

By the above results, we have the following formulas for $a(p)$ and $A(p)$.

Lemma 4. Suppose that the ideal class group C_{K} of K is cyclic. Then, for each prime p, the Fourier coefficients $a(p)$ and $A(p)$ are given as follows:

$$
a(p)=\left\{\begin{array}{l}
0, \quad \text { if }\left(\frac{-q}{p}\right)=-1, \\
2, \quad \text { if }\left(\frac{-q}{p}\right)=1 \quad \text { and } p=x^{2}+x y+\frac{1+q}{4} y^{2} \quad(x, y \in Z), \\
0 \text { or } 1, \quad \text { if }\left(\frac{-q}{p}\right)=1 \text { and } k_{p} \neq k_{0} \text { with }(p)=\mathfrak{F N}, \mathfrak{p} \in k_{\vee}, \\
1, \quad \text { if } p=q,
\end{array}\right.
$$

and
2.4. Let

$$
\Phi(x)=0
$$

be the defining equation of a generating element of the Hilbert class field L over the imaginary quadratic field $K=\boldsymbol{Q}(\sqrt{-q})$. Then the polynomial $\Phi(x)$ is one of the irreducible factors of the modular polynomial $H_{q}(x)$. We say simply $\Phi(x)$ is a modular polynomial.

Now, in order to prove Theorem I, it is enough to show that if the ideal class group C_{K} is a cyclic group of order h, then

$$
\begin{aligned}
& \#\left\{x \in \boldsymbol{F}_{p}: \Phi(x)=0\right\} \\
& \quad= \begin{cases}1, & \text { if }\left(\frac{-q}{p}\right)=-1, \\
h, & \text { if }\left(\frac{-q}{p}\right)=1 \text { and } p=x^{2}+x y+\frac{1+q}{4} y^{2} \quad(x, y \in Z), \\
0, & \text { if }\left(\frac{-q}{p}\right)=1 \text { and } k_{\mathfrak{p}} \neq k_{0} \text { with }(p)=\mathfrak{p}, \mathfrak{p} \in k_{p} .\end{cases}
\end{aligned}
$$

We denote by H the ideal group corresponding to the Hilbert class field L of K :

$$
H=\{(\alpha): \text { principal ideals in } K\} .
$$

Case 1. $(-q / p)=1$. Let

$$
(p)=\mathfrak{p p} \quad \text { in } K
$$

Then we have the following relations:

$$
\begin{aligned}
\mathfrak{p} \in H & \Longleftrightarrow \mathfrak{p}=(\pi), \pi=a+b \omega \quad\left(\omega=\frac{1+\sqrt{-q}}{2}, a, b \in \boldsymbol{Z}\right) \\
& \Longleftrightarrow p=N \mathfrak{p}=a^{2}+a b+\frac{1+q}{4} b^{2} \quad(a, b \in Z),
\end{aligned}
$$

and
\mathfrak{p} splits completely in $L \Longleftrightarrow \Phi(x) \bmod p$ has exactly h factors.
Therefore

$$
p=a^{2}+a b+\frac{1+q}{4} b^{2}(a, b \in Z) \Longleftrightarrow \Phi(x) \bmod p \text { has exactly } h \text { factors. }
$$

On the other hand, it is obvious that

$$
\begin{aligned}
\mathfrak{p} \notin H & \Longleftrightarrow \mathfrak{p} \text { is a product of prime ideals of degree }>1 \text { in } L \\
& \Longleftrightarrow \Phi(x) \bmod p \text { has no linear factors in } F_{p}[x] .
\end{aligned}
$$

Case 2. $\quad(-q / p)=-1$. The polynomial $\Phi(x)$ splits completely modulo p in $\mathfrak{o}_{K} /(p)$ and the field $\mathfrak{o}_{K} /(p)$ is a quadratic extension of $\boldsymbol{Z} / p \boldsymbol{Z}$. Therefore

$$
\Phi(x) \bmod p=h_{1}(x) \cdots h_{t}(x)
$$

and

$$
\operatorname{deg} h_{i} \leqq 2 \quad(i=1, \cdots, t)
$$

where each $h_{i}(x)$ is irreducible in $F_{p}[x]$. Since the class number h of K is odd, there exist odd numbers of i such that $\operatorname{deg} h_{i}=1$. In the following, we shall show that there exists one and only one of such i.

