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UMBILICAL POINTS ON SURFACES IN RN

KAZUYUKI ENOMOTO

Let φ: M->RN be an isometric imbedding of a compact, connected
surface M into a Euclidean space RN. ψ is said to be umbilical at a point
p of M if all principal curvatures are equal for any normal direction.
It is known that if the Euler characteristic of M is not zero and N — 3,
then ψ is umbilical at some point on M. In this paper we study umbilical
points of surfaces of higher codimension. In Theorem 1, we show that
if M is homeomorphic to either a 2-sphere or a 2-dimensional projective
space and if the normal connection of ψ is flat, then ψ is umbilical at
some point on M. In Section 2, we consider a surface M whose Gaussian
curvature is positive constant. If the surface is compact and N = 3,
Liebmann's theorem says that it must be a round sphere. However, if
N> 4, the surface is not rigid: For any isometric imbedding Φ of R3 into
i?4 Φ(S2(r)) is a compact surface of constant positive Gaussian curvature
1/r2. We use Theorem 1 to show that if the normal connection of ψ is
flat and the length of the mean curvature vector of ψ is constant, then
ψ(M) is a round sphere in some R3 c RN. When N = 4, our conditions
on ψ is satisfied if the mean curvature vector is parallel with respect to
the normal connection. Our theorem fails if the surface is not compact,
while the corresponding theorem holds locally for a surface with parallel
mean curvature vector (See Remark (i) in Section 3).

The author wishes to thank Professor Hung-Hsi Wu for his constant
encouragement and valuable suggestions.

§ 1. Preliminaries

Let M be a connected λz-dimensional C00 Riemannian manifold and let
ψ: M-*RN be an isometric immersion of M into an iV-dimensional Euclid-
ean space RN. Let D and D denote the covariant differentiations of M
and RN respectively. Let X, Y be tangent vector fields on M. Then
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(1.1) DXY=DXY+B(X, Y)

where B(X, Y) is the normal component of DXY.

Let ξ be a normal vector field on M. We write

(1.2) Dxξ = -AζX+Dxξ

where AξX and D^ξ are the tangential and normal components of Dxξ.

Then we have

(1.3) (AξX, Y> = (B(X, Y), f>

where < , ) denotes the inner product of RN. The linear transformation

Aξ on the tangent bundle TM is called the shape operator of M with

respect to ξ. Since Aξ is symmetric, i.e.

(1.4) <A6X, Y> = <X, AeY> ,

all eigenvalues of A5 are real. An eigenvalue of Aξ is called a principal

curvature with respect to f. An eigenvector of Aζ is called a principal

vector with respect to f. The mean curvature vector H is defined by

(1.5) H=— trace (B)
n

The length of H is called the mean curvature.

Let i? and R1 be the curvature tensors associated with D and Z)-1

respectively, i.e.

(1.6) R(X, Y)Z = DXDYZ - DYDXZ - Dίx^Z

(1.7) R^X, Y)ξ = D±Dtf

where X, Y, Z are tangent to M and £ is normal to M.

Then for any tangent vector fields X, Y, Z, W and normal vector

fields ξ, 7], we have the following equations:

(1.8) (R(X, Y)Z, W) = -(B(X, Z\ JB(Y, W)> + <B( Y, Z),

(Gauss equation)

(1.9) <Λ-KX, Y)f, ̂ > = <(A,A, - A,A,)X, Y> (Ricci equation)

The normal connection DL is said to be flat if i? 1 = 0. (1.9) implies

that DL is flat at p e M if and only if

(1.10) AξAη = A,Ae
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for any two normal vectors ξ and η at p. Thus if DL is flat at p e M,

there exists an orthonormal base eu , en of TPM such that each et

(i = 1, , n) is a principal vector with respect to any normal vector at

P>

A point p is said to be umbilical with respect to ξ if Aξ is propor-

tional to the identity transformation of TPM. ψ is said to be umbilical

at p if p is umbilical with respect to Aξ for all normal vectors ξ at p.

ψ is called totally umbilical if ψ is umbilical at every point of M. It is

well known that if ψ is totally umbilical, then ψ(M) is an open subset

of either an ^-dimensional affine subspace or an ^-dimensional round

sphere. (See, for instance, [3] for proof.)

§ 2. Umbilical points of surfaces in RN

In this section we prove the following theorem.

