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GENERALIZED INDEPENDENT INCREMENTS
PROCESSES'™*)

NGUYEN VAN THU

Dedicated to Professor K. Urbanik on his 60th birthday

We study a class of Markov processes which arise in the theory of general-
ized convolutions and stand for a generalization of processes with independent in-
crements.

1. Notation and preliminaries

Let P be the set of all probability measures (p.m.’s) on the positive half-line
R, = [0, c0) with the weak convergence . We write 0, for the unit mass at
point x and write T, for the map given by

T,u(B) = u(x™'B)

for x>0, £ € P and B € B, the o-field of Borel subsets of R,. We define
Ty = 0, We denote by @ the class of all sub-probability measures (sub-p.m.’s)
on R,. Let C, be the Banach space of all real bounded continuous functions on R,
with supremum norm ” . || and C, its subspace consisting of functions vanishing at
infinity.

A commutative and associative P-valued binary operation - on P with §, as
the unit element is called a generalized convolution, if it is continuous in each vari-
able separately and distributive with respect to convex combinations and maps T,
and if it satisfies the following law of large numbers:
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156 NGUYEN VAN THU

(LLN) There exists a sequence of positive numbers ¢, such that the sequence
T, 0" is convergent to a limit other than d,

Here P denotes the nth power of P under the operation o.

The pair (P, °) is called a generalized convolution algebra, which was intro-
duced by K. Urbanik in [6] and studied by many researchers (cf. [2], [10], [11],
[12], [17-22], [23]).

We assume throughout the paper that the algebra (P, °) is regular, i.e. it
admits a characteristic function i € C, defined by the following properties: the cor-
respendence g <> [ is one-to-one, # is distributive with respect to convex com-
binations, op = @9, Toi(® = fi(xd, and the uniform convergence of f, to fi on
every finite interval is equivalent to ,u,,—w*/,c. The characteristic function fZ is rep-
resented as

(1.1) a0 = [ pd).

Here and in the sequel the symbol f denotes the integral over [0, o). The

function £ is called a kernel of the characteristic function. The system of charac-
teristic functions is unique in the following sense: If there are two systems of
characteristic functions with kernels £, and £2,, respectively, then

2, = 02,(ct) (¢=0)

for some ¢ > 0 (cf. Urbanik [18], Theorem 2.1). Henceforth we fix a system of
characteristic functions.

The limiting measure in (LLN), denoted by o,, is called the characteristic mea-
sure of the algebra in question and (with ¢, replaced by their constant multiples if
necessary) has the following characteristic function:

(1.2) 6, = exp(— t")

where t = 0 and k is a positive constant called the characteristic exponent of the
generalized convolution -. The concepts of infinite divisibility and self-
decomposability are introduced in the algebra (P, °).

In a natural way the operation - as well as the characteristic function can be
extended to the set @. Moreover, one can also extend the generalized convolution
and the map T, (z > 0) to the set P of all p.m.’s defined on the compactified
half-line R, = [0, o]. Namely,

(a/ + 1 —a)d)-(bv + (1 — b)d.) = ab'>v) + (1 — ab)é.,
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T+ A —a)d,) =aTy + A — a)d,

for 0<a<1,0<06<1,0<c¢<c and ¢, v € P. The pair (P, °) is called
the extended gemervalized convolution algebra (cf. Urbanik [21]). The concepts of in-
finitely divisible measures and self-decomposable measures can be defined in
terms of the operation - also in the extended algebra (P, ). Consider ue P with
u=au + (1 — a)d,, where y' € P and 0 < a < 1. Then g is infinitely divisible
in (P, <) if and only if g is infinitely divisible in (P, ). Similarly, # is
self-decomposable in (P, °) if and only if &’ is self-decomposable (P, °).

Now we quote some examples of regular generalized convolutions which will
be needed in the subsequent discussion. The examples will be given in terms of
the kernel £ and the characteristic measure g, or its density g,. Except Example
4, which was essentially considered by S. Cambanis, R. Keener and G. Simons in
[4], the examples can be found in Urbanik’s and Kingman’s standard papers [16,
17, 18] [10]. The symmetric unimodal convolution in Example 3 and relation (1.3)
are given by N. V. Thu.