The dihedral group D_{h} has $2 h$ elements and is generated by r, s with the defining relations:

$$
r^{h}=s^{2}=1, \quad s r s=r^{-1} .
$$

Let K_{0} be the maximal real subfield of L. We have the following diagram:

Let $\mathfrak{o}_{K_{0}}$ be the ring of algebraic integers in K_{0}. Then the ideal $p_{K_{K_{0}}}$ decomposes into a product of distinct prime ideals in K_{0} :

$$
p \mathfrak{o}_{K_{0}}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{m} \mathfrak{q}_{1} \cdots \mathfrak{q}_{n},
$$

where

$$
N_{K_{0} / Q} \mathfrak{p}_{l}=p \quad(1 \leqq l \leqq m) \quad \text { and } \quad N_{K_{0} / Q} \mathfrak{q}_{l}=p^{2} \quad(1 \leqq l \leqq n) .
$$

Moreover, if \mathfrak{o}_{L} is the ring of algebraic integers in L, then

$$
\mathfrak{p}_{\mathfrak{l}} \mathfrak{o}_{L}=\mathfrak{P}_{\mathfrak{l}} \quad(1 \leqq l \leqq m),
$$

where each \mathfrak{P}_{l} is a prime ideal in \mathfrak{o}_{L}. On the other hand, the ideal $p \mathfrak{o}_{L}$ has the following decomposition via the field K :

$$
p_{0_{L}}=\mathfrak{P}_{1} \mathfrak{P}_{1}^{r} \cdots \mathfrak{P}_{1}^{r t-1} .
$$

Since $\mathfrak{p}_{1}^{s}=\mathfrak{p}_{1}$, we have also

$$
\mathfrak{P}_{1}^{s}=\mathfrak{P}_{1} .
$$

Similarly,

$$
\mathfrak{P}_{l}^{s}=\mathfrak{P}_{l}, \quad(2 \leqq l \leqq m) .
$$

However, since h is odd and srs $=r^{-1}$, we deduce

$$
\mathfrak{P}_{1}^{r i_{s}}=\mathfrak{P}_{1}^{r-i} \neq \mathfrak{P}_{1}^{r i}, \quad(1 \leqq i \leqq h-1) .
$$

Since $\mathfrak{R}_{\imath}=\mathfrak{R}_{1}^{r i}$ for some i, we have $m=1$.
Q.E.D.

Let $\operatorname{Spl}\{\Phi(x)\}$ be the set of all primes p such that $\Phi(x) \bmod p$ factors into a product of distinct linear polynomials over the field \boldsymbol{F}_{p}. Then the following Corollary holds:

Corollary (Higher Reciprocity Law).

$$
\operatorname{Spl}\{\Phi(x)\}=\left\{p: p \nmid D_{\mathscr{\varphi}},\left(\frac{-q}{p}\right)=1 \quad \text { and } \quad a(p)=2\right\} .
$$

2.5. The Schläfli modular equation. The problem of determining the modular polynomial $F_{n}(t, j)$ explicitly for an arbitrary order n was treated by N. Yui [11]. But, even for $n=2, F_{2}(t, j)$ has an astronomically long form. We shall use here the Schläfli modular function $h_{0}(\tau)$ in place of $j(\tau)$:

$$
h_{0}(\tau)=e^{-(\pi \sqrt{-1}) / 24} \frac{\eta((\tau+1) / 2)}{\eta(\tau)}=e^{-(\pi \sqrt{-1} \tau) / 24} \prod_{n=1}^{\infty}\left(1+e^{(2 n-1) \pi \sqrt{-1} \tau}\right),
$$

where η is Dedekind's eta function. This function $h_{0}(\tau)$ is the modular function for the principal congruence subgroup of level 48 and has the following properties:

$$
j(\tau)=\frac{\left\{h_{0}(\tau)^{24}-16\right\}^{3}}{h_{0}(\tau)^{24}} \quad \text { and } \quad h_{0}\left(-\frac{1}{\tau}\right)=h_{0}(\tau)
$$

Lemma 5 (H. Weber [10]). Let q be any prime number such that $q \equiv-1 \bmod 8$. Then

1) $\sqrt{2} h_{0}(\sqrt{-q}) \in Q(j(\sqrt{-q}))$,
2) $\sqrt{1 / 2} h_{0}(\sqrt{-q})$ is a unit of an algebraic number field.

