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§1. Introduction

It is not too much to say that the problem of finding a cause-and-effect re-

lationship is a fascinating and eternal theme in both natural and social sciences. It

is often difficult to decide whether one is the cause of another in two related phe-

nomena, but it is an important problem. It is related to the internal structure of

phenomena which generate deterministic or random changes as time passes. We

note that the phenomena to be considered are often not deterministic but random.

For example, in physical systems such as quantum mechanics or chaotic classical

mechanics, it is well known that certain probabilistic reasonings are indispens-

able.

In several areas in natural science, particularly in physics, causal relations

are often discovered by experiments and later explained in theory. However, also

in the fields where such methods can not be applied, there sometimes occurs the

necessity of deciding a causal direction, or deciding which is the cause and which

is the effect in two related phenomena. For example, it has been asserted that

Wolfer's sunspot numbers are positively related to the numbers of Lynx and to

the economy in Canada ([6], [9], [10], [11], [35], [39]).

Almost all researches in time series analysis have been done on the basis of

Aff-time series, which has both weak stationarity and finite multiple Markovian

property. In particular, such properties have been assumed explicitly or implicitly.

However, since we wish to find true intercourse between pure and applied scien-

ces, we should not assume such conditions as those are not yet checked by data

analysis, particularly in the problem of finding causal directions. It is desirable
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and even necessary to decide the causal direction in two related phenomena on the

basis of computation algorithms of mathematical model-free theory.

As a continuation to the previous papers ([28], [31]), this paper aims to prop-

ose in §1 Test(CS) for deciding the causal direction between given two phe-

nomena, based upon the theory of i£M2 O-Langevin equations. Hence our theory

consists of three parts. The first is a theoretical part ([28]) where we developed

the theory of i£M2 O-Langevin equations describing the time evolution of

multi-dimensional local time series with weak stationarity. By a local time series,

we mean a time series whose time parameter space consists of finite interval in Z.

The second is a practical part ([31]) where we proposed Test(S) for checking

weak stationarity of random phenomena. As the third part, we shall propose in

this paper Test(CS), which determines the causal direction between two kinds of

random phenomena. We would like to note that in the background of both tests,

there have been attempts to understand mathematically the philosophy behind the

so-called fluctuation-dissipation theorem in statistical physics ([7], [12]-[29]).

Thus, our strategy in the causal analysis is as follows: Given two kinds of

data which represent two different random phenomena, respectively.

( i ) We construct a multi-dimensional time series with the two given data as

its components and then apply Test(S) to it.

(ii) If it passes Test(S), then we apply Test(CS) to the two given data.

(iii) If it does not pass Test(S), then we have to find a bijective transforma-

tion such that the new transformed time series passes Test(S). If it can

be done, we apply Test(CS) to the new time series.

Now let us state the contents of the present paper. In §2, we recall briefly the

theory of KM2O-Langevin equation developed in [28] and [31]. From the point of

view of canonical representation for stationary processes, we characterize in §3

the class of AR-time series in the framework of generalized forward A/?-Langevin

equation, which can be obtained by rewriting the forward KM2O-Langevin equa-

tion. This generalized forward ΛR-Langevin equation will play an important role

in the prediction problem for stationary time series ([30], [32]). Another reason

why we take up AR-time series is a practical one; we would like to reinforce the

experiments for Test(S) proposed in [31], where we have used only the data with

white noise property. To this end, we construct in §4 some one-dimensional

AR-time series according to the characterization theorem in §3 and then apply

Test(S) to some dynamical systems obtained by transforming them in several

ways.

Following the concept of causal representation for stationary processes, we
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give in §5 the definition of causality which is quantified by introducing a causal-

ity function, and then propose Test(CS) for determining the causal direction be-

tween two kinds of random phenomena.

In the final two sections §6 and §7, Test(CS) is applied to concrete data. We

consider in §6 the dynamical systems constructed in §4 whose weak stationarity

are checked in §4. In §7, at first, we treat the two-dimensional data composed of

Wolfer's sunspot numbers and trapped numbers of Canadian Lynx in MacKenzie

River from 1821 to 1934 whose weak stationarity has been already checked in

[31]. Finally we investigate the mutual causal relation among Wolfer's sunspot

numbers, the rainfall averages in a year in Sapporo and the temperature averages

in a year in Sapporo from 1889 to 1988.

The authors would like to thank the referee for his valuable and constructive

advices.

§2. JO#20-Langevin equations

For any fixed natural numbers d and N, let X = (X(n) | n | < ΛO be an

R -valued weakly stationary local time series on a probability space (Ω, SB,

P) with expectation vector zero and covariance matrix function R :

(2.1) R(m - n) = E(X(mYX(n)) (m, n e Z, | m \ < N, \n \ < ΛO.

We define, for any n ^ N, I < n < N, a block Toeplitz matrix Sn ^ Mind

R) by

R(0) R(l) - R(n-
- R(n - 2)

\ R(0)

In the sequel we treat the case where the following condition (2.3) holds:

(2.3) Sn e GL(nd R) for any n e { 1 , . . . , M .

For any rf-dimensional time series Y = ( (Y^ή),. . . ,Yd(n)) / < n < r) on

the probability space (Ω, %, P) (— °° < / < r < °°), we define, for each nv n2,

l<ni<n2<r, the closed subspace M^(Y) of L2(Ω, SB, P) by

(2.4) M^(Y) = the closed linear hull of iY^m) 1 < / < rf, nγ < m < n2).

