DIMENSION AND LOWER CENTRAL SUBGROUPS OF METABELIAN P-GROUPS

NARAIN GUPTA* and KEN-ICHI TAHARA

To the memory of the late Takehiko Miyata

§ 1. Introduction

It is a well-known result due to Sjogren [9] that if G is a finitely generated p-group then, for all $n \leqq p-1$, the ($n+2$)-th dimension subgroup $D_{n+2}(G)$ of G coincides with $\gamma_{n+2}(G)$, the $(n+2)$-th term of the lower central series of G. This was earlier proved by Moran [5] for $n \leqq p-2$. For $p=2$, Sjogren's result is the best possible as Rips [8] has exhibited a finite 2 -group G for which $D_{4}(G) \neq \gamma_{4}(G)$ (see also Tahara [10, 11]). In this note we prove that if G is a finitely generated metabelian p-group then, for all $n \leqq p, D_{n+2}^{2}(G) \subseteq \gamma_{n+2}(G)$. It follows, in particular, that, for p odd, $D_{n+2}(G)=\gamma_{n+2}(G)$ for all $n \leqq p$ and all metabelian p-groups G.

§ 2. Notation and preliminaries

While the central idea of the proof of our main result stems from Gupta [1], with a slight repetition, it is equally convenient to give a self-contained proof using a less cumbersome notation.

Let $\uparrow=Z F(F-1)$ denote the augmentation ideal of the integral group ring $Z F$ of a free group F freely generated by $x_{1}, x_{2}, \cdots, x_{m}, m \geqq 2$. For a fixed prime p, let ($p^{\alpha_{1}}, p^{\alpha_{2}}, \cdots, p^{\alpha_{n}}$), $\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{m}>0$ be an m-tuple of p-powers, and let $S=\left\langle x_{1}^{p^{\alpha_{1}}}, x_{2}^{p^{\alpha_{2}}}, \cdots, x_{m}^{p^{\alpha_{m}}}, F^{\prime}\right\rangle$ be the normal subgroup of F so that F / S is abelian. Set $\mathcal{Z}=Z F(S-1)$, the ideal of $Z F$ generated by all elements $s-1, s \in S$. For $1 \leqq n \leqq p$, we shall need to investigate the structure of the subgroup $D_{n+2}(\mathfrak{F} \mathfrak{F})=F \cap\left(1+\left\lceil\mathfrak{F}+\mathfrak{f}^{n+2}\right)\right.$ of F which consists of all elements $w \in F$ such that $w-1 \in\left\{\mathcal{F}+\hat{f}^{n+2}\right.$. It is clear that $\left[F^{\prime}, S\right] \gamma_{n+2}(F) \subseteq D_{n+2}($ (F) $)$.

Let $w \in D_{n+2}(\mathfrak{f} \mathfrak{z})$ be an arbitrary element. Then $w-1 \in \mathfrak{f}^{2}$ and it

[^0]follows that $w \in F^{\prime}$ ．Thus，modulo $F^{\prime \prime}$ ，using the Jacobi identity，we may write w as
\[

$$
\begin{equation*}
w \equiv w_{1} w_{2} \cdots w_{m-1} \tag{1}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
w_{i}=\prod_{j=i+1}^{m}\left[x_{i}, x_{j}\right]^{d_{i j}} \tag{2}
\end{equation*}
$$

and $d_{i j}=d_{i j}\left(x_{i}, x_{i+1}, \cdots, x_{m}\right) \in Z F$ ．For $i=1,2, \cdots, m$ ，define homomor－ phisms $\theta_{i}: Z F \rightarrow Z F$ by $x_{k} \rightarrow 1$ if $k \leqq i, x_{k} \rightarrow x_{k}$ if $k>i$ ．Since the ideals f, \mathfrak{Z} are invariant under θ_{i}＇s，it follows，using $\theta_{1}, \theta_{2}, \cdots, \theta_{m-2}$ in succession，
 $k=1,2, \cdots, m$ ，define