Put

$$
x=\frac{1}{\sqrt{2}} h_{0}(\sqrt{ }-q) .
$$

Then, by Lemma 5. 1), we have

$$
\boldsymbol{Q}(x)=\boldsymbol{Q}(j(\sqrt{-q})) .
$$

The defining equation of x is called the Schläfli modular equation. It will be useful to recall Weber's method for an explicit expression of this equation (H. Weber [10], $\S \S 73-75$ and $\S 131$). We shall explain its outline in brief. Put

$$
\begin{aligned}
& h_{1}(\tau)=\frac{\eta(\tau / 2)}{\eta(\tau)}, \quad h_{2}(\tau)=\frac{\sqrt{2} \eta(2 \tau)}{\eta(\tau)} ; \\
& u=h_{0}(\tau), \quad u_{1}=h_{1}(\tau), \quad u_{2}=h_{2}(\tau) ;
\end{aligned}
$$

and

$$
v=h_{0}\left(\frac{c+d \tau}{a}\right), \quad v_{1}=\left(\frac{2}{a}\right) h_{1}\left(\frac{c+d \tau}{a}\right), \quad v_{2}=\left(\frac{2}{d}\right) h_{2}\left(\frac{c+d \tau}{a}\right),
$$

where (2/) is a Jacobi symbol and $a d=n$ is a positive integer such that $n \equiv-1 \bmod 8$. Put

$$
\left\{\begin{array}{l}
2 A=u v+(-1)^{(n+1) / 8}\left(u_{1} v_{1}+u_{2} v_{2}\right) \\
B=\frac{2}{u_{1} v_{1}}+\frac{2}{u_{2} v_{2}}+(-1)^{(n+1) / 8} \frac{2}{u v}
\end{array}\right.
$$

Then there is a polynomial relation between A and B with integer coefficients, which depend on n but not on a, c, d. If we put

$$
\tau=\frac{-1}{\sqrt{-n}},
$$

then

$$
h_{0}(n \tau)=h_{0}(\tau)=h_{0}(\sqrt{-n}) .
$$

Therefore, putting $h_{0}(\sqrt{-n})=\sqrt{2} x$, we have
(3)

$$
\left\{\begin{array}{l}
A=x^{2}+(-1)^{(n+1) / 8} \frac{1}{x} \\
B=4 x+(-1)^{(n+1) / 8} \frac{1}{x^{2}}
\end{array}\right.
$$

Substitute (3) in the above polynomial relation. Then we obtain an equation of x with integer coefficients, which is known as Schläfli's modular equation of order n.

Example. $n=47$ (H, Weber [10], § 75 and § 131). A relation between A and B is given by

$$
A^{2}-A-B=2
$$

and we have the following Schläfli's modular equation of order 47:

$$
x^{5}-x^{3}-2 x^{2}-2 x-1=0
$$

§ 3. The case of $q=47$
3.1. Let \mathfrak{o}_{K} be the principal order of the imaginary quadratic field $K=\boldsymbol{Q}(\sqrt{-47})$ and put

$$
\mathfrak{o}_{K}=[1, \omega], \quad \omega=\frac{1+\sqrt{-47}}{2} .
$$

The field K has class number 5 . Let

$$
\begin{aligned}
& Q_{0}(x, y)=x^{2}+x y+12 y^{2}, \\
& Q_{1}(x, y)=7 x^{2}+3 x y+2 y^{2}, \\
& Q_{2}(x, y)=3 x^{2}-x y+4 y^{2},
\end{aligned}
$$

be the binary quadratic forms corresponding to the ideals $\mathfrak{o}_{K},[7,1+\omega]$, [3, ω], respectively, and let

$$
\theta_{i}(\tau)=\frac{1}{2} \sum_{n=0}^{\infty} A_{Q_{i}}(n) e^{2 \pi \sqrt{-1} n \tau} \quad(i=0,1,2)
$$

be the theta-functions belonging to the above binary quadratic forms, respectively, where $A_{Q_{i}}(n)$ denotes the number of integral representations
of n by the form Q_{i}. By Lemma 1, we have easily the following table:

