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§ 1. Introduction

This is a continuation of the previous paper [8] concerning the relation
between the arithmetic of imaginary quadratic fields and cusp forms of
weight one on a certain congruence subgroup. Let K be an imaginary
quadratic field, say K=Q(«/—q) with a prime number q = — 1 mod 8,
and let h be the class number of K. By the classical theory of complex
multiplication, the Hubert class field L of K can be generated by any
one of the class invariants over K, which is necessarily an algebraic
integer, and a defining equation of which is denoted by

Φ(x) = 0 .

The purpose of this note is to establish the following theorem con-
cerning the arithmetic congruence relation for Φ(x):

THEOREM I. Let p be any prime not dividing the discriminant Dφ of

Φ(x), and Fp the p-element field. Suppose that the ideal class group of K

is cyclic. Then we have

e Fp: Φ(x) = 0} =
b

where a(p) denotes the pth Fourier coefficient of a cusp form which will

be defined by (1) in Section 2.3 below. One notes that in case p = 2, we

have ( — q/p) = 1.

§ %. Proof of Theorem I

2.1. Let Λ be a lattice in the complex plane C, and define
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Gk(Λ) = Σ ^ k , (keZ+),

g2{Λ) = 60 GA(A), gU) = 140 G6(Λ),

where the sum is taken over all non-zero ω in A. The torus C\A is

analytically isomorphic to the elliptic curve E defined by

f = 4x3 - g2(Λ)x - g3{Λ)

via the Weierstrass parametrization

C/ABZ >(p(z),p'(z))eE,

where

*>(*) - ~ + Σ f 7 — ^ r - Λ-}> *>'(*> =
2;2 I (z ) 2 2 J

Σf7—^r - Λ-}> *>(*> = Σ 7 - ^ 3 -
I (z — ω)2 ω2 J « (z — ωf

Let yl and M be two lattices in C. Then the two tori C\A and C/M

are isomorphic if and only if there exists a complex number a such that

A — aM. If this condition is satisfied, then the two lattices A and M

are said to be linearly equivalent, and we write A~M. If so, we have a

bijection between the set of lattices in C modulo — and the set of iso-

morphism classes of elliptic curves. Let us define an invariant j depending

only on the isomorphism classes of elliptic curves:

In fact, j(aA) = j(A) for all a e C. Take a basis {ωl9 ω2} of A over Z such

t h a t lm(o)Jω2) > 0 and write A = [ωί9 ω2]. Since [ωl9 ω2] — [ωjω29 1], t h e

invariant j(A) is determined by τ = ωjω2 which is called the moduli of E.

Therefore we can write the following:

J(A) = j(r).

The lattice A has many different pairs of generators, the most general

pair {ω'l9 o/2} with τ' in the upper half plane having the form

ω[ — aωλ + hω2

= cωλ + dω2

with ί α A e SL(2, Z). Thus the function ;(r) is a modular function of

level one. It is well known that
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The modular function j(τ) can be characterized by the above properties.

2.2. The classical theory of complex multiplication (M. Eichler [2],

H. Hasse [4], and [13]). Let there be given a lattice A and the elliptic

curve E as described in Section 2.1. If for some aeC — Z, p(az) is a

function on C/A, then we say that E admits multiplication by a; and then

a and ωjω2 are in the same quadratic field. If E admits multiplication

by aλ and a2, then E admits multiplication by aι ± a2 and axa2. Thus

the set of all such a is an order in an imaginary quadratic field K.

Consider the case when E admits multiplication by the maximal order

o# in K. Then the invariant j defines a function on the ideal classes

k0, ku - , kh_x of K (h being the class number of K) and the numbers

j(ki) are called "singular values" of j . Put

A = |Yα ^Λ: ad = n> 0, 0 <L b < d, (a, b, d) = 1, α, b, d e z\ ,

and consider the polynomial

We may view Fn(t) as a polynomial in two independent variables t and j

over Z, and write it as

Fn(t) = Fn(t,j)eZ[t,j].