$$
\begin{equation*}
t\left(x_{k}\right)=1+x_{k}+\cdots+x_{k}^{p_{k}^{\alpha_{k}-1}} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{align*}
t\left(x_{k}\right) & =\sum_{l=1}^{p_{k}}\binom{p^{\alpha_{k}}}{l}\left(x_{k}-1\right)^{l-1} \tag{4}\\
& \equiv p^{\alpha_{k}}+\binom{p^{\alpha_{k}}}{p}\left(x_{k}-1\right)^{p-1} \bmod \left(\mathfrak{z}+f^{p}\right) .
\end{align*}
$$

We can now prove，
Lemma 2．1．Let w_{i} be as in（2）with $w_{i}-1 \in \mathfrak{千} \mathcal{F}+\mathfrak{f}^{n+2}$ and $n \leqq p$ ． Then，modulo $\mathfrak{Z}+\mathfrak{f}^{n}, d_{i j} \equiv t\left(x_{i}\right) a_{i j} \equiv t\left(x_{j}\right) b_{i j}$ ，where $t\left(x_{i}\right), t\left(x_{j}\right)$ are given by （3），$a_{i j} \in \boldsymbol{Z}$ and $b_{i j} \in \boldsymbol{Z} F$ ．Moreover，if $\alpha_{i}=\alpha_{,}$then $b_{i j} \in \boldsymbol{Z}$ ．

Proof．Expansion of $w_{i}-1$ shows

$$
\begin{equation*}
\sum_{j=i+1}^{m}\left\{\left(x_{i}-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(x_{i}-1\right)\right\} d_{i j} \in\left\{\mathfrak{F}+\mathfrak{f}^{n+2} .\right. \tag{5}
\end{equation*}
$$

Since \mathfrak{f} is a free right $Z F$－module on $x_{1}-1, x_{2}-1, \cdots, x_{m}-1$ ，it follows from（5）that，for all $j=i+1, \cdots, m$ ，

$$
\left(x_{j}-1\right)\left(x_{i}-1\right) d_{i j} \in \mathfrak{f} \xi+f^{n+2},
$$

which yields

$$
\begin{equation*}
\left(x_{i}-1\right) d_{i j} \in 马+f^{n+1} \tag{6}
\end{equation*}
$$

and，in turn，

$$
\begin{equation*}
d_{i j} \in t\left(x_{i}\right) Z F+\beta+f^{n}, \tag{7}
\end{equation*}
$$

where $t\left(x_{i}\right)$ is given by（3）．Since $n \leqq p$ ，（4）induces that，for $k \geqq i$ ， $t\left(x_{i}\right)\left(x_{k}-1\right) \equiv p^{\alpha_{i}-\alpha_{k}} p^{\alpha_{k}}\left(x_{k}-1\right) \equiv 0 \bmod \left(弓+\mathfrak{f}^{n}\right)$ ．Thus（7）implies $d_{i j} \equiv$
$t\left(x_{i}\right) a_{i j} \bmod \left(\mathfrak{Z}+\dot{\mathfrak{F}}^{n}\right)$ with $a_{i j} \in \boldsymbol{Z}$ ．Substituting in（5）gives

$$
\left(x_{i}-1\right) \sum_{j=i+1}^{m}\left(x_{j}-1\right) d_{i j} \in \mathfrak{千} \xi+\mathfrak{f}^{n+2} .
$$

and，as before，

$$
\sum_{j=i+1}^{m}\left(x_{j}-1\right) d_{i j} \in \mathfrak{\xi}+\mathfrak{f}^{n+1}
$$

