A. Kudo

Nagoya Math. J.
Vol. 144 (1996), 155-170

ON p-ADIC DEDEKIND SUMS

AICHI KUDO

§1. Introduction

For positive integers h, k and m, the higher-order Dedekind sums are defined by

$$
S_{m+1}^{(r)}(h, k)=\sum_{a=0}^{k-1} \bar{B}_{m+1-r}\left(\frac{a}{k}\right) \bar{B}_{r}\left(\frac{h a}{k}\right), \quad 0 \leq r \leq m+1
$$

where $\bar{B}_{n}(x), n \geq 0$, are the Bernoulli functions (§2). If m is odd and $(h, k)=1$, the sum $S_{m+1}^{(m)}(h, k)$ is identical with the higher-order Dedekind sum of Apostol [1],

$$
s_{m}(h, k)=\sum_{a=1}^{k-1} \frac{a}{k} \bar{B}_{m}\left(\frac{h a}{k}\right) .
$$

Recently, Rosen and Snyder [6] constructed a p-adic continuous function $S_{p}(s ; h, k)$ for an odd prime p, which takes the values

$$
S_{p}(m ; h, k)= \begin{cases}k^{m} s_{m}(h, k)-p^{m-1} k^{m} s_{m}\left(\left(p^{-1} h\right)_{k}, k\right), & \text { if }(k, p)=1, \\ k^{m} s_{m}(h, k), & \text { if } k=p,\end{cases}
$$

at positive integers m such that $m+1 \equiv 0(\bmod p-1)$; here $\left(p^{-1} h\right)_{k}$ denotes the integer x such that $0 \leq x<k$ and $p x \equiv h(\bmod k)$.

The purpose of this paper is to extend this result of them to $k^{m} S_{m+1}^{(r)}(h, k)$ for every h, k and $r \geq 1$. To this end, we use an expression of $k^{m} S_{m+1}^{(r)}(h, k)$ in terms of the Euler numbers ([2], [3]) and a p-adic continuous function which interpolates these numbers ([7], [8]).

Let p be a prime number and Z_{p} the ring of rational p-adic integers. Let $e=$ $p-1$ or $e=2$ according as $p>2$ or $p=2$. In $\S \S 2-3$, we shall prove the following

[^0]Theorem 1. Let h, k and r be fixed integers ≥ 1. Then, there exists a continuous function $S_{p}(s ; r, h, k)$ on Z_{p}, which satisfies

$$
S_{p}(m ; r, h, k)=k^{m} S_{m+1}^{(r)}(h, k)-p^{m-r} k^{m} S_{m+1}^{(r)}(p h, k)
$$

for all integers m such that $m \geq r$ and $m+1 \equiv 0(\bmod e)$.

In §4, we shall discuss about a special value and a continuity property of our function $S_{p}(s ; r, h, k)$, assuming that $(h, k)=1$.

§2. Preliminaries

Let C_{p} be the completion of an algebraic closure of the rational p-adic number field $Q_{p},| |$ the valuation on C_{p} normalized so that $|p|=p^{-1}, \mathscr{O}$ the ring of integers in C_{p} and Z the ring of rational integers. Throughout, we fix p and consider algebraic numbers to be contained in C_{p}.

For each root of unity $\rho \neq 1$, we define the numbers $E_{n}(\rho), n \geq 0$, by

$$
\frac{\rho}{e^{t}-\rho}=\sum_{n=0}^{\infty} E_{n}(\rho) \frac{t^{n}}{n!} .
$$

Here, $\frac{1-\rho}{\rho} E_{n}(\rho)=H_{n}(\rho), n \geq 0$, are the Euler numbers with the parameter ρ.
If ρ satisfies the condition that $\rho^{p^{n}} \neq 1$, for all $n \geq 0$, we can define a finitely additive \mathscr{O}-valued measure μ_{ρ} on Z_{p} by

$$
\mu_{\rho}\left(a+p^{N} Z_{p}\right)=\frac{\rho^{p^{N}-a}}{1-\rho^{p^{N}}}, \quad 0 \leq a<p^{N}, \quad N \geq 0 .
$$

Let Z_{p}^{*} denote the group of units in Z_{p}. We know by [7], [8] that

$$
\begin{equation*}
\int_{Z_{p}} x^{n} d \mu_{\rho}(x)=\lim _{N \rightarrow \infty} \sum_{a=0}^{p^{N}-1} a^{n} \frac{\rho^{p^{N}-a}}{1-\rho^{p^{N}}}=E_{n}(\rho), \quad n \geq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{Z_{\dot{p}}^{*}} x^{n} d \mu_{\rho}(x)=\lim _{N \rightarrow \infty} \sum_{a=0}^{p^{N}-1} a^{n} \frac{\rho^{p^{N}-a}}{1-\rho^{p^{N}}}=E_{n}(\rho)-p^{n} E_{n}\left(\rho^{p}\right), \quad n \geq 0, \tag{2}
\end{equation*}
$$

where Σ^{*} means to take sum over all integers prime to p in the given range.
Let c be an integer >1 and $E_{n}(1)=\frac{B_{n+1}}{n+1}, n \geq 0$, where $B_{n}, n \geq 0$, are
the Bernoulli numbers defined by $\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}$. Then, it follows at once from the identity

$$
\sum_{n^{c}=1} \frac{\rho \eta}{e^{t}-\rho \eta}=\frac{c \rho^{c}}{e^{c t}-\rho^{c}}
$$

that

$$
\begin{equation*}
\sum_{n^{c}=1} E_{n}(\rho \eta)=c^{n+1} E_{n}\left(\rho^{c}\right), \quad n \geq 0 \tag{3}
\end{equation*}
$$

for every root of unity ρ. If $\rho^{c}=1$, the formula (3) is equivalent to that

$$
\sum_{n^{c}=1, n \neq 1} E_{n}(\eta)=\left(c^{n+1}-1\right) \frac{B_{n+1}}{n+1}, \quad n \geq 0
$$