Then we introduce two d-dimensional time series v+ — (v+(ή) 0 < n

< ΛO and v_ = (v_(~ n) 0 < n < N) by
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(2.5) v+(n) = X(n) - Pκ-\x)X(n) and v_{~ n) = X(- n) - PM°_n+sx)X(- n),

where M^CY) = Mj(X) = {0} and PMΓ1<X) (resp. /V_Λ+1(x)) stands for the ortho-

gonal projection down to the space M"~ (X) (resp. M_Λ + 1(X)). In particular, it

holds that

(2.6) v+(0) = v_(0) = X(0)

(2.7) v+ and v_ are both orthogonal time series with mean vector zero

(2.8) Mo(X) = Mo(v+) and M°_M(X) = M°_w(ιO (0 ^ n < N).

The covariance matrices of v ± ( ± n) are denoted by V±(ή) (0 ^ n < N):

(2.9) V+(n) = £ ( y + W ' y + W ) and 7 . ( Λ ) = J E ( v . ( - Λ ) V ( - n)) .

Then we have

DECOMPOSITION THEOREM ([28], [31]). There exists a unique system {γ+(n, k),

yAn, k), δ+(rri), δΛm) ;l<k<n<N,l<rn<N)of members in M(d R )

such that for any n ^ { 1 , . . . ,N},

f(2.10±) X{± n) = - if r±(*. ®X(± k) - δ±(ή)X(0) + v±(± n).

We call equation (2.10+) (resp. (2.10_)) the forward (resp. backward)

KM2O-Langevin equation for X. The random force v+ (resp. v_) is said to be the

forward (resp. backward) KM2O-Langevin force associated with X. Moreover, we de-

signate the system iγ+(n, k), γAn, k), δ+(rn), δ_(m)> V+(t), VΛD 1 ^ k < n

< N, 1 ^ m < N, 0 < / ̂  N} as the KM2O-Langevin data associated with the

covariance matrix function R of X.

We have the following fluctuation-dissipation theorem which relates the fluc-

tuating (or random) part in (2.10±) with their dissipating (or deterministic) part in

(2.10±):

FLUCTUATION-DISSIPATION THEOREM ([8], [3], [37], [38], [28], [31]). For any n, k

eN,l<K«<JV,

(2.11±) r±(n, k) = γ±(n - 1, Λ - 1) + δ±(n)γτ(n - 1, w - Λ - 1)

(2.12±) V±(n) = (I-δ±(n)δτ(n))V±(n - 1)

(2.13) δΛn)V+(n-ϊ) = VL(n - l) fδ+(w)

(2.14) ( ) ( ) ( ) f ( )
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where

(2.15) r + (n, 0) = δ+(w) and γΛn, 0) = δΛn).

Since V±(w) are positive definite, we have the following algorithm by which

the fundamental quantities <5±( ) can be calculated from the covariance matrix

function R :

ALGORITHM ([8], [3], [37], [38], [28], [31]). For any n e N, 1 < n < N,

n-2

Σ
Λ=0

(2.16±) δ±(n) = - (R{±n) + Σ γ±(n - 1, k)R(±(k + l)))Vτ(n - I)" 1 .

Conversely, let us be given a symmetric positive definite matrix V^ GL(d R)

and N elements δ+(n) (1 < n < N) in Λf(rf R). Then, with the relations

(2.12±)—(2.13) in the fluctuation-dissipation theorem in mind, we can construct a

sequence of triples (V+(n), δΛn), VΛn)) (1 < n < N) by

( )

V+(0) = VΛO) = V

V+M = V+(n - 1) - δ+(n)VΛn - 1)'<5>)

δΛn)V+(n - 1) = V.(n - l)ffl+(n)

VL(n) = VΛn-I) - δΛn)VΛn~ Ό'δΛn).

In so doing, we assume that

(2.18) VΛn) and VΛn) are positive definite (1 < n < N - 1).

Furthermore, we construct a system {f+Cm, n), γ_(rn, n) 0 < n < m < N}

of members in M(d R) according to the relations (2.11±) in the fluctuation-

dissipation theorem. Finally, we prepare a d-dimensional time series v+ —

(v+(n) 0 < n < N) on a probability space ( β , 38, P) such that for any rn, n ^

N*, 0 < m, » < iV,

(2.19) £ ( P + ( Λ ) ) = 0 and £ ( v + ( m ) ' i ; + W ) = δw wy+(w)

and construct a d-dimensional time series X + = (X(n) 0 < n < N) by the

forward ϋΓΛf2O-Langevin equation (2.10+) with (2.6). Then we have

RECONSTRUCTION THEOREM ([28], [31]). X+ is a weakly stationary local time

series.
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§3. A generalized AJR-Langevin equation

Let X = (X(n) n €= Z) be an R -valued weakly stationary time series on a

probability space (Ω, SB, P) with mean vector zero and covariance matrix function

R satisfying

(3.1) i?(0) e GL(d R).

3.1. For a fixed if G N, we say that X is an AR(K)-time series if there ex-

ist a system {A(k), o 1 < k < i£} of members in MW R) and an R -valued

time series ξ+ = (ξ+(n) j w ^ Z ) such that

(3.2) X(n) = Σ A(k)X(n - k) + σξ+(n) (n e Z)

(3.3) σ e GL(d R)

(3.4) £ ( ί + ( Λ » = 0 and E(ξ+(ι»)'ξ+(w)) = δ m w / (m, n e Z)

(3.5) Mn_JX) = Mljξ+) (n e Z).

We call equation (3.2) a forward AR(K) -Langevin equation ([2]). The condition (3.4)

shows that ξ+ is a standard white noise in the wide sense. Furthermore, condition

(3.5) means that there exists a causal relation between X and ξ+, which will be

discussed in §5.

