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ON THE VANISHING AND THE POSITIVITY

OF INTERSECTION MULTIPLICITIES OVER LOCAL RINGS

WITH SMALL NON COMPLETE INTERSECTION LOCI

KAZUHIKO KURANO

1. Introduction

Throughout this paper A is a commutative Noetherian ring of dimension d

with the maximal ideal m and we assume that there exists a regular local ring S

such that A is a homomorphic image of S, i.e., A = S/I for some ideal / of S.

Furthermore we assume that A is equi-dimensional, i.e., dim A = dimA/p for any

minimal prime ideal p of A. We put

V= {p e Spec (A) \ (I/I2) <g)AAp is not an Ap-ίree module}.

Recall that V coincides with the non complete intersection locus of A. For conveni-

ence, we set dim V = — °° when V is empty. Let M and N be finitely generated

A-modules such that £A(M®AN) < °°, where ^ ( * ) stands for the length as an

A-module.

Throughout this paper we maintain the notation as above unless otherwise

specified.

The aim of this paper is to prove the following theorem:

THEOREM 1.1. With notation as above, suppose pdA(M) < °° and pdA(N) < °°,

where p d A ( * ) is the projective dimension as an A-module. Put

χ(M, N) = Σ (- l)'4(Tor?(M, N)).
i>0

(1) //dim V < 1 and dim M + dim N < d, then χ (M, N) = 0.

(2) Suppose that A is a Gorenstein ring, or a normal domain whose canonical class

cl(KA) is a torsion element in the divisor class group C1C4) of A. Furthermore

suppose that d is an odd number. Then χ(M, N) = 0 if dim V < 2 and

dim M + dim N < d.

(3) Assume that dim V = 0, dim M + dim N = d, depth M = dim M, and
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one of the following two conditions is satisfied:

(a) A contains a field.

(b) pvN — 0 for v > 0, where p > 0 is the characteristic of the residue class

field A/m.

Then we get χ(M, N) > 0.

Originally this kind of problem was raised in 1965 by Serre [17], asking

(v) if dim M + dim N < d, then χ (Λf, ΛO = 0,

(p) if dim M + dim N = d, then χ (M, ΛO > 0

for finitely generated A-modules M and N satisfying Q < £A(M®AN) < °°

especially when A is a regular local ring. Serre proved them in [17] in the case

where A is an unramified regular local ring. After that (v) was solved affirmative-

ly for any regular local ring by Gillet-Soule [7] and Roberts [14] independently.

If A is any local ring, M is a finitely generated Λ-module of finite projective

dimension, and N is any finitely generated A-module such that £A(M®A ΛO < °°,

then we can define χ ( M , ΛO. It is natural to ask whether the statements (v) and

(p) hold in this generality. But, Dutta, Hochster and MacLaughlin [5] succeeded to

construct counterexamples to both (v) and (p). In their examples, A is a hypersur-

face of dimension 3 and the projective dimension of N is infinite.

Therefore, when A is not a regular local ring, it seems to be necessary to

assume that both M and N have finite projective dimension. In fact Roberts

proved the statement (v) not only for regular local rings, but also when M and Λf

are modules of finite projective dimension over a complete intersection or a local

ring whose singular locus has dimension at most one. (1) of Theorem 1.1 is an

extension of the results due to Gillet-Soule and Roberts to the case where the non

complete intersection locus of a given equi-dimensional local ring has dimension at

most one. In the same situation as in (3) of Theorem 1.1, χ(M, N) > 0 has been

already proved for a regular local ring ([4]) or a certain complete intersection

([10]).

The main tool to prove Theorem 1.1 is a localized Chern character (see Sec-

tion 18 in [6]). We shall prove (1), (2) and a part of (3) of Theorem 1.1 in the next

section. The formal arguments with respect to localized Chern characters enable

us to prove (1) and (2) of Theorem 1.1. Using "intersection theory", one can prove

(3) of Theorem 1.1 if A does not contain the field of rational numbers. However

we need complicated, but formal arguments to reduce the case of characteristic

zero to the case of positive characteristic. We shall prove (3) of Theorem 1.1 in
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Section 2 when A does not contain the field of rational numbers Q, and in Section

3 when A contains Q.

Throughout this paper we put X = Spec (A), Z = Supp(M), W = Supp(Λ0.

Let F. (resp. G.) be the minimal A-free resolution of M (resp. N). (Supp(*)

stands for the support of a given module.)

2. Proof of (1), (2) and a part of (3) of Theorem 1.1

This section is devoted to proving (1), (2) and a part of (3) of Theorem 1.1.

First of all, we recall some results from "intersection theory" which we shall

use in this section. We refer the reader to Fulton [6] for complete definitions and

properties of them.

Let U be a scheme of finite type over a regular scheme.

We denote by A*U = Θ ^ ί/ the Chow group of U and put A*UQ = A*U®Z Q

and AJUQ = AJJ®z Q, where Z (resp. Q) is the ring of integers (resp. the field

of rational numbers). For a closed integral subscheme C of U, we denote by

[C] the cycle in A*UQ corresponding to C. More generally, for an equi-

dimensional closed subscheme C of U, we put

[C] = ΣίβccWc,c)-[Ci],
i ' ι

where the above sum runs over all irreducible components of C.

For a proper (resp. flat) morphism i : C~• U, one can define the homomorph-

ism i * : A* C^ A* [/(resp. i* : A*U~+ A*C).

For a bounded locally free complex H. over U which is exact except for a

closed subset C of U, one can define an intersection operator

a ^ ch(H.) Π a

called the localized Chern character. We put

c h ( H . ) = c h o ( H . ) + c h 1 ( H . ) + ••-,

where ch,.(H.) Π a e A,_, C Q if a e A,ί/Q.

iΓ0C/ denotes the Grothendieck group of coherent sheaves over U and put

K0C/Q = K0C/(8)zQ. For a coherent sheaf ^ over U, we denote by [^] the

element in K0C/Q corresponding to ?F.

We can construct the natural isomorphism τ : K 0 C / Q ^ A^C/Q of Q-vector
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spaces and τ is called the Riemann-Roch map.