Let $B_{n}(x)=\sum_{i=0}^{n}\binom{n}{i} B_{i} x^{n-i}, n \geq 0$, be the Bernoulli polynomials and let $\{x\}$ denote the smallest real number $t \geq 0$ such that $x-t \in Z$, for a real number x. Then we have $\bar{B}_{n}(x)=B_{n}(\{x\})$ except for the case $n=1$ and $x \in Z\left(\bar{B}_{1}(x)=\right.$ 0 for $x \in Z$). Therefore we get without difficulty that

$$
\begin{equation*}
S_{m+1}^{(r)}(h, k)=\sum_{a=0}^{k-1} B_{m+1-r}\left(\frac{a}{k}\right) B_{r}\left(\left\{\frac{h a}{k}\right\}\right), \quad 1 \leq r \leq m \tag{4}
\end{equation*}
$$

for all odd integers m (unless $r=m=1$). If $r=m=1$, the right hand side of (4) is equal to $S_{2}^{(1)}(h, k)+\frac{1}{4}$.

Now, by the equality

$$
\frac{t e^{\left\{\frac{a}{k}\right\} t}}{e^{t}-1}=\frac{1}{k} \sum_{\zeta^{k}=1}\left(\sum_{b=0}^{k-1} \frac{t e^{\frac{b}{k} t}}{e^{t}-1} \zeta^{-b}\right) \zeta^{a}
$$

we have

$$
\begin{equation*}
k^{n} B_{n}\left(\left\{\frac{a}{k}\right\}\right)=n \sum_{\zeta^{k}=1} E_{n-1}(\zeta) \zeta^{a}, \quad n \geq 1 . \tag{5}
\end{equation*}
$$

Therefore we obtain the formula of [2], [3],

$$
\begin{equation*}
k^{m} S_{m+1}^{(r)}(h, k)=(m+1-r) r \sum_{\zeta^{k}=1} E_{m-r}\left(\zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right), \quad 1 \leq r \leq m \tag{6}
\end{equation*}
$$

for all odd m (unless $r=m=1$). If $r=m=1$, the formula (6) holds for
$k\left(S_{2}^{(1)}(h, k)+\frac{1}{4}\right)$.

§3. Definition of $S_{p}(s ; r, h, k)$

In this section, we give a proof of Theorem 1 mentioned in introduction. Let h, k and r denote positive integers and ζ a root of unity. Let $q=p$ or $q=4$ according as $p>2$ or $p=2$.

Suppose first that $\zeta^{\phi^{n}} \neq 1$ for all $n \geq 0$. Let

$$
\begin{equation*}
G(s ; r, \zeta)=\int_{Z_{p}^{*}} \omega(x)^{-1}\langle x\rangle^{s} \frac{1}{x^{r}} d \mu_{\zeta}(x), \quad s \in Z_{p} \tag{7}
\end{equation*}
$$

where ω is the Teichmüller character with conductor q and $\langle x\rangle=\omega(x)^{-1} x$ for $x \in Z_{p}^{*}$.

Let exp and \log denote the p-adic exponential and logarithm functions, respectively. Then, since $\langle x\rangle \equiv 1(\bmod q)$ for $x \in Z_{p}^{*}, \log \langle x\rangle \equiv 0(\bmod q)$ and $\langle x\rangle^{s}=\exp (s \log \langle x\rangle)$. Therefore $G(s ; r, \zeta)$ is an analytic function of s in Z_{p} with an expansion

$$
\begin{gather*}
G(s ; r, \zeta)=\sum_{n=0}^{\infty} c_{n, r}(\zeta)(s+1-r)^{n}, \\
c_{n, r}(\zeta)=\int_{z_{p}^{*}} \omega^{-r}(x) \frac{(\log \langle x\rangle)^{n}}{n!} \frac{1}{x} d \mu_{\zeta}(x), \tag{8}\\
\left|c_{n, r}(\zeta)\right| \leq\left|\frac{q^{n}}{n!}\right| \leq\left(q^{-1} p^{\frac{1}{p-1}}\right)^{n} .
\end{gather*}
$$

Now, as e is the order of ω, we have, by (2),

$$
\begin{equation*}
G(m ; r, \zeta)=\int_{Z_{p}^{*}} x^{m-r} d \mu_{\zeta}(x)=E_{m-r}(\zeta)-p^{m-r} E_{m-r}\left(\zeta^{p}\right) \tag{9}
\end{equation*}
$$

for all integers m such that $m \geq r$ and $m+1 \equiv 0(\bmod e)$.
Next, suppose that $\zeta^{\rho^{n}}=1$ for some $n \geq 0$. Choose an integer $c>1$ so that $|c-1| \leq|q|$ and $\zeta^{c}=\zeta$. Let

$$
F_{c}(s ; r, \zeta)=\sum_{\eta^{c}=1, \eta \neq 1} G(s ; r, \zeta \eta) .
$$

Then, it follows from (9) and (3) that

$$
F_{c}(m ; r, \zeta)=\left(c^{m+1-r}-1\right)\left(E_{m-1}(\zeta)-p^{m-r} E_{m-r}\left(\zeta^{p}\right)\right)
$$

for all $m \geq r, m+1 \equiv 0(\bmod e)$.