We treat the case where X is an Af?(20-time series for some K G N.

LEMMA 3.1 (Yule-Walker equation).

(3.6) R{Q) = Σ A(kYR(k) + σσ
k = l

(3.7) R(n) = Σ A(k)R(n - k) for any n e , N .
Λ = l

Proof Multiplying both sides of equation (3.2) by ζ+(n) and then taking an

expectation with respect to the probability P, we see from (3.4) and (3.5) that

(3.8) E{X(nYξ+(n)) = E(ς+(n)'ξ+(ή)) = σσ (n e Z).

Therefore, multiplying both sides of equation (3.2) by X(n) and X(0) and then

taking an expectation with respect to P, we see from (3.4) and (3.5) that (3.6) and

(3.7) hold. Q.E.D.
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Concerning Toeplitz condition (2.3), we have

LEMMA 3.2. X satisfies condition (2.3) for any J V ^ N , that is,

(3.9) Sn e GL(d R) for any n e N.

Proo/. By putting A(n) = 0 (w > K + 1), it follows from (3.6) and (3.7) that

for any n > K,

- -A(n)

0

which, together with (3.1) and (3.3), yields (3.9). Q.E.D.

3.2. The purpose of this subsection is to characterize the AR(K)-property

within the framework of the theory of iίM2O-Langevin equations. For that pur-

pose, we consider the case where X satisfies condition (3.9). We then can apply

the results in §2 (cf. [28]) to obtain the forward KM2O-Langevin equation

(3.10) X(0) = 2^+(0)
m - l

(3.11) X{m) = - Σ γ+(m, fc)X(k) + u+(m) (m e N).

By using the unitary group Win) n ^ Z) on the Hubert space M ^ ( X ) such

that

(3.12) + n) (l<j<d,nι<Ξ Z ) ,

we define, for each K ^ N, an R -valued time series ξ+ — (ξ+ (n) n ^ Z) by

(3.13) ξ(

+

κ\n) = V+(K)~U2U(n - K)v+U0.

Immediately from (2.9) and (3.13), we obtain

LEMMA 3.3. For each K e N,
(K)

( i ) ξ+ is weakly stationary

(ii) E{ξlK)(nyξlκ\n)} = / ( » e Z )

(in) ξ(

+

κ\K) = V+(K)'U2v+(K).
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Moreover, for each fixed K ^ N, operating U(n — K) to both sides of equa-

tion (3.11) with m replaced by K, we obtain

(3.14) X(n) = - Σ γ+(K,K~ k)X(n - k) + V+(K)1/2tf(n) in e Z).
fc = l

We note that ξ+ does not always satisfy both the orthogonal condition (3.4) and

the causal condition (3.5). By taking (3.2) and (3.14) into account we call equation

(3.14) a generalized forward AR(K)-Langevin equation associated with X.

We are now in a position to show

THEOREM 3.1. Let X be a weakly stationary time series satisfying condition (3.1).

Then, for any fixed K & N, the following three conditions are equivalent:

( i ) X is anAR(K)-time series.

(ii) X satisfies condition (3.9) and δ+(n) — 0 for any n > K + 1.

(iii) X satisfies condition (3.9) and ζ+ is a standard white noise in the wide

sense satisfying the causal relation

(3.15) SCCX) = A C O forany n S Z.

Proof, (i) —• (ii) Since X can be regarded as an AR{K + l)-time series with

A(K+ 1) = 0, it follows from Lemma 3.1 that

R(K) R(K-1) - R(0)
-1) R(K-2) - R(-l]

(A(D---A(K)O) = (R(K+1)---Ra))

\ R(0)

On the other hand, multiplying both sides of equation (3.11) with m = K + 1 by

X(k) (0 < k < K + 1) and then taking the expectation with respect to P, we

find from (2.7) and (2.8) that

(γ+(K+l, K) • • r+(K + 1,0))

R(K) R(K-l) - R(0)
- 1) R(K-2) - R(-l)

R(- 1) - R(- K)

Hence, it holds that δ+(K + 1 ) = γ+(K + 1,0) = 0. Similarly, we can show (ii).

In order to prove the part: (ii) —»(iii), set
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(3.16) A{k) = - γ+(K, K- k) for 1 < k < K.

Then it can be shown from (2.11+) and (ii) that

- A(k) ίor any n > K + 1 , 1 < k < K

(3.17) γ+(n,n~k)=, **> v ±.Λ v Λ-Λ <? i <*-
[ 0 for any n> K+ I, K + I < k < n.

Next we shall show that ζ+ is a white noise in the wide sense. By Lemma

3.3, it suffices to prove

E{ξi

+

K)(n1)
tξ[κ)(n2)} =0 for any nlt n2 e Z, nγ > n2.

Furthermore, it can be seen from (2.7) and (3.13) that we have only to show

(3.18) U(p)v+(K) = v+(K + p) for any p e N.

By operating the unitary operator U(p) to both sides of equation (3.11) with m re-

placed by K, we have

U(p)v+(K) =X(K + p) + ΣT+(K,K-k)X(K-k + p).

Since it follows from (2.11+), (3.11) and (3.17) that

X(n) = Σ A(k)X(n ~ k) + v+(n) for any n > K + 1,

(3.18) holds.

Finally we shall show (3.15). It is easy to see from (3.14) that

(3.19) M"_JX) 3 B C O for any » e Z .

By using a resolution of the identity {E(θ) θ e (— π, π]) such that

(3.20) U(n) = J e~inβdE(θ) (« e Z),

we see from (3.12) and (3.13) that

(3.21) X(n) = f e~inβdE(θ)X(0)
J(,-π,π\

(3.22) ξ(

+

K)(n) = f e-inedE(θ)ξ(

+

K)(0).