ExaMpLE 1. a-comvolutions %, (0 < a < ) : () exp(— ("), k = a,
0, = 0,. For &« = 1 we get the ordinary convolution i.e. %, = *

EXAMPLE 2. Symmetric convolution * ,,: (f) = cos t, £ = 2,
—_ 1 ' -1 _2
g,() = ﬁexp(— 4"z,

ExaMpLE 3. Kingman convolutions *,, (B =2(s+ 1)) >1): We have
k=2,

20 = 4,0 =16+ 1,0 / (31,

where J is the Bessel function and

g, (@) = 27 2* exp(— 47'2®) /(s + 1).

1 .
The limiting case s = — 5 reduces to the symmetric convolution. Moreover, as

observed by Bingham [2], every Kingman convolution is subordinate to the sym-
metric convolution:

1
The case B= 3, s = 5 reduces to the following symmetric unimodal convolu-
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tion.

Let W denote the uniform distribution on [— 1,1]. For two independent ran-
dom variables X and Y with distributions F and G we denote by FG the distribu-
tion of the product XY. By Khintchine-Shepp representation (cf. e.g. [6], Theorem
1.5, p. 10), every symmetric unimodal distribution ¢ on the real line can be un-
iquely represented by g = FW with F € P. Furthermore, by a routine computa-
tion we have the following equation:

(1.3) FWGW = (F%,, )W (F, G P),

which is a more specific form of the well-known theorem of Wintner (cf. [24])
asserting that the convolution of two symmetric unimodal distributions on R is un-
imodal.

EXAMPLE 4. n-symmetric convolutions [1, (n = 2,3, .. .): These convolutions
appear in the contex of @-symmetric distributions (cf. [4]). We have £ = 1,

(1.4) Q@) = EA(t/VD),

1 -1
with # = 2(s +1) and D being a random variable with Beta (5, " 5 )

distribution, and
é 2s+1
2F(s + 2)(23: )
Val(s + 1) + 25>

g.(r) =

The paper is organized as follows: in 82 we introduce generalized indepen-
dent increments processes (--i.i. processes) and --Lévy processes. We prove that
.-Lévy processes are strong Markov Feller processes. In §3 the infinitesimal
genarators associated with «-Lévy processes are studied. Generalized Bernstein
functions are discussed in §4. Finally, in 85 we obtain analogues of some of Sato’s
and Lamperti’s results on self-similar processes (cf. [13], [15]).

2. Generalized independent inecrements processes

Suppose that g, (0 < s < ) is a family of p.m.’s on R, such that the follow-
ing eguation is satisfied:

(2.1) Por*lia = Usu (0= s <t <)

For every x in R+ and B € B, B being the Borel o-field of E+, we put
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(2.2) P, (x, B) = 0,°1,(B).

This definition and (2.1) imply the Chapman-Kolmogorov equation
[Pz, )Py, BY = Pz, B) ©0<s<t<u),

which can be proved by characteristic functions. Hence, there exists a R+—valued
Markov process {X,} with transition probability P, given by (2.2), that is

PX,€ B|X,,u<s) =P, (X,, B).

The probability measure under the initial condition X, = x is denoted by P* As
usual the expectation with respect to P” is denoted by E™.

If - is the ordinary convolution then {X,} is a process with independent in-
crements. Therefore, in general case, {X,} will be referred to as a genevalized inde-
pendent ncrements process, or more precisely, o-independent increments process (o -1.i.
process).

We say that a family of p.m.’s {g,} in P is a generalized convolution semigroup
(shortly, --semigroup), if the following conditions are satisfied:

Peotts = fyys (8,5 20)
(2.3) w
u,— 0, as t—0.
It follows that p, = 0.
It is easily seen that if {4} is an o-semigroup then the family {,} given by

toy = Uy (0<s<H

satisfies (2.1) and induces a time-homogenous o-i.i. process {X,} which will be
called in the sequel an o-Lévy process.