Let us put

Hn(j) = Fn(jJ).

Then Hn(j) is a polynomial in j with coefficients in Z, and if n is not a

square, then the leading coefficient of Hn(j) is ± 1 . This equation

Hn(j) = 0

is called the modular equation of order n. Now we can find an element

w in o^ such that the norm of w is square-free:

ΐ , if JK:=

— m, if K = Q(V — m) with m > 1 square-free.

Let {a>!, ω2} be a basis of an ideal in an ideal class kt such that Im (ωjω2)

> 0. Then
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(wo)! = αα>j + bω2

[wω2 = cα)j + dω2

with integers a, b, c, d and the norm of w is equal to ad — be. Thus

a = ί a τ | is primitive and aω = ω. Hence ;(ω) = j(kt) is a root of the

modular equation Hn(j) = 0. Therefore we have the following

( i ) j(kt) is an algebraic integer.

Furthermore we know

(ii) JBΓO'(*i)) is the Hubert class field of K.

By the class field theory, there exists a canonical isomorphism be-

tween the ideal class group Cκ of K and the Galois group G of K(j(kJ)IK,

and we have the following formulas which describe how it operates on

the generator j(kt):

(iii) Let σk be the element of G corresponding to an ideal class k

by the canonical isomorphism. Then

σk(j(k'))=j(k-ψ)

for any kf e Cκ.

(iv) For each prime ideal jo of if of degree 1, we have

jip-'k) = j(k)N> mod p, keCκ,

where Np denotes the norm of p.

(v) The invariants ./(&*)> ΐ = 0, 1, , Λ — 1, of K form a complete

set of conjugates over Q.

2.3. Let q be a prime number such that q = — lmodδ, if = Q(V — q)

and let Λ, be the class number of K, which is necessarily odd. For 0 ^

i ^ h — 1, we denote by QΛ<(Λ;, y) the binary quadratic form corresponding

to the ideal class kt (k0: principal class) in K and put

θi(τ) = i - Σ Λ » e 2 ί r v : : i n r (Im (τ) > 0) ,

where Ak.(ή) is the number of integral representations of n by the form

Qfc.. Then the following lemma is classical:

LEMMA 1. 1) If p is any odd prime, except q9 then we have
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2) If we identify opposite ideal classes by each other, there remain

only AkQ(p), Akl(p)9 , Afc(Λ_1)/2(p), among which there is at most one non-

zero element

Moreover, for each ideal class k in K, we have

LEMMA 2. 1) Ak(ή) = 2§{a(zoκ: aek~\ Na = n},

2) 2Ak(mή) = Σjw»βfc Akl(m)Ak2(ή) if (m, n) = 1.

Proof. 1) If 6 e k and b c o z , then

Ak(ή) = #{αr e b: N(a) = nNb]

= #{αeb:(α) = αb, Â α = λi}

= 2#{αcoi,: αefe"1, A/'α == ή\.

2) For m,^ coprime, take an ideal a such that aek~\ o c o z and

iVα = mn. Then we have the following unique decomposition of a:

a = van, Nm = m, Nn = n.

If me kϊ\ then n e k^1 ( = kjz'1), and m and n are both integral. Therefore

Afc(mτι) Σ (-iA f c l (m))(A f c 2 (τι)). Q.E.D.
2 fcifc2=fc \ 2 / \ 2 /

Let X be any character (φl) on the group Cκ of ideal classes and put

Z kιecκ

Then we have the following multiplicative formulas.

LEMMA 3. 1) A(mή) = A(m)A(zi) j / (m, ή) = 1,

2) A(p)A(pr) = A(p r + 1) + {-qjp)A(pr-1) for prime p ( ^ ) a n d r ^ l ,

3) A(qή) = A(q)A(n).

Proof. These follow immediately from Lemma 2 by the direct com-

putation.

We define here two functions / and F as follows:

(1) f(τ) = θo(τ) - Θ1(τ) ,

and

(2) F{τ) )) ± ) ^
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where θo(τ) is the theta-function corresponding to the principal class kQ.