THEOREM 1. Let M be a compact surface which is homeomorphίc to

a 2-sphere or a 2-dίmensίonal projectίve space and let ψ: M~>RN be an

isometric imbedding. Suppose that the normal connection of ψ is flat.

Then ψ is umbilical at some point pQ e M.

Proof. Suppose that ψ does not have any umbilical point. Then at

each point p of M there exists a neighborhood Up of p and a normal

vector field ξ on Up such that Aξ is not proportional to the identity

transformation. We choose each Up in such a way that Up is simply

connected and for any p and q Up Π Uq is either empty or connected.

Since M is compact, there exist a finite number of points pl9 -,pk such

that M — UPl{J - U UPk. We simply denote Up. by Ot. Let ξt be a normal

vector field defined on Ut such that Aζ. is not proportional to the identity

at each point of UiΛ At each point of XJU the eigenvectors of Aξ. form

a pair of lines (i.e. 1-dimensional linear subspaces) in the tangent plane.

Since Ui is simply connected, there exist continuous line fields L\ and L\

on Ui such that at each q in Ut L\{q) and L\{q) contain all eigenvectors

of Auω.

Suppose f7,Π Uj ψ φ. Let q e Ui Π Uό. Since Aξiiq) and Aξjiq) are not

proportional to the identity transformation and the normal connection is

flat, all eigenvectors of Aζ.iq) and Aξj{q) coincide. This implies that either

(i) L\(q)=L{{q) and L\(q)"= L{(q) or (ii) L\(q) = L{{q) and L{{q) = L{(q).

Since Ut Π Uj is simply connected, it follows from the continuity of the



138 KAZUYUKI ENOMOTO

line fields that if (i) (or (ii)) occurs at one point of £7έ (Ί Uj9 it must hold

for all points of Ut Π U5. By renaming the line fields if necessary, we may

assume that L\ = L{ and L\ = L{ on Ut Π U3. Let {Uil9 , Uίs} be a chain

of the elements of {C7f: i — 1, •••,£}, i.e. a subset of {[/*: i = 1, , k}

which satisfies UUΓ\ Uu+1 Φ φ for all t = 1, , s — 1. Suppose that we

obtain a line field L\s on C7ίβ by the continuation of Lj1 along the chain.

If Uis Π C/ij φ φ, it may well happen that L[s coincides with L\x rather

than L[x on Uίsf]Uίχ. But in the case when M is simply connected (i.e.

homeomorphic to a 2-sphere), it follows from the standard monodromy

argument that L\s always coincides with L\\ This implies that a global

continuous line field Lj can be defined on M. This is a contradiction

because there is no global continuous line field on a 2-sphere. Thus if

M is homeomorphic to a 2-sphere, there exists at least one point on M

where ψ is umbilical.

Now we consider the case when M is homeomorphic to a 2-dimensional

projective space. Suppose that ψ does not have any umbilical point.

Then, as we see in the above argument, there exists an open covering

{[/.; i = 1, , k} of M and continuous line fields L\ and L\ defined on

U, such that if U, Π U5 Φ φ, either L[ ΞΞ L{ or L{ ΞΞ L{ on U, Π C7,. Let M

be the standard double covering of M which is homeomorphic to a 2-sphere

and let π: M-+M be the projection. Let Un and Ui2 be the connected

components of π~\Uτ). Let L\λ (i = 1, , k, λ = 1, 2) be the unique line

field on Uίλ which satisfies dπ(L\λ) = L\. In a similar way, a continuous

line field L\λ is defined. Now we have an open covering of M, {#«}, and

continuous line fields L\λ and L\x on [7U. Moreover, if Ua Π t/^ ̂  φ, we

have either Li; = L{μ or L? = L{μ on ί/̂  D C7JAI. Thus, using the standard

monodromy argument again, we obtain a global continuous line field on

M, which is a contradiction. Therefore, if M is homeomorphic to a 2-

dimensional projective space, there exists at least one point of M where

ψ is umbilical. This completes the proof of Theorem 1.

§ 3. Surfaces in RN with positive constant curvature and constant

mean curvature

In this section we use Theorem 1 to prove the following theorem.

THEOREM 2. Let M be a compact surface with constant Gaussian

curvature c2 > 0 and let ψ: M->RN be an isometric imbedding. Suppose

that the mean curvature of ψ is constant, i.e. \H\ is constant, and the normal
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connection is flat. Then ψ(M) is a round 2-sphere in a 3-dίmensional

affine space R3dRN.