Using the homomorphisms $\theta_{i+1}, \cdots, \theta_{m-1}$ in turn，gives

$$
\begin{equation*}
\left(x_{j}-1\right) d_{i j} \in \mathfrak{B}+f^{n+1} \tag{8}
\end{equation*}
$$

for all $j=i+1, \cdots, m$ ，since $d_{i j} \equiv t\left(x_{i}\right) a_{i j} \bmod \left(\mathcal{B}+\mathfrak{f}^{n}\right)$ with $a_{i j} \in \boldsymbol{Z}$ ．Thus

$$
\begin{equation*}
d_{i j} \in t\left(x_{j}\right) Z F+\mathfrak{s}+\mathfrak{f}^{n} \tag{9}
\end{equation*}
$$

and if $\alpha_{i}=\alpha_{j}$ then，as before，$d_{i j} \equiv t\left(x_{j}\right) b_{i j} \bmod \left(弓+千^{n}\right)$ with $b_{i j} \in \boldsymbol{Z}$ ．This completes the proof of the lemma．

Now，let $\frac{\partial}{\partial x_{k}} d$ be a free partial derivative of $d \in \boldsymbol{Z} F$ with respect to x_{k} ．Then we prove，

Lemma 2．2．$\frac{\partial}{\partial x_{k}} d_{i j} \in p^{\alpha_{k}} Z F+\mathfrak{B}+\tilde{f}^{n-1}, i<k$ ，and

$$
\frac{\partial}{\partial x_{i}} d_{i j} \in\left\{\begin{array}{l}
p^{\alpha_{i}} Z F+\mathfrak{\xi}+\mathfrak{f}^{n-1} \quad \text { if } \quad \alpha_{i}=\alpha_{j} \\
p^{\alpha_{i}} Z F+p^{\alpha_{i}-1}\left(x_{i}-1\right)^{p-2} Z F+\mathfrak{\xi}+\mathfrak{f}^{n-1} \quad \text { if } \alpha_{i}>\alpha_{j}
\end{array}\right.
$$

Proof．We have

$$
\frac{\partial}{\partial x_{k}}(\mathfrak{B}) \subseteq \mathfrak{G}+p^{\alpha_{k}} \boldsymbol{Z} F ; \quad \frac{\partial}{\partial x_{k}}\left(\mathfrak{f}^{n}\right) \subseteq \mathfrak{f}^{n-1}
$$

Thus since $d_{i j} \equiv t\left(x_{i}\right) a_{i j} \bmod \left(\mathfrak{\jmath}+\tilde{f}^{n}\right)$ with $a_{i j} \in \boldsymbol{Z}$ ，it follows that

$$
\frac{\partial}{\partial x_{k}} d_{i j} \equiv 0 \bmod \left(p^{\alpha_{k}} Z F+\mathfrak{\xi}+\mathfrak{f}^{n-1}\right)
$$

By（4）and $d_{i j} \equiv t\left(x_{i}\right) a_{i j} \bmod \left(\xi+\tilde{f}^{n}\right)$ ，we have

$$
\frac{\partial}{\partial x_{i}} d_{i j} \equiv a_{i j}\binom{p^{\alpha_{i}}}{p}(p-1)\left(x_{i}-1\right)^{p-2} \bmod \left(p^{\alpha_{i}} \boldsymbol{Z} F+\mathfrak{j}+\mathfrak{f}^{n-1}\right)
$$

Since $p^{\alpha_{i}-1}$ divides $\binom{p^{\alpha_{i}}}{p}, \frac{\partial}{\partial x_{i}} d_{i j} \equiv 0 \bmod \left(p^{\alpha_{i}-1}\left(x_{i}-1\right)^{p-2} Z F+p^{\alpha_{i}} Z F+\right.$ $\mathfrak{B}+\mathfrak{f}^{n-1}$ ）．If $\alpha_{i}=\alpha_{j}$ then $b_{i j} \in \boldsymbol{Z}$ ，and we may differentiate $d_{i j} \equiv t\left(x_{j}\right) b_{i j}$ with
respect to x_{i} to obtain the desired result.
Next, we need to expand $\left[x_{i}, x_{j}\right]^{d_{2 j}}-1$ modulo ($f^{2} b+f^{n+2}$). We first observe,