Then f(τ) is a normalized cusp form on the congruence subgroup ΓQ(q)

of weight one and character ( — q/p), and moreover, by Lemma 3, F(τ) is

a normalized new form on Γ0(q) of weight one and character ( — q/p) (cf.

Hecke [7]). From now on, we assume that the ideal class group Cκ of

K is cyclic. By Lemma 1 we shall calculate the Fourier coefficients of

f(τ) and F(τ). Let

Cκ = <Jfe1> and ^

Then we can write the function F(τ) as

k

where kt = k[ (1 ^ ί ^ i(Λ - 1)). If (-q/p) = - 1 , then AΛ(p) = 0 for all
AeC*. If (-q/p) = 1, then

where p denotes a prime ideal in K and p a conjugate of p. We denote

by kp the ideal class such that p e k9. If kp is ambigous, then

(4, for k = V ,

(0, otherwise.

If k is not ambigous, then

{2, for k = kv or & = k~ι,

0, otherwise.

In the case p — q, put

(p) = ρ2 (p = ρ)9 p e kv.

Then we know

2, if fe = kp,

0, otherwise.

Let a(ή) be the nth coefficient of the Fourier expansion for /(τ):

By the above results, we have the following formulas for a(p) and A(p).
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LEMMA 4. Suppose that the ideal class group Cκ of K is cyclic. Then,

for each prime p, the Fourier coefficients a(p) and A(p) are given as follows:

a(p) - 4

"0,

2, if

p

= 1 and p = x2 + xy + (x, y e Z ) ,

0 or 1, // (—?-) = 1 and kp ψ k0 with (p) = pp, p e Ap,
^ P

1, if P = Q,

and

A(p) = ,

0,

P

i

7Γ'

= 1 and p = χ*

(p) -

2.4. Let

- 0

be the defining equation of a generating element of the Hubert class field

L over the imaginary quadratic field K= Q(V — q). Then the polynomial

Φ(x) is one of the irreducible factors of the modular polynomial Hq(x).

We say simply Φ(x) is a modular polynomial.

Now, in order to prove Theorem I, it is enough to show that if the

ideal class group Cκ is a cyclic group of order h, then

1, if (-=£)=-!,
V p I

, if ί^Zlλ = i and p - x2 + xy + ! ± - ? - / (x, y 6 Z),
V p I 4

0, if = 1 and with (p) = pp, p e ^ .

We denote by if the ideal group corresponding to the Hubert class

field L of K:

H= {(a): principal ideals in K].
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Case 1. {-φ) = 1. Let

(p) = pp in K.

Then we have the following relations:

p e H 4=φ p = (TΓ), π = α + bω (ω= —

4
and

(α, 6 e Z ) ,

€ z

p splits completely in L 4=> Φ(x) modp has exactly h factors.

Therefore

p = α2 + α& + — t - ^ - 62 (α, ό e Z) φ=> Φ(x) modp has exactly h factors.
4

On the other hand, it is obvious that

p g H 4=Φ p is a product of prime ideals of degree > 1 in L

<==> Φ(x)moάp has no linear factors in Fp[x] .

Case 2. (—q/p) = — 1. The polynomial Φ(x) splits completely modulo

p in Oχl(p) and the field oκj{p) is a quadratic extension of ZjpZ. Therefore

Φ(x) modp = hλ(x)' -ht(x)
and

^ 2 (ί = 1, - . . , ί ) ,

where each /i^x) is irreducible in Fp[x]. Since the class number h of K

is odd, there exist odd numbers of ί such that deg ht — 1. In the following,

we shall show that there exists one and only one of such ί.

The dihedral group Dh has 2h elements and is generated by r, s with

the defining relations:

rh = s2 = 1, srs = r"1.