J(-π,π]

Set

(3.23) P(z) = I- ΣA(k)zk feεQ,
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Denoting by Δ(dθ) the spectral measure matrix of the weakly stationary time

series X, we can see from (3.13), (3.14) and (3.21)-(3.23) that

(3.24) P(eiθ)Δ(dθYP(eiθ) = V+(K)dθ.

By using Lebesgue's decomposition theorem for bounded signed measures, we can

see that

(3.25) P{eiθ) e GL(d C) a.e. θ e ( - TΓ, TΓ]

(3.26) Δ(dθ) = Λ V ϊ ^

Furthermore, we claim

(3.27) M

By virtue of (3.19), it suffices to show that Y = 0 for any F e M ^ ( X ) θ

M!:(ξf } ) . There exists / = (/ lf...,/,) e L 2 ( ( - TΓ, TΓ] dW0 such that F =

Γ
have

f(θ)dE(θ)X(0). Since F is orthogonal to all vectors ξ™(n) (n e Z), we

f e'^V+UQ'^Pie'^Δidfl'fiθ) =0 for any

By the uniqueness of Fourier transformation, we find that

V+(K)~U2P(ei6)Δ(dθyf(θ) = 0 ,

which, together with (3.25) and (3.26), implies t h a t / = 0 and so Y= 0.

Moreover, we claim

(3.28) MlJX) is orthogonal to {ξ™ (t) 1 < < d, I > n) for any w e Z.

It suffices to prove that for any k<n<l, E{X(kYξ{

+

κ)(ί)} = 0. By (3.13),

f Γ ( / ) } = E { X ( K + k - i y i / 2

By virtue of (3.18), we can see from (2.7) and (2.8) that E{X(K + k -

lYv+OO} = 0 and so (3.28) holds.

We are now in a position to prove (3.15). By virtue of (3.19), we have only to

show that Y= 0 for any Y^MlJX) θ Mn_Jξ[K)). By (3.28), F i s orthogonal to

{ξ*\l) 1 < j < d, I > n} and so orthogonal to the space ftOξf}). Therefore,

we see from (3.27) that Y= 0.

Thus, we have proved that part (ii)—•(iii). The converse statement (iii)-^(i)
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follows immediately from (3.14). Q.E.D.

COROLLARY 3.1. Let X be any d-dimensional AR(K)-time series. Then X has

the spectral measure matrix Δ (dθ) such that

(3.29) Δ(dθ) = PίeΎ'V+OO'PieΎ'dθ,

where the matrix polynomial P(z) (z ^ C) is given by (3.23).

§4. Test(S) for weak stationarity

Let d and N be any fixed natural numbers.

4.1. For any given N +\ vectors 2f(w) in R (0 < n < JV), we denote by
ΰψ Oψ (ψ

μ and R — (Rjk(')\<j,k<d the sample mean vector and the sample covariance mat-

rix function of the data 3f = (2f (w) 0 < n < N), respectively:

(4.1) μ* = ηArτ

(4.2)

(-n) =Rί(n),

where μ ~ *{μx,.. .,μd) and 3£(n) = ( ^ ( w ) , . . ,^d(n)) (0 < n < N).

Let 9f = (9Γ(w) 0 < n < N) be the standardized data of T.

0

(0<n<N).

Since the sample covariance matrix function R (•) of 9Γ can be extended to a non-

negative definite matrix function, we can construct a system {γ+(n, k), γ_(n, k),

<5+(m), δ_(m), 7 + (/), K_(/) ;l<k<n<N, l<rn<N, 0 < I < N} of mem-

bers in M(d R ) , under the assumption

(4.4) V+(n) e GL(rf R) (0 < n < N- 1),

according to the relations (2.11±)—(2.13) and (2.16±) with R in (2.16±) replaced

An experience rule in data analysis tells us that an effective number of the

whole series (R in) 0 < n < N) of the matrix function R is considered to be
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between [2 y/N + 1 /d\ and [3 y/N + 1 /d\ ([1]). Here we choose the maximum

value and put

(4.5) M= [3JN +l/d\ - 1.

Thus, in what follows, we intend to make use of the subsystem {γ+(n, k), V+(ί)

0<k<n<M,0<l<M), which is the sample forward XM2O-Langevin data

associated with the reliable part (R (n) Q < n < M) oί R .

In order to analyze the internal structure of ΘC, we consider, for each i ^

{0,... ,N — Af}, the shifted data X{ with X(i) as its initial point:

(4.6) 9Γ, = (9Γ(f + n) 0 < n < Aί).

According to (2.10+) with X replaced by 9C{ we define ι>+i = (v+i(n) \0 <n

< M) by

( 4 < 7 ) ' y+ί(0) = 9Γ(i + n) + *Σ r+(n, k)X(i + k) (1 < n < M).

This is the sample forward KM2O-La.ngevin force associated with 9C{.