$$
\begin{aligned}
& {\left[x_{i}, x_{j}\right]_{i}^{\beta_{i} i} x_{i+1}^{\beta_{i+1}} \cdots x_{m}^{\beta_{m}}-1} \\
& \quad \equiv x_{m}^{-\beta_{m}} \cdots x_{i+1}^{-\beta_{i}+1} x_{i}^{-\beta_{i}}\left(\left[x_{i}, x_{i}\right]-1\right) x_{i}^{\beta_{i} x_{i+1}^{\beta_{i}+1} \cdots x_{m}^{\beta_{m}}} \\
& \quad \equiv\left(\left[x_{i}, x_{j}\right]-1\right) x_{i}^{\beta_{i}} x_{i+1}^{\beta_{i+1}} \cdots x_{m}^{\beta_{m}}-\sum_{k=i}^{m} \beta_{k}\left(x_{k}-1\right)\left(\left[x_{i}, x_{i}\right]-1\right) x_{i}^{\beta_{i}} x_{i+1}^{\beta_{i}+1} \cdots x_{m}^{\beta_{m}} \\
& \quad \equiv\left(\left[x_{i}, x_{j}\right]-1\right) x_{i}^{\beta_{i}} \cdots x_{m}^{\beta_{m}}-\sum_{k=i}^{m}\left(x_{k}-1\right)\left(\left[x_{i}, x_{j}\right]^{x_{i}\left(\partial / \partial x_{k}\right)\left(x_{i}^{\left.\beta_{i} \cdots x_{m}^{\beta_{m}}\right)}-1\right)} .\right.
\end{aligned}
$$

Thus,

$$
\left[x_{i}, x_{j}\right]^{d_{i j}}-1 \equiv\left(\left[x_{i}, x_{j}\right]-1\right) d_{i j}-\sum_{k=i}^{m}\left(x_{k}-1\right)\left(\left[x_{i}, x_{j}\right]^{x_{k}\left(\partial / \partial x_{k}\right) d_{i j}}-1\right) .
$$

Now, modulo ($f^{2} \mathfrak{z}+f^{n+2}$)

$$
\begin{aligned}
& \left(\left[x_{i}, x_{j}\right]-1\right) d_{i j} \equiv x_{i}^{-1} x_{j}^{-1}\left\{\left(x_{i}-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(x_{i}-1\right)\right\} d_{i j} \\
& \equiv\left\{\left(x_{i}-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(x_{i}-1\right)\right\} d_{i j} \\
& -\left(x_{i}-1\right)\left\{\left(x_{i}-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(x_{i}-1\right)\right\} d_{i_{j}} \\
& -\left(x_{j}-1\right)\left\{\left(x_{i}-1\right)\left(x_{j}-1\right)-\left(x_{j}-1\right)\left(x_{i}-1\right)\right\} d_{i j} \\
& \equiv\left(x_{i}-1\right)\left(x_{j}-1\right) d_{i j}-\left(x_{j}-1\right)\left(x_{i}-1\right) d_{i j} \text {, } \\
& \text { by (6) and (8) } \\
& \equiv\left(x_{i}-1\right)\left(x_{j}-1\right) t\left(x_{j}\right) b_{i j}-\left(x_{j}-1\right)\left(x_{i}-1\right) t\left(x_{i}\right) a_{i j}, \\
& \text { by Lemma } 2.1 \\
& \equiv\left(x_{i}-1\right)\left(x_{j}^{p_{j}^{\alpha} b_{i j}}-1\right)-\left(x_{i}-1\right)\left(x_{i}^{p^{\alpha} a_{i j}}-1\right) .
\end{aligned}
$$

Thus we have,
Lemma 2.3. Modulo ($\mathfrak{f}^{2} \mathfrak{g}+\mathfrak{f}^{n+2}$),

$$
\begin{aligned}
{\left[x_{i}, x_{j}\right]^{d_{i j}}-1 \equiv } & \left(x_{i}-1\right)\left(x_{j}^{\alpha_{j}^{\alpha_{j}} b_{i j}}-1\right)-\left(x_{j}-1\right)\left(x_{i}^{\alpha_{i}^{\alpha_{2}} a_{i j}}-1\right) \\
& -\sum_{k=i}^{m}\left(x_{k}-1\right)\left(\left[x_{i}, x_{j}\right]^{x_{k\left(\partial / \partial x_{k}\right) d_{i j}}}-1\right)
\end{aligned}
$$