In this section we shall use these terminologies freely.

Put τ([A]) = qd + qd_x + + q0 with q{ e A , A Q in the rest of this sec-

tion. The next lemma plays an essential role in proving Theorem 1.1.

LEMMA 2.1. Let H. be a bounded A-free complex which is exact except for a

closed subset C of X. If cht(JR.) Π qι Φ 0 for some integers I and t satisfying 0 < t

< l< d, then either I - t < dim(V 0 C) or dim C > d - t holds.

Proof. If X — V, then the assertion immediately follows from 0 Φ ch^CH.) Π

qι ^ A/. CQ. Assume X Φ V in the rest of the proof.

Put Y — Spec(S). Denoting by P. a finite S-free resolution of A, we get

τ([A\) = ch(P.) Π [Y] by the definition of τ : KoXQ-+ A * Z Q (see [6]). Let i :

X — V—> X and ϊ : F — V—• Fbe natural inclusions.

Since the following diagram

ch(P.)

is commutative, we have

= i*(ch(P.) Π

= ch(p. | y _ F ) n [Y- v].

Recall that V coincides with the non complete intersection locus of X. Therefore

j : X — V~* Y — V is a locally complete intersection morphism of (constant)

codimension dim Y — dimX because X is equi-dimensional. Let 8 be the normal

bundle of /. Then 8 is a vector bundle over X of (constant) rank dim Y — dim X.

Since P . \γ_v is a finite 0F_y-free resolution of 6X_V, we have ch(P. \Y-V) —

td(<f)~ -j' (see Corollary 18.1.2 of [6]), where j ' is the refined Gysin map induced

by the locally complete intersection morphism j and td(8) stands for the Todd

class of the vector bundle 8 (see [6]). Thus we get

ch(P. \γ_y) Π [Y- V\
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-V\)
~ι n [x- v\.

ίe denote by c{ the i-th Chern class of S. By the definition of td(S), (td(<f)"1)rf_/

. a homogeneous polynomial in clf c2,... of degree d — I with deg £t = z for each

Putting (td(SV1)d_1=fd_ι(c1,c2,...), we have i*(qt) = fd-ι(cv c2f...) Π

Y - V].

If 1/ includes C, then dim(K Π C) > / - ί follows from 0 Φ ch,(H.) Π ^ e

Next assume I — t > dim(V Π C). Then we know that C — V is not empty,

>r the following sequence

. exact and A ^ C Q ̂  (0). (Note that (i") is an isomorphism since At_t(V Π

')Q = (0).) Letting i" : C — V—^ C be the natural inclusion, the following dia-

ch(H.)

" ) *

- V)
Q

i commutative. Since (i") is an isomorphism, we obtain

(i*)*(ch#(H.) n ί,)

= ch((H. | x_κ) Π /*(?,)

= ch,(H. \x_r) n Λ_ ; (C 1 ( c2,...) n [x - v\
= fΛ-M, 4 . . . ) n ch((H.\x_v) n \χ- v\

y Proposition 17.3.2 in [6], where we denote by c\ the i-th Chern class of the

εctor bundle g ($) on C — V. (Here, g : C — V—> X — V is the closed immer-

on.) In particular, we have ch((H. \x_v) Π [X — V\ Φ 0. Then the assertion

nmediately follows from

>codim(C- V,X- W = codim(C- V, X) > codim(C, X) = dimZ- dimC,

here C — V is the closure of C — V in the Zariski topology. Q.E.D.
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Now we start to prove Theorem 1.1.

Proof of (1) of Theorem 1.1. If either d imZ or dim W is equal to 0, then the

assertion is obvious. (In fact, if dim Z = 0, then we have χ ( M , N) = £A(M)'

rankA(Λ0 = 0.) Therefore we may assume dim Z > 0 and dim W> 0. Here note

that, since d > dim Z + dim W > 0, we have ΔQXQ = (0) and, in particular,

q0 = 0. Then

χ(M,N) [Spec(A/m)] = ch(F. ® 4 G.) Π
= ch(F. (g^ G.) Π (qd + qt^ + • + qj

= Σ c M F . ® A G . ) Π q,
1 = 1

holds by Example 18.3.12 in [6].

Assume χ(M, N) Φ 0. Then, for some integer / such that 1 < / < d,

ch,(F. ®A G.) Π ft Φ 0 is satisfied. Since

0 Φ ch,(F. Θ A G.) Π ^ - Σ ch 5(F.) ch,(G.) Π ft,

one can find non negative integers s, t such that s + t=l and ch 5(F.)

chjCG.) Π ft =£ 0. In particular, by the commutativity of localized Chern charac-

ters (Roberts [14]), we have ch s(F.) Π qι Φ 0 and ch f(G.) Π ft ^ 0.

Note that dim Z < rf - 2 and dim if < rf - 2 since dim Z > 0, dim W > 0

and dim Z + dim W < d. Then we have cho(F.) = ch^F.) = cho(G.) =

ch^G.) = 0 (see [13]). Therefore we know s > 2 and t> 2 and, therefore, it

follows from Lemma 2.1 that dim Z > d — s and dim W> d — t. But it contra-

dicts d > dim Z + dim W. Q.E.D.

Next we prove (2) of Theorem 1.1.

Proof of (2) of Theorem 1.1. We may assume dim Z > 0 and dim W > 0 as in

the proof of (1) of Theorem 1.1.