	$A_{Q_{0}}(p)$	$A_{Q_{1}}(p)$	$A_{Q_{2}}(p)$	
$\left(\frac{-47}{p}\right)=-1$	0	0	0	
$\left(-\frac{-47}{p}\right)=1$	$p=x^{2}+47 y^{2}$	4	0	0
	$7 p=x^{2}+47 y^{2}$	0	2	0
	$3 p=x^{2}+47 y^{2}$	0	0	2

For $p=2$, 47, we know

$$
\begin{gathered}
A_{Q_{0}}(2)=A_{Q_{2}}(2)=0, \quad A_{Q_{1}}(2)=2 \\
A_{Q_{0}}(47)=2, \quad A_{Q_{1}}(47)=A_{Q_{2}}(47)=0 .
\end{gathered}
$$

Now we define two functions as follows:

$$
\begin{aligned}
& F_{1}(\tau)=\theta_{0}(\tau)-\theta_{1}(\tau)=\sum_{n=1}^{\infty} a(n) e^{2 \pi \sqrt{-1} n \tau} \\
& F_{2}(\tau)=\theta_{0}(\tau)-\theta_{2}(\tau)
\end{aligned}
$$

Then $F_{1}(\tau)$ and $F_{2}(\tau)$ are normalized cusp forms on the group $\Gamma_{0}(47)$ of weight one and character ($-47 / p$) (cf., Hecke [7]). Put $\varepsilon_{0}=\frac{1}{2}(1+\sqrt{5})$, and define

$$
F_{3}(\tau)=\bar{\varepsilon}_{0} F_{1}+\varepsilon_{0} F_{2}(\tau)=F_{1}(\tau)+\varepsilon_{0} \eta(\tau) \eta(47 \tau)=\sum_{n=1}^{\infty} A(n) e^{2 \pi \sqrt{-1} \pi \tau} .
$$

Then the function $F_{3}(\tau)$ is also a normalized cusp form of weight one and character ($-47 / p$) on the group $\Gamma_{0}(47)$, and the Fourier coefficient $A(n)$ is multiplicative. The Fourier coefficients of $F_{1}(\tau)$ and $F_{3}(\tau)$ are obtained by the above table as follows, respectively. For each prime $p(\neq 2,47)$, we have
(4) $a(p)=$
and

$$
A(p)=\left\{\begin{array}{rlll}
0 & \text { if }\left(\frac{-47}{p}\right)=-1, \tag{5}\\
2 & \text { if }\left(\frac{-47}{p}\right)=1 & \text { and } & p=x^{2}+47 y^{2}
\end{array} \quad(x, y \in Z),\right.
$$

Futhermore we know that $a(2)=-1, a(47)=A(47)=1$ and $A(2)=-\bar{\varepsilon}_{\mathrm{p}}$.
3.2. An arithmetic congruence relation for the Fricke polynomial. Put

$$
h_{0}(\tau)=\frac{e^{-(\pi \sqrt{-1}) / 24} \eta((\tau+1) / 2)}{\eta(\tau)}
$$

and

$$
h_{0}(\sqrt{-47})=\sqrt{2} x .
$$

Then the class invariant x satisfies the following Schläfl's modular equation of order 47 (cf. § 2.5):

$$
\begin{equation*}
f_{w}(x)=x^{5}-x^{3}-2 x^{2}-2 x-1=0 \quad\left(D_{f_{w}}=47^{2}\right) \tag{6}
\end{equation*}
$$

Let L be the Hilbert class field over K. Then the field L is a splitting field for the polynomial

$$
\begin{equation*}
f_{H}(x)=x^{5}-2 x^{4}+2 x^{3}-3 x^{2}+6 x-5 \quad\left(D_{f_{H}}=11^{2} \cdot 47^{2}\right), \tag{7}
\end{equation*}
$$

and the Galois group $G(L / \boldsymbol{Q})$ is equal to the dihedral group D_{5} (Hasse [5], Hasse and Liang [6]). Put

$$
\eta_{0}=\frac{1}{2}\left(\frac{47-5 \sqrt{5}}{2}+\frac{-5+\sqrt{5}}{2} \sqrt{47 \sqrt{5} \varepsilon_{0}}\right)
$$

and

$$
\omega_{0}=\frac{9353+422 \sqrt{5}}{4}-\frac{715+325 \sqrt{5}}{4} \sqrt{47 \sqrt{5} \varepsilon_{0}},
$$