Now, we consider the power series

$$
U_{c, r}(s)=\sum_{n=0}^{\infty} B_{n} \frac{(\log c)^{n-1}}{n!}(s+1-r)^{n}
$$

Since $\left|B_{n}\right| \leq\left|\frac{1}{p}\right|$ for all n (by the von Staudt-Clausen Theorem) and $\left|\frac{(\log c)^{n-1}}{n!}\right|$ $\leq\left|\frac{q^{n-1}}{n!}\right|$, this power series defines an analytic function of $s \in Z_{p}$ and is equal to $\frac{s+1-r}{c^{s+1-r}-1}$ for $s \neq r-1$. Let

$$
\begin{aligned}
G(s ; r, \zeta) & =\frac{1}{s+1-r} U_{c, r}(s) F_{c}(s ; r, \zeta), \quad \text { for } s \neq r-1, \\
& =\frac{1}{c^{s+1-r}-1} F_{c}(s ; r, \zeta) .
\end{aligned}
$$

Then the value of this function G is independent of the choice of c, and

$$
\begin{equation*}
G(m ; r, \zeta)=E_{m-r}(\zeta)-p^{m-r} E_{m-r}\left(\zeta^{p}\right) \tag{10}
\end{equation*}
$$

for all $m \geq r, m+1 \equiv 0(\bmod e)$. We define the function $S_{p}(s ; r, h, k)$ by

$$
S_{p}(s ; r, h, k)=(s+1-r) r \sum_{\zeta^{k}=1} G\left(s ; r, \zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right),
$$

and show that this function $S_{p}(s ; r, h, k)$ satisfies the properties described in Theorem 1.

The function S_{p} is analytic in Z_{p} and in particular is continuous. Further by (9), (10) and (6) we have

$$
\begin{aligned}
S_{p}(m ; r, h, k) & =(m+1-r) r \sum_{\zeta^{k}=1}\left(E_{m-r}\left(\zeta^{h}\right)-p^{m-r} E_{m-r}\left(\zeta^{p h}\right)\right) E_{r-1}\left(\zeta^{-1}\right) \\
& =k^{m} S_{m+1}^{(r)}(h, k)-p^{m-r} k^{m} S_{m+1}^{(r)}(p h, k)
\end{aligned}
$$

for all $m \geq r, m+1 \equiv 0(\bmod e)$. This completes the proof of Theorem 1 .
Let d be a positive integer. Since $S_{m+1}^{(r)}(d h, d k)=d^{r-m} S_{m+1}^{(r)}(h, k)([2])$, we have

$$
\begin{aligned}
S_{p}(m ; r, d h, d k) & =(d k)^{m} S_{m+1}^{(r)}(d h, d k)-p^{m-r}(d k)^{m} S_{m+1}^{(r)}(p d h, d k) \\
& =d^{r} k^{m} S_{m+1}^{(r)}(h, k)-p^{m-r} d^{r} k^{m} S_{m+1}^{(r)}(p h, k) \\
& =d^{r} S_{p}(m ; r, h, k)
\end{aligned}
$$

for all $m \geq r, m+1 \equiv 0(\bmod e)$. Hence by analyticity we obtain

$$
S_{p}(s ; r, d h, d k)=d^{r} S_{p}(s ; r, h, k), \quad s \in Z_{p}
$$

Therefore, when we discuss the property of $S_{p}(s ; r, h, k)$, it is sufficient to consider in the case where $(h, k)=1$. Similarly, if $(k, p)>1$, we can write the formula of Theorem 1 as

$$
S_{p}(m ; r, h, k)=k^{m} S_{m+1}^{(r)}(h, k)-k^{m} S_{m+1}^{(r)}\left(h, k p^{-1}\right)
$$

for m such that $m \geq r, m+1 \equiv 0(\bmod e)$.
Remark 1. Let $(h, k)=1$ and $p>2$. Take an integer $h^{*}>0$ such that $h h^{*} \equiv 1(\bmod k)$. Then by the property $S_{m+1}^{(1)}\left(h^{*}, k\right)=S_{m+1}^{(m)}(h, k)$ of Dedekind sums, it follows that

$$
S_{p}\left(m, 1, h^{*}, k\right)= \begin{cases}k^{m} s_{m}(h, k)-p^{m-1} k^{m} s_{m}\left(\left(p^{-1} h\right)_{k}, k\right), & \text { if }(k, p)=1 \\ k^{m} s_{m}(h, k), & \text { if } k=p\end{cases}
$$

for all $m \geq 1, m+1 \equiv 0(\bmod p-1)$. Therefore the function $S_{p}\left(s ; 1, h^{*}, k\right)$ gives the Rosen-Snyder's $S_{p}(s ; h, k)$.

Remark 2. If $p=2$ or 3 , then Theorem 1 holds for $r=1$ and $m=1$, so

$$
S_{p}(1 ; 1, h, k)= \begin{cases}k s(h, k)-k s(p h, k), & \text { if }(k, p)=1 \\ k s(h, k)-k s\left(h, k p^{-1}\right), & \text { if }(k, p)=p\end{cases}
$$

where $s(h, k)=S_{2}^{(1)}(h, k),(h, k)=1$, denote the ordinary Dedekind sums.
For any integer $\nu \geq 0$, let $p^{\bar{\nu}}$ be the least common multiple of q and p^{ν}. Let $c=1+p^{\bar{\nu}}$. Then the function $S_{p}\left(s ; r, h, p^{\nu}\right)$ is defined by

$$
\begin{equation*}
S_{p}\left(s ; r, h, p^{\nu}\right)=U_{c, r}(s) r \sum_{\zeta^{p}=0} F_{c}\left(s ; r, \zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right) . \tag{11}
\end{equation*}
$$

Let $(h, k)=1, k>1$ and let

$$
\begin{equation*}
\bar{S}_{p}(s ; r, h, k)=(s+1-r) r \sum_{\zeta^{k}=1, \zeta^{p} \neq 1} G\left(s ; r, \zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right), \tag{12}
\end{equation*}
$$

where $k=k_{0} p^{\nu},\left(k_{0}, p\right)=1$, and G on the right is the analytic one defined by (7). Then the function $S_{p}(s ; r, h, k)$ is separated as

$$
S_{p}(s ; r, h, k)=\bar{S}_{p}(s ; r, h, k)+S_{p}\left(s ; r, h, p^{\nu}\right)
$$

Finally, if r is odd, then we see from the definition of Dedekind sums that $S_{m+1}^{(r)}(h, 1)=S_{m+1}^{(r)}(h, 2)=0$ for odd $m \geq r$. Hence it follows from Theorem 1
and the analyticity of S_{p} that

$$
S_{p}(s ; r, h, 1)=S_{p}(s ; r, h, 2)=0, \quad s \in Z_{p}
$$

if r is odd.