Finally, using (6) and (8), we have, for any x_{k}, $\bmod \left[F^{\prime}, S\right] \gamma_{n+3}(F)$,

$$
\begin{aligned}
{\left[\left[x_{i}, x_{j}\right]^{d_{i j}}, x_{k}\right] } & \equiv\left[x_{i}, x_{j}, x_{k}\right]^{d_{i j}} \\
& \equiv\left[x_{i}, x_{k}, x_{j}\right]^{d_{i j}}\left[x_{k}, x_{i}, x_{i}\right]^{d_{i j}} \\
& \equiv\left[x_{i}, x_{k}\right]^{\left(-1+x_{j}\right) d_{i j}}\left[x_{k}, x_{j}\right]^{\left(-1+x_{i}\right) d_{i j}} \\
& \equiv 1 .
\end{aligned}
$$

Thus we have,

Lemma 2.4 (Gupta [2]). $\quad\left[D_{n+2}(f \mathfrak{F}), F\right] \subseteq\left[F^{\prime},{ }_{-}^{r} S\right] \gamma_{n+3}(F)$ for all $n \geqq 0$.
This completes our preliminary discussions.

§3. The main theorem

Let G be a finitely generated metabelian p-group. Then G admits a presentation of the form

$$
G=F / R=\left\langle x_{1}, x_{2}, \cdots, x_{m} ; x_{1}^{\gamma_{1}^{\alpha_{1}}} \zeta_{1}, x_{2}^{\alpha_{2}^{\alpha_{2}}} \zeta_{2}, \cdots, x_{m}^{p_{m}{ }_{m}} \zeta_{m}, \zeta_{m+1}, \cdots, F^{\prime \prime}\right\rangle,
$$

where $\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{m}>0$ (see for instance [4], page 149). Let S be the normal subgroup of F generated by $x_{1}^{p \alpha_{1}}, x_{2}^{p \alpha_{2}}, \cdots, x_{m}^{p \alpha_{m}}$ and F^{\prime}, then it follows that $S^{\prime} \subseteq R \subseteq S$. In terms of the free group rings, the dimension subgroup $D_{n+2}(G)=D_{n+2}(\mathfrak{r}) / R$, where $\mathfrak{r}=Z F(R-1)$ and $D_{n+2}(\mathfrak{r})=F \cap$ $\left(1+\mathfrak{r}+\mathfrak{f}^{n+2}\right)$. Then $R \gamma_{n+2}(F) \subseteq D_{n+2}(\mathfrak{r})$. If $z \in D_{n+2}(\mathfrak{r})$, then $z-1 \in \mathfrak{r}+\mathfrak{f}^{n+2}$ implies that $z r-1 \in f r+f^{n+2}$ for some $r \in R$. It follows that $D_{n+2}(G)=$ $\gamma_{n+2}(G)$ if and only if $D_{n+2}(f \mathfrak{f r})=F \cap\left(1+f \mathfrak{f r}+\mathfrak{f}^{n+2}\right) \subseteq R \gamma_{n+2}(F)$. We now prove our main result.

