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UNITS AND CYCLOTOMIC UNITS IN Xp-EXTENSIONS

JAE MOON KIM1

Introduction

Let p be an odd prime and d be a positive integer prime to p such that d ?£ 2

mod4. For technical reasons, we also assume that/) X φ(d). For each integer n >
m

1, we choose a primitive wth root ζn of 1 so that ζ% = ζn whenever n | m. Let

K = Ko = Q(ζpd) and i C = Un^0Kn be its cyclotomic Z^-extension, where

Kn

 = Q(ζ,pn+id) is the nth layer of this extension. For n > 1, we denote the Galois

group Ga\(Kn/K0) by Gw, the unit group of the ring of integers of Kn by En, and

the group of cyclotomic units of Kn by Cn. For the definition and basic properties

of cyclotomic units such as the index theorem, we refer [6] and [7j. In this paper

we examine the injectivity of the homomorphism H (Gn, Cn) —• H (Gn, En)

between the first cohomology groups induced by the inclusion Cn —• En.

In [4], it is shown that the Tate cohomology group Ht(Gmnf Cm) depends on

the splitting of p in Q(ζ d ) where Gmn — Gdl(Km/Kn) for m > n. To be more pre-

cise, let k be the decomposition field of p in Q(ζ r f). Then

Z) if i is even

\(Z/pm~nZ)1 i f f i s o d d ,

where

[k : Q] if k is real

-w [k : Q] otherwise.

In particular, H (Gn, Cn) — (Z/p Z) and by taking the direct limit under the in-

flation maps, we have H (Γ, CJ) — (Q^/Z^) , where C^ = U w> 0 Cn and Γ =
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It is interesting to compare this result to that of K. Iwasawa. In [3], he proved

that H\Γ, EJ - (Qp/Zp)
ιΘM for some finite group M, where E» = Un>0En.

Thus H (Γ, C^) seems to control the ^-divisible part of H (Γ, EJ). However the

injectivity is still unknown. The aim of this paper is to examine the injectivity

when d = q is a prime. Later in Section 3 of this paper, we will give a criterion of

the injectivity of this map via generalized Bernoulli numbers. This paper is orga-

nized as follows. In Section 1, we find explicit generators iδnl, . . . , δnl} of

IΓ (Gn, Cn) — H (Gn> Cn). For each i, 1 < i < I, the sequence {<5Wί}w> 0 pro-

duces a Coates-Wiles series h^x). This series h{(x) is studied in [5]. In Section 2,

we briefly review ht{x) and establish a criterion of the injectivity of the map

H (Gn, Cn) —* H (Gny En) in terms of the determinant of a certain matrix. We

then express the determinant by Bernoulli numbers.

§1. Generators of H (Gn, Cn)

In [4], it is shown that fl~ (Gw, Cn) — (Z/pnZ) , where / is the number of

prime ideals of Q(ζ d ) = Q(ζ r f + ζd ) above p. The proof of this theorem, howev-

er, is theoretical and it does not provide generators of H (Gw, Cn). In this sec-

tion, we will exhibit generators of this cohomology group explicitly when d = q is

a prime. For this we need a theorem of V. Ennola on the relations among cycloto-

mic units (see [1]). But instead of quoting his theorem in detail, we just state what

is necessary for us.

THEOREM (V. Ennola). Suppose δ = Uι^a <n (1 — ζlYa is a root of 1 for some

integers xa. Then for every even character χ Φ 1 of conductor f belonging to Q(ζ w ) ,

Y(χ, δ) = 0 , where

γ(*> δ)== Σ^Tώ Γ(*> d> δ) π ( 1 -

and

d ΨW) p\d
f\d\n

d-l

7Xχ, d, δ) = Σ ^
a=l d

(a,d) = l

The following properties of Y can be justified from the definition of Y, so we

omit the proofs.

LEMMA 1.1. Let χ Φ 1 be an even character belonging to Q(ζw) and δlf δ2, δ be

cyclotomic units in Q(ζ w ) . Then
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(ii) If (root of 1) X δ1 = (root of 1) X <52, then Y(χ, δj) = Y(χ, δ 2 ) .

(iii) For any σ e Gal(Q(ζB)/Q), F(χ, δσ) = χ ( σ ) F ( χ , δ).

