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FUNCTIONAL EQUATIONS OF ITERATED INTEGRALS

WITH REGULAR SINGULARITIES

ZΌZISLAW W O J T K O W I A K

§0. Introduction

Polylogarithmic functions satisfy functional equations. The most famous equa-

tion is of course the functional equation of the logarithm

log x + log y = logCr y).

The other well known equation is the Abel equation of the dilogarithm

^ ~ ) - Li2Cr) - Li2(y)
— y) 2 2 *T ) Li2(τ— x \ — y) 2 \1 — x y

- log(l - x)log(l. - y).

Polylogarithms are special cases of more general iterated integrals. One can hope

that the known results about functional equations of polylogarithms hold also for

more general iterated integrals. In fact in [5] we have proved some general results

about functional equations of iterated integrals on P (C) minus several points. In

this paper we generalize our results from [5] to functional equations of iterated in-

tegrals on any smooth, quasi-projective algebraic variety.

Our principal tool is the universal unipotent connection with logarithmic sing-

ularities. First we prove our results for a complement of a divisor with normal

crossings in a smooth, projective variety. Next, using results of Hironaka about re-

solution of singularities we extend our results to smooth, quasi-projective

varieties. The proofs (for a complement of a divisor with normal crossings) are

straightforward generalizations of methods from [5]. These results are in the first

three sections of this paper.

In the fourth section of the paper we are dealing with the dilogarithm. It is

well known that any functional equation of the logarithm on P (C) can be

obtained by successive applications of the functional equation
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log x + log y = logCr y).

We shall show that there is a similar situation for the dilogarithm. This section is

a natural complement of our previous work [5]. The result was presented in the

Strasbourg Conference on Algebraic if-theory 1992. In the last section we give a

sufficient and necessary condition to have a functional equation of iterated integ-

rals on a pointed projective line in terms of exotic analogues of the Bloch group

for the dilogarithm.

§1. Canonical connection with logarithmic singularities

Let X be a smooth, projective scheme of finite type over a field k of charac-

teristic zero. Let D be a divisor with normal crossings in X and let V— X\D.

Let

A*(V) '.= Γ(X,Ω*<\ogD»

be a differential algebra of global sections of the algebraic De Rham complex on X

with logarithmic singularities along D.

1.1. It follows from [1] Corollaire 3.2.14 that each element of A*(V) is

closed and the natural map A (V) —> HDR(V) is injective.

We shall denote by Λ (A (V)) the exterior product of the vector space

A\V) with itself and by Aι{V) Λ Aι{V) the image of /\2{A\V)) in A2 0 0 .

Let H(V) : = ( A 1 0 0 ) * and R(V) •'= UHV) ΛAι(V»* be dual vector

spaces. The surjective map Λ (A (V)) ~+* A 0 0 Λ A (V) induces the injective

map Λ 00 — Λ\H(V)).
Let A be a commutative ring with 1, and let M be an ^4-module. We say that

an A-module Lie(M) is a free Lie algebra (over A) on the A-module M if:

i) there is an A-module homomorphism ^M : M~» Lie(M),

ii) for any Lie algebra L over A and any ^-linear homomorphism / : M-* L

there is a unique A-linear Lie algebra homomorphism / : L i e ( M ) — > L

such that /' = /' ° <8M.

The uniqueness and the existence of Lie(M) is a standard exercise in linear

algebra. We point out that a free Lie algebra on n free generators is a free Lie

algebra on the abelian group Zw.

Let Πe(H(V)) be a free Lie algebra over k on H(V). Observe that R(V) is

contained in degree 2 terms of Lie(if(V)). Let (R(V)) be a Lie ideal generated

by # 0 0 . We set
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Ue(V):=LiemV))/(R(V))

and

UV) ••= lim(Lie(V) /Γ"(V)),

n

where Γ 2Lie(7) : = [Lie ( 7 ) , Lie(7)] and Γn+1 Lie(7) : = [ΓwLie(7) Lie(7)].