Let ϋΓ0 be the maximal real subfield of L. We have the following diagram:

= K(j(kt))

Gal(L/Ko)s<β>//
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Let oKo be the ring of algebraic integers in Ko. Then the ideal poKo

decomposes into a product of distinct prime ideals in Ko:

where

Nκmpι =P (1^1 £m) and NKQ/Q^ = p 2 (1 ^ I £ n).

Moreover, if oL is the ring of algebraic integers in L, then

where each ψt is a prime ideal in oL. On the other hand, the ideal poL

has the following decomposition via the field K:

Since pi = pu we have also

Similarly,

However, since /ι is odd and srs — r"1, we deduce

Since ^ = ^βίe for some i, we have m = 1. Q.E.D.

Let Spl {Φ(x}} be the set of all primes p such that Φ(x) mod p factors

into a product of distinct linear polynomials over the field Fp. Then the

following Corollary holds:

COROLLARY (Higher Reciprocity Law).

= l and a(p) = 2} .

2.5. The Schlafli modular equation. The problem of determining the

modular polynomial Fn(t, j) explicitly for an arbitrary order n was treated

by N. Yui [11]. But, even for n = 2, F2(t, j) has an astronomically long

form. We shall use here the Schlafli modular function hQ(τ) in place of

_ β _ ( f f v /^T r ) / 24 FT

Ύ)(T) n = l
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where η is Dedekind's eta function. This function ho(τ) is the modular
function for the principal congruence subgroup of level 48 and has the
following properties:

W =-M^lβl l . and hj - λ) = hΰ(τ).

LEMMA 5 (H. Weber [10]). Let q be any prime number such that

q = — 1 mod 8. Then

1) \/Ύho(V — q)e Q(j(V — q)),

2) yΊ/2 hQ(V — q) is a unit of an algebraic number field.

Put

x —

Then, by Lemma 5. 1), we have

Q(χ) =

The defining equation of x is called the Schlafli modular equation. It
will be useful to recall Weber's method for an explicit expression of this
equation (H. Weber [10], §§ 73-75 and § 131). We shall explain its outline
in brief. Put

Ύ](τ) η(τ)

u = Λ0(τ), u, = hλ(τ) , u2 = h2(τ)

and

where (2/ ) is a Jacobi symbol and ad = n is a positive integer such that
n ΞΞ -Imod8. Put

(2A = uv + (-ly^'^Xu^ + ί/2ι;2),

^ + + ( 1 ) ( " + 1 ) / 8 A
uxvx u2υ2 uv

Then there is a polynomial relation between A and B with integer coef-
ficients, which depend on n but not on α, c, d. If we put

r = _ - - i ^
V — n
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then

ho(nτ) = ho(τ) = hQ{*J^n).

Therefore, putting hQ(V — n) = \f~2x, we have

(A = x2 + (-l)(« + 1)/8Ji,

(3)

v x2

Substitute (3) in the above polynomial relation. Then we obtain an equa-

tion of x with integer coefficients, which is known as Schlafli's modular

equation of order n.

EXAMPLE, n = 47 (H, Weber [10], § 75 and § 131). A relation between

A and B is given by

A 2 - A - 5 = 2,

and we have the following Schlafli's modular equation of order 47:

X 5 _ j.3 _ 2 χ 2 _ 2χ - 1 = 0 .

§ 3. The case of q = 47

3.1. Let o# be the principal order of the imaginary quadratic field

K = Q(\/^47) and put

n l 1 + Λ / - 4 7
0* = |1> ωJ > ω = ^

The field i ί has class number 5. Let

Qi(χ, y) - w + zxy + 2/,
Q2(x,y) = 3x2-xy + 4y\

be the binary quadratic forms corresponding to the ideals oκ, [7, 1 + ω],

[3, ω], respectively, and let

± AqiW~^ (ί = 0, 1, 2)
2 n=0

be the theta-functions belonging to the above binary quadratic forms,

respectively, where AQi(n) denotes the number of integral representations
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of n by the form Q.. By Lemma 1, we have easily the following table:

V p I

\ p )

p = x* + 47/

Ip = x2 + 47/

3p = x2 + 47/

0

4

0

0

0

0

2

0

Aβ,(p)

0

0

0

2

For p = 2, 47, we know

iiββ(2) = Aβ,(2) = 0, Aβl(2) = 2;

Λβ0(47) = 2, Aβl(47) = A,2(47) = 0.