First of all, we claim ft = 0 for each even number i such that z >̂ 4. When A

is a Cohen-Macaulay ring, it is easy to see

τ ( [ K A ] ) = q d — q d _ γ + • • • + ( - \ Ϋ ~ x q { + • • • + ( — ΐ ) d q 0

by the definition of the Riemann-Roch map r ([6]). Therefore we immediately

obtain ft = 0 for any even number i if A is a Gorenstein ring and d is odd. On the

other hand, suppose that A is a normal domain whose canonical class c\(KA) is a



VANISHING AND POSITIVITY OF INTERSECTION MULTIPLICITIES 1 3 9

torsion element in the divisor class group C104). Then qd_x = 0 follows from Lem-

ma 3.5 of [10]. With the same notation as in the proof of Lemma 2.1,

i*(Qd + Qd-i + ''' + ?o> = t d W 1 Π [X - V\

holds and, therefore, we have (td(8)~1)1 Π [X - V\ = i*(qd^) = 0. In general,

once (td(8)~l)1 Π [X ~ V\ coincides with 0, it is well known that ( td(δ)" 1 ) n Π

[X — V\ — 0 for any odd number n (e.g. see 1.7 in [8]). Therefore we get

i (^ ) = 0 for any even number i. Then the assertion follows immediately from

the exact sequence

We now start on the proof of (2) of Theorem 1.1. Assume χ(M, N) Φ 0.

Then, as in the proof of (1), there exist integers s, t > 2 such that ch 5(F.) Π qt Φ

0, ch f(G.) Π qι Φ 0 and 0 < s + t = / < d. As we have already seen, #, is equal

to 0 if / is even such that / >: 4. Therefore, we may suppose that / is at least 5.

According to Lemma 2.1, we have only to consider the following four cases:

1) / - 5 < dim(K Π Z) and / - t < d im(7 Π W)

2) I- s< dim(y Π Z) and dim W > d - t

3) dim Z > d ~ s and / - t < dim(K Π W)

4) dim Z > d ~ s and dim W > d - t

Since s + t — I > 5 and dim V < 2, the case 1) never happen.

In the case of 2), we have t—2 and, therefore, dimZ > 2 and dim W> d — 2

are satisfied. It contradicts dim Z + dim W < d.

In the same way as the case 2), we can show that the case 3) never happen.

When the case 4) takes place, we have

d > dim Z + dim W > 2d - s - t > d,

and it is a contradiction.

We have completed the proof of (2) of Theorem 1.1. Q.E.D.

Before proving (3) of Theorem 1.1, we make a remark as follows:

Remark 2.2. As in (3) of Theorem 1.1, let ΛΓ and N' be finitely generated

modules over a Noetherian local ring A such that depth M' = dim M\ pdΛ, M'

< oo, 0 < eA,{W ® A , N') < oo. Then we have

d e p t h s - depth Mr = pdA, ΛΓ > dim Nf
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by the Auslander-Buchsbaum formula and the intersection theorem (cf. [9] and

[15]). Furthermore, if dimM' + dim N' = dimA', then A must be a Cohen-

Macaulay ring and the projective dimension of Mr is equal to dimiV'. Hence, once

A satisfies the assumption of (3) of Theorem 1.1, -A must be a Cohen-Macaulay

ring and the projective dimension of M is equal to dim N.

In the rest of this section, we prove (3) of Theorem 1.1 in the case where A

does not contain the field of rational numbers Q. The third section is devoted to

reducing the case where A contains Q to the positive characteristic case.

Proof of (3) of Theorem 1.1 (in the case where A does not contain Q). Let p > 0

be the characteristic of the residue class field A/m. By our assumpiton, either A

contains a field of characteristic p or p kills N for a sufficiently large v. There-

fore, in both cases, N is killed by pv for v > 0.

As in the proof of (1), we may assume dim Z > 0, dim W> 0 and, therefore,

d > 0. Then we have

χ ( M , Λ0 [SpecC4/m)] = Σ chz(F. (g^G.) Γl qt.
1 = 1

At first we claim ch 5(F.) ch f(G.) Π q{ = 0 for non negative integers 5, t

and / such that 0<s + t=l<d. Assume the contrary, i.e., there exist integers

5, t and / such that ch 5(F.) ch,(G.) Π qt Φ 0 and 0 < s + t = I < d. In particu-

lar, we have ch 5(F.) Π qι Φ 0 and ch,(G.) Π qt Φ 0. Since dimZ < d (resp.

dim W < d), we have cho(F.) = 0 (resp. cho(G.) = 0) and, hence, 5 > 1 (resp.

t > 1). Then Lemma 2.1 implies dim Z > d — s and dim W > d — t. Therefore

we have

d=dimZ+dimW>2d- s - t = d+ (d - I) > d.

It is a contradiction.

As we have seen as above, it holds that

χ ( M , Λ 0 [SpecG4/m)] = ch r f(F. Θ A G.) Π [X]

= Σ ch s(F.) ch,(G.) Π [X],
s+t=d

If ch s (F.) ch,(G.) Π [X] Φ 0, then we have s > codim(Z, X) = dim X - dim Z

and t > codim(W, X) = dimX — dim W (see [12]) since X is equi-dimensional.

In this situation we have

d = s + t > 2d - dim Z - dim W= d
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and, therefore, s = dim X — dim Z = dim W and t = dim X — dim W = dim Z.

Hence, putting i = dim W and j = dim Z, it holds that

χ(M, Λ0 [SpecC4/m)] = ch,(F.) ch,(G.) Π [X].

By Example 18.3.12 in [6],

ch(G.) Π r(M]) = r([i\fl) in A*WQ

holds. Put

Assh^CΛO = {p e Supp(Λ0

and denote by (τ([N]))e the component of τ([N]) of dimension e. (Here note that,

since N is killed by p for v > 0, A/ph contains a field of characteristic p for any

h.) Then we get

k

h = l Vh

= (ch(G.) Π

= Σ chr(G.) Π qi+r
r=0

and, therefore,

ch,(F.) Π (τ([N]))t = Σch f (F.) chr(G.)
r=0

Since chs(F.) -ch^G.) Π qs+t = 0 for 5 + t < d, we have

ch,(F.) ΓΊ

= ch,(F.) chy(G.) Π [X]

= χ(M, iV) [SpecU/m)].

Hence we obtain

χ(M, Λ0 [Spec(Λ/m)] = chf(F.) Π Σ 4Apk(NPh) [Spec(Λ/pΛ)]

= Σ A (-/VpP ch ίF. Θ^A/pJ Π [Spec(i4/pΛ)].