(iv) F(χ, δ"7"1) = (χ(σ) - l ) Γ ( χ , δ).

From now on, we fix an odd prime q and consider the Z^-extension KM over

KQ = Q(ζpq) such that p X φ(q). We fix a topological generator σ of the Galois

group Γ= GaKK^/Ko) such that ζj» = ζ ^ for any n > 1. The restrictions of σ

to various subfields of /£«, such as QCζ̂ -O = U W > O Q ^ « ) , Q^ and QooCζ̂ ) will

also be denoted by o. Here, Q^ is the Z^-extension of Q. We even use σ for its

restrictions to finite layers of Z^-tower such as Kn. Let w be a generator of the

cyclic group GaKiC/'QooCζ?)). Again, the restrictions of w to various subfields

are also denoted by w. Thus <w> = GaliK^/QJζq)) - Gal(Kn/Qn(ζq)) -

GaUQίζ^w+O/Q^). Nontrivial even characters belonging to the field Q(ζ^) will be

denoted by yq. Finally we fix a generator φn of the character group of Gal(Qw/Q)

in such a way that φn{ό) — ζpn. Thus φn is an even character of conductor p of

order pn, and φP

n+1 = φn.

For later use, we compute Y(χ, δ) for an even character χ = φnγQ and for

some cyclotomic unit δ in Kn. First of all, note that ζpn+i — ζq is a cyclotomic unit

in Kn since

ζ/>w+1 ~ ζq = ζqiζp^ζq1 ™ D = ζqiζl^q ~ D

Similarly, elements of i£w of the form Π ^ (ζ̂ »+i — ζj) *'* for some integers x, z/

and ix>ί/ are also in CM except for obviously bad choices such as x = y = 0.

Let ξ = (root of 1) X Πu > / C (ζJnϊΊ — ζq)
CiJ'k for some integers cίti>fc with 0 < i

< pn, 0 < j < p — 1, 0 < k < q. For an even character χ of the form χ = ψnγq,

we have

U,k

by Lemma 1. Since

(ζpn+1 ~~ ζ«) — ( r°0t Of 1) X (1 — ζpn+iq ),

we have
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φ(pn+1q)

φ(pn+1q)

Hence

ξσ ) = (ΦnM ~~ 1) Σ

i j Ί .n+l\

w -to )

<p(pn+q)

= (Φn(σ) - 1)

φ(pn+1q)

where a(γq) — Σitj>k Cij^ψ^σ^γqik), which is an algebraic integer depending on

Now we describe I elements of Cn which generate H (Gn, Cn). Let Δ be the

Galois group Gal(Q(ζ 9)/Q), or any Galois group isomorphic to it such as

GaKiϊoo/Qίζ^")). Let D be the decomposition subgroup of Δ for p, and k be its

fixed subfield of Q(ζq). Let {τlf τ2,. . . , τ{ — id} ^ Δ be a set of coset representa-

tives of Δ modulo (— 1, D}. Notice that this / coincides with the earlier / in the

introduction. For brevity, we write Nts for the norm map from Kt to Ks, Nn for

NnQ, and ND for the norm map from Ko to k or from Kn to k(ζpn+i). We shall use

the following equation quite often: for m > n,

(r _ r \ — r _ r*m~n

For each ky\<k<l, let

Vn.k = rlk= Π (ζj»+i "~ ζ9

τ*), and δnk = δk = ND(ηk).

Then

Nn(δk) = ND°Nn(ηk) -

since Z) is generated by j(?.

Hence we have / cyclotomic units δv δ2, . . . , δt in Kn whose norms to Ko

equal 1. This set, however, is not always the right set of generators of H (Gw,

Cn). We have to change this set a little. Namely we throw away any one of these,

say δh and instead we throw in πn to this set, where πn — ζpn+i — 1, which is a

generator of the prime ideal of QCζ^+O above p. πn is obviously a cyclotomic

unit in Cn whose norm to Ko is 1.
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THEOREM 1. H (Gn, Cn) is generated by i δ v . . . , δ^γ, πn }.

First, we need a lemma.