The Lie algebra L(7) we equipped with the multiplication given by the

Baker-Campbell-Hausdorff formula and the obtained group we shall denote by

τr(7). Its Lie algebra can be identified with L ( 7 ) . We define a one form ωv on V

with values in the Lie algebra L{V) in the following way. The form ωv corres-

ponds to the identity homomorphism idΛi ( y ) under the natural isomorphism

A\V) ®H(V) = A\V) ®(A1(7))*« Horn (A1(7), ^(7))).

LEMMA 1.2. The one-form ωv is integrable.

Proof. It is sufficient to show that dωv + ~w [ωF, ωv] — 0. It follows from

1.1 that dωv = 0. Let K'= keτ(/\2A\V)-*A\V) /\A\V)). The two-form

[ωv, ωv] is represented by the map K-* Λ 2(A 1.(7)) —• A1 (7) Λ ^ ( 7 ) , hence it

is zero.

Let us assume that k is the field of complex numbers C. Then 7 is a complex

variety with the standard complex topology.

Let x, z e Vbe two points in V and let γ be a smooth path in 7 from x to 2.

The principal τr(7)-bundle V x 7r(7) —* 7 we equip with the connection (in-

tegrable by Lemma 1.2) given by the form ωv. Let (γ(z), Lv(z x, γ)) be its hori-

zontal section along γ such that the value of Lv(z x, j) at the starting point is 0.

DEFINITION 1.3. Let x e V and let a e πx{Vt x) be a loop. We shall define a

homomorphism

by the formula

θXfV(a) : = L 7 ( α ( l ) Λ:, α)

and we call it the monodromy homomorphism of the form ωv (at the point x).

1.4. Let JΓj (for ί = 1,2) be smooth, projective schemes of finite type over k.

Let D; be divisors with normal crossings in X{ and let V{ = Xi\Di for ί = 1,2.
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Let / : Xx —* X2 be a morphism such that / (D2) c Z^. Then / induces a morph-

ism from Vλ to F2 which we denote also by /. Moreover / induces / :A (V2) —>

Let /„.: HiVj —* H(V2) be the dual map. The map f% induces a group homo-

morphism

f*:π(V1)-+π(V2).

LEMMA 1.5. We have

U(ωv) = /*(αv2).

COROLLARY 1.6. Assume that k is the field of complex numbers. Then we have

f*(LVι(z;x,r)) = LV2(f(z) fix), f(r)).

The lemma follows from the definition of β)v as \άA\m. The corollary is the

direct consequence of the lemma.

2. Functional equations I

2.0. Let X and F b e smooth, projective schemes of finite type over C. Let D

and E be divisors with normal crossings in X and Y respectively. Let us set U —

X\D and V= Y\E. Let Alg(τr(£/)) and A\g(π(V)) be algebras of regular func-

tions on π(U) and π(V) respectively. The m a p / : X—* Fsuch t h a t / " (E) c D

determines a map from U to V, which we shall denote also by /

THEOREM 2.1. Let fl9. . ., fN : X—> Y be morphisms such that f~l(E) c D for

each i. Let φ19..., φN G Alg(7r(K)) and letp(t>..., tN) be a polynomial in variables

tlt..., tN. Then there is a functional equation

1) piψ.iLyifM Λω.ΛCr))) φNiLvifNiz) ;fNix),fNiγ))) = 0

if and only if

2) P(φr (/ i)*, . . . , ^ ° (Λ)*) = 0

inAlg(π(U)).

Proof The equation 1) follows from 2) by Corollary 1.6. The monodromy

representation πλ(U', x) —* π(U)a induced by βx>f7 has a Zariski dense image in

π(U) , hence the monodromy representation has a Zariski dense image in π(U) /
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Γnπ(U) for any n. Hence the function p(φλ ° (/i)*,. . . , φN ° (/#)*) vanishes on a

Zariski dense subset of π(U) /Γnπ(U). If w is big enough this implies that the

function p(φί ° (,/i)*,..., φN° (/#)*) is the zero function.