Now we define two functions as follows:

Then FXτ) and F2(τ) are normalized cusp forms on the group Γ0(47) of

weight one and character ( —47/p) (cf., Hecke [7]). Put ε0 = J ( l +

and define

ε0F2(τ) - εoV(τ)η(47τ) =

Then the function F3(r) is also a normalized cusp form of weight one and

character (—47/p) on the group Γ0(47), and the Fourier coefficient A(n)

is multiplicative. The Fourier coefficients of -FΊ(τ) and F3(τ) are obtained

by the above table as follows, respectively. For each prime p (Φ2, 47),

we have

(4) a(p) =

2 if

if f —K
\ p

= 1 and p = x2 + 47/ (*,yeZ),

= 1 and 3p = x2 + 47/ (x, yeZ),

_1 if (^l\ = 1 and Ip = x2 + 47/ (x,
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and

0 if

(5) A(p) = <

2 if

-ε 0 if

_ έ o if
P

= 1 and p = x2 + 47 / (x, y e Z),

= 1 and 3p = x2 + 47/ (x, y e Z),

= l and 7p = x2 + 47/ (x, y e Z ) .

Futhermore we know that α(2) = — 1, α(47) = A(47) = 1 and A(2) = -έ0.

3.2. An arithmetic congruence relation for the Fricke polynomial.

Put

and

/zo(V-47) = V~2x.

Then the class invariant x satisfies the following Schlafli's modular

equation of order 47 (cf. § 2.5):

(6) fw(x) = x5 - x3 - 2x2 - 2x - 1 = 0 (D/Br = 472).

Let L be the Hubert class field over K. Then the field L is a splitting

field for the polynomial

(7) fH(x) = x* - 2x3 - 3x2 + 6x - 5 (DfB = 1Γ-472),

and the Galois group G(L/Q) is equal to the dihedral group A (Hasse [5],

Hasse and Liang [6]). Put

_ -

and

2\ 2 2

9353 + 422VT _ 715 + 325/5"
4 4

then from Hasse [5] we deduce that
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generates L\K. Consider the following equation (Fricke [3], p. 492):

(8) fF(x) = x5 - x4 + x3 + x2 - 2x + 1 = 0.

It is known that there are two relations

(9) H = δθψ — 5ΘW — 2 ,

θw = - ΘF - 2ΘF + 1

for the real roots θw, ΘH and ΘF of (6), (7) and (8), respectively (Zassenhaus

and Liang [12]). Put

fyi(x) = x* - 2xA + 3x3 + x2 - x - 1.

The discriminant of fM(x) is 52 472. By a simple calculation, we verify

(10) x2 - ax + b\fF(x) <=φ fH{a)fM{a) = 0 ,

where a and b denote any constants. If θ is the real root of the equation

fM(x) — 0, then we obtain the following relations by making use of a handy

computer:

H = 2ΘF - ΘF + θ% + 2ΘF - 2, (by (9))
O / J 4 1 / 3 3 Z}2 Q/D I Q

— — ΔUp ~ir Up — Up — όOp -\- O ,

(11)

ΘB -2),

9H = ±(-θ* +
5

- 8Θ2 + 30 + 7).

Now we consider fF(x)modp for any odd prime number p (Φ 47).

Because of (10) and (11), the reduced polynomial fF mod p(p Φ 5, 11) can

factor over the p-element field Fp in one of three ways:

( i ) Five linear factors,

(ii) (Linear) (Quadratic) (Quadratic),

(iii) (Quintic).

The reduced polynomials fF mod 5 and fF mod 11 have the above type (ii).