For an extended generalized convolution algebra (P, °) define generalized
translation operators by

(2.4) @@ = [ Fa)d,6,(du),

where a, x € I?J, and f is a continuous function on R+. Here and in the sequel
f denotes the integral over R+. The operators % a€ R+, will be called

o~translation opevators (cf. Levitan [14]). Using these operators, Volkovich [23]
obtained an analytic characterization of generalized convolutions.
Let ¢ be a finite measure on R,. We put
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(2.5) @N@ = [ fapsw = [ @) @udo,
where £ € R+ and f is a continuous function on I?,r.
LEMMA 2.1.  For every finite measure pt the opevator T transforms C, into C,,.

Proof. The assertion follows from the fact that the extended generalized con-
volution - is continuous in each variable separately (cf. Urbanik [21], Proposition

2.4). ]

Proofs of Lemmas 2.2, 2.3 and 2.4 below are similar to those for the ordinary
convolution and will be omitted.

LEmMMA 2.2. Every © is a positive bounded operator on C, commuting with
o ~translation operators.

In the sequel, any operator on a function space commuting with --translation
operators will be called --translation invariant.

LemMma 2.3. Let A be a positive bounded «-translation invariant operator on C,.

There exists a uniquely determined finite measure [ on R+ such that

A=7"
Lemva 2.4. Foramypy, v € P
(2.6) 't = =
We note that
[ rwwv@n = [ [ @nwudnv@,
where ¢, v € P and f is a continuous function on I?+.

TureoreM 2.5. Let {u,} be an --semigroup of p.m.’s on R,. The formula
(2.7) =" (=0

defines a strongly continuous - -translation invariant contraction semigroup on C,.
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Conversely, if (S,} is a strongly continuous --translation invariant contraction
semigroup of positive operators on C, then it is given by (2.7) with the same
o-semigroup of pm.’s on R,. The correspondence {gt,} < {S,} is one-to-one.

Proof. From Lemmas 2.1, 2.2 and 2.4 it follows that {S,} defined by (2.7) is
an o-translation invariant contraction semigroup. Its strong continuity follows
from Chung's remark (cf. Chung [5], p. 49). The converse statement follows from

Lemma 2.3. Finally, the one-to-one correspondence {g,} < {S,} is a consequence
of Lemma 2.2. O]

Let {X,} be an --Lévy process with the transition probability given by
P(x,) =p°86, (t=0,z€R,).
The corresponding semigroup {S,} can be written in the form
(2.8) (SN (@) = Ef(X).

By Theorem 2.5 {S,} is a strongly continuous semigroup on C,, which implies
that {X,} is a Feller process. Moreover, since the function (¢, x, f) = (S5,) (2) is
continuous (cf. Chung [5]), it follows that the process is a strong Markov process
(cf. Blumenthal and Getoor [3], p.41). Thus we have the following theorem (cf.
Chung [5], Proposition 2, p.50 and Theorem 6, p.54):

THEOREM 2.6. Every o-Lévy process is a strong Markov Feller process. Conse-
quently, it is stochastically continuous and has a version with right continuons paths
having left limits.

Remark 2.7. For some generalized convolution o, there exist --Lévy proces-
ses with continuous paths. For example, the absolute value of the Brownian motion
is a *,,-Lévy process having continuous paths.

3. Infinitesimal generators

The aim of this section is to study the infintesimal generators of the semi-
groups associated with o-Lévy processes.
To begin with we introduce the following generalized differential operator:

. Ty — )
(3.1) Df(x) = yliror}r Tl
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where f is a function in C, and the limit is taken in Cy,-norm and the function
w(.) is defined by
wy =1— 2y, 0<y<uz,
(3.2)
=1-Qx), y>x,

Z, being a number such that 0 < 2(y) <1 for 0 <y < x,. The domain of D’ is
denoted by D(D").
As in Klosowska [11] and Bingham [2] we shall assume that

(3.3) vi= fx"o,‘(dx) < oo,
which holds true for all known examples of regular generalized convolutions.
Lemma 3.1, Let {u,} be an --semigroup in (P, °). There exists a finite measure
m on R, such that
w(x)

(3.4) = mdn Smoas =0,

Proof. Since 4, is --infinitely divisible, there is a unique finite measure m on
R, such that

4, (u) = exp f %m(dx)

by [16] Theorem 13 and [17] Theorem 1. Hence

2ux) — 1

w(x) m(dx)).