Let Lie(K)*:= lim(Lie(F)/ΓwLie(F))* be the direct limit of dual

vector spaces. Observe that Lie(F) has a natural grading, Lie(V) =

ΘΓ = 1 (Lie( l0\ where (Lie(TO*). = (ΓnLie(V) /Γw+1Lie(V))* The elements of

Lie(tθ can be view as elements of Alg(τr(V)). In fact Lie(F) generates

Alg(π(V)) as a C-algebra.

COROLLARY 2.2. Let flf. . ., fN be as in Theorem 2.1. L#ί nv . . . y nN be complex

numbers and let υλ,..., vN ^ ( L i e ( F ) ) w . T/iβw i^ere is a functional equation

Σ n, - v*(Lr(f,(z) /,(*),/, <r» = 0

if and only if

Σnr v* ° (/,)* = 0

in the group Rom(Γnπ(U) /Γn+1π(U) C), where (/,)*: Γnπ(U) /Γn+1π(U) —

Γ π(V) /Γ 7ί{V) are homomorphisms induced by (/•)# : 7r(U) —• 7r(V).

The corollary is a special case of Theorem 2.1.

The monodromy homomorphism θyV : 7Γ:(F, t/) —* 7r(V) induces a homo-

morphism uv :/ TΓiCK,^)// π^V, y) ^>I πyV)/I π\V), which has a

Zariski dense image and does not depend on a base point y. For any v{ €=

(Lie(F) )w the composition ^ ° β/ we shall denote by V{ . Let {f)#'.r
n^{Uy x)

/Γn+ πx(U, x) —̂  Γ ^ T Γ ^ F , ^) /Γn πx(y, y) be the map induced by f{: U~* V.

COROLLARY 2.3. L#£ / l t . . ., /JV, wx,. . ., % and t^ , . . . , % be as in Corollary

2.2. TTien ί/î rβ is a functional equation

Σ n, »?(Lκ(/,(2) /,(z), /,(r)) = 0

i/ and only if

Σ n, V* - (/,), = 0
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in the group Horn(Γ^^U, x) /Γn+ιπγ{U, x);C).

The Corollary 2.3 follows from Corollary 2.2, the equality (/;)* ° θf = θ™ °

(/)# (which is a consequence of Corollary 1.6) and from the fact that imiθu ) is

Zariski dense in Γnπ(U) /Γn+1π(U).

Assume that X and Y are defined over a field k contained in the field of com-

plex numbers. Let D and E be divisors with normal crossings in X and Y respec-

tively. Let U = X\ D and V = Y\ E.

Setting ( )Q:= ( ) x Spec C we find ourselves in the familiar situation
~ Spec k

o v e r C

Notice t h a t L i e ( U ) a n d L i e ( V ) a r e Lie a l g e b r a s o v e r A, ( L i e ( ) * ) „ =

Hom(ΓwLie( )/Γw + 1Lie( ) k) for ( ) = (17) or (V). We have (Lie(7)*) n ® f c

C = (Lie(Fc)*)w. We shall identify v* G (Lie(7)*)n with its image / ( g ) l in

(Lie(7c)*).

COROLLARY 2.4. Let fv . .., fN:X—+ Y be morphisms such that f~ (E) c D for

each i. Let υx, . . . , vN G (Lie(l^) ) αnίί Zβί c^ . . . , cN be complex numbers not all

equal to zero. If there is a functional equation of the form

=0

then there are qlf..., qN G k not all equal to zero such that

Σ q, v*(LVc(fM) /,ω, /,(r») = o.

Corollary 2.4 follows from Corollary 2.2 and from the well known fact that if

vectors wlf . . . , wN G kr are linearly dependent in kr ® C « C r then they are

already linearly dependent in kr.

Observe that in [5] Corollary 10.6.7 we have that qlf..., qN(clf.. ., cN in the

notation of [5]) are in Q even if the varieties are defined over any finitely gener-

ated extension of Q in C. Below there is a kind of formal analogue.