LEMMA 1.2. Let F be an abelian field of degree m over Q. Let {τ0 = id, τv . . .,

Tm_1} and {γ0 = 1, 7Ί, . . . , Tm-i) be the set of Gal(F/Q) and its character group

Gal(F/Q) A respectively. Let A be the (m — 1) X (m — 1) matrix with ftCrp for the

ijth entry for 1 < i, j < m — 1. Then the only prime ideals of the field

Q(ϊi(Tj)) that can divide the ideal (detA) are those above the prime factors of m,

where Q ( ^ ( r ; )) is the field obtained by adjoining to Q the value 7/(r; ) for 1 <

i, j < m — 1.

Proof Let B be the (m ~ 1) X (m — 1) matrix with ftir,"1) for the ijth en-

try for 1 < i, j < m - 1. Then since Σ ^ Λ ^ ^ I r i ί O ^ ί ^ ) = I G | δ/>; - 1,

- 1

άetiB'A) = d e t ί 1

 m ~ l ^

Hence prime ideals ofQίftίr,-)) that can divide (deti4) are prime factors of m.

σ"Proof of theorem. Suppose δ\x * * ζ/^Tr/" α ' = ξ σ " for some ξ G Cw. Since

we already know that i/ (GM, Cw) — (Z/p Z) , it is enough to show that aγ =

* * * = a{ = Omoάp . We shall show this by induction on n > 1. To treat the

case when n = 1, suppose δ^1 ζ/

fl!i17Γ1

σ α ' = £ σ for some ξ ^ C^ where

δfe = iVβCΠy ζ̂ 2 — ζ9*) Since we apply σ — 1 to £ after all, we may assume that

ξ is of the form

ξ= Π ( ζ ^ - ζ f * ) c < Λ * X (root of 1)
ij.k

for some integers ciJk with 0<i<p,0<j<p — 1, 0 < k < q. Let <5 = S^1

* * * 5fl"1

17Γ1

σ α/. By Lemma 1.1, we have F(χ, δ) = Y(χ, ζσ ) for every even

character χ Φ 1. Compute both sides when χ is of the form χ = 0i79, where 7̂  ̂

1 is an even character belonging to k. By (i) of Lemma 1.1, we get

Y(χ, δ) = Σ akY(χ, δk) + a,Y(χ, %{~l).
k = l

One can easily check that Y(χ, π°~ ) = 0. For Y(χ, δk), we use earlier computa-
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tion in the middle of this section and the facts that D is generated by p and

γq(p) = 1 to obtain

Y(χ,δk)= Σ
u φ(p q)

2

φ(p q)
Thus

i\χ, oj — Δa akγqκτk;.
φip q) *=i

On the other hand, from earlier computation, we have

φ(pq)

Therefore, by comparing both sides, we obtain

(p — 1) I DI Σ akϊq(τk) = (ψλ(σ) —

By letting γq vary over all nontrivial even characters belonging to k, we have a

system of linear equations

(P-1)\D\AI I ) = ( 0 1 ( α ) - l ) ( a(γq) J,

where A is the (/ — 1) x (/ ~ 1) matrix with entries 79(τΛ). Hence A is a matrix

of the type given in Lemma 1.2, so prime ideals above p can not divide (detA)

since )̂ is prime to φ(q) and /| φ(q). Let ί? be one of the prime ideals of Q(ζ^,

ct{γq)) above p. Since φx{σ) — 1 = ζ^ — 1 is divisible by P and since p X \ Z)|,

we have

H e n c e fl;£ P Π Z = ( / > ) , w h i c h m e a n s t h a t « ! = • • • = ax_x = 0 ( m o d ^ ) .
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r^ ., . . ? β i s Λ/_i (σ—Da, p.σ—1 Λ (σ—l)a, σ—1 e

From the equation ox oι_{π1 = ξ , we have 7TX = U for

some w e Cv since <5̂  e C* * for each A; = 1, . . . , / — 1. Thus π{1 — uβ0 for

some β0 ^ Ko. As ideals, we have (7^) ι = (β0). But this is impossible unless

aι = Omod^, since primes of Ko above p totally ramify in Kv This finishes the

first step of the induction argument. Notice that H (Gv Cx) is also generated by

iδ[f..., δj_ l f πf"1} where δ'k = ND (Π ι<j<p-1 ( ζ ^ — ζ9

ίΓ/c)) for any integer t

prime to q.