4,(w) = exp(t

Let m,(dx) = t'w(x) g, (dx) for t > 0. Then
t

Qux) — 1
w(x)

Qux) — 1

m,(dx) = t_l(ﬂ,(u) - 1) - w(x)

m(dx) (—0)

uniformly on every finite interval. Now the argument in the proof of [16] Theorem
13 applies and we get m, S mas t— 0. O

LeEMMA 3.2, Suppose that (3.3) holds. Define
B,(w) = Vy "u*T,0,(du) (y > 0).
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Then every B, is a p.m. on R, and

(3.5) By—’”»ao (y—0).
Proof. We have
B0 = [ wQupV, (),

which implies that By(O) = 1 and therefore B, is a p.m. Moreover, lettng ¥ tend to
zero we have B,,(t) — 1. Consequently, (3.5) holds. ]

Let H be the class of functions of the form

f,() = exp(—a"x") (a>0,x€R,).

LemMa 3.3. Suppose that (3.3) holds. The operator D° is densely defined in C,,
and the domain D(D°) contains the class H, (3.1) is equivalent to the following

(3.1 D@ = tim LY LD,
y—0 Vy

Proof. When (3.3) holds, Klosowska ([11], Lemma 1) shows that

(3.6) —”@—» V (y—0),
Y

which implies that (3.1) is equivalent to (3.1°). The linear combinations of elements
of H are dense in C,. Let us prove that D’f, is defined for any @ > 0. By (1.2),
(2.4) and (3.3) we have

] of,@) — £,(®

” + f Qlaxv)a“v*o,(dv) ! =

[ [ 2tau)o,@)s,-6,w) — [ azv)o,@v

= - + f Q(axv)a“v o, (dv)
Vy

= f.Q(axv) {%?g’y)x_f_l + a"u"}o,,(dv) l
Qauw) — 1+ Va'u"
Vy"

= | [ Otazuy™ 1,0,(dw) |
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< [0 =1+ Va'* | V7™ T,0,(dw)

= V—ZI)Q(L),(—I + Va" | Vy u"T,0,(du),
u

where the integrand is a continuous bounded function of # and vanishes at # = 0.
By Lemma 3.2, the last expression tends to zero as ¥ — 0, which implies that H C
D(D) and

T — £,(@) .
(3.7 hm—f"u = — fQ(axv)a“v o, (dv)
¥—-0 Vy
uniformly in x for every positive number a. O

THEOREM 3.4. Suppose that (3.3) holds. Let A be the infinitesimal generator of
the semigroup associated with an --Lévy process on R, with domain D(A). Then

D(D°) € D(A) and
f(w) — f(x)

W@ v(du — of (x)

(3.8) Af(z) = f

for £ € D(D"), where p is a nonnegative constant and v is a finite measure on R..
The integrand assumes the value D°f(x) at u = 0. The pair (v, ) is uniquely deter-
mined by A.

Conversely, for any pair (v, 0), there exists a unique --Lévy process on R+ satis-
fring (3.8) for all f € D(D°).

Proof. Let A be the infinitesimal generator for the semigroup {S,} given by
(2.7) and (2.8). Putting
o =pn,R,) =0)
and taking into account the continuity of {,}, we have
ot) =exp(—pt) (t=0)
with some o = 0. Let f € D(D°). We have

Af@ = lim LD =S

=0 ¢

=tm [ @) — F@] )

t—0
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p(t)

=iim { [ %) — @] 505 w ) — 2 @)

t—=0

f f(y) — f(2)

W) vidy) — of (@),

where v is the weak limit of ¢ 'w(y)y,(dy) as t— 0 (Lemma 3.1), and the integ-
rand in the last expression assumes the value D°f(x) (Lemma 3.3).