§4. Properties of $S_{p}(s ; r, h, k)$

It is the purpose of this section to estimate the p-adic absolute values $\left|a_{n}\right|, n$ ≥ 0, of the coefficients of

$$
S_{p}(s ; r, h, k)=\sum_{n=0}^{\infty} a_{n}(s+1-r)^{n}, \quad a_{n} \in Q_{p}
$$

in the case where $(h, k)=1$. We write $k=k_{0} p^{\nu},\left(k_{0}, p\right)=1, \nu \geq 0$, and consider separately about $S_{p}\left(s ; r, h, p^{\nu}\right)$ and $\bar{S}_{p}(s ; r, h, k)$. Let $p^{\bar{\nu}}$ denote the least common multiple of q and p^{ν} as before.

Lemma. Suppose $\zeta^{p^{n}} \neq 1$ for all $n \geq 0$. Then,

$$
\int_{Z_{p}^{*}} \omega^{-r}(x) \frac{1}{x} d \mu_{\zeta}(x)= \begin{cases}\log (1-\zeta)-\frac{1}{p} \log \left(1-\zeta^{p}\right), & \text { if } r \equiv 0(\bmod e), \\ \frac{\tau\left(\omega^{-r}\right)}{q} \sum_{a=0}^{q-1} \omega^{r}(a) \log \left(1-\zeta \zeta_{q}^{a}\right), & \text { if } r \not \equiv 0(\bmod e),\end{cases}
$$

where ζ_{q} is a primitive q-th root of unity, and $\tau\left(\omega^{-r}\right)=\sum_{i=0}^{q-1} \omega^{-r}(i) \zeta_{q}^{i}$.
Proof. Let $f(X)$ be the unique power series in $\mathscr{O}[[X]]$ such that

$$
f(X) \equiv \sum_{a=0}^{p^{n}-1} \mu_{\zeta}\left(a+p^{n} Z_{p}\right)(1+X)^{a} \quad\left(\bmod P_{n}(X)\right)
$$

for all $n \geq 0$, where $P_{n}(X)=(1+X)^{p^{n}}-1$. Then it follows immediately from the above congruences that $f(X)=\frac{\zeta}{1+X-\zeta}$. Therefore, we can calculate the value of this integral following the theory of Γ-transform, namely, e.g. along the argument of [5] (pp. 45-48). This completes the proof. The assertion for the case where $r \equiv 0(\bmod e)$ is obtained also in [9].

Let $c=1+p^{\bar{\nu}}$, and let $F_{c}(s ; r, \zeta)$ and $U_{c, r}(s)$ be the functions defined in §3. In the sequel we write $F^{(\nu)}(s ; r, \zeta)$ and $U_{r}^{(\nu)}(s)$ for the functions F_{c} and U_{c}, respectively.

Proposition 1. For each root of unity ζ such that $\zeta^{p^{\nu}}=1$, let

$$
F^{(\nu)}(s ; r, \zeta)=\sum_{n=0}^{\infty} b_{n, r}^{(\nu)}(\zeta)(s+1-r)^{n}, \quad b_{n, r}^{(\nu)}(\zeta) \in C_{p} .
$$

(a) When $r \equiv 0(\bmod e)$,

$$
b_{0, r}^{(\nu)}(\zeta)= \begin{cases}\left(1-\frac{1}{p}\right) \log c, & \text { if } \zeta=1, \\ -\frac{1}{p} \log c, & \text { if } \zeta^{p}=1, \zeta \neq 1, \\ 0, & \text { otherwise } ;\end{cases}
$$

(b) when $r \not \equiv 0(\bmod e)$,

$$
b_{0, r}^{(\nu)}(\zeta)= \begin{cases}\frac{\tau\left(w^{-r}\right)}{q} \omega^{r}(i) \log c, & \text { if } \zeta=\zeta_{q}^{-1},(i, p)=1, \\ 0, & \text { otherwise } ;\end{cases}
$$

and
(c)

$$
b_{n, r}^{(\nu)}(\zeta)=\sum_{a=0}^{p^{\bar{D}}-1} \omega^{-r}(a) \zeta^{-a}\left(\frac{(\log a)^{n}}{n!}+\frac{q^{n}}{n!} q^{-1} p^{\bar{\nu}} \xi_{a}^{(n)}\right), \quad n \geq 1,
$$

where $\xi_{a}^{(n)}$ are rational p-adic integers independent of ζ.

Proof. Since

$$
\begin{equation*}
b_{n, r}^{(\nu)}(\zeta)=\sum_{n^{c}=1, n \neq 1} \int_{z_{p}^{*}} \omega^{-r}(x) \frac{(\log \langle x\rangle)^{n}}{n!} \frac{1}{x} d \mu_{\zeta n}(x), \quad n \geq 0, \tag{13}
\end{equation*}
$$

the assertions (a), (b) for $n=0$ immediately follow from Lemma and the fact that

$$
\sum_{n \neq 1} \log (1-\zeta \eta)= \begin{cases}\log c, & \text { if } \zeta=1 \\ 0, & \text { if } \zeta \neq 1\end{cases}
$$

for any p^{ν}-th root of unity ζ. Let $n \geq 1$. In order to prove the assertion (c), we write