On the other hand, it is known that ch f(F. ®A A/ph) Π [SpecG4/pΛ)] > 0 for

each h (see, e.g., [15]) since ch(A/ph) = p > 0, F. <g)A A/ph is a (not exact)

i4/pΛ-free complex of length j = dim N = dim^/p^, and that is exact except for
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m/p A (see Remark 2.2). Hence we have got χ ( M , ΛO > 0. Q.E.D.

3. Reduction to the case of positive characteristic

This section is devoted to proving (3) of Theorem 1.1 in the case where A

contains Q. We would like to reduce this case to the case of positive characteris-

tic, in which we have already proved (3) of Theorem 1.1 in this previous section.

In such a reduction a famous Hochster's theorem (Theorem 5.2 in [9]) stated below

(Theorem 3.2) sometimes plays an essential role. But, in order to prove (3) of

Theorem 1.1, we have to make such a reduction preserving dim V= 0. In this

point of view, Hochster's theorem is not fit to use when we prove (3) of Theorem

1.1. Therefore, first of all, we shall prove Hochster's theorem in a slightly diffe-

rent form (see Proposition 3.3). Using Proposition 3.3, (3) of Theorem 1.1 will be

proved in this section.

The author thinks that such a technique of the reduction in this section is

(probably) known but, he can not give adequate references. Therefore we shall

give precise proofs.

DEFINITION 3.1. Let a be an ideal of the polynomial ring Z[XV..., Xn] with

n indeterminates Xlf..., Xn. Let R be a commutative ring and xlf...,xn be

elements in R. We say that xlt..., xn is a solution of α if f(xlt..., xn) = 0 is

satisfied in R for any / ^ α.

We sometimes denote Z[Xlt..., Xn] (resp. Xι,..., xn) simply by Z[X\ (resp.

x) if no confusion is possible.

Next theorem due to Hochster ([9]) is sometimes called the metatheorem.

THEOREM 3.2 (Hochster). Let α be an ideal of the polynomial ring

Z[Xu...,Xd, Wlt...,Wsϊ

over Z with indeterminates Xlf..., Xd, Wv..., Ws. Suppose that a Noetherian local

ring B containing Q has a solution x,wofa such that xlf..., xd forms a system of

parameters of B. Then there exists a Noetherian local ring C which contains a field of

positive characteristic and has a solution x^, uf_ of a such that x[,..., xf

d forms a

system of parameters of C.

As we noted before, we shall prove this theorem in a slightly different form

as follows:
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PROPOSITION 3.3. Let a be an ideal of the polynomial ring

Z[Y1,...,Yn,Xι,...,Xd,Gι,...,Gl, W,,...,Wkλ

over Z. Suppose that a regular local ring B containing Q has a solution y, x, g, w of

a such that yv . . . , yn forms a regular system of parameters of B and xl9..., xd forms

a system of parameters of B/(gv.. ., gt), where x{ stands for the homomorphic image

of Xj for each i. Then there exists a regular local ring C which is essentially of finite

type over a field of positive characteristic and has a solution y\ x^, g^_, u/_ of a such

that y[,..., yf

n forms a regular system of parameters of C and x[,..., x'd forms a sys-

tem of parameters of C/{g[,. . ., gβ.

Our first aim of this section is to prove the above proposition.

Since any complete local ring is a homomorphic image of a regular local ring,

Theorem 3.2 is an immediate consequence of Proposition 3.3. Furthermore, as we

shall see in Remark 3.9, Proposition 3.3 allows us to reduce the case of character-

istic zero to the positive characteristic case while preserving homological prop-

erties of a given local ring.

Before proving Proposition 3.3, we show several easy Lemmas.

LEMMA 3.4. Let R be a regular local ring of dimension n and (gι,..., gι) be a

proper ideal of R. Then, for a sufficiently large k, there exists an ideal b of the polyno-

mial ring

Z[Yι,...,Yn,G1,...,G,, Wlt...,Wk]

which satisfies the following two conditions:

1. There exist yly. . ., ynJ wlf. . . , wk e R such that yv..., yn forms a regular

system of parameters of R and y, g, w is a solution ofb.

2. If a regular local ring E has a solution yr, g', uf_ of b such that y[,..., y'n

forms a regular system of parameters of E, then ht^C^ί, •••>#/) — h t β ί g i , >

g,)

(As we shall see in Lemma 3.7, one can find an ideal b whose solution satis-

fies htE(g'19..., £•;) = htR(gv . . . , # ) . )

Proof Put h — n — h t ^ C ^ , . . . , g). Then one can choose xl9...,xh^R

such that dim R/(gίt..., gh xlf..., xh) = 0. Replacing (glf..., g) by (glf...,

gu xlf..., xh), we may suppose that h t ^ ^ , . . . , gt) = n. Then the assertion is

obvious because \/(gv..., gt) = (yl9..., yn). Q.E.D.
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LEMMA 3.5. Let R be a regular local ring of dimension n and suppose that the

following sequence
(fly) (bkl)

q >Rp >Rq

is exact, where (# ί ; ) (resp. (bkl)) stands for the R-linear map corresponding to the q by

p matrix (au) (resp. r by q matrix (bkl)). Then, for a sufficiently large s, there exists

an ideal b of the polynomial ring over Z with indeterminates

V Y

{Aφ Bkl\ i = 1 , . . . , q :j= l,...,p: k = 1 , . . .,r : I = 1 , . . . , q},

Wlf..., Ws,

which satisfies the following two conditions:

1. There exist ylf..., yn, wlf..., ws €= R such that yv..., yn forms a regular

system of parameters and y, {aijf bkl \ i, j , k, / } , w is a solution ofb.

2. If a regular local ring E has a solution y\ {a'ijy Vkl \i,j,k,l},u/_ofb such

that y[,..., yf
n forms a regular system of parameters of E, then the following sequence

is exact.

Proof. Let

0 >Lt >Lt_γ > >LQ >RP >R9 >Rr

be an exact sequence of R-ίree modules and i?-linear maps. It is well known ([2])

that certain conditions about the rank and the grade of the determinantal ideals of

the matrices corresponding to the above i?-linear maps make the above sequence

exact. Thus one can find b immediately by Lemma 3.4. Q.E.D.