When we combine this with the results of Section 4.1, we are led to the

following which is a special case of Theorem I:
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THEOREM II. Let p be any prime, except 47, and Fp the field of p-ele-

ments. Let a(ή) be the nth coefficient of the expansion

Then the following arithmetic congruence relation holds:

%{x e Fp: fF(x) = 0} = | α ( p ) 2 + | α ( p ) 2 -
b b p

where for p = 2, we understand ( — 47/2) = 1.

Proof In order to prove this, it is enough to show the following

fact. Let Lp be a splitting field of fF(x)modp over the field Fp. Then

it can easily be seen that

<=> /pinodp has exactly one linear factor over Fp

<=> /^modp can factor in type (ii).

Remark 1. Let p be a prime, except 5, 11 and 47. Then, by the

relation (11), fF modp, fH modp, fw modp and fM modp can factor over Fp

in the same way. Using Fourier coefficients of F2(τ), we have also the

same arithmetic congruence relation for fF(x). On the other hand, using

Fourier coefficients of F3(τ), we have the following relation:

#{x e Fp: fF(x) = 0} = A(pY + A(p) - ( ^

Finally the following higher reciprocity law for the Fricke polynomial

/,(*) holds:

COROLLARY. SP1{/'F(Λ:)} = {p: ( —47/p) = 1 and a(p) = 2}.

Remark 2. A similar result was obtained for some other cases (cf.

T. Hiramatsu [8] and J.-P. Serre [9]).

§ 4. Remark

4.1. The dihedral group Dh has (h + 3)/2 conjugate classes:

{1}, {ar<: 1 ^ i ^ h}, {r\ r-}, j = 1, 2, . ., A ^ J L .
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Thus we have (h — l)/2 irreducible representations of degree 2. Among
them, here we consider the representation p given by the following

0

?•)•

where ε = e2rΛ/h. The corresponding character is given by the following
table:

P

{1} {r>, r->}

^ ^ COS

A

{ βr ' : l<ίi<;λ}

0

A - 1

Let 0(s) be the Dirichlet series associated to the new form F(τ) (cf.
(2) in § 2.3) via the Mellin transform. Since the function F(τ) is an
eigen-function of all the Hecke operators Tp9 Z7P, the Dirichlet series φ(s)
has the following Euler product:

φ(s) = Σ A(ή)n
l

( i -

Π i-1 π α -
+ I —--

P

h

where

and

- - ^ ) - 1, P - x2 + +

P2= = pp, j, ̂  principal, pek^U {2}.

4.2. Let L be the Hubert class field of the imaginary quadratic field
K, and assume that the Galois group G(L/K) is a cyclic group of order h.
Then LjQ is a non-abelian Galois extension with Dh as Galois group.
Let p be any prime number and σp a Frobenius map of p in L, and put

where ϊ7 is the inertia group of p and # Γ = e Then, for the Galois
extension L/Q, the Artin L-function is defined by
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L(s, p, LIQ) = Π det ((J J) - A^p)- ')" ' , Re (s) > 1.

A prime p factorizes in L in one of the following ways:

Case 1. ( — q/p) = — 1. Decomposition field Ko, σp = s, Ap = ί - ~).

Case 2. p e P l β Decomposition field = L, σp = 1, Ap = ( i ^ j .

Case 3. p e P 2. Decomposition field = i£. If (p) = pp, p 6 ifê x, then

ap = r and A, = (j" e°.n).

Case 4. p = q. Ramification exponent = 2. σ, = 1. Aq =

MD

In order to have the explicit form of L(s, p, L/Q), we use the above
results and obtain

Us, p, LIQ) = Π det ((J J) - APN(P)-S)

VVO 1/ 2 \ 1 1// (-«/*!—i \\0 1/ Vl 0

pik Wo 1/ vo υ) Λk Wo 1/ \o

It is clear that the above Euler product, compared with the Euler product
of φ(s), proves the following:

L(s,p,LIQ) = φ(s).

This is a constructive version for the dihedral case of the Weil-Langlands-
Deligne-Serre theorem (P. Deligne et J.-P. Serre [1]).
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