Now we will prove the theorem for n with assuming the result for n — 1.

Thus we assume that H (Gn_ίy Cw_x) is generated by {δ[,. . ., δ\_v ττw_L}, where

δr

k — ND (ΐlχ<j<p-i (ζpn — ζjk)) for any integer t prime to q, in particular, when

t = p. In the proof, we will use the fact the inflation map H (Glf Cj) —•

H (GM, Cn) is injective. By taking Nntn_γ on both sides of the equation δa

χ

ι *

ι-ι^n — ς , we have

ζ J - ζf)) 0 1 (ND(U tf -

Hence a1 = * = aι = Omod^w by the induction hypothesis. Let ak — pn bk

for k = 1,2,...,/. For each k, 1 < k < I - 1,

j t

= NJU (ζί - ζΓIr')) x uΓ\

where uk = ND(u Π (ζ£i - C j * ) ^ ) e Cκ. Also,

x

where M; = Π Q ^ ^ H - I (ζ^-i ~ 1) ^ Cw. Hence we can rewrite the equation

(σ-l)α,
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as

)
AT in tr^ rPn~xτ\\\ λ AT in tr™j fPn~lτι-ι\\ l~l (σ-l)b, (σ-l)b-, (σ-l)b,

N D [ Π ( ζ P 2 - ζ ; » ) ) • N D [ Π ( ζ p z - ζ , " ) ) ^ ' - M j ' • • • M ,

= r1.
Therefore we have

inn ίrw' rPn~lτi\\ * AT in (rw* fPn~lτι-i\\ '~1 (σ-D*ι σ-1

n(ζP2-ζg ')) • • • ND[U (ζP2 - ζ " ) j π, ' = u

where u = ξu^bl ujb' e CM.

Let δ = iVD(n, (ζί - CΓTι))h ' * ̂ DOI, (ζ;^ - ζΓ1^1))^"1 ^Γ"*1- Then δ

e d , iVrδ = 1 and δ e C^"1. But since the inflation map H\GV Cλ) -* Hι(Gnί

Cn) is injective, δ is in Cx . In this case, we already know that bx = * * * = bt =

0 mod p. Therefore a1='"=aί = 0 modpn. This finishes the proof.

σpn-l σpn-l pn_χ Λ _

COROLLARY. For m> n, (δ^~ι , . . . , δ^~\ , πσ

m > generates H (Gmn,
ι

Proof. Since Cm

m>n — Cn (see [2]), we have the following exact sequence:

inflation restriction

0^H\Gn, Cn) *H\Gm, CJ *H\GmΛ, CJ.

Since *H\Gn, Cn) =p"', *Hι(Gm, CJ = pml and *Hι(GmM, CJ = p

the restriction map must be surjective. Hence

restriction

H\Gm^ CJ = lm(H\Gm, CJ ^ f f 1 ^ , CJ)

= <res(δ m !>, . . . , 1

§2. Injectivity of Hι(Gm^, CJ — fΓ'ίG^, £ m )

In the section we will find a criterion of the injectivity of H (Gmn, CJ —•

i/'CG^, EJ. Since ^ X ( Γ , C) - (Q./Z,)' and ^ ' ( Γ , £) - {QP/ZPΫ ® finite

group (see [3], [4]), the map is likely to be injective. And the following proposition

shows that the Greenberg's conjecture on the vanishing of the Iwasawa

/ί-invariant for a totally real field implies the injectivity for m > n > 0.
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PROPOSITION 2. Suppose the Iwasawa invariant λ for the field Ko = Q(ζpd) is

zero (equivalently, the Sylow p-subgroup of E/C is a finite group). Then H (Gmn>

Cm) —• H (Gmn, Em) is injective for m > n> 0.

Proof Let Bn be the Sylow ^-subgroup of En/Cn. It is known that Bn~+ Bm

is injective for m > n (see [2]). Since we are assuming the Greenberg's conjecture,

lim Bn — B is finite, and hence is obtained at some finite layer Kno. That is, BUQ —

Bm — B for all m > n0. Therefore Gmn acts trivially on Bm for m > n > n0.