LEMMA 3.6. Let R be a regular local ring of dimension n with the maximal ideal

p and J = (glf. . ., g{) be a proper ideal of R. Assume that {glt. . . , g) minimally

generates the ideal J. Then, for a sufficiently large k, there exists an ideal b of the

polynomial ring

Z[Y1,...,Yn, Gl9..., Gl9 Wλ... Wk]

which satisfies the following two conditions:

1. There exist yίf..., yn, wu..., wk £= R such that ylf..., yn forms a regular

system of parameters of R and y, g, w is a solution ofb.

2. // a regular local ring E has a solution y\ g\ u/_ of' b such that y[,..., y'n
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forms a regular system of parameters of E, then {g[,.. ., gfi minimally gener-

ates the ideal (g[,. . ., gfi.

Proof Let

be an exact sequence such that b{i ^ p for any i and / Then the assertion is an

immediate consequence of Lemma 3.5. Q.E.D.

As we noted before, one can find an ideal b inducing htE(g[,..., gfi =

htR(gly..., gt) in the situation of Lemma 3.4 as follows:

LEMMA 3.7. Let R be a regular local ring of dimension n and (glf..., gt) be a

proper ideal of R. Then, for a sufficiently large k, there exists an ideal b of the polyno-

mial ring

7λV V Ω Ω W Wλ

which satisfies the following two conditions:

1. There exist ylf..., yn1 wlf..., wk ^ R such that ylf..., yn forms a regular

system of parameters of R and z/, g, w is a solution ofb.

2. If a regular local ring E has a solution y^, g^, uf_ of b such that y[,..., y'n
forms a regular system of parameters of E, then h t ^ Q ^ , . . . , gfi = htR(gv . . . ,

gι) is satisfied.

Proof Put h = htR(glf..., gt). At first, assume h = I. Choosing xlt..., xn_ι

e R such that h t ^ C ^ , . . . , glf x19..., xn_t) = n and replacing (glf..., gt) by

(g\y..., gι, %i,..., %n-X w e m a y assume h = I = n. Then assertion is obvious

b e c a u s e J(glf..., g t ) = ( y l f . . . , y n ) .

N e x t a s s u m e h < /. T a k e Pι,...,ph^ ( # i > . . . » £ / ) w h i c h s a t i s f y h —

htR(ply..., p h ) . T h e n i t i s e a s y t o s e e t h a t t h e r e e x i s t s c^R s u c h t h a t t h e

f o l l o w i n g t w o c o n d i t i o n s a r e s a t i s f i e d :

1. Either μR((plf..., ph, c)) = h + 1 or c = 1 is satisfied. (μR(*) stands

for the cardinary of a minimal generating set. It is well known that it does

not depend on the choice of generators.)

2. c(gu...,gιy^ (pl9...,ph) for v » 0 .

Then the assertion is an immediate consequence of Lemma 3.4 and Lemma 3.6.

Q.E.D.
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Proof of Proposition 3.3. Owing to Lemma 3.7, it is sufficient to prove the fol-

lowing claim:

CLAIM 3.8. Let a be an ideal of the polynomial ring Z[Yly...f Yn, Wx . . .

Wk] over Z. Suppose that a regular local ring B containing Q has a solution y,wofa

such that yv. . ., yn forms a regular system of parameters of B. Then there exists a

regular local ring C which is essentially of finite type over a field of positive character-

istic and has a solution y\ M/ of a such that y[y..., y'n forms a regular system of pa-

rameters of C.

We shall prove Claim 3.8 in two steps.

Step 1. Here we prove Claim 3.8 in the case where B is essentially of finite

type over a field of characteristic zero.

Then it is easy to see that we may put B = K[tv..., tn]{t tt )y where K is

an algebraically closed field of characteristic 0 and tv..., tn are algebraically in-

dependent elements over K. Since (t1,..., tn)B = (yv..., yn)B, we have t{ —

Σy= 1 diftj (i = 1, . . . , n) with du ^ B for i, j = 1, . . . , n. Let b be the ideal of

the polynomial ring

Z[Y,W, Tlf...,Tn, {DiJ\i,j=l,...,n}]

generated by α and {Γt — Σ " = 1 D^Yj \i= 1 , . . . , n). Then B has a solution y, w,

t, ίdjj I i, j} of b. Let / be an element contained in K[tlf..., tn] \(tlt..., tn) such

that fylf..., fyn, fwl9..., fwn, {fdfj \i, j} are contained in K[tlf..., tn]. Put

y" — fyif wj = /M ̂  and d"j = /<iί7 for each i, . Here note that y'[,..., z/̂  e

(tlf..., tn)-K[tlf..., ί j . Let ΰ be a finitely generated Z-algebra contained in K

such that / , | Λ MΛ, {d;; | i, ;} e Df^,.. ., ί j . Since 0 # / ( 0 , . . . , 0) e Z), one

can find a prime ideal q of ΰ such that q ^ / ( 0 , . . . , 0) and q Π Z ̂  (0). We

denote by φ the composite map

i, ., tn, f ' 1 ] - C D / q ) [ ί l f . . ., tH, f ' 1 ] - O ( ΰ / q ) [tl9 ...,tn, f ' 1 ]

]where Q(D/c\) stands for the fractional field of D/c\. Since D[tlf..., tn, f ] has

a solution y'{/f,..., y"n/f, < / / , . . . , < / / , t, {d",,/f\ i, j) of b, Q(Z)/q) [ ί 1 ; . . . ,

^J(ίlf...,ίn) also has a solution

φ(f) '•••' φ(f) ' φ(f) φ(f) ' h \φ(f) ι'3\
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of b. Here note that

Since ^ , . . . , £w forms a regular system of parameters of Q(D/q) [tv..., ί j ^ . . . f ί ),

so does 0(yΓ)/0(/) , . . . , φ(y£)/φ(f). Hence © ( D / q ) ^ , . . . , fn] ( ί l,... f ί | l, has a solu-

tion

φ(f) "'"

of α satisfying the requirement.