By taking lower triangular matrices W+(n) in GL(d R) such that

(4.8) V+(n) = W+(nyW+(n) (0<n<M),

we define, for each i & {0, . . . ,N — M}, a d-dimensional data ξ+ ί = (ξ+ ί(n) 0

< n < M) = ('(ξ+nin), . . . ,ξ+id(n)) 0 ^ n < Aί) and a one-dimensional data

ft = (ft(«); 0 < n < d(M + 1) - 1) by

(4.9) ξ+i(n) = ^ + ( n ) " ^ + , ( w )

(4.10) ft(n) = f+/y(ιif), » = dm +j - 1 (1 <j < d, 0 < m < Λί),

where f+<(«) = '({+ α(») f + w ( n ) ) ,

By virtue of the fundamental principle—the decomposition theorem, the

fluctuation-dissipation theorem and the reconstruction theorem in §2, we can

assert that for each i G {0,... ,N — M},

(4.11) ΘC{ is a realization of a weakly stationary local time series with

the covariance matrix function R

if and only if

(4.12) ξi is a realization of a standard white noise in the wide sense.
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In order to check whether £, satisfies (4.12) or not, we put £, to the following

criteria (M),-, (V)j and (0), for checking mean zero, variance one and the orthogo-

nality, respectively:

(M),

(V),

(0),

+ 1) I μ11 < 1.96

(vSι - 1)~ < 2.2414

d(M+l)(Σ ~ι\Ru{n, m) I < 1.96,

where μ*', (vξ' — 1)~ and R^'in, m) (1 < n < M, 0 < m < M — n) are defined

by

(4.13)

(4.14)

(4.15)

d(M+ D-1

k=0

-i \ ~ — Γ V"1

1/ — I Δu
k=0

e

R *(n, m) -

t = 0

'ξ,(k)ξ,(n + k)

Furthermore, L j m (7 = 1,2) are defined as follows: We divide d(M + 1) and

by 2n and n and denote their remainders by r and t, respectively;

(4.16)

if 0 < r < n, then

d(M + 1) = q(2n) + r (0 < r < 2n - 1)

(4.17)

.(l) _ \n(q + {s/2)) — m
n m ~ K ( g - (s-

= \n(q-l - s/2) +r

\n(q- 1 + (s + D/2) + - m

and if n + 1 < r < 2n — 1, then

(4.18)

_ \n{q- 1 + (s/2)) +r

- 1 - (s + l)/2)

jw = \n(q- s/2)
n m \n(q+ (s + - m

(5 is even)

(5 is odd)

(s is even)

(5 is odd)

{s is even)

(5 is odd)

(5 is even)

(5 is odd).

We note that
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(4.19) d(M + 1) - n - m = L(£m + L(*m.

Now Test(S) for the weak stationarity of a given data 2f = (2Γ(w) 0 < n

^ N) is proposed as follows:

Test(S): The rates of successful i e {0,.. .,N ~ M) are over 80%, 70% and

80% for (M) f, (V), and (0),, respectively.

4.2. To attain Test(S) above, we carried out in [31] repeated experiments

for various concrete data such as random normal numbers, random uniform num-

bers, logistic and tent transformations as well as for the data transformed in four

ways: taking the first difference, multiplying or adding the above data j£(n) by

time n (this is expected to switch from stationarity to non-stationarity), and taking

the square or cube.

In order to reinforce the above experiments for Test(S), we construct some

one-dimensional A/?-time series according to the reconstruction theorem in §2

and the characterization theorem for AR-time series in §3 (Theorem 3.1).

Test(S) is then applied to the data obtained by transforming them in several

ways.

For a positive number V and any K numbers δ(n), — 1 < δ(ή) < 1(1 < n

< K), we get a KM20- Langevin data {γ(n, k), V(l) ;0<k<n<™,0<l

< oo} by the same procedure as in the reconstruction theorem in §2, where we

put δ(ή) — 0 for any n > K + 1. For any standardized random uniform numbers

ξ(n) (0 < n < N), K < N, we define an ARC©-time series 2? = (2Γ(») 0 < n

< N) by

- Σ1 r(n, k)T(k) + V(n)1/2ξ(n) (0 < n < K)

(4.20) 3f(w) = k=

κ°

.7- Σγ(K,K-k)%(n-K) + V(K)1/2ξ(n) (K+l <n<N).

In particular, we consider the AR(2)-time series 2Γ = (2?(n) 0 ^ n

< 104) such that

(4.21) V= 1 and δ(l) = 0.6, δ(2) = - 0.3

and put y = (y(n) - 5 < n < 99) as

(4.22) y(n) = %(n + 5).

Then we define five kinds of time series 2?y = (2?y(«) 0 < n < 99) (1 < j

< 5 ) by
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(4.23)
- 3) - 2V(n - 5), 2?5(w) = V(n - 3) - - 5 ) 2 .

We made one-hundred experiments of Test(S) for the following two-

dimensional data ('(3f,(«), %k(n)) 0 < n < 99) (1 < < k < 5), by taking stan-

dardized random uniform numbers ξ(n) (0 < n < 104) with prime seed numbers

from 2 to 541. The results are illustrated in Table 4.1, which denotes the rate of

the numbers of data passing Test(S).

Data

2fj

2f2
2f3

3f4

3f2
0.93 0

0

.74

.23*

2

0.

0.

0.

e

70

99

93

0.97

0.58*

0.54*

0.97

Table 4.1. Test(S) for Aft-dynamics

Table 4.1 shows that the results for the data '(2?2, 2f3), f(2Γ2, 2Γ5) and ' ( ^

2f5) do not work out according to theory. By taking account of the possibility of

arctangent transformation that compresses the abnormal values or the multiplica-

tion effect between two data 2f2

 a n d ^3 obtained by taking the square and cube of

the data V, we applied Tes t (S) Λ r c t to them and got a good result as shown in

Table 4.2, where 9Cj is the standardized data of 2fy (;' = 2,3,5).