We consider the case when X, D and £7, and Y, E and F a r e over k. There

is a natural map

: A\V) — HomOΓiί7C, Q) C)

given by yj ωj (γ) = J ω.
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Let Qλ(V) := [ω e Aι(V) \ (Jω)(γ) G Q (-2TΠ), Vγ^H.iV^ Q}}.

Then Q'CV) is a Q-lattice in ^ ( 7 ) i.e. the natural map Q\V) ®k-+Aι(V) is

injective. Observe that for any / : X~•* Y such that / (E) c: D we have

Let 0-^ (Ql(V) Λ Q^V))*)-* Λ W W * ) be the dual map of

Let Lie2πi(V) be a quotient of a free Lie algebra over Q on Q (V0* by the Lie

ideal generated by (Q x (7) Λ Q ^ I O ) * The inclusion Q\V) ®k^Aι(V) in-

duces a surjective morphism of Lie algebras Lie(V0 —+ Lie2πi(V) ® k. Hence we

have an inclusion

Hom(Γ ί lLie2 a c /(K)7Γ ί l + 1Lie2 j r /(V r) Q) ® A-^ <Lie(V)\.

COROLLARY 2.5. Let fv . . . , fN: X—* F 6β morphisms such that f~ (E) c D /or

gαc/i i. L#£ i^ , . . ., vN €= Hom(Γ Lie2 π. ί(y) //^ Lie2^j(V^) Q) and let clf. . ., c^

6̂  complex numbers not all equal to zero. If there is a functional equation of the form

N

Σ c{ v*(Lv (fi(z) fi(x), fi(f)) = 0
ί = l °

ί/ι̂ n there are rational numbers ql}. . . , ^ not all equal to zero such that

Σί, v*(LVc(fM) ,f,ω,Mf») = o.

The proof of the corollary is the same as the proof of Corollary 2.4.

3. Functional equations II

Now we shall study functional equations on any U smooth, quasi-projective

over Spec C. Following Hironaka [3] we can find X smooth, projective, such that

U c X and X\ U is a divisor with normal crossings. Hence we are in the situa-

tion of 2.0.

Let us assume that U and V are smooth, quasi-projective. Let flt.. ., fN : U-+

V be morphisms of schemes over C. Let X' and F b e smooth, projective compacti-

fications of U and V such that X'\U and Y\ V are divisors with normal cros-

sings. Let F : £/-> Γ x F x x F b e given by F(u) = (u, Λ(w),. . ., fN(u)).

Let X be a resolution of singularities of the closure of the image of U in Xf X Y
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x X Y. Then for any i we have a morphism f {\X—* Y, induced by the pro-

jection on the ί-th Y factor, making the diagram

U ^ V

ϊ i
γ K v

J\. 1

commutative.

Now the assumptions from Section 2 (in Theorem 2.1, in Corollary 2 .2, . . .)

about morphisms flf...,fn are satisfied. Hence we get the following theorem.

THEOREM 3.1. All results from Section 2 (Theorem 2.1, Corollaries 2.2-2.5) hold

for U and V smooth and quasi-projective over a field k of characteristic zero and flf. . .,

fN: £7—• V morphisms of schemes over Spec k.

To show Corollary 2.4 in general situation (and also Corollary 2.5 for any

k in C), one must notice that X and F , U c_»'Xt Xf V C-> Y and f { are over

Spec A: if U, V and fi are over Spec k. In all other cases it is sufficient to work

over C.

Remark. Theorem F from [5] is a special case of Theorem 3.1.

4. Functional equations of the dilogarithm

In this section we want to discuss some elementary properties of the dilogar-

ithm. It is well known that any functional equation of the logarithm on P (C) can

be obtained by successive applications of the functional equation

(1) log x + log y = logCr y).