then from Hasse [5] we deduce that

$$
\theta_{I H}=\frac{1}{5}\left(\sqrt[5]{\omega_{0}}-\frac{1}{\sqrt[5]{\omega_{0}}}-\frac{\sqrt[5]{\omega_{0}^{2}}}{\eta_{0}}+\frac{\eta_{0}}{\sqrt[5]{\omega_{0}^{2}}}+2\right)
$$

generates L / K. Consider the following equation (Fricke [3], p. 492):

$$
\begin{equation*}
f_{F}(x)=x^{5}-x^{4}+x^{3}+x^{2}-2 x+1=0 . \tag{8}
\end{equation*}
$$

It is known that there are two relations

$$
\left\{\begin{array}{l}
\theta_{H}=5 \theta_{W}^{2}-5 \theta_{W}-2, \tag{9}\\
\theta_{W}=-\theta_{F}^{4}-2 \theta_{F}+1
\end{array}\right.
$$

for the real roots θ_{W}, θ_{H} and θ_{F} of (6), (7) and (8), respectively (Zassenhaus and Liang [12]). Put

$$
f_{v}(x)=x^{5}-2 x^{4}+3 x^{3}+x^{2}-x-1
$$

The discriminant of $f_{M M}(x)$ is $5^{2} \cdot 47^{2}$. By a simple calculation, we verify

$$
\begin{equation*}
x^{2}-a x+b \mid f_{F}(x) \Longleftrightarrow f_{H}(a) f_{M}(a)=0, \tag{10}
\end{equation*}
$$

where a and b denote any constants. If θ is the real root of the equation $f_{M}(x)=0$, then we obtain the following relations by making use of a handy computer:

$$
\left\{\begin{array}{l}
\theta_{H}=2 \theta_{F}^{4}-\theta_{F}^{3}+\theta_{F}^{2}+2 \theta_{F}-2, \quad(\text { by } \tag{11}\\
\theta=-2 \theta_{F}^{4}+\theta_{F}^{3}-\theta_{F}^{2}-3 \theta_{F}+3 \\
\theta_{F}=\frac{-1}{11}\left(\theta_{H}^{4}+\theta_{H}^{3}+5 \theta_{H}^{2}+\theta_{H}-2\right) \\
\theta=\frac{1}{11}\left(\theta_{H}^{4}+\theta_{H}^{3}+5 \theta_{H}^{2}-\theta_{H}+9\right) \\
\theta_{F}=\frac{1}{5}\left(\theta^{4}-5 \theta^{3}+8 \theta^{2}-8 \theta-2\right) \\
\theta_{H}=\frac{1}{5}\left(-\theta^{4}+5 \theta^{3}-8 \theta^{2}+3 \theta+7\right)
\end{array}\right.
$$

Now we consider $f_{F}(x) \bmod p$ for any odd prime number $p(\neq 47)$. Because of (10) and (11), the reduced polynomial $f_{F} \bmod p(p \neq 5,11)$ can factor over the p-element field F_{p} in one of three ways:
(i) Five linear factors,
(ii) (Linear) (Quadratic) (Quadratic),
(iii) (Quintic).

The reduced polynomials $f_{F} \bmod 5$ and $f_{F} \bmod 11$ have the above type (ii). When we combine this with the results of Section 4.1, we are led to the following which is a special case of Theorem I:

Theorem II. Let p be any prime, except 47, and F_{p} the field of p-elements. Let $a(n)$ be the nth coefficient of the expansion

$$
F_{1}(\tau)=\sum_{n=1}^{\infty} a(n) e^{2 \pi \sqrt{-1} n \tau} .
$$

Then the following arithmetic congruence relation holds:

$$
\#\left\{x \in \boldsymbol{F}_{p}: f_{F}(x)=0\right\}=\frac{5}{6} a(p)^{2}+\frac{5}{6} a(p)^{2}-\frac{1}{2}\left(\frac{-47}{p}\right)+\frac{1}{2},
$$

where for $p=2$, we understand $(-47 / 2)=1$.
Proof. In order to prove this, it is enough to show the following fact. Let L_{p} be a splitting field of $f_{F}(x) \bmod p$ over the field F_{p}. Then it can easily be seen that

$$
\begin{aligned}
\left(\frac{-47}{p}\right)=-1 & \Longleftrightarrow\left[L_{p}: F_{p}\right]=2 \\
& \Longleftrightarrow f_{F} \bmod p \text { has exactly one linear factor over } F_{p} \\
& \Longleftrightarrow f_{F} \bmod p \text { can factor in type (ii). }
\end{aligned}
$$