From the short exact sequence 0—*Cm-+Em-+Em/Cm—+0y we obtain the long

exact sequence of cohomology groups:

0 - C ° ~ - < " — ( £ m / C m ) G — H\Gm,n, CJ - H\GmΛ, Em) - .

In this sequence, C%"n = Cn (see [2]) and E°mj> = En. Thus we have:

0^En/Cn-* {Em/Cm)Gm"-^H\Gm,n, Cm)-H\Gm*, EJ

Hence, if m > n > n0, H (Gmn, Cm) —* H (Gmn, Em) must be injective since

Bn ^Bm.

Now we discuss the injectivity of the map when d = q is an odd prime with-

out assuming the Greenberg's conjecture. We assume that p = 1 mod q so that p

splits completely in Q(ζq) and / = ~κ φ(q).

Let R = {w ̂  Zp\ wP~ι = 1} be the group of p — lth roots of 1 in the ring

of ^-adic integers Zp. Let A,OF) = 1 1 ^ ((1 + x)w - /) in Z^WtM]. The follow-

ing expansion of ht(x) as a power series in x with coefficients in Zp[t] plays an

important role in our discussion of the injectivity.

THEOREM (see [5]). ht(x) = Uw ((1 + x)w - t) = (1 - t)P~ι + g(t)xP~ι +

higher terms, where g(t) = (1 - t)P~2 + - | (1 - t)P~3 + + jzrj (modp).

For each n, let us fix a prime ideal $?„ of Kn in such a way that fm lies

above Φn for m> n. Then the set {P^} is the set of all prime ideals of Kn above

p when r runs over J = Gal(Q(ζ f f)/Q). For τ ^ Δ, let iίw pΓ be the completion of

Kn at the prime ideal &τ

n and let φτ: Kn—> Kn ^ be the natural embedding. Put

sτ = #>Γ(ζ?) be the image of ζq in iίM )^. For brevity, we write s for 5id = φid(ζq).

Let /)(r) be the integer modulo q corresponding to τ under the identification of A

with (Z/qZ)\ Then sP

τ

ω = φτ(QHτ) = φτ(ζP

q

M) = φτ(ζq). Since the completion

of Kτ

n at the prime ideal P* is the same as the completion of Xw at PΛ, we have
ι ι

= 5. Therefore sτ = s and 5 r = s = s
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for any τ, τ' ^ Δ.

PROPOSITION 3. Let g(f) ^ Zp[t] be the polynomial introduced above and τit

Tj e Δ. Let δn>τj = UW&R ( ζ ^ i - φ . Then, in Kn>r,f

where πn = ζpn*i — 1.

Proof.

5 TT ΐ rw

S
τ>

= Π (ζpn+ι - SHTi Γ'°)
we/?

= (1 — s * *) + g(s % 1)τzn mod (ττw)

by the above theorem. Since (1 — 5 ' 0 = 1 moάp, we obtain the congru-

ence.

Let S = {τl9 r2,. . . , r/_1, τι = id} be a set of coset representatives of Δ mod-

ulo {± 1}. Let A = (a(j) be the / X / matrix with entries in Zp such that

1 iίj=l.

THEOREM 2. H\Gmn, CJ -* Hι(Gmn, EJ is injective for all m > n > 0 if

deti4 * Ornod^.

First, we prove a lemma which reduces the theorem to the case when

m = n + 1.

LEMMA 2.1. Suppose H (Gs+ltS, Cs+ι)—* H (Gs+hsf Es+]) is injective for all

s>0, then Hι(Gtsi Ct) —• Hι(GttS, Et) is injective for all t > 5 > 0.

Proof Fix 5, and write t = s + k. We use an induction on k. If /c = 1, then

there is nothing to prove. We will prove the injectivity when t = s + k + 1

assuming the result for t = s + k. Consider the following commutative diagram:
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(Gs+k,s> Cs+k) —• H (Gs+k)S, Es+k)s+k) —• H (Gs+k)S, Es+k

I inflation I inflation

I restiction I restiction

Note that inflation-restriction sequences are exact and that inflation maps are in-

jective. By hypothesis the top and the bottom of the diagram are also injective.

With these in mind, one can easily check the injectivity of the middle map.