We shall show that there is a similar situation for the dilogarithm. Of course we

must replace the equation (1) by a variant of Abel-Spencer equation. We shall use

a form due to Hill (see [4] 1.18 or [2])

(2) Li2(x-y) = Li2(x) + Li2(y) + Li2 ( * ' ^ i r y ) + Li2

, 1 , 2 /I -

LetA 2(CU)) : = Z(C(z) \ {0,1}) be a free group on the set C(z) \ {0,1}. Ele-

ments of A2(C(z)) we shall write as Σ " = 1 wf[/,(£)] where n{ e Z and f{{x) G
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Cω*\{l}. Let b2:A2(C(z))->C(z)* A C(z)* be given by b2([f(z)]) = f(z) A

(1 - / ( * ) ) . Let pr :C(z)* Λ Cfe)*-*CW* Λ CU)*/C* Λ C(*)* be the natu-

ral projection and let β2 •= pr ° 62. We set 8)2(C(z)) -= ker/32.

We recall one result from [5].

PROPOSITION 4.1. Let fv . . . , /*:X = />*(© \ {^,. . . , an, ™}-> γ= p\c)\

{0,1, °°} be regular functions. Let nv . . ., nN be integers. There is a functional equa-

tion

N

Σ n, Lijj(/,(«)) + l.d.t(2) = 0

N

if and only if Σ ^ ( / p * — 0 in

RomiΓ'π.iX, x) /Γ\(X9 x) r\(Y, y) /r\(Y, y)),

where l.d.t.(2) is a polynomial in logarithms of rational functions.

The proposition is a special case of Theorem E in [5] or Corollary 2.3 in this

paper.

It is a tautological observation that the condition Σ / = 1 w^C/-)* — 0 is equiva-

lent to the condition Σf=1 w,[/,(*)] e k e r ^ (see also [5] Theorem 10.8.2). Hence

we have the following result.

PROPOSITION 4.2. Let fλ(z),.. ., /^Gε) e CGε) \ {0,1} and /eί nlf...,nN be in-

tegers. There is a functional equation

Σ n, U2{fM)) + l.d.t(2) = 0

only if Σf=1 ^[/U)] G ker/32.

Let S2

A b e l(CW) c i42(CU)) be a subgroup of i42(Cfe)) generated by the fol-

lowing elements

{[*•• n -

X, Y<Ξ C(z) \ {0,1}, X-YΦ l},

(4) ί m + [l/Z]|ZeCω\{0,l}>,

(5) {[X] + [1-X]\X e C ω \ {0,l».
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The terms (3) correspond to the functional equation of Hill and the terms (4) cor-

respond to the equation Li2Gz) + h\2(l/z) + t.l.d. (2) = 0, which can be deduced

from the Hill functional equation. The terms (5) correspond to the equation

Li2ω + Li2(l -z) + t ΰ f (2) = 0.

DEFINITION. For any rational function g(z) = p(z) /q(z), where p(z) and

q(z) are polynomials without common factors we set d(g(z)) •= max(degp(z),

deg q(z)).

We say that a rational function g(z) is linear if g(z) = a'z + b.

LEMMA 4.3. Assume that we have a functional equation

where the functions h{(z) are linear and h{{z) Φ hj(z) if i Φ j . Then for each i ^ I

there is V <Ξ / such that i Φ i\ hv(z) = 1 — h^z) and n{ = nv.

Proof. The lemma follows immediately from Proposition 4.2. One observes

that &([/]) + j82([l - / ] ) = 0 for any/ in CU)*\{1} . On the other hand, if all

f. (i e J) are linear, f x Φ f{, if i Φ V and the intersection {f)ieJ Π {1 — ft) ieJ =

0 , then the elements {j82[/ ]} ί G / are linearly independent in C(z) Λ C(z) /C

THEOREM 4.4. We have flfel(C(z)) = 3B2(CU)).

Remark. This means that every functional equation of the dilogarithm on

P (C) can be deduced from the Hill functional equation and the equation Li2Gε) +

Li2(l - z) + L d T ( 2 ) = 0 .