Remark 1. Let p be a prime, except 5,11 and 47. Then, by the relation (11), $f_{F} \bmod p, f_{H} \bmod p, f_{W} \bmod p$ and $f_{M} \bmod p$ can factor over F_{p} in the same way. Using Fourier coefficients of $F_{2}(\tau)$, we have also the same arithmetic congruence relation for $f_{F}(x)$. On the other hand, using Fourier coefficients of $F_{3}(\tau)$, we have the following relation:

$$
\#\left\{x \in F_{p}: f_{F}(x)=0\right\}=A(p)^{2}+A(p)-\left(\frac{-47}{p}\right) .
$$

Finally the following higher reciprocity law for the Fricke polynomial $f_{F}(x)$ holds:

Corollary. $\quad \operatorname{Spl}\left\{f_{F}(x)\right\}=\{p:(-47 / p)=1$ and $a(p)=2\}$.
Remark 2. A similar result was obtained for some other cases (cf. T. Hiramatsu [8] and J.-P. Serre [9]).

§4. Remark

4.1. The dihedral group D_{h} has $(h+3) / 2$ conjugate classes:

$$
\{1\}, \quad\left\{s r^{i}: 1 \leqq i \leqq h\right\}, \quad\left\{r^{j}, r^{-j}\right\}, \quad j=1,2, \cdots, \quad \frac{h-1}{2} .
$$

Thus we have $(h-1) / 2$ irreducible representations of degree 2. Among them, here we consider the representation ρ given by the following

$$
\rho(r)=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right), \quad \rho(s)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

where $\varepsilon=e^{2 \pi i / h}$. The corresponding character is given by the following table:

	$\{1\}$	$\left\{r^{j}, r^{-j}\right\}$	$\left\{s r^{i}: 1 \leqq i \leqq h\right\}$	
ρ	2	$2 \cos \frac{2 \pi j}{h}$	$j=1, \cdots, \frac{h-1}{2}$.	

Let $\phi(s)$ be the Dirichlet series associated to the new form $F(\tau)$ (cf. (2) in §2.3) via the Mellin transform. Since the function $F(\tau)$ is an eigen-function of all the Hecke operators T_{p}, U_{p}, the Dirichlet series $\phi(s)$ has the following Euler product:

$$
\begin{array}{r}
\phi(s)=\sum_{n=1}^{\infty} A(n) n^{-s}=\left(1-A(q) q^{-s}\right)^{-1} \prod_{p \neq q}\left(1-A(p) p^{-s}+\left(\frac{-q}{p}\right) p^{-2 s}\right) \\
=\left(1-q^{-s}\right)^{-1} \prod_{(-q / p)=-1}\left(1-p^{-2 s}\right)^{-1} \prod_{p \in P_{1}}\left(1-2 p^{-s}+p^{-2 s}\right)^{-1} \\
\quad \times \prod_{p \in P_{2}}\left(1+2 \cos \frac{2 \pi n}{h} p^{-s}+p^{-2 s}\right)^{-1},
\end{array}
$$

where

$$
P_{1}=\left\{p:\left(\frac{-q}{p}\right)=1, p=x^{2}+x y+\frac{1+q}{4} y^{2}\right\},
$$

and

$$
P_{2}=\left\{p:\left(\frac{-q}{p}\right)=1, p=\mathfrak{f}, \mathfrak{p} \neq \text { principal, } \mathfrak{p} \in k_{n}\right\} \cup\{2\} .
$$

4.2. Let L be the Hilbert class field of the imaginary quadratic field K, and assume that the Galois group $G(L / K)$ is a cyclic group of order h. Then L / Q is a non-abelian Galois extension with D_{h} as Galois group. Let p be any prime number and σ_{p} a Frobenius map of p in L, and put

$$
A_{p}=\frac{1}{e} \sum_{\tau \in T} \rho\left(\sigma_{p} \tau\right)
$$

where T is the inertia group of p and $\# T=e$. Then, for the Galois extension L / Q, the Artin L-function is defined by

$$
L(s, \rho, L / \boldsymbol{Q})=\prod_{p} \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-A_{p} N(p)^{-s}\right)^{-1}, \quad \operatorname{Re}(s)>1 .
$$