Proof of theorem. By the lemma, we may assume that m = n + 1. We know
σpn-l σ**-l σPn_λ

that, from the corollary of Theorem 1, iδjfΐ1 , . . . , δjfj"^ , πm } generates

Hl{Gmni CJ where δmΛ = Π weR ζζm+i - ζτ

q\ Suppose δ^~ι "λ δ^~_\aι~ι

πm ~ Vm ^ o r some integers alf.. ., ^/ and for some rjm in i s w . Since m —

n + 1, it is enough to show that ax= * = #/ = 0 ( m o d ^ ) . We write the above

/sa1 ««,_, (σ-l)a,\σpn-l (σ-l)(σpn-l) „. saλ ««,_, (σ-l)at

equation as (δ^ S ^ 1 . ^ ' ) = ) ? « . Thus δJΛ δ^/.jTΓ^

= ?7W ww for some unit un ^ £ w . We read this equation in Km ^im Since δmJ, %m

and rfm are all congruent to 1 modulo 7Γm, M n ~ l e (7Γm) Π ifM pr, = (ττw) =

(7Γm)/>. Hence by reading the above equation in consequence modulo (πmΫ, we have

5 aΛ ? a ; _ , (σ—Da, σ—1 , / P \

m,i * *' dm'z-Λ = r̂ w mod (TΓJ.

By Proposition 3, ^ = (1 + gtf^'W*1)*' = 1 + ^ ( s ^ ^ T r ί Γ ' m o d (π*m).

It is easy to check that π^1 = 1 + TΓ^"1 mod (TΓ )̂ and that rf^1 = 1 mod (7Γ )̂.

Therefore we get

aγg{sp * ι) + a2g(s ' 2 ) 4- + a^gis* ' ' ' ) + at = 0mod^).

Since this equation is true for all i, 1 < i < I, we have a system of linear equa-

tions

*ι .

But since det A ^ 0 mod py aλ= = «/ = 0 mod p.

Finally, we interpret det A in terms of generalized Bernoulli numbers. We fix

an embedding φ from Q (algebraic closure of Q) to C^ (completion of the algebraic
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closure of Q )̂ such that φ(ζq)
 = s and we drop φ. So, for example, g(ζg) should

be understood as g(sP τ ) .

LEMMA 2.2. detA = Π Σ χ(τ)g(Q).
χeΔ, even r. eS

XΦ1

We omit the proof of this lemma since it is a simple consequence of the fol-

lowing well known fact (see [7]): If / is a function on a finite abelian group G with

values in some field of characteristic 0, then det(/(στ~ ))σ>τ&G — Πχe(~

THEOREM 3. Let ω be the character of Gal(Q(ζ/))/Q) — (Z//>Z)X such that

O)(a) = a moάp for all integers a with (a, p) — 1. Then we have

Π BlιXω-imodp

Proof Let χ ^ Δ be a nontrivial even character. We will show that

ζP2- 1), where r(χ) = Σamodqχ(a)ζQ B ^ o d ( ζ 1) where r(χ) = Σ χ ( a ) ζ a

2τ(χ)

is the Gauss sum of χ . Since Πχ τ(χ) = ydisc Q ( ζ ? ) + , the theorem follows

immediately from Lemma 2.2. Let s ^ 1 be a qth root of 1 in C^. Since

Π ω e i ? ( ( l + x)w — s) = 1 + g(s)xP~1 mod (p, xP), we have

Π {Q - s) = 1 + g(s)(ζp2 - I ) ' " 1 mod (ζ, - 1).

ωei?

Hence, by taking />-adic logarithm, we obtain

l o g ί ( Π (ζ;2 - s)) = l o g ί ( l + g(s) (ζ,2 - I)*" 1) mod (ζ, - 1).

By expanding out the right hand side, we get

jsiog/c;.-*)

Ξ = g ( s ) ( ζ 2 - 1 ) - — ( g ( s ) ( ζ p 2 - 1 ) ) + ••• + — ( g ( s ) ( ζ p 2 - 1 ) ) -•••.