Proof. First we define a function on M by

(3.1) F(p) = \H(p)f-~K(p) (peM)

where H(p) is the mean curvature vector at p and K(p) is the Gaussian

curvature of M at p. We prove the following lemma:

LEMMA 3.1. F(p) = 0 if and only if ψ is umbilical at p.

Proof. Let (ξu ξ2, •• ,£ v_ 2) be an orthonormal frame of T£M, the

normal space of M at p. Using (1.8), we obtain

(3.2)

From (1.5) we have

(3.3)

so that

(3.4) (F(p)| £
4 α = l

It follows from (3.2) and (3.4) that

(3.5) F(p) - — xffttrace Aξa)
2 - 4 det Aξa}.

Using elementary linear algebra, we can see that

(3.6) (trace Aξa)
2 - 4 det Aξa > 0

and the equality holds if and only if every Aξa is proportional to the

identity transformation. The lemma follows immediately.

Now we return to the proof of Theorem 2. Since M is compact, and

the Gaussian curvature is positive, M is homeomorphic to either a 2-

sphere or a 2-dimensional protective space. Hence, by Theorem 1, ψ is

umbilical at some point p0. By Lemma 3.1, F(p0) = 0. On the other

hand, since both | H \ and K are constant on M9 F is a constant function

on M. Thus F = 0 at every point of M. By Lemma 3.1 again, this implies

that ψ is umbilical at every point of M. Since M is compact, ψ(M) is
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a round sphere in some 3-dimensional affine space. This completes the

proof of Theorem 2.

Remark, (i) If the mean curvature vector is parallel in the normal

bundle, i.e. DLH — 0, then \H\ is constant and the normal connection

D1 is fiat unless M is either a minimal surface in i?4 or a minimal

surface in SN~ί ([2]). In [1], Chen and Ludden proved that if the Gaus-

sian curvature of a surface in /?4 is positive constant and the mean

curvature vector is parallel in the normal bundle, it is an open piece of

a round sphere. As we see in the following example, our theorem fails

if M is not compact, while the Chen-Ludden theorem holds without global

assumptions.

EXAMPLE 1. Let M be a surface of revolution in i?3 which is obtained

by rotating the curve

(3.7) (x(s), z(s)) = (a cos s, Γ [1 - a2 sin21]1/2 dt\

around the 2-axis where s e ( — ε, ε) for some small ε > 0 and a is a positive

number. Then M i s a surface of constant Gaussian curvature 1 and if

a Φ 1, M is not totally umbilical. Let h be the mean curvature of M.

h is a function of s only, which is given by

7 _ 1 + a2 cos 2s
2a cos 5(1 — a2 sin s)1/2

Now we define an isometric imbedding of R* into R\ First we define a

function κ(s) by

9(R2 /?2V/2

(3.8) φ) = ΆP h\\ — a sm s

where β is any positive constant greater than

sup h =
2# cos ε(l — a2 sin ε)1/2

Since z(s) = 2(sr) if and only if s = sr, Λ:(S) can be regarded as a function

of z. κ(z) is defined on (z(—ε), z(ε)) and we may assume, by taking ε small

enough, that

ί: κ(z)dz< Ξ-.
z(-ε) 2
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We extend κ(z) to a non-negative function which is defined on ( — 00, 00)

and satisfies

(3.9) Γ κ(z)dz<π.
J - c o

Then there exists an isometric immersion of R into R2, φ: z •-> (φ^z), ψz{z))y

whose curvature is equal to κ(z) at each z. φ does not have any self-

intersection (i.e. is an imbedding) due to (3.9). Using φ, we define a map

Φ: R3->Ri by Φ(x, y, z) = (x, y, φλ{z), <p2(z)). Then Φ is an isometric imbed-

ding of R* into R\ We will show that Φ(M) is a surface in i?4 with

constant mean curvature and flat normal connection.

Let ξ be a unit normal vector to M in R* and ξr be a unit normal

vector to Φ(R3) in R\ Let -Xi be a unit tangent vector to the generating

curve (x(s), z(s)) and X2 be a unit tangent vector to the circle z — const.