Proof. For any f(z) = a lΓi=1 (z — at) /UZ=i (z ~~ bt) we have a functional

equation

(6) Li2(/ω) - Σ Li2 i^A - Σ Li2 β^fj - Σ Li2 i^A + ΓdX(2),
i,k XLk ai/ j,k χck °j/ i,j \°j a /

where ck's are defined by the expression

r m

f(z) - 1 = a' Π (z - ck) / Π (z - b)
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α, ar €= C and Π ί = 1 (z — a}), Π ; = 1 (z — b}) have no common factors (see

Theorem A in [5]).

Let 3l2

m(C(z)) be a subgroup of A2(C(z)) generated by elements

t/ωi - Σ f f ^ l + Σ f^^-1 + Σ

corresponding to the equation (6) and by elements [h(z)] + [1 — h(z)], where

2

n c f82h(z) is linear. It is clear that $ 2

n c f82 and $ 2

 e l c $ 2 (we omit the field C(z) in

the notation).

Let Σ , Πilgiiz)] G ®2. It follows from (6) that for any gt(z) we have

[&(*)] ~ Σ Λ ± U ^ U ) ] e » f where all hik(z) are linear. Hence ΣfW,-[&(*)]

— Σ Ϊ W ^ Σ Λ ± [^^(2:)]) ^ S2

m and consequently we have a functional equation

Σ ; ni(Y,k ± Li2(A/A(2f))) + t.l.d.(2) = 0 which we can write in the form

(7) Σ maU2{ha{z)) + t.l.d.(2) - 0
a

where all ha are linear and aΦ a' implies ha Φ har. It follows from Lemma 4.3

that the equation (7) can be written in the form Σ ^ nβ (Li 2(^(z)) + Li2(l —

hβ(z))) + Ltd.(2) = 0. The elements [hβ] + [1 - hβ] e S2

in by the definition,

hence Σama[ha] ^ ®2

n. This implies that Σ , Wjt&Cz)] e ®2

m and therefore we

have ®2 = flB2.

Hence to finish the proof it is sufficient to show that any element of the form

[/(*)] - Σ [(z - a)/(ck - α,)] + Σ [Or - b) /{ck - b)] + Σ [(z - a) /% - α,)]
i,k i,k U

(where

f(z) = (oΠ U —α,))/(π (z-ftp),

f(z) - 1 = (α' Π (z - ck))/(u (z - b)),

α, α7 ^ C and the numerator and the denominator of f(z) have no common fac-

tor) belongs to %2 .

By (4) we can assume that n>m. Let us set X' Y—f(z) and X =

_ v Λ fe gi) tei fri) v
T h e n x " 1 = r u - W ^ - α , ) . r = « π

q — βj) / Π (2: — ft;) (^ — b^) and
; = 2
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n m

a Π (z — at) (c1 ~ aλ) — U (z — bj) (c1 — a : )

Y- 1 =
Π (z - bj) (c, - bx) Π (z- bf) (c, - bγ)

; = 2 ; = 2

where deg ί?Cε) < n — 2.

/ 1 — Y\ / 1 — X\

Observe that d(X), d(Y), dίx χ _ , ) and d [Y γ _ , j are strictly

smaller than n if n ^ 2. We have

1 - Y = z - a, c,- bx ι (z- cj<§(z) {z - bλ) (c, - a,)
X — 1 z — bx cγ — a1

 m (z — C)) (ax — δx)
Π (z — bj) (c1 — b±)

y=2

(z- at

Π (z- b) {a, - bλ)
; = 2

(
1 γ\ 1 V

X ^ j-) < n — 1. In the same way one checks for Y * ~τ? τ~.
A 1 / l 1

If

n 2, — CL
f(z) is a polynomial a Π (z — a^) we set X — ————. Hence after finite number

i l Cl ai

of steps we get [f(z)] — ΣiPilgiiz)] where d(g{(z)) = 1. It rests to express

[ z — aλ z — a

a —zrΰ\ by polynomials of degree 1. We set X = j — - — , Y= 1 — a. Then
Z O Λ O Cl

= a
(z-a)

~b) a n d

5. Exotic analog'ues of Bloch groups

In this section we give necessary and sufficient conditions to have a function-

al equation of iterated integrals in terms of exotic analogues of the Bloch group.