In this expression every term except — (g(s) (ζp2 — 1) ) is congruent to

0 modulo (ζP2 — 1). And one can easily check that (ζP2 — 1) P~ι P /p = — 1 mod

(ζp2 - 1). Thus, Σ ω e / ? log.(ζ^2 - s) Ξ - g(s) mod (ζp2 - 1). Therefore,
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(*) - Σ χ {τ)g{Q) ΞΞ Σ χ (ry)log,(ζ;, - ζjO mod (ζ,, - 1)

Let ψ = 0i be the character of GaKQ^Q) as in Section 1 so that φ(σ) = ζp

for the generator σ of GaKQ^Q) - G a K ^ / ^ ) . For 0 < i < p - 1, 0 < k <

p-1, let
i

Tt — 2^ x (

and

When

since \

When

A =

k~-

= 0,

= 1 mod q.

P-1

= ΣT,

= Σ χ(τ

= 0,

;) Σ log ί̂ζ
0<I</)-1

Λ F "^$

- c o

Sk= Σ χ0*<r,σ') log,

1 V

= "o" Σ

Thus we have a system of linear equations:
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φ\σ°) φ\σ')

φ\σ°) φ'iσ1)

φ\σp~ι)

By solving this equation, we obtain

P'q

0

τ(χφ)

L,a, XΦP'1)

For the Gauss sum τ(χφ ), we have

τ(χφk) = Σ
a mod />2ί
(a,pq)=l

Σ
χ,y

xmod q (x,q) =
ymoάp2 (y,ρ)

Since φ (q)φ (q) — 1 and τ(φ )τ(φ ) = p , we get

Σ - 1 -

-1 φ\q)τ{φk)

•LΛhxΦ").

Note that r(0 )//> is a root of 1, hence, in particular, integral. Let/χ be the Iwasa-

wa power series giving rise to the ^-adic L-function i.e., /χ(ζ(l + pqY — 1) =

Lp(s> χφ ) for a suitable >̂-th root ζ of 1 depending on φ . Since /- has integral

coefficients, Lp(l, ~χφk) = Λ(ζ( l + pq) - 1) =/^(0) = Lp«0, χ) = ~ β l f ϊω-i

mod (ζ, - 1). Therefore

(ζ, -

i
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_ q

l<k<p-l

mod (ζp -

Now, we examine the sum Σ
τ(φ")

= Σ f Σ
mod/)2

() l

r k / i\ rW(ji

-zψ(σ)ζP2
-l P

p

-r& [Σφ (σ
w,ι r x A:
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~w •*•

Hence,

Therefore,

Σ
weR
Tj<=S

2τ(χ)

ζ^mod (ζ^ -

iΓxω-Λp- l ) m o d ( ζ , . - 1).

V i mod (ς2 - υ

From ( * ) and ( * * ) , we obtain the desired congruence equation, and this finishes

the proof of the theorem.

COROLLARY. Let L = Q ( ζ ?

+ , ζp) and L+ = Q ( ζ s

+ , ζ+

t), where ζ 4

+ = ζ ? + ζ," 1

and ζp = ζp + ζp\ If P X — r , then H1(Gmn, Cm) —»• Hι(Gmn, Em) is injective for
h> -

all m > n > 0. Here hL is the relative class number of L, i.e.* hL = hL/hL. Similarly
hp is the relative class number ofQ(ζp).
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Proof. From the class number formula, we have

h~p = Qω Π ( ~ \ B

p odd X Δ

= 2 hp Π Bhχω-i Blχω-3 Bhχω-(P-2))
χed even

for a suitable integer t. Hence if p X —~t then Π χ e j e v e n Blxω-i & 0 mod^>. By
tip i*+

Theorems 2 and 3, we obtain the injectivity.

COROLLARY. Suppose Π χ G j e v e n Blχω-\ =fc O m o d / ) . Suppose also the class number

of Q(ζPq)
+ is prime to p. Then, the class number of Q(ζpmq)

+ is prime to p for every

m.

Proof. It is enough to show that p X [Em : Cm] for every m (see[6]). From the

short exact sequence 0 —• Cm —• Em —• Em / Cm —* 0, we have a long exact sequ-

ence

Since H (Gm, Cm) —* H (Gm, Em) is injective by Theorems 2 and 3, we have

(EM/CJGm - Eo/Co. Thus (EM/CJGm ® Zp -EO/CQ®ZP= {0}. Therefore^

XlEm:CJ.
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