$$
\begin{aligned}
& b_{n, r}^{(\nu)}(\zeta)=\sum_{n \neq 1} \lim _{N \rightarrow \infty} \sum_{a=0}^{p^{\bar{\nu}+N}-1} \omega^{-\gamma}(a) \frac{(\log a)^{n}}{n!} \frac{1}{a} \frac{(\zeta \eta)^{p^{\bar{\nu}+N}-a}}{1-(\zeta \eta)^{\bar{p}^{\bar{\nu}+N}}} \\
&=\sum_{n \neq 1} \lim _{N \rightarrow \infty} \sum_{a=0}^{p^{\bar{\nu}}-1} \sum_{b=0}^{p^{N}-1} \omega^{-r}(a) \frac{\left(\log \left(a+p^{\bar{\nu}} b\right)\right)^{n}}{n!\left(a+{\left.p^{\bar{\nu}} b\right)}_{\zeta^{-a} \eta^{-a}\left(\eta^{-1}\right)^{p^{N}-b}}^{1-\left(\eta^{-1}\right)^{p^{N}}}\right.}
\end{aligned}
$$

so that

$$
b_{n, r}^{(\nu)}(\zeta)=\sum_{a=0}^{p^{\bar{\nu}}-1} \omega^{-r}(a) \zeta^{-a} \sum_{n \neq 1} \eta^{a} \int_{z_{p}} \frac{\left(\log \left(a+p^{\bar{\nu}} x\right)\right)^{n}}{n!\left(a+p^{\bar{\nu}} x\right)} d \mu_{n}(x), \quad n \geq 1 .
$$

Since the sum on the right over $\eta \neq 1\left(\eta^{c}=1\right)$ is a rational p-adic integer independent of ζ, it is sufficient to show that this sum is congruent to $\frac{(\log a)^{n}}{n!}$ modulo $\frac{q^{n-1}}{n!} p^{\bar{\nu}}$, for each a. Now since $\log \left(a+p^{\bar{\nu}} x\right) \equiv \log a\left(\bmod p^{\bar{\nu}}\right), \frac{1}{a+p^{\bar{\nu}} x}$ $\equiv \frac{1}{a}\left(\bmod p^{\bar{\nu}}\right)$ and $\log a \equiv 0(\bmod q)$, we have

$$
\frac{\left(\log \left(a+p^{\bar{\nu}} x\right)\right)^{n}}{a+p^{\bar{\nu}} x} \equiv \frac{(\log a)^{n}}{a} \quad\left(\bmod q^{n-1} p^{\bar{\nu}}\right), \quad n \geq 1 .
$$

On the other hand by making use of (1) and (5), we obtain

$$
\begin{aligned}
\sum_{n \neq 1} \eta^{a} \int_{Z_{p}} d \mu_{\eta}(x)= & \sum_{n \neq 1} \eta^{a} E_{0}(\eta)=c B_{1}\left(\frac{a}{c}\right)-B_{1} \\
\quad & \quad\left(\text { because } 0 \leq a \leq p^{\bar{\nu}}-1<c\right) \\
= & a-\frac{p^{\bar{\nu}}}{2} \equiv a\left(\bmod p^{\bar{\alpha}-1}\right) .
\end{aligned}
$$

Hence

$$
\sum_{n \neq 1} \eta^{a} \int_{z_{p}} \frac{\left(\log \left(a+p^{\bar{\nu}} x\right)\right)^{n}}{n!\left(a+p^{\bar{\nu}} x\right)} d \mu_{n}(x) \equiv \frac{(\log a)^{n}}{n!}\left(\bmod \frac{q^{n-1}}{n!} p^{\bar{\nu}}\right), \quad n \geq 1
$$

as desired. This completes the proof of Proposition 1.
Now, for $\nu \geq 1$, let

$$
T_{r}^{(\nu)}(s)=r \sum_{\zeta^{\nu \nu}=1} F^{(\nu)}\left(s ; r, \zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right),
$$

where $(h, p)=1$. Then, by (11), we have $S_{p}\left(s ; r, h, p^{\nu}\right)=U_{r}^{(\nu)}(s) T_{r}^{(\nu)}(s)$.
Let $B_{n, \omega^{-r},} n \geq 0$, denote the generalized Bernoulli numbers for the character ω^{-r}, defined by

$$
\sum_{a=0}^{a-1} \frac{\omega^{-r}(a) t e^{a t}}{e^{a t}-1}=\sum_{n=0}^{\infty} B_{n, \omega^{-r}} \frac{t^{n}}{n!}
$$

Proposition 2. Let $\nu \geq 1(\nu \geq 2$ if $p=2, r \not \equiv 0(\bmod e))$ and

$$
T_{r}^{(\nu)}(s)=\sum_{n=0}^{\infty} t_{n, r}^{(\nu)}(s+1-r)^{n}, \quad t_{n, r}^{(\nu)} \in Q_{p} .
$$

Then,
(a)

$$
t_{0, r}^{(\nu)}= \begin{cases}\left(1-p^{r-1}\right) B_{r} \log c, & \text { if } r \equiv 0(\bmod e), \\ \omega^{r}(h) B_{r, \omega^{-r}} \log c, & \text { if } r \not \equiv 0(\bmod e)\end{cases}
$$

and
(b) $\quad t_{n, r}^{(\nu)} \equiv \frac{(\log (1+q))^{n}}{n!} h^{r} \sum_{a=0}^{p^{\bar{\nu}}-1} v(a)^{n}(1+q)^{r v(a)}\left(\bmod \frac{q^{n}}{n!} q^{-1} p^{\bar{\nu}}\right), \quad n \geq 1$,
where $v(a)$ belongs to Z_{p} and determined uniquely by $\langle a\rangle=(1+q)^{v(a)}$, for each integer a prime to p.