Then Xx and X2 are principal vectors of M and hence dΦ{X^) and dΦ(X2)

are principal vectors of Φ(M) with respect to dΦ(ξ). dΦ(Xλ) and dΦ(X2)

are also principal vectors of Φ(M) with respect to ξr. Since each normal

space of Φ(M) is spanned by dΦ(ξ) and f7, dΦ(X1) and dΦ(X2) are principal

vectors for all normal vectors to Φ(M) in 2?\ This implies that the normal

connection of Φ(M) is flat. Let H be the mean curvature vector of Φ(M).

Then

H = hdΦ(ξ) + λ
2

and from (3.7) and (3.8), we have

(ii) If a compact surface in I?4 with positive (not necessarily constant)

Gaussisn curvature has parallel mean curvature vector, the surface must

be a round sphere ([6]). However, as we see in the following example,

there exists a compact surface in 2?4 with positive Gaussian curvature

which has constant mean curvature, but is not a round sphere. This

contradicts Theorem 5 on p. 361 of [8]. (A possible source of error in

the calculations in [8] might be the formula (4.6) on p. 354 of [8] which

is used to give the formula (6.2) in the proof of Theorem 5. The formula

(4.6) holds for a3 = 4 only when either M is minimal or M has a parallel

mean curvature vector). The method of construction of this example is

similar to the one in Remark (i).
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EXAMPLE 2. Let M be a surface of revolution defined by

(s, θ) i > (x(s) cos 0, x(s) sin 0, z(s)) (0 < θ < 2π)

where, for technical reasons to be explained below, x(s) and z(s) are

required to satisfy the following conditions:

[ 7 7 1
— — π, —π\

JLUi JLCt J

\12 / \ 12 / V 12 / \12

(c) the curvature κ(s) of (x(s), z(s)) satisfies the following conditions:

(cl) κ(s) = κ(-s)

(c2) 0 < φ ) < l if | s | < ϋ
6

(c3) φ) = 1 if I- < |*| < Ί-π

Λ7ff

(c4)
Jo

By (cl) and (c4), M becomes a compact surface in R\ By (c2) and (c3),

M has a positive Gaussian curvature at every point. Let h be the mean

curvature of M. Then h is a function of s only and we have h(s) = 1 if

π/6 < \s\ < (7/12)ττ and h(s) < 1 if |s | < π/6. We define a function κ(s) by

} ^ 2(1 -

yy
We regard K as a function of z. Since Λ: = 0 if (̂W6) < \z\ < z((Ίll2)π),

we can extend /c(z) to a continuous function on R by setting κ(z) = 0 for

all z such that |«| > z((7/12)π). Then there exists an isometric imbedding

of R into R2, φ: z >-> (9^2:), ^2(2)) whose curvature is equal to κ(z) at each 2.

We define a map Φ: R3->Ri by (x,y,z) = (x, y, ψi(z), <p2(z)). By a similar

argument to Remark (i), we can show that the mean curvature of Φ(M) c I?4

is constant and the normal connection is flat. Moreover, since we have

i: κ(z)dz

ψ does not have any self-intersection and Φ\M is an imbedding.

(iii) If dim M > 4 and the codimension is two, then we have the

following theorem which is the analogue of Theorem 1. (The case of

dim M = 3 is open.)
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THEOREM 3. Let M be a compact Riemannίam manifold of dimension

72 > 4 with positive constant sectional curvature c2 > 0 and let ψ: M-> Rn + 2

be an isometric imbedding. Suppose that the mean curvature is constant.

Then ψ(M) is an n-dimensional round sphere in an (n + ΐ)-dimensional

afβne space.

Proof. Since the sectional curvature is positive constant and dim M>4,

there exists a global orthonormal frame field (ξl9 f2) of the normal bundle

of M such that

(3.10) Aζχ = —cl and rank Aξi < 1

where I is the identity transformation of TM. (This was found by Henke

and Erbacher independently [4], [5].) Let λ = trace Aξ2. Then we have

(3.11) # = <& + A f 2 .
n

Since | i ϊ | 2 — c2 + ?2ln2 is constant, λ is constant.

On the other hand, due to a result obtained by O'Neill [7], there

exists at least one point p0 on M where ψ is umbilical. Since rank Aξ2 < 1,

Aξ2 = 0 at p0. Thus λ = 0 at pQ and hence λ = 0 on M. This implies

that ψ is totally umbilical and since ikf is compact, M is an n-dimensional

round sphere in some Rn + 1 d Rn+2.
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