Data

Arct ΘC2

Arct 3Γ3

Arct 9C3

0.83

Arct ΘC5

0.97

0.98

Table 4.2. Test(S) A r c t for Aff-dynamics

4.3. For one hundred standardized random uniform numbers ξ = (ζ(n)

— 4 < « < 98) with prime seed numbers from 2 to 541, we construct

MA(3)-time series 3? = (2f(«) - 1 < n ^ 99) by

(4.24) 2f (») = 7f (» - 1) - 3ξ(n - 2) - 5ξ(» - 3)

and then define 2f, = (2f;(«) 0 < n < 99) (1 < j < 8) by

f2r1(»)=2f(n), 3Γ2(») =

(4.25) 2f4(«) =
12f7(n) = '

- 1), 3f6(») = 2f4(»)2,

, 3Γ2(»)), 2f8(») = '(2f4(n), 2f5(n)).
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j

rate

1

1.00

2

0.93

3

0.15

4

1.00

5

0.84
6

0.08
7

0.98

8

0.94

Table 4.3. Test(S) for MA(3)-time series

Table 4.3 shows the rate of the numbers passing Test(S). The results work

out according to theory.

§5. Test(CS) for causality

Let X = (X(n) n^Z) and Y = (Y(n) n e Z) be Rd- and Rdl- valued

time series defined on a probability space (Ω, 58, P), respectively. We say that X

causes Y if for each n €Ξ Z, there exists a measurable mapping Fn from the

infinite-dimensional space (R 0 to the finite-dimensional space R 2 such that

(5.1) Yin) = Fn(X(n), X(n - 1), X(n - 2 ) , . . . ) .

In particular, we say that X causes Y linearly or the causality is linear if the func-

tion Fn is linear. Moreover, for p ^ N, the causality is said to be non- linear of de-

gree p if the function Fn is a polynomial of degree p.

EXAMPLE 5.1. Let dx = d2 = 1 and

(5.2) Y(n) = cλXin - s.Ϋ1 + c2X(n - s2Ϋ
2 in e Z),

where cy e R and s; e N*, />, e N ( ; = 1,2). It follows that X causes Y, and if p1

— p2~ 1, then the causality is linear.

In what follows, we treat the case dγ — d, d2 — 1 and assume that the d + 1-

dimensional time series U = ( iXin)f Yin)) n ^ Z) is weakly stationary with

mean vector zero. So we have three kinds of covariance matrix functions

R, (j = 1,2,3) :

(5.3) i^Gi) = E(X(nYX(0)) e MW, <ί R)

(5.4) R2(n) = E(Y(n)'X(0)) e M(l, rf R)

(5.5) R3(n) = E(Y(n)Y(0)) e M(l,l, R) Ξ R.

5.1. In this subsection, we are concerned with an observation to see whether

X causes Y linearly or not. At first, note that X causes Y linearly if and only if

(5.6)
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Since U is weakly stationary, we have

|| Y(0) - i V u o H O ) II = lim || Y{n) - PK[X)Y{n) ||.

Using the weak stationarity of U again, the norm

II Yin) ~ PKίx)Y(n) || = U?3(0) - \\PK(x)Y(n) \\Y2

is decreasing in n and so we see that (5.6) is equivalent to

(5.7) Cn(Ύ I X) = ||PMHx)Y(n) II increases to i? 3(0) 1 / 2 as n^ oo.

We call Cn(Y | X) the causality function from X to Y. Our next goal is to give

an algorithm to calculate the quantity Cn(Y | X). To this end, we further assume

that condition (2.3) holds for the process X. Note that X = (X(ή) n e Z) is a

^dimensional weakly stationary time series with covariance matrix function Rv

As in §2, v+ (resp. {v+(n, k), V+(t) 0 < A: < n < °°, / e N*}) denotes the for-

ward KM2O-Langevin force (resp. data) associated with X. Then it follows from

(2.7) and (2.8) that there exists a unique system {C(n, k) 0 < k < n < oo} of

members in M ( l , (i R) such that

n *
VO o j x̂ M"(X) * \rl) — ^-t \s\Ύl) rC)\J+\l\>) \n κ=- 1> / .

A=0

THEOREM 5.1. (i) For eαcfo n e N ,

(5.9) CW(Y|X) = ί Σ C(w, k)V+(kYC(n, k)Ϋ

(ii) For αnj; n, / c ^ N , 0 < / c < f t ,

(5.10) C(n, k) = t i #

Ui?( - Λ) + Σ Λ2(n - /) γ+(k, /)} 7+(ft)" (0 < k ^ n)
/-o

Proo/. (i) follows from (2.7), (2.9) and (5.8). For any k, 0 < k < n, we see

from (2.7) and (2.8) that

E(Y(n)'v+(k)) = E{(PM;ίvY(n))'v+(k)} = C(n, k)V+(k)

and so by (2.10+)

C{n, k) = £{y(n)'y+(fc)}V+(fc)"1

= EWn)ι(X(k) + *Σ r+(A,
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= {R2in - k) + Σ R2in - ΐ)'γ+ik, ΐ))V+ik)~\
1 = 0

The formula for the case k — 0 follows in the same manner. Q.E.D.

5.2. Concerning the non-linear causality, we define a concept of a little res-

trictive non-linearity. Let U = CiXiή), Y{n)) n e Z) be a two-dimensional

time series such that the p + 1-dimensional time series V = ( (X(n), X(ή) ,. . .,

X(n)p, Y(n)) w G Z ) is weakly stationary. Then we say that X = (X(ή) n^Z)

causes Y with non-linearity of degree p in the narrow sense if the following holds:

(5.11) lim || Yin) - PKκ,p)Y(n) || = 0,

where

(5.12) Mo (X p) = the closed linear hull of {X(tn)q 0 < m < n, 1 < q < p).