Proof. By the definition of $T_{r}^{(\nu)}$, we have

$$
t_{n, r}^{(\nu)}=r \sum_{\zeta^{\nu}=1} b_{n, r}^{(\nu)}\left(\zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right), \quad n \geq 0 .
$$

(a) Let $r \equiv 0(\bmod e)$. Then, by Proposition $1(\mathrm{a})$,

$$
t_{0, r}^{(\nu)}=r \sum_{\zeta^{\rho}=1, \zeta \neq 1}\left(-\frac{1}{p} \log c\right) E_{r-1}\left(\zeta^{-1}\right)+r\left(1-\frac{1}{p}\right) \log c E_{r-1}(1) .
$$

The right hand side reduces to $\left(1-p^{r-1}\right) B_{r} \log c$ by making use of the formula (3). Next, let $r \not \equiv 0(\bmod e)$. Then by Proposition 1(b),

$$
\begin{aligned}
t_{0, r}^{(\nu)} & =r \sum_{i=0}^{q-1} b_{0, r}^{(\nu)}\left(\zeta_{q}^{-i h}\right) E_{r-1}\left(\zeta_{q}^{i}\right) \\
& =r \frac{\tau\left(\omega^{-r}\right)}{q} \omega^{r}(h) \log c \sum_{i=0}^{q-1} \omega^{r}(i) E_{r-1}\left(\zeta_{q}^{i}\right) .
\end{aligned}
$$

Now, from the equality

$$
\frac{\tau\left(\omega^{-r}\right)}{q} \sum_{i=0}^{q-1} \omega^{r}(i) \frac{\zeta_{q}^{i}}{e^{t}-\zeta_{q}^{\imath}}=\sum_{a=0}^{q-1} \frac{\omega^{-r}(a) e^{a t}}{e^{a t}-1}
$$

we have

$$
\frac{\tau\left(\omega^{-r}\right)}{q} \sum_{i=0}^{q-1} \omega^{r}(i) E_{r-1}\left(\zeta_{q}^{i}\right)=\frac{1}{r} B_{r, \omega^{-r}}
$$

Hence $t_{0, r}^{(\nu)}=\omega^{r}(h) B_{r, \omega^{-r}} \log c$, as claimed.
(b) Let $n \geq 1$, then it follows from Proposition 1(c) that

$$
t_{n, r}^{(\nu)}=\sum_{a=0}^{p^{\bar{\nu}}-1} \omega^{-r}(a)\left(\frac{(\log a)^{n}}{n!}+\frac{q^{n}}{n!} q^{-1} p^{\bar{\nu}} \xi_{a}^{(n)}\right) r \sum_{\zeta^{\nu}=1} \zeta^{h a} E_{r-1}(\zeta) .
$$

By (5) and the von Staudt-Clausen Theorem, we have

$$
r \sum_{\zeta} \zeta^{h a} E_{r-1}(\zeta)=p^{\nu r} B_{r}\left(\left\{\frac{h a}{p^{\nu}}\right\}\right) \equiv h^{r} a^{r} \quad\left(\bmod p^{\nu-1}\right)
$$

and hence

$$
\begin{aligned}
t_{n, r}^{(\nu)} & \equiv h^{r} \sum_{a=0}^{p^{\bar{\nu}}-1}\langle a\rangle^{r} \frac{(\log a)^{n}}{n!}\left(\bmod \frac{q^{n}}{n!} q^{-1} p^{\bar{\nu}}\right) \\
& =\frac{(\log (1+q))^{n}}{n!} h^{r} \sum_{a=0}^{p^{\bar{D}}-1} v(a)^{n}(1+q)^{r v(a)} .
\end{aligned}
$$

This completes the proof of Proposition 2.

Now, let $p^{\nu}>q$, so we write ν for $\bar{\nu}$. Let $A_{\mu}^{(n)}=\sum_{t=0}^{p^{\mu}-1} i^{n}(1+q)^{r i}, \mu \geq 1$, $n \geq 1$. Then,

$$
\sum_{a=0}^{p^{\nu}-1} v(a)^{n}(1+q)^{r v(a)} \equiv e A_{\mu}^{(n)}\left(\bmod p^{\mu}\right)
$$

where $q^{-1} p^{\nu}=p^{\mu}, \mu \geq 1$. By induction on μ it follows that

$$
A_{\mu}^{(n)} \equiv \begin{cases}p^{\mu} B_{n} & \left(\bmod p^{\mu}\right), \\ 0 & \text { if } p>2, \\ 0 & \left(\bmod p^{\mu-1}\right), \\ \text { if } p=2,\end{cases}
$$

for all $\mu \geq 1$ and $n \geq 1$. Hence we have

$$
\sum_{a=0}^{p^{\nu}-1} v(a)^{n}(1+q)^{r v(a)} \equiv \begin{cases}-q^{-1} p^{\nu} B_{n} & \left(\bmod q^{-1} p^{\nu}\right), \\ 0 & \text { if } p>2 \\ 0 & \left(\bmod q^{-1} p^{\nu}\right), \\ \text { if } p=2\end{cases}
$$

By Proposition 2(b) and the von Staudt-Clausen Theorem, we therefore obtain
(14) $\quad t_{1, r}^{(\nu)} \equiv 0\left(\bmod p^{\nu}\right), \quad t_{n, r}^{(\nu)} \equiv 0\left(\bmod \frac{p^{n-2+\nu}}{n!}\right), \quad n \geq 2, \quad$ if $p>2, \nu \geq 2$,

$$
\begin{align*}
t_{n, r}^{(\nu)} \equiv 0\left(\bmod \frac{p^{n}}{n!}\right), \quad n \geq 1, & \text { if } p>2, \nu=1, \tag{15}\\
t_{n, r}^{(\nu)} \equiv 0\left(\bmod \frac{q^{n-1}}{n!} p^{\nu}\right), \quad n \geq 1, & \text { if } p=2, \nu>2
\end{align*}
$$

For $p=2,0 \leq \nu \leq 2$, we see, more exactly,

$$
\begin{equation*}
b_{n, r}^{(\nu)}(\zeta)=\sum_{a=0}^{q-1} \omega^{-r}(a) \zeta^{-a} \frac{q^{n}}{n!} \xi^{(n)}, \quad\left(\zeta^{2^{\nu}}=1, \nu \leq 2\right), \tag{17}
\end{equation*}
$$

where $\xi^{(n)}$ is a 2 -adic integer independent of both ζ and a. Indeed, we can see, by a little calculation, that

$$
\eta^{3} \int_{z_{2}} \frac{(\log (3+4 x))^{n}}{3+4 x} d \mu_{\eta}(x)=\eta^{-1} \int_{z_{2}} \frac{(\log (1+4 x))^{n}}{1+4 x} d \mu_{\eta^{-1}}(x),
$$

for all $\eta \neq 1, \eta^{5}=1$, and hence

$$
\xi^{(n)}=\sum_{n^{5}=1, n \neq 1} \eta \int_{Z_{2}} \frac{(\log (1+q x))^{n}}{q^{n}(1+q x)} d \mu_{\eta}(x) .
$$