Theorem 3.1. $\quad D_{n+2}^{2}(\mathfrak{f r}) \subseteq R \gamma_{n+2}(F)$ for all $n \leqq p$.
Proof. Let $w \in D_{n+2}(\mathfrak{f r})$. Then $w-1 \in \mathfrak{f} \mathfrak{r}+\mathfrak{f}^{n+2} \cong \mathfrak{f} \mathfrak{f}+\mathfrak{f}^{n+2}$, and by Lemma 2.1,

$$
w \equiv \prod_{1 \leqq i<j \leqq m}\left[x_{i}, x_{j}\right]^{d_{i j}} \bmod F^{\prime \prime},
$$

where $d_{i j} \equiv t\left(x_{i}\right) a_{i j} \equiv t\left(x_{j}\right) b_{i j} \bmod \left(\mathfrak{z}+\mathfrak{f}^{n}\right)$. Now, $w-1 \in 千 \mathfrak{f r}+\mathfrak{f}^{n+2}$ implies $w-1 \in \uparrow x+\dagger^{2} 马+f^{n+2}$. Then it follows by Lemma 2.3, that

$$
\begin{equation*}
w-1 \equiv \sum_{k=1}^{m}\left(x_{k}-1\right)\left(y_{k} u_{k}^{-1}-1\right) \equiv 0 \bmod \left(\mathfrak{f r}+f^{2} g+f^{n+2}\right), \tag{10}
\end{equation*}
$$

where

From (10) it follows that for each $k=1,2, \cdots, m$,

$$
y_{k} u_{k}^{-1}-1 \in \mathfrak{r}+\mathfrak{f} \mathfrak{Z}+\mathfrak{f}^{n+1},
$$

which yields, in turn, using $\mathfrak{f r} \subseteq f \xi$,

$$
y_{k} u_{k}^{-1} r_{k}-1 \in \mathfrak{f} z+\mathfrak{f}^{n+1}
$$

with some $r_{k} \in R$, and by Lemma 2.4 , for all $k=1,2, \cdots, m$,

$$
\left[x_{k}, y_{k} u_{k}^{-1} r_{k}\right] \in R \gamma_{n+2}(F),
$$

which reduces to

$$
\left[x_{k}, y_{k} u_{k}^{-1}\right] \in R \gamma_{n+2}(F)
$$

and hence

$$
\begin{equation*}
\left[x_{k}, u_{k}^{-1}\right]\left[x_{k}, y_{k}\right] \in R r_{n+2}(F) . \tag{11}
\end{equation*}
$$

Next, $\left[x_{k}, u_{k}^{-1}\right] \equiv\left[x_{k}, u_{k}\right]^{-1} \bmod R \gamma_{n+2}(F)$, and $\left[x_{k}, u_{k}\right]$ is a product of commutators of the form

$$
\left[x_{k},\left[x_{i}, x_{j}\right]^{x_{k}\left(\partial / \partial x_{k}\right) d_{i j}}\right], \quad 1 \leqq i \leqq k, \quad 1 \leqq i<j \leqq m .
$$

By Lemma 2.2, for either $i<k$ or $i=k$ and $\alpha_{i}=\alpha_{j}$,

$$
\begin{aligned}
{\left[x_{k},\left[x_{i}, x_{j}\right]^{x_{k}\left(\partial / \partial x_{k}\right) d_{i j}}\right] } & \equiv\left[x_{k},\left[x_{i}, x_{j}\right]^{p^{\alpha_{k x}} x_{k} v}\right] \text { for some } v \in \boldsymbol{Z} F, \\
& \equiv\left[x_{k}^{p^{\alpha_{k}}},\left[x_{i}, x_{i}\right]^{x_{k} v}\right] \\
& \equiv 1 \bmod \left[F^{\prime}, S\right] r_{n+2}(F) .
\end{aligned}
$$

If $i=k$ and $\alpha_{i}>\alpha_{j}$, then by Lemma 2.2, for some $v, w \in Z F$,