Since the last expression of the above equalities belongs to C, and since the
convergence is boundedly pointwise, the limit can be taken in C,-norm by the use
of a general theory (Dynkin [7] Lemma 2.11). This shows that D(D") < D(A) and
(3.8) holds.

To prove the uniqueness of representation (3.8), use the fact H € D(D") in
Lemma 3.8. By (3.7) we have Df,(0) = — V ™'a" Hence

exp(— a'y") — 1
(0,00) w(y)

Af,(0) = — Vid"v({0}) + v(dy) — p.

Since Af,(0)— —p as a—0,p0 is unique. Since a (Af,(0) + p)—
— V7'w({0}) as a— oo, v({0}) is unique. Moreover, if finite measures v and v’
satisfy

exp(— a'y") — 1 _ exp(—ay) —1 ,
-/(:)m) w(y) v(dy) = '/<:),m> w(y) v'(dy)

for all @ >0, then vy =" on (0, ) by the uniqueness theorem for Laplace
transforms, because the above equality is written to

_jom e ds l”%dyy)) = jom e ds jsm v;)((%).

Conversely, given a pair (v, p), let 7 be an --infinitely divisible p.m. on R,

satisfying

2ux) — 1

w(x) v(dz)

7(u) = exp
(cf. Urbanik [16]). Then the infinitesimal generator A for the semigroup {S,} given
by (2.7) with
1, () =exp(— pt)r”" + (1 — exp(— pD)d.,

satisfies (3.8). It is easy to see that this g, is uniquely determined by (v, p). O
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A particular but very important case of --Lévy processes is the processes in-
duced by the characteristic measure 0g,.

THEOREM 3.5. Suppose that (3.3) holds. Let A be the infinitesimal generator for
the o-Lévy process {X,} such that the P°-distribution of X, is equal to 0,. Then
Af = D’f for every f € D(D").

Proof. Apply Theorem 3.4. The measure v there must satisfy

Qux) — 1

W(.Z') ))(dl‘) = - Mn

in this case by virtue of (1.2). Since the integrand assumes the value #” at £ = 0,
we have v = 4, Ul

Now, by virtue of formulas (3.1") and (3.7), we get the following examples of
D’
a-comvolutions: D'f(x) = a 2" 7%f " ().
Symmetric convolution: D°f= f”.

Kingman convolution %, (8 =2(s +1) > 1): By Gradshteyn and Ryzhik ([8],
3.381 (4)), the constant Vin (3.3) is given by

1

V=161

Next, for f € C, and x, y = 0 we have (cf. Urbanik [16])

+ : 1 -4
T 1)1 f fx® + 2uxy + yz)é(l — ) ;du,
1

x/EF(S'l'f) N

which together with Lemma 3.3 leads to the following formula (cf. Gradshteyn and
Ryzhik [8], 3.251 (1) and 3.249 (5)).

fly) =

Dfx) =f"(@ + Q2s+ Dz f'(x).

4. Generalized Bernstein funetions

We say that the family {v,} of sub-p.m.’s on R, is an o-semigroup if the fol-
lowing conditions are satisfied:

vy, = v, ¢, s=0).
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v,— 0, vaguely as f tends to 0,

that is, ff(x) y,(dx) — f(0) as t— O for every continuous function f on R, with

compact support.

Clearly, these conditions imply that v, = J, and v, —8, as t— 0. Let {X,} be
an o-Lévy process on R+ induced by an --semigroup {g,} of p.m.’s (cf. §2). The
restriction of {¢,} to R,, denoted by {v,}, is an --semigroup of sub-p.m.'s. Since
every measure b, is infinitely divisible with respect to -, the characteristic func-
tion of v, is of the form (cf. Urbanik [16], [17])

4.1) D, () = exp(— tf(w), (u, t = 0),

where f is given by
(4.2) fw) = a+ bu” + f 1 — 2ux))mdo),

a, b being nonnegative constants and m being a measure on R, vanishing at the
origin such that

(4.3) [ w@mz) <

where w(.) is a function defined by (3.2).