From this expression of $b_{n, r}^{(\nu)}(\zeta)$ we obtain, in the same manner as in the proof of Proposition 2(b),

$$
\begin{equation*}
t_{n, r}^{(\nu)} \equiv 0\left(\bmod \frac{2 q^{n}}{n!}\right), \quad n \geq 1, \quad \text { if } p=2, \nu=1,2 \tag{18}
\end{equation*}
$$

By these results obtained above, we can now prove the following
Proposition 3. Let

$$
S_{p}\left(s ; r, h, p^{\nu}\right)=\sum_{n=0}^{\infty} a_{n}(s+1-r)^{n}, \quad a_{n} \in Q_{p}
$$

where $\nu \geq 1(\nu \geq 2$ if $p=2, r \not \equiv 0(\bmod e))$ and $(h, p)=1$. Then,
(a)

$$
a_{0}= \begin{cases}\left(1-p^{r-1}\right) B_{r}, & \text { if } r \equiv 0(\bmod e), \\ \omega^{r}(h) B_{r, \omega^{-r}}, & \text { if } r \not \equiv 0(\bmod e),\end{cases}
$$

$$
\left|a_{1}\right| \leq 1,\left|a_{n}\right| \leq\left|\frac{p^{n-2}}{n!}\right|, n \geq 2, \text { if } p>2
$$

$$
\left|a_{n}\right| \leq\left|\frac{q^{n-1}}{n!}\right|, n \geq 1, \quad \text { if } p=2
$$

In particular,
(c) $\quad\left|S_{p}\left(s ; r, h, p^{\nu}\right)-S_{p}\left(s^{\prime} ; r, h, p^{\nu}\right)\right| \leq\left|s-s^{\prime}\right|, s, s^{\prime} \in Z_{p}$.

Proof. Let $U_{r}^{(\nu)}(s)=\sum_{n=0}^{\infty} u_{n}(s+1-r)^{n}$. Then,

$$
\begin{equation*}
u_{0}=\frac{1}{\log c}\left(c=1+p^{\bar{\nu}}\right) \text { and }\left|u_{n}\right|=\left|B_{n} \frac{p^{\bar{\nu}(n-1)}}{n!}\right|, \quad n \geq 0, \tag{19}
\end{equation*}
$$

so the assertion (a) is obvious from Proposition 2(a). We further know by Proposition 2(a) and the von Staudt-Clausen Theorem for the Bernoulli (resp. generalized Bernoulli) numbers, that $\left|t_{0, r}^{(\nu)}\right|=\left|p^{\bar{\nu}-1}\right|$. Thus, the assertion (b) follows from (14)-(16), (18) and (19), by taking the power series product of $U_{r}^{(\nu)}$ and $T_{r}^{(\nu)}$. The last assertion (c) is an immediate consequence of the fact that $\left|a_{n}\right| \leq 1$ for all n ≥ 1. This completes the proof of Proposition 3.

Proposition 4. Let $(h, k)=1$ and $k>1$. Then, for $\bar{S}_{p}(s ; r, h, k)$, we have

$$
\bar{S}_{p}(s ; r, h, k)=\sum_{n=1}^{\infty} \bar{a}_{n}(s+1-r)^{n}, \quad\left|\bar{a}_{n}\right| \leq\left|r \frac{q^{n-1}}{(n-1)!}\right|, \quad n \geq 1,
$$

and hence

$$
\left|\bar{S}_{p}(s ; r, h, k)-\bar{S}_{p}\left(s^{\prime} ; r, h, k\right)\right| \leq|r|\left|s-s^{\prime}\right|, \quad s, s^{\prime} \in Z_{p} .
$$

Moreover, if $p=2$ and $r>1$, we see $\left|\bar{a}_{n}\right| \leq\left|2 r \frac{q^{n-1}}{(n-1)!}\right|, \quad n \geq 1$, and

$$
\left|\bar{S}_{2}(s ; r, h, k)-\bar{S}_{2}\left(s^{\prime} ; r, h, k\right)\right| \leq|2 r|\left|s-s^{\prime}\right|, \quad s, s^{\prime} \in Z_{2} .
$$

Proof. Recalling that $(1-\zeta)^{n+1} E_{n}(\zeta) \in Z[\zeta], n \geq 0$, we have $\left|E_{n}(\zeta)\right| \leq 1$, if $|\zeta-1|=1$. Let $k=k_{0} p^{\nu},\left(k_{0}, p\right)=1$. Then by the definition (12) of \bar{S}_{p},

$$
\bar{a}_{n}=r \sum_{\zeta^{k}=1, \zeta^{\rho} \neq 1} c_{n-1, r}\left(\zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right), \quad n \geq 1 .
$$

Hence, by (8), the first half of this proposition is obvious.
Now, in general, it follows from the definition of $E_{n}(\zeta)$ that

$$
\begin{equation*}
E_{0}\left(\zeta^{-1}\right)=-E_{0}(\zeta)-1 ; \quad E_{r-1}\left(\zeta^{-1}\right)=(-1)^{r} E_{r-1}(\zeta), r>1, \tag{20}
\end{equation*}
$$

for every root of unity ζ. On the other hand, we can see by a little calculation that

$$
\begin{equation*}
c_{n, r}\left(\zeta^{-1}\right)=(-1)^{r} c_{n, r}(\zeta), \quad n \geq 0, \quad r \geq 1 \tag{21}
\end{equation*}
$$

for all $\zeta,|\zeta-1|=1$. Let $p=2$ and $r>1$. Then, by cupling the terms for ζ and ζ^{-1} in the above expression of \bar{a}_{n} (note that $\zeta \neq \zeta^{-1}$), we get the second half. This completes the proof of Proposition 4.