Step 2. Here we shall prove Claim 3.8 in general. We may assume that B is

a complete regular local ring. As we have already seen in Step 1, we have only to

show that there exists a regular local ring R which is essentially of finite type

over a field of characteristic 0 and has a solution y^_, uf_ of α such that y[\..., y%

forms a regular system of parameters of R.

Since B is a complete regular local ring with regular system of parameters

ylf..., yn, B is isomorphic to the formal power series ring K[[ylf..., yn]], where

K is a field of characteristic 0. Put E = K[yl9..., 2/J^,...,^) c B. Then JB is the

completion of E with respect to the (ylf..., z/w)-adic topology. We denote by E

the henselization (cf. [11]) of E. Then E has a solution jy, uf_ of α by Artin's

approximation theorem ([1]). Then, by virtue of (43.9) in [11], one can find an in-

termediate ring E <Ξ R c E s u c n that uf_ are contained in i?, i? is essentially of

finite type over E, and E coincides with R. Then it is easy to see that R is a

regular local ring essentially of finite type over K, and R has a solution y, wrr of α

such that yv..., yn forms a regular system of parameters of R. Thus R satisfies

all requirements.

We have completed the proof of Proposition 3.3. Q.E.D.

Remark 3.9. As we noted before, Proposition 3.3 allows us to make a reduc-

tion while preserving homological properties of a given local ring. For example,

with notation as in Proposition 3.3, if B/(glf..., g) is a Cohen-Macaulay ring

whose non complete intersection locus has dimension at most 0, then one can find

C and a solution y^, x^, g^, uf_ of α (satisfying the requirements stated in Proposi-

tion 3.3) such that C/(g{,..., #/) is also a Cohen-Macaulay ring whose non com-

plete intersection locus has dimension at most 0 as follows.

With notation as in Proposition 3.3, assume that B/(gv..., gt) is a
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Cohen-Macaulay ring. Let
Φ

P . 0—> P —> —> p —* p —* p

be the minimal 5-free resolution of B/ig^..., gt). (Here, note that, since it is

Cohen-Macaulay, the length of the minimal .B-free resolution is equal to n — d.) It

is easy to see that the non complete intersection locus of B/(glt..., g) has

dimension at most 0 if and only if

y/Im-n+d(φ) + (glf..., gι) 3 (yί9..., yn),

where m = r a n k β P 1 and Im_n+d(φ) stands for the ideal generated by all the

m — n + d by m — n + d minors of the matrix corresponding to the jB-linear map

Furthermore assume that non complete intersection locus of B/(glf...,

gt) has dimension at most 0. Then, replacing the pair α <Ξ Z[Y, X, G, W\ by

another one (cf. Lemma 3.5), we may suppose that C/(g[y..., g£) has the minimal

C-free resolution

" . : ϋ * rn_d * * * * * r2 * r x > rQ

such that rank^ P{ — rank c P\ for each / and

Hence, one can find C and a solution |^, ^ , g^, M/ of α (satisfying the require-

ments stated in Proposition 3.3) such that C/(g{,..., g/) is a Cohen-Macaulay

ring whose non complete intersection locus has dimension at most 0.

Before proving (3) of Theorem 1.1, we need to prove two lemmas.

LEMMA 3.10. Let (i?, p) be a regular local ring of dimension n and φ : R —*

R be the R- linear map of R-free modules corresponding to the q by p matrix (b^).

Assume -^(Coker φ) < °°. Then, for a sufficiently large k, there exists an ideal b of

the polynomial ring

Z[Yιt...,Yn, {Btj\i=l,...,q:j=l,...,p}, W, Wk]

which satisfies the following two conditions:

1. There exist yu...,ym wu..., wk ^ R such that ylf..., yn forms a regular

system of parameters of R and y, {b{i \ i, j), w^is a solution of b.

2. If a regular local ring E has a solution y\ {b'tj\ i,j), u/_ of b such that

y'v -..» yn forms a regular system of parameters of E, then ^(Coker φ) —
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£E(Coker 00 holds, where φf \EP ^ Eq is the E-linear map of E-free mod-

ules corresponding to the q by p matrix (δ ; ).

Proof. We shall prove this lemma by induction on / = £R(Coker 0).

If / = 0, then the sequence

Rp^Rq >0

is exact. Hence the assertion is an immediate consequence of Lemma 3.5.

Next suppose / > 0. Let L be an i?-submodule of Coker φ such that

(1) 0 > L > Coker φ > R /p > 0

is exact. Let K. be the Koszul complex with respect to ylf..., yn ^ R and L. be

the minimal i?-free resolution of L. Then there exist an acyclic i?-free complex H.

and an exact sequence of i?-free complexes

(2) 0 >L. >H. >K. >0

such that the induced exact sequence

0 • H0(L.) H 0(H.) • H0(K.) > 0

coincides with the sequence (1). Let

Q . : 0 >Qq > >Q, >Q0

be an R-ίree resolution of Coker φ such that the i?-linear map d " • Qo coincides

with φ : R —> RQ. Denoting by P. the minimal R-ίree resolution of Coker φ, we

have exact sequences of i?-free acyclic complexes

(3) 0 > P . > H. > A. > 0,

(4) 0 > P . > Q. > B. > 0,

where A. and B. are split exact sequences. Construct an ideal b £= Z[Y, {Bυ \ i,

j}, W\ in order to preserve the acyclicity of L., H., K., P., the split exactness of

A., B., and the exactness of (2), (3), (4). If a regular local ring E has a solution y\

W\i I if iK w/ of b such that ?/[,..., yr

n forms a regular system of parameters of E,

we have an exact sequence

0 • H0(L0 * HO(HO • H0(K0 • 0,

where H0(H0 = Coker φ'. By a suitable choice of b, we may assume that K7. re-

mains the Koszul complex (with respect to y[,..., y'n ^ E) and, therefore,
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•^(HoίK7.)) — 1. By the assumption of induction on /, enlarging the ideal b, we

may suppose £E(K0(U)) = ^ ( H 0 ( L . ) ) = / - 1. Hence we get ^ ( H 0 ( H 0 ) =

^ (Coker 0') = /. Q.E.D.