$$
\begin{aligned}
{\left[x_{i},\left[x_{i}, x_{j}\right]^{x_{i}\left(\partial \partial \partial x_{i}\right) d_{i j}}\right] } & \equiv\left[x_{i},\left[x_{i}, x_{j}\right]^{\left.x_{i} p^{\alpha_{i v}+p^{\alpha_{i}-1}\left(x_{i}-1\right)^{p-2} w}\right]}\right. \\
& \equiv\left[\left[x_{i}, x_{j}\right]^{\left(x_{i}-1\right)^{p-2} \cdot p^{\alpha_{i}-1} w}, x_{i}\right]^{-1} \\
& \equiv[x_{j}^{p_{j}^{\alpha_{j}}}, \underbrace{x_{i}, \cdots, x_{i}}_{p}]^{]^{\alpha_{i}-1-\alpha_{j w}}} \bmod \left[F^{\prime}, S\right] \gamma_{n+2}(F) \\
& \equiv[\zeta_{j}, \underbrace{x_{i}, \cdots, x_{i}}_{p}]^{p^{\alpha_{i}-1-\alpha_{j w}}} \bmod R r_{n+2}(F) \\
& \equiv 1 \bmod R \gamma_{n+2}(F) .
\end{aligned}
$$

Thus (11) is reduced to $\left[x_{k}, y_{k}\right] \in R \gamma_{n+2}(F)$. However,

$$
\begin{aligned}
{\left[x_{k}, y_{k}\right] } & \equiv \prod_{i<k}\left[x_{i}^{p^{\alpha_{i} a_{i k}},}, x_{k}\right] \prod_{k<j}\left[x_{k}, x_{j}^{\alpha_{j} j_{k_{k j}}}\right] \\
& \equiv \prod_{i<k}\left[x_{i}, x_{k}\right]^{d_{i k}} \prod_{k<j}\left[x_{k}, x_{j}\right]^{d_{k j}} \bmod \left[F^{\prime}, S\right] \gamma_{n+2}(F)
\end{aligned}
$$

Thus

$$
w^{2} \equiv \prod_{k=1}^{m}\left[x_{k}, y_{k}\right] \equiv 1 \bmod R \gamma_{n+2}(F)
$$

This completes the proof of our main theorem.
As a corollary we obtain,
Theorem 3.2. Let G be a finitely generated metabelian p-group. Then
(a) $D_{n+2}(G)=\gamma_{n+2}(G)$ for all $n \leqq p-1$,
(b) if $p=2, D_{4}^{2}(G) \cong \gamma_{4}(G)$,
(c) if p is odd, $D_{p+2}(G)=\gamma_{p+2}(G)$.

For $p=3$, part (a) of Theorem 3.2 was first proved by Passi [6]; part (b) is due to Losey [3]. We refer the reader to Passi [7] for a general background on the dimension subgroup problem.

References

[1] N. Gupta, On the dimension subgroups of metabelian groups, J. Pure Appl. Algebra, 24 (1982), 1-6.
[2] -, Sjogren's Theorem for dimension subgroups-The metabelian case, Annals of Math. Study (1985), to appear.
[3] G. Losey, N-series and filtration of the augmentation ideal, Canad. J. Math., 26 (1974), 962-977.
[4] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.
[5] S. Moran, Dimension subgroups mod n, Proc. Camb. Phil. Soc., 68 (1970), 579582.
[6] I.B.S. Passi, Dimension subgroups, J. Algebra, 9 (1968), 152-182.
[7] -, Group Rings and Their Augmentation Ideals, Springer Lecture Notes in Math., 715 (1979), Springer-Verlag, Berlin-Heidelberg-New York.
[8] E. Rips, On the fourth integer dimension subgroup, Israel J. Math., 12 (1972), 342-346.
[9] J. A. Sjogren, Dimension and lower central subgroups, J. Pure Appl. Algebra, 14. (1979), 175-194.
[10] K. Tahara, On the structure of $Q_{3}(G)$ and the fourth dimension subgroup, Japan. J. Math. (New Ser.), 3 (1977), 381-394.
[11] ——, The fourth dimension subgroups and polynomial maps, II, Nagoya Math. J., 69 (1978), 1-7.

Narain Gupta
Department of Mathematics
University of Manitoba
Winnipeg, R3T 2N2
Canada

Ken-Ichi Tahara
Department of Mathematics
Aichi University of Education
Kariya, 448
Japan

[^0]: Received July 25, 1984.
 *) Research supported by N.S.E.R.C., Canada.