Let F(°) denote the set of all functions of the form (4.2). Let S(°) denote the
set of all functions in F(°) corresponding to --self-decomposable sub-p.m.’s (cf.
Urbanik [17]). For the ordinary convolution the set F() coincides with the set of
all Bernstein functions (cf. Berg & Forst [1], p. 61). Hence in general case the
functions in F(°) will be called generalized Bernstein functions, shortly
o-Bernstein functions.

It is evident that the set F(°) is a cone which does not depend upon the
choice of the system of characteristic functions and is closed under the converg-
ence that is uniform on every compact set.

ProrosiTioN 4.1, Let {u,} be an o-semigroup (of sub-pm.’s) and {v,} a
% ,-semigroup (a > 0). Then the integral

0= [ wands =0

defines an o-semigroup.
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Proof. We have, for ¢, u = 0,

#w) = [ exp(= s°F(0)v,(ds)
= exp(— tg(f " W)),
f, & being generalized Bernstein functions associated with {z,} and {v,}, respec-
tively. O

As an immediate consequence of the above proposition we have

COROLLARY 4.2. IffE€ F(°) and g € F(%*,), then g(fa_l) € F(°). In particu-
lay, if h is a Bernstein function, then h(f) is an --Bernstein function.

The converse statement is also true. Namely, we have

ProposITION 4.3, Let g be a function such that for every generalized convolution
-1
o and for every f € F(°) the composite function g(f“ ) belongs to F(¢). Then g is
* - Bernstein function.

P‘VOOf. It follows from the fact that the function f(x) = .I’a belongs to F( * )
a
D

Let - and -’ be regular generalized convolutions. Let us denote G(°) =
{fi: ¢ € Q}, which is independent of the choice of the system of characteristic
functions. Then we have the following inclusions:

G(*,) < G(°)
(4.4) F(*,) C F(-)

S(*,) < S(C)
where 0 < a < (), £(°) being the characteristic exponent of - . Moreover,
Theorem 2.2 in Urbanik [18] can be formulated as follows:

THEOREM 4.4. If G(°) = G(¥), then - ="’

Similarly, we have the following:
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THEOREM 4.5. The following equalities ave equivalent:
(i) =,

(i) F(2) € F(-),

(iii) S(2) < S().

Proof. We shall prove that (ii) implies (i). Suppose that (ii) is true. Let £ and
£2’ be the kernels of ¢ and °’, respectively. By (4.2) there exist @’, b’ and m’ such
that

1— Q@ =a + b’ + f 1 — Q2 (ux))m’ (dx).

Since 2(0) =1 and 2(u) is bounded, we have @’ = b” = 0. Similarly, there is a
measure # such that

1- 26 = [ Q= Qu))mdp.

Hence
1- 0w = [ [ - QGap)m dmdy)
(4.5)
- f a1 — Q) H(dz),
where

H(dx) = f w' (dzx/y)m(dy).
In particular, we have the equation

fo "1 - @) Hd) = f " w(z) H(dz)
(4.6) <1-—202Q1)),

where x, is the same as in (3.2). On the other hand, by formula (41) in Urbanik
[16] and by Fatou’s lemma

. 1 — Q(tx) x(o)
121 f| =—F5F0 > H .
im in f 1= 0@ Hd) f """ H(dx)

Consequently, H is finite on every half-liine [A, o) (A > 0), which together
with (4.6) implies that H satisfies the condition (4.3). Therefore, by (4.5) and by
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uniqueness of the representation (4.2), it follows that H = d, and consequently,
m’ = bd, for some positive b, ¢, which implies that

4.7 Q) = b2 (cu) +1—0b, (u=0).

Let p be a positive number less than min(k(<), k(-)). Let 0, and o,
be o-stable and o’-stable measures, respectively, with the same exponent p (cf.
Urbanik [16]). Integrating both sides of (4.7) with respect to g, and o, and using
Fubini’'s theorem, we get the equation

fexp(— y'u’)o,(dy) = bfexp(— c’x"u)e,(dx) +1 — b.