LEMMA 3.11. Let R be a regular local ring of dimension n and put B —

R/(glf..., gι), where (gly..., gt) is a proper ideal of R. Let a^'s and bkl's be ele-

ments in R such that

is a complex of B-free modules and B-linear maps. Assume that the homology group H

of the above complex has finite length. Then, for a sufficiently large s, there exists an

ideal b of the polynomial ring over Z with indeterminates

r1,..., γn,
Gv..., G,,

{Aφ Bkι\i = 1 , . . . , q :j= l,...,p : k = l,...,r : / = 1,. . . ,?},

W W

which satisfies the following two conditions:

1. There exist yv..., yn, wίf..., ws G R such that ylf..., yn forms a regular

system of parameters of R and y, g, {aijf bkl | i, j , k, /}, w is a solution of b.

2. If a regular local ring E has a solution y\ g\ {a\^ Vkl \ i, j , k, /}, w' of b

such that y[,..., y'n forms a regular system of parameters of E, then the follow-

ing sequence

is a complex whose homology group has length equal to £R (H).

Proof. We denote by φ (resp. φ) the 5-linear map corresponding to the mat-

rix (α~ ) (resp. (bkι)). Put C = Ker φ, D = Im 0, E = Coker 0, / = Ker φy J =

Im 0 and K = Coker 0. Let C, D., E., I., J. and K. be the minimal i?-free resolu-

tions of C, D, E, I, J and K respectively. Then we have exact sequences of acyc-

lic i?-free complexes

(5) o — > c . — > L ! - ^ - » D . — > o ,

(6) 0 >D. >l2 >E. >0,

(7) 0 >I. >L?-^->J. ^0,



VANISHING AND POSITIVITY OF INTERSECTION MULTIPLICITIES 1 5 1

(8) 0 > J. > L? > K. > 0,

where both L. and L. are finite 7?-free resolutions of B9, L. (resp. L.) is that of

B (resp. B ), and a, β, ζ, γ, δ are chain maps such that Ho(/3 α) (resp.

Ho(<5*7)) coincides with φ (resp. 0). Let O. be the minimal i?-free resolution of B.

Put

(9) P. = O?p,

(10) Q. = O?q,

(11) R. = O. θ r,

Since O. is the minimal i?-free resolution of B for each n, we have exact sequ-

ences of finite i?-free acyclic complexes

(12)

(13)

(14)

(15)

where S., T., U. and V. are finite R-ίree split exact sequences, and ε, λ, π, v are

chain maps such that H0(ε), H 0 Q), H 0 (π), H0(v) are the identities.

Since H 0 Q /? crε) : B —• Bq coincides with φ, there exists an i?-linear map

/ : PQ^ Qι which satisfies

(16) λo'βo-ao'εo - (afj) = qx-f,

where qx : Qλ —• Qo is the boundary map of Q., and (αί7) is the i?-linear map R

—•I? corresponding to the matrix (aυ). (For a chain map η, we denote by ί70 the

map in degree 0 of η. P{ (resp. Qt) stands for the module in degree i of the com-

plex P. (resp. Q.).)

As in the same way as above, there exists an i?-linear map g : LQ-^> Lx such

that

(17) vo'(bkl)-πo - <Vr0 = h'g,

where lλ: Lι~^ Lo is the boundary map of L..

Let

be a chain map such that H0(ξ) : D—> I coincides with the natural inclusion D c_>

o — >
o — •

o — •

o — >

P . •

rp ^

u.—>

R.—^-»

L . > SJ. >0,

I—>0,

I—•O,

J.—>o,
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/. Then it is easy to see that the mapping cone of ξ : D. —* I. is a finite R-free re-

solution of the homology group H and, in particular, the sequence

is exact, where ix : I-^—* Io is the boundary map of I..

Since H 0 Q - β) = H0(7Γ* ζ ξ), there exists an i?-linear map h : Do~^ Qx such

that

(18) V A > ~ ^o ζo ?o = Qi'h.

(Recall that qx: Qι~* Qo is the boundary map of Q..)

Now construct an ideal b to preserve the following properties:

• the split exactness of S., T., U., V.,

• the acyclicity of C, D., E., I., J., K., O., P., Q., R, L!, L?, L!, iΛ

• the equalities of (9), (10), (11), (16),(17), (18),

• the exactness of (5), (6), (7), (8), (12), (13), (14), (15),

• that ξ is a chain map, t .
€o+ ίi

and to stabilize the length of the cokernel of Do Θ Iλ > Io. (cf. Lemma 3.5 and

Lemma 3.10)

Suppose that a regular local ring E has a solution y\ g^_, {af

ijf Vkι \ i, j , k, /},

uf_ of b such that y[,..., y'n forms a regular system of parameters of E. Then there

exist split exact is-free sequences S'., T', 17., V', the acyclic finite jE-free com-

plexes c : , D : , E : , I:, J : , K:, O:, P : , Q:, R : , L Γ , L Γ , L Γ , L Γ , and the chain map
ξ': D: -^ Γ. such that

• the following sequences

o—> c: —> L] -^ D: —> o,

o -—* D: - ^ L?' —> E: —^ o,

o —> i: — L! — J: —> o,

o—> J: — V' —^ K: —> o,

o —> P: - ^ \}' —> s: —> o,

o—> T: —> L?' —> Q: —^ o,

o —> u: —^ L!Λ - ^ Q: —> o,

o —> R: — L! —^ v: —> o,
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are exact,

• O'. is the minimal £-free resolution of E/(g[,..., gf),

• P: = ofp, Q: - o:θ*, R: = o:θr,
• we have equations

(19) /lo'βo'^o'έo ~~ (#ί ) = Qι'f>

(21) ^o'i^o ~~ ̂ o'Co'So = Qi'h'*

where q[: Q[~* QQ (resp. l[: Lγ —> Lo) is the boundary map of Q' (resp.