This is nothing but saying that the ^-dimensional time series W = ( (X(n),

X(n)2,...,X(n)P) n^Z) causes Y linearly.

§6. Tes t(CS) for ^ - d y n a m i c s

Let d and N be any natural numbers. For any given N + 1 data J£ (n) in R

(resp. Win) in R) (0 < n < N), we denote by μ (resp. μ ) the sample mean vec-

tor of the data 3f (resp. 1¥) and by R (resp. R ) the sample covariance matrix

function of the data 3? (resp. ΊW). Furthermore, we define the sample mutual covar-

iance matrix function R (n) = (i?x (n),... ,Rd (ή)) of the data Ψ and 3f by

(6.1) R^in) = ηΛrτΣ i"Win + k) - μΨ) (S,(k) - (ξ)
i V ' L fc=O

(1 <j<d, 0<n<M),

where M is the effective number given by

(6.2) M= [3JN+ l/(d+ 1)] - 1.

Let ΘC and V be the standardization of the data 2Γ and Ψ, respectively. By us-

ing (5.9) and (5.10), we define the sample causality function Cn(Ψ | 3D from % toΨ

by

(6.3) Cn(Ψ\ 3D = ( Σ C(n, k)V+(kyC(n, k)Ϋ/2 (0 < n < M),
A:=0
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where

(6.4) C(n, k) =
{Ryι(n-k) + ΣR (n-iyϊ+(k,

(ft = O)

-ι (0<k<n)

In what follows, we shall illustrate the graphs of sample causality functions

for various kinds of models.

EXAMPLE 6.1 (Independent Aft-time series). Let <£ι = {^(w) 0 < n <

102) be an Aff(2)-time series with characteristics (V, (5(1), <5(2)) = (1,0,6,

- 0.3) in (4.21) of the subsection [4.2] and 3?2 = (2?2(w) 0 < n < 102)) be an

AR(3)-time series with characteristics (V, 5(1), 5(2), 5(3)) = (1,0.9, - 0.4,

0.5), where the seed numbers of the standardized random uniform numbers

ξ(n) (0 < n < 102) are 229 and 127 for 2^ and 2f2, respectively. We illustrate

in Figure 6.1 the graphs of Cn(
(£ι \ 2f2)

 a n d Cw(3?21 ^i) a s a ^ n e graph and a

short-dashed graph, respectively.

Linear causality Cn

1.0

0.5

Linear causality Cn(

j _
0 5 1 0 1 4

Figure 6.1. Independent A/?-time series

EXAMPLE 6.2. Using the A??(2)-time series jtι in Example 6.1, we construct

five kinds of time series 2Γ; (1 < j < 5) according to the dynamics (4.23). The

graphs of Cn(T4 \ 2fx) and Cn(T4 \ %λ, 3Γ2)
 a r e drawn in Figure 6.2 as a line graph

and a short-dashed line, respectively. This implies that the causality for the linear

system 2f4 in (4.23) is covered by the function CΛ(2f41 ^γ).
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1.0 -

0.5

Linear causality CW(3Γ41 3^)
Non-linear causality Cn(%4 \ Sί9 Z2)

_L
0 5 1 0 1 4

Figure 6.2. AR-dynamics

EXAMPLE 6.3. In the previous Example 6.2, we draw in Figure 6.3 the

graphs of Cn(%5| 3^) and Cn('X5 \ %lf 2£2) as a line graph and a short-dashed line,

respectively. We find that the function Cw(2f51 2^) is insufficient, but the function

Cw(2?51 2?!, 2f2) works out effectively for the non-linear system 2?5 in (4.23).

Linear causality CM(2f51 3^)
Non-linear causality Cni%% \ 3Γlf 3Γ2)

1.0

0.5

5 l 0

Figure 6.3. Aff-dynamics

l 4
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EXAMPLE 6.4. Considering Example 6.2 again, this time, we draw in Figure

6.4 the graphs of CΛ(3?5 | 3^) and Cn(T51 3^, 3f3) as a line graph and a

short-dashed line, respectively. We see that the function Cw(2f51 3fx, 3f3) with de-

gree 3 is not effective for the non-linear system 3f5 with degree 2 in (4.23).

Linear causality Cn(T5 | :
Non-linear causality Cn(

1.0 -

0.5

1 1
5 1 0

Figure 6.4. Aί?-dynamics

l 4

§7. Tes t (CS) for meteorogical data

7.1. Let 2EΊ = ( ^ ( n ) 0 < w < 113) and fΓ2 = (2Γ2(«) 0 < n < 113) be

Wolfer's sunspot numbers and the trapped numbers of Canadian Lynx in MacKen-

zie River from 1821 to 1934, respectively. Trapping records of Lynx are found in

Elton and Nicholson's paper ([4]). We denote by SΓy the standardized data of

?£j(j= 1,2). We define four kinds of one-dimensional time series Arct 3Γy =

((Arct9Γ,)(») O < n < 113) and L o g ^ = ((Log3r,)(«) 0 < n < 1 1 3 ) 0 = 1,2)

by

(7.1) (Arct Xt) in) = arct (X, (n))

(7.2) (Log3Γ,)(H)=log(fry(»i))

and then three kinds of two-dimensional time series Sf = (2f(») 0 < n < 113),

Arct 3Γ = ((Arct 50 (n) 0 < n < 113) and Log 2f = ((Log2 s) (») 0 < n < 113)

by

(7.3) 3f(») = ' ( 2 f » , 3T2(»))

(7.4) (Arct SO («) = '( (Arct 3Γy) («), (Arct X2) (n))
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(7.5) (Log 20 (n) = '((Log 2^) (n), Log 3f2) (w)).