Notice that 0, and o, do not have point mass at O (cf. Urbanik [19] Lemma 2.2; the
proof becomes simpler since our generalized convolutions are regular).

Letting £— 0 in the last equation, we get b =1 and 2(u) = Q'(cu) (u = 0).
Consequently, » =" which completes the proof that (ii) implies (i). The proof that
(iii) implies (i) is similar and is omitted. [

As a consequence of the above theorem we have the following characteriza-
tion of a-convolutions:

THEOREM 4.6. Let 0 < a X k(°). Then the equality ° = %, (and necessarily
a = k(°)) holds if and only if. for any o', g € F(°), and f € F(-’), the composite
function g(f V%) belongs to F(+").

Proof. The “only if” part follows from Corollary 4.2. To prove the “if” part
let us take g from F(°), " = %, and f(z) = 2" By the assumption the compo-
site function g(f %) = g belongs to F( *,), which implies F(-) € F(%*,) and, by
Theorem 4.5, ° = %, OJ

We conclude this section by giving a sufficient condition for transience of
--Lévy processes.

THEOREM 4.7. Suppose that the kernel 2 is nonnegative. Then every non-constant
o~Lévy process on R, is transient.

Proof. Let y, and f be the o--semigroup and the -Bernstein function associ-
ated with a non-constant --Lévy process {X,}. Thus f is not identically zero. By
Lemma 2.1 in Urbanik [20] the set of zeros of f has Lebesgue measure zero.
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Further, for every continuous nonnegative function g on R, with compact support
there exist positive constants @ and b such f(b) > 0 and for every # = 0

gu) < afQ(bu)

which implies that

[ Eexpdt < a [ E*00x)ar

aff[)(bu)@;/l,)(du)dt

aQa) [ exp(— 17BN dt
=a/f(b) <oo, O

Remark 4.8. For some generalized convolution -, there exist non-constant re-
current o-Lévy processes. In such a case the kernel £ must take negative values
somewhere (see Kingman [10], Theorem 10, for a transience criterion for
*, s-Lévy processes).

5. Self-similar --i.i. processes

This section continuous the line of research of Lamperti [13] and Sato [15].

Consider an o-ii. process {X,} on R, with transition probability P, given
by (2.2). We say that the process {X,} is H-self-similar (H > 0), if it is
H-self-similar as a Markov process, namely, if for any @ > 0 and x € I?Jr the
finite-dimensional P*-distributions of {X,} are identical with the finite-
dimensional P**distribution of {a™Xx,).

The following theorems stand for analogues of Sato’s results [15]:

Tueorem 5.1. If { X} is an H-self-similar --i.i. process, then for every t the
P°-distribution of X, is --decomposable.

THEOREM 5.2.  Suppose that p is an --self-decomposable measure in P and uF
0u. Then for any H > 0 and t, > O there exists a unique H-self-similar --1i.i. process
{X,} such that pt is the P°-distribution of X, The uniqueness here is in the sense of
[finite- dimensional distributions.

A natural question arises: What can be said about the P*-distribution of X,
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for x > 0? And, more generally, what can be said about the P’-distribution of X,
for y € P? The following theorem answers these questions and gives a character-
ization of a-convolutions by self-similarity.

TueoReM 5.3. Let {X,} be H-self-similar «-i.i. process such that y,, * 0., for
every t > 0. Let v € P. Then, the P’-distribution of X, is «-self-decomposable for ev-
ery t > 0, if and only if V is - -self-decomposable.

Consequently, the following two statements ave equivalent:

(i) There exists an H-self-similar -ii. process {X,} and a pont (0 <z
< ) such that o, # 6. for every t>0 and the P*-distribution of X, is
o-self-decomposable for every t > 0.

(ii) - is an a-convolution for some a (0 < a < o0).