A prime p factorizes in L in one of the following ways:
Case 1. $\quad(-q / p)=-1$. Decomposition field $K_{0}, \sigma_{p}=s, A_{p}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Case 2. $p \in P_{1}$. Decomposition field $=L, \sigma_{p}=1, A_{p}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Case 3. $p \in P_{2}$. Decomposition field $=K$. If $(p)=\mathfrak{p} \overline{\mathfrak{F}}, \mathfrak{p} \in k_{n}^{-1}$, then $\sigma_{p}=r^{n}$ and $A_{p}=\left(\begin{array}{cc}\varepsilon^{n} & 0 \\ 0 & \varepsilon^{-n}\end{array}\right)$.

Case 4. $\quad p=q . \quad$ Ramification exponent $=2 . \quad \sigma_{q}=1 . \quad A_{q}=\frac{1}{2}(\rho(1)+$ $\rho(s))=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.

In order to have the explicit form of $L(s, \rho, L / Q)$, we use the above results and obtain

$$
\begin{aligned}
L(s, \rho, L / \boldsymbol{Q})= & \prod_{p} \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-A_{p} N(p)^{-s}\right)^{-1} \\
= & \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-q^{-s} \cdot \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right)^{-1} \prod_{(-q / p)=-1} \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-p^{-s}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)^{-1} \\
& \quad \times \prod_{p \in P_{1}} \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-p^{-s}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)^{-1} \prod_{p \in P_{2}} \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-p^{-s}\left(\begin{array}{ll}
\varepsilon^{n} & 0 \\
0 & \tilde{\varepsilon}^{n}
\end{array}\right)\right)^{-1} .
\end{aligned}
$$

It is clear that the above Euler product, compared with the Euler product of $\phi(s)$, proves the following:

$$
L(s, \rho, L / Q)=\phi(s)
$$

This is a constructive version for the dihedral case of the Weil-Langlands-Deligne-Serre theorem (P. Deligne et J.-P. Serre [1]).

References

[1] P. Deligne et J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 4 (1974), 507-530.
[2] M. Eichler, Der Hilbertsche Klassenkörper eines imaginärquadratischen Zahlkörper, Math. Z., 64 (1956), 229-242.
[3] R. Fricke, Lehrbuch der Algebra III, Braunschweig 1928.
[4] H. Hasse, Neue Begründung der komplexen Multiplikation, I: J. Reine Angew. Math., 157 (1927), 115-139, II: Ibid., 165 (1931), 64-88.
[5] -_, Uber den Klassenkorper zum quadratischen Zahlkorper mit der Diskriminate -47, Acta Arith., 9 (1964), 419-434.
[6] H. Hasse and J. Liang, Uber den Klassenkorper zum quadratischen Zahlkorper mit der Diskriminate -47 (Fortsetzung), Acta Arith., 16 (1969), 89-97.
[7] E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Ann., 97 (1926), 210-242 (= Math. Werke, 461-486).
[8] T. Hiramatsu, Higher reciprocity laws and modular forms of weight one, Comm. Math. Univ. St. Paul, 31 (1982), 75-85.
[9] J.-P. Serre, Modular forms of weight one and Galois representations, Proc. Symposium on Algebraic Number Field, Academic Press, London, 1977, pp. 193-268.
[10] H. Weber, Lehrbuch der Algebra III, Braunschweig 1908.
[11] N. Yui, Explicit form of the modular equation, J. Reine Angew. Math., 299/300 (1978), 185-200.
[12] H. Zassenhaus and J. Liang, On a problem of Hasse, Math. Comp., 23 (1969), 515-519.
[13] Seminar on Complex Multiplication, Lecture Notes in Math. No. 21, SpringerVerlag, Berlin, Heidelberg, New York 1966 (from the Institute Seminar by Borel, Chowla, Herz, Iwasawa, Serre, held in 1957-58).

Department of Mathematics
Kobe University
Rokko, Kobe, 657
Japan

[^0]: Received August 22, 1984.