L?'), and / ' : Po'-> Qί, g': L3

0' "^ /,!', hf: D'Q-+ Q[ are i?-linear maps,

• the cokernel of Z)Q ® // > /Q has length equal to £R(H), where z'ί : I(~~* IQ

is the boundary map of Γ..

Then we have the following exact sequences:

0 > H0(C0 > H0(LΓ) — H0(D0 > 0

0 > H0(D0 - ^ H0(Lf) > H0(E0 ^ 0
H0(C) , H0(r')

0 > H0(Γ.) ^ H 0 (L!) > H 0 (J0 > 0

0 > H 0 (J0 — H0(Lί') ^ H 0 (K0 > 0
H0(ε')

0 > H0(P0 ^ H0(L!) > 0

0 > H0(Lf) — H0(Q0 > 0

0 > H0(Lf) — H0(Q0 > 0

0 > H0(R0 — H0(Lf) — - 0

By the equation (19), the composite map

H0(ε') H0(α') Ho(/8')

{E/{g[, ...,&)> = H 0 ( P 0 • Ho(Ll') * H 0(D'.) • H 0 ( L f )
H0U')

— * H O ( Q : ) = {EAg[,...,g'))q

coincides with the E/(g{,..., gfi-linear map corresponding to (a^). Hence the

image of

(an)

(E/(£,..., gfiΫ —

coincides with Im H Q Q ' /30.

Furthermore by (20), the composite map



154 KAZUHIKO KURANO

H0(τr')

= (EAgί gΐ>y—<• (EAgi,..., gpy = H O ( R ' . ) — H O ( L :

coincides with ΐlo(δf γr). Hence the kernel of

coincides with Im H0(ττ' ζ')

On the other hand, by (21), we have H 0 U ' j8') = H0(7r' ζ ' ξ'). Therefore the

following sequence _ _

( 2 2 ) (EAgi,• ••, gΐ>Ϋ - ^ (E/(g'u..., # 0 ) f — > (EAg[, ...,gί)Y

is a complex whose homology group is isomorphic to the cokernel of H 0 (ξ0. Since

the cokernel of Ho(£0 coincides with that of D'Q 0 I[ • 70', the homology group

of the complex (22) has length equal to £R{H). Q.E.D.

Now we start to prove (3) of Theorem 1.1.

Proof of (3) of Theorem 1.1 (in the case where A contains Q). Assume the con-

trary, i.e., there exists a Cohen-Macaulay local ring A (cf. Remark 2.2), containing

Q, whose non complete intersection locus has dimension at most 0 such that A has

finitely generated modules M and N which satisfy the assumption of (3) of

Theorem 1.1, and χ(M, N) < 0.

Then there exists a Cohen-Macaulay local ring A\ essentially of finite type

over a field of positive characteristic, whose non complete intersection locus has

dimension at most 0 such that A' has finitely generated modules M' and N' which

satisfy the assumption of (3) of Theorem 1.1, and

, ΛO) = 4,(Toif (AT, NO)

for each i (cf. Proposition 3.3, Lemma 3.7, Remark 3.9 and Lemma 3.11). Here

note that A' is equi-dimensional and a homomorphic image of a regular local ring.

But, it is a contradiction because we have already proved (3) of Theorem 1.1

in the case where A contains a field of positive characteristic in Section 2. Q.E.D.

REFERENCES

[ 1 ] M. Artin, Algebraic approximation of structures over complete local rings, Publ.
Math. I.H.E.S., 36 (1969) 23-58.



VANISHING AND POSITIVITY OF INTERSECTION MULTIPLICITIES 1 5 5

[ 2 ] D. A. Buchsbaum and D. Eisenbud, What makes a complex exact?, J. Algebra, 25
(1973), 259-268.

[ 3 ] S. P. Dutta, Frobenius and multiplicities, J. Algebra, 85 (1983), 424-448.
[ 4 ] , A special case of positivity, Proc. Amer. Math. Soc, 103 (1988), 344-346.
[ 5 ] , M. Hochster and J. E. MacLaughlin, Modules of finite projective dimension

with negative intersection multiplicities, Invent. Math., 79 (1985), 253-291.
[ 6 ] W. Fulton, Intersection Theory, Springer-Verlag, Berlin, New York, 1984.
[ 7 ] H. Gillet and C. Soule, K-theorie et nullite des multiplicites d'intersection, C. R.

Acad. Sci. Paris Ser. I Math., 300 (1985), 71-74.
[ 8 ] F. Hirzebruch, Topological methods in algebraic geometry, 1956, Grundlehren der

math. Wissenschaften, Vol. 131, Third enlarged edition, Springer-Verlag, 1966.
[ 9 ] M. Hochster, Topics in the homological theory of modules over local rings, C. B. M.

S. Regional Conference Series in Math., 24. Amer. Math. Soc. Providence, R. I.,
1975.

[10] K. Kurano, An approach to the characteristic free Dutta multiplicities, J. Math. Soc.
Japan, 45(1993), 369-390.

[11] M. Nagata, Local Rings, Interscience Tracts in Pure and Appl. Math., Wiley, New
York, 1962.

[12] P. Roberts, The vanishing of intersection multiplicities and perfect complexes, Bull.
Amer. Math. Soc, 13 (1985), 127-130.

[13] , MacRae invariant and the first local chern character, Trans. Amer. Math.
Soc, 300(1987), 583-591.

[14] , Local Chern characters and intersection multiplicities, Proc. of Symposia in
Pure Math., 46 (1987), 389-400.

[15] , Intersection theorems, Commutative algebra, Proc. Microprogram, June
15-July 12, 1987, Math. Sci. Res. Inst. Publ., no. 15, Springer-Verlag, Berlin,
Heidelberg, London, Paris, Tokyo, 1989, 417-436.

[16] . Local Chern classes, multiplicities, and perfect complexes, Societe Mathemati-
que de France Memoire, no. 38 (1989), 145-161.

[17] J-P. Serre, Algebre locale. Multiplicites, Lect. Note in Math., vol. 11, Springer-
Verlag, Berlin, New York, 1965.

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1
Hachioji, Tokyo, 192-03
Japan

e-mail address: kurano@math.metro-u. ac jp