A p.m. ¢ € P is said to be --stable if, for any pair @, b in (0, o), there ex-
ists ¢ € (0, ) such that T, T,u = T,p. If p € P is o-stable, then g = §,, or
u € P

THEOREM 5.4. Let {X,} be a non-constant --Lévy process. Then it is self-similar
if and omly if the P°-distribution of X, is o-stable. If the stable index 1is
a, then the order H of self-similarity is o .

Proof of Theorem 5.1. Note that for any ¢t>0 and x € R, the
P*_distribution of X, is equal to to,° 0,. Hence and by H-self-similarity of the

S -H
process we have, for every ¢ = 7 >landa=c¢

to, = the P°_distribution of c_HXc,
= Tattos = Tutto Tattsss

which proves that the P°~distribution of X, is --self-decomposable. O

Proof of Theorem 5.2. Suppose that g is --self-decomposable in P. Then for
any 0 < s <t there exist a unique p.m. g, from P such that

Ty = Ty,

which implies the following equality
(5.1) Topg, = Ueser, O s<t ¢<0).

Then the family {g,,} satisfies (2.1) and induces an --ii. process {¥,} with tran-
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sition probability (2.2). We claim that the process is 1-self-similar.
Denote the indicator function of a set B by 1,. Given x € R,, a > 0,0 < ¢,
+<t,and B= B, X -+ X B,, B;’s being Borel subsets of R,, we have by
virtue of (2.2) and (5.1),

P*(Y, €B,....Y, €B,) =

= [ Pz [P (5 dz)1a,. )

= [ toneaam) - [ g0, @)1y, 2

= [ Tlw,-0d@dr) - [ Tiu,,, 0, Jadz)l,,....z)
—f o, ar,® 0q (adz,) - f Paty,, aty® Oaz,_, (@dx,)15(,, . . . 2,)

= f AUO, atloaar(adxl) tot f #atn-l' at,,oaaxn_l(dxn) 1B(a_1x1, PR ,a_ll'n)
=P“@'Y, €B,....a"'Y, €B,).

This shows that {Y,} is a 1-self-similar Markov process. Moreover, we have y =
Lo, and, therefore, p is the P°-distribution of ¥;.

Now let H and {, be arbitrary positive numbers. Putting X, = Y.un we get a
required process.

The uniqueness of {X,} follows from the fact that the transition probability
P, is uniquely determined by g Namely, for any s < ¢ and x € R+ we have

T(to/t)"'#°6x = T(to/t)‘”ﬂ°Ps,t (x,.). O

Proof of Theorem 5.3. Suppose that {X,} is an H-self-similar --ii. process
such that g,, # 0, for every ¢ > 0. By Theorem 5.1 the P°distribution o, of X,
is o-self-decomposable for every ¢ = 0. If v € P, then the P"-distribution of X,
equals v, Let go,(R,) = a. Then y,,(R,) = a for every t > 0, since ,, =
T,atty,. We have g,,—ad,+ (1 —a)d, as t— 0. Hence v ° p,, is o-self-
decomposable for every £ > 0 if and only if v is --self-decomposable. In particu-
lar, if there exists a point £ (0 < x < 00) such that the P*-distribution of X, is
o-self-decomposable for every ¢> 0, then the p.m. §, must be decomposable in
the sense that there exist p.m.’s 7, 7, other than 0, such that 0, = 7;° 7, and
hence the generalized convolution - is an a-convolution (0 < @ < o) by a
theorem of Kucharczak [12]. Conversely, if - is an a-convolution and the process
is H-self-similar and o-ii., then, for every x € R,, the pm. §, is o-self-
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decomposable and the P*-distribution of X, (f > 0) is --self-decomposable. O

Proof of Theorem 5.4. Suppose that {X,} is a non-constant --Lévy process
induced by an o-semigroup {g,}. Then p, # 8. for every ¢ > 0. If the process is
H-self-similar, then y, = T,aut, and g, (R,) = 1 for every t > 0, and hence y, is
-—stable of index H . Conversely, if g, is --stable of index ¢, then the process is
anl—self~simi1ar, which is proved by argument similar to the proof of Theorem

5.1. O
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