We have already in [31] checked that all the time series 3f, Arct 5IΓ and

Log 3f have weak stationarity. Hence, we can apply our Test(CS) to them. The

graphs of the sample causality functions for the data 2f, Arct 9C and Log 3f are

drawn in Figures 7.1, 7.2, and 7.3, respectively.

1.0

0.5

Linear causality CJ3ίx |
Linear causality Cw(fT21

J_
5 1 0

Figure 7.1. (Sunspot, Lynx in MacKenzie River)
l 4

1.0

0.5

Non-linear causality Cw(Arct dCι \ Arct 9C2)
Non-linear causality Cw(Arct ΘC2 \ Arct 9CJ

J_
0 5 1 0

Figure 7.2. Arct (Sunspot, Lynx in MacKenzie River)

l 4
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1.0

0.5 ~

Non-linear causality Cw(Log f̂  | Log 2Γ2

Non-linear causality CM(Log f£21 Log 3^

0 5 io
Figure 7.3. Log (Sunspot, Lynx in MacKenzie River)

1 4

Having taken the results in §6 into account, we can not say that there exists

certain marked causal relation between Wolfer's sunspot numbers and the trapped

numbers of Canadian Lynx in MacKenzie River.

7.2. We study the problem of causal direction among three data 3f; =

(2fy(«) 0 < n < 99), j = 3,4,5, of Wolfer's sunspot numbers, the rainfall aver-

ages in a year in Sapporo and the temperature averages in a year in Sapporo, re-

spectively. All of them are taken from 1889 to 1988. Let 9Γy be the standardized

data of 3F, (; '= 3, 4, 5).

We apply Test(S) and Test(S)A r c t to three kinds of two-dimensional time

series '(3f3, 3Γ4), '(3?3, 2Q and '(3f4, 2Q. The results are shown in Table 7.1 and

Table 7.2, which show that the three-dimensional time series (2f3, 2?4, 2?5) does

not have weak stationarity, but the three-dimensional time series '(Arctί^, Arct

9CA, Arct 9C5) does have.

t((ψ ΰf \

t/oψ ΰψ> \

(M)
0.977

0.988

1.000

(V)

0.860

0.674

0.872

(O)

1.000

0.988

0.988

(5)
S

NS

S

Table 7.1. Test(S)
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'(ArctSΓ3, ArctSQ

'(Arct 5T3, Arct f 5)

'(Arct9f4, Arct9Q

(M)

1.000

1.000

0.988

(V)
1.000

0.953

0.907

(0)

1.000

0.965

0.977

(S)

S

S

S

Table 7.2. Test(S) Arct

Therefore, we can apply Test(CS) to the data '(Arct 9C3, Arct9f4, ArctSQ.

The graphs of the sample causality functions for the data '(Arct9f3, Arct9f4) and

' (Arct !^ , Arct9f3) are drawn in Table 7.4 as a short-dashed line and a line

graph, respectively. We can not say that there exists certain notable causal

relation between Wolfer's sunspot numbers and the rainfall averages in a year in

Sapporo.

1.0

0.5

Non-linear causality Cw(Arctί
Non-linear causality Cn(Avctί

1 Arct
| Arct

1 I
5 1 0

Figure 7.4. Arct (Sunspot, Rain in Sapporo)

1 4

The short-dashed line and the line graph in Figure 7.5 stand for the graphs

of the functions Cw(Arct ΘC31 Arct 9f5) and Cw(Arct ΘC5 \ Arct 9f3), respectively. It

is likely that Wolfer's sunspot numbers cause the temperature averages in a year

in Sapporo.
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1.0 ~

0.5

Non-linear causality Cw(Arct 9C3 \
Non-linear causality Cw(Arct ΘC5 \

Arct 9Γ5)
Arct SQ

_L _L
5 1 0

Figure 7.5. Arct (Sunspot, Temperature in Sapporo)

l 4

Moreover, Figure 7.6 indicates the graphs of the functions Cn(Arct9C4\

Arct ΘC5) and Cn(Arct 9C51 Arct 9C4) as a short-dashed line and a line graph, re-

spectively. It is likely that the rainfall averages in a year cause the temperature

averages in a year in Sapporo.

1.0

0.5

Non-linear
\T 1 '

iNon-linear

-

1

causality
causality

_

CB(Arct SΓ4

Cn(Arct9Γ5

1

1 Arct aΓ5)
| Arct 5Q

——

0 5 1 0 1 4

Figure 7.6. Arct (Rain in Sapporo, Temperature in Sapporo)
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Finally, Figure 7.7 shows the graphs of the sample causality functions

Cw(Arct 9C31 Arct 9C4, Arct ΘC5), Cw(Arct 9f41 Arct 9Γ3, Arct 9f5) and Cw(Arct 5T51

Arct 9C3, Arct 3Γ4) as a long-dashed line, a short-dashed line and a line graph, re-

spectively.

1.0

0.5

Non-linear causality Cw(Arct 9C3| Arct 9Γ4, Arct 9Γ5)
Non-linear causality Cw(Arct 9Γ41 Arct 9Γ3, Arct 9f5)
Non-linear causality Cw(Arct X5 \ Arct ST3, Arct 9C4)

_L J
0 5 1 0 1 4

Figure 7.7. Arct (Sunspot, Rain in Sapporo, Temperature in Sapporo)

In order to take a positive and objective view of the existence of causal rela-

tion from the graph of the sample causality function, we need to obtain certain

quantitative criterion for our Test(CS), which will be proposed in a forthcoming

paper ([34]), by using the same statistical reasoning as Test(S) in [31].
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