We shall work only on a pointed projective line.

Let Lie(CU) ) be a free Lie algebra on the abelian group C(z) (see Section

1). We shall identify an element/e C(z)* with ^ c ω * ( / ) e Lie(C(*)*). Let / c

Lie(CGz) ) be a Lie ideal consisting of all brackets [. . . [fίf f2]. . . [ . . . , fk]

. . .] such that at least one /, is in C*. Let L(C(z)*) •= Lie(Cfe)*)//. Observe

that L(CU)*) is a free Lie algebra on the set {(z — a) \ a e C}.

Let X = P'ίC) \ ialt. . ., an9 <*>} and let Y = P^C) \ {blf. . ., bm, «>}. We
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set

»(Y):= Θ Z,
feC(z)\ibι,...,bm}

the free abelian group on the set C(z) \ {bv.. ., bm}. The generator corresponding

t o / we shall denote by [/]. For any homogeneous element e €= Lie(i/(Y)),

/ dz \*
where Bj = (—_ , j we define a map

by the formula

bγ(e)([f]) = Σ α , [ . . . [ / - bh...[...,/- bh]...].

Let us fix an ordering I?! = (—_ , ) , B2, . . . , Bm of the base of H(Y). Then

there is a canonical base SB = {e f}/e/ of Lie Cίί( 10) given by basic Lie elements

(see [6]). Let {e{ } ί e / be the dual linear forms.

THEOREM 5.1. Let ev . . . > en ^ $ί be basic Lie elements of degree n. Let fv . . .,

fn : X —+ Y 6β regular maps. Let nlf. . ., nN be integers. Let y be a path in X from x

to z. The following conditions are equivalent.

i) Σ n( ef(Lγ(fi(z) ;/,Cr), Mr)) = 0
i - l

ϋ) Σ n, e* φ , = 0 in Rom(Γ"π(X) /Γn+1π(X) C)
ί = l

iii) Σnr ftγ(^)([/,]) = 0 .

/ It follows from Corollary 2.2 that conditions i) and ii) are equivalent.

Hence we must show that ii) and iii) are equivalent. Let e = [. . . [B^, . . . [ . . . ,

Bik]. . .] be a basic Lie element of degree n and let e be its dual. Let / : X—* Y

be a regular map. The map / and e induce

Lie(#(X)) ^ Lie(#(Y)) ^ C.

Let us set C '•— Hom(C, C). Passing to dual objects we get a map

Lie(A\X)) ^-LieW'αO) ^ C v.
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Observe that the condition ii) is equivalent to the condition

ii') Σ nt (/,)*• (e?)v = 0 in Hom(C\ Lie (A1

u r*ί dz \ f'(z) J J , *v V / . , x Γ dz Γ

Observe that / 1 τ~) = -J7~\ r~ ^ a n o - v# / UCw = . . . r~.......
\z — bj/ f{z) — b{

 c L z — bh L

— _ T . . . . Let us define maps

ί x : Lie(Ax(X)) —• L(CU)*) and z γ : LieίA^Y)

by the formula ix (———) = (z — a^. Observe that the diagram
\ Z Cl jr /

LieCA^X)) ( ^ LieW'CY)) ^ C v

commutes, where / (z — a) = f(z) — a and £(idc) = [. . . [z — b^ . . . [ . . . , z —

bik\. . . ] . The maps z x and i γ are inclusions, hence the condition ii') is equivalent

to the condition Σ / = = 1 n{ (f) ° βf = 0. This last condition is equivalent to the

condition Σf-α*, (/,)# (e, (id c)) = 0. Observe that (/,)*(* ,(id c)) = bΎ(e)[β.

Hence we get that ii) and iii) are equivalent.
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