Since $S_{p}(s ; r, h, 1)=0$ for r odd (§3), $\bar{S}_{p}(s ; r, h, k)=S_{p}(s ; r, h, k)$ if $(h, k)=(k, p)=1$ and $r \not \equiv 0(\bmod 2)$. In this case, Proposition 4 describes the property of $S_{p}(s ; r, h, k)$. For r even, we obtain the following

Proposition 5. For even positive integer r, let

$$
S_{p}(s ; r, h, 1)=\sum_{n=0}^{\infty} a_{n}^{\prime}(s+1-r)^{n}, \quad a_{n}^{\prime} \in Q_{p}
$$

Then,

$$
\begin{array}{cl}
a_{0}^{\prime}= \begin{cases}\left(1-\frac{1}{p}\right) B_{r}, & \text { if } r \equiv 0(\bmod e), \\
0, & \text { if } r \not \equiv 0(\bmod e),\end{cases} \\
\left|a_{1}^{\prime}\right| \leq\left|\frac{1}{p}\right|, \quad\left|a_{n}^{\prime}\right| \leq\left|\frac{p^{n-3}}{n!}\right|, \quad n \geq 2, & \text { if } p>2, r \equiv 0(\bmod e), \\
\left|a_{1}^{\prime}\right| \leq|r|, \quad\left|a_{n}^{\prime}\right| \leq\left|\frac{r p^{n-2}}{n!}\right|, n \geq 2, & \text { if } p>2, r \not \equiv 0(\bmod e), \\
\left|a_{1}^{\prime}\right| \leq\left|\frac{1}{p}\right|, \quad\left|a_{n}^{\prime}\right| \leq\left|\frac{2 q^{n-2}}{n!}\right|, \quad n \geq 2, & \text { if } p=2 .
\end{array}
$$

Proof. By (11), we obtain

$$
S_{p}(s ; r, h, 1)=U_{r}^{(0)}(s) F^{(0)}(s ; r, 1) B_{r} .
$$

If we let $F^{(0)}(s ; r, 1)=\sum_{n=0}^{\infty} b_{n, r}^{(0)}(s+1-r)^{n}$, then Proposition $1(\mathrm{a})(\mathrm{b}),(13)$ and (17) lead, respectively, to

$$
\begin{aligned}
b_{0, r}^{(0)} & = \begin{cases}\left(1-\frac{1}{p}\right) \log (1+q) & \text { if } r \equiv 0(\bmod e), \\
0, & \text { if } r \not \equiv 0(\bmod e),\end{cases} \\
b_{n, r}^{(0)} \equiv 0\left(\bmod \frac{p^{n}}{n!}\right), n \geq 1, & \text { if } p>2, \\
b_{n, r}^{(0)} & =\frac{2 q^{n}}{n!} \xi^{(n)} \equiv 0\left(\bmod \frac{2 q^{n}}{n!}\right), n \geq 1, \quad \text { if } p=2
\end{aligned}
$$

On the other hand if we let $U_{r}^{(0)}(s)=\sum_{n=0}^{\infty} u_{n}(s+1-r)^{n}$, then

$$
u_{0}=\frac{1}{\log (1+q)}, \quad\left|u_{n}\right|=\left|B_{n} \frac{q^{n-1}}{n!}\right|, \quad n \geq 1
$$

Since, moreover, $\left|\frac{B_{n}}{n}\right| \leq 1$ if $1<n \not \equiv 0(\bmod e)$ and $\left|B_{n}\right|=\left|\frac{1}{p}\right|$ if $0<n \equiv$ $0(\bmod e)$, in the same manner as in the proof of Proposition 3, the result follows.

Theorem 2. Suppose that $(h, k)=1$ and $(k, p)>1$.
(a) If $p=2, k=2 k_{0},\left(k_{0}, 2\right)=1$ and $r \not \equiv 0(\bmod e)$, then

$$
\begin{aligned}
& S_{2}(r-1 ; r, h, k)=0 \\
& \left|S_{2}(s ; r, h, k)-S_{2}\left(s^{\prime} ; r, h, k\right)\right| \leq|q|\left|s-s^{\prime}\right|, \quad s, s^{\prime} \in Z_{2} .
\end{aligned}
$$

(b) Otherwise,

$$
\begin{aligned}
& S_{p}(r-1 ; r, h, k)= \begin{cases}\left(1-p^{r-1}\right) B_{r}, & \text { if } r \equiv 0(\bmod e), \\
\omega^{r}(h) B_{r, \omega^{-r}}, & \text { if } r \not \equiv 0(\bmod e),\end{cases} \\
& \left|S_{p}(s ; r, h, k)-S_{p}\left(s^{\prime} ; r, h, k\right)\right| \leq\left|s-s^{\prime}\right|, \quad s, s^{\prime} \in Z_{p} .
\end{aligned}
$$

Proof. Let $p=2$ and $r \not \equiv 0(\bmod 2)$. Since $S_{2}(s ; r, h, 2)=0$, the function $S_{2}\left(s ; r, h, 2 k_{0}\right)=\bar{S}_{2}\left(s ; r, h, 2 k_{0}\right)$ has the expansion

$$
S_{2}\left(s ; r, h, 2 k_{0}\right)=\sum_{n=1}^{\infty} a_{n}(s+1-r)^{n}, \quad a_{n}=r \sum_{\zeta^{k}=1, \zeta^{2} \neq 1} c_{n-1, r}\left(\zeta^{h}\right) E_{r-1}\left(\zeta^{-1}\right) .
$$

Now, since

$$
\mu_{-\zeta}\left(a+2^{N} Z_{2}\right)=\frac{(-\zeta)^{2^{N}-a}}{1-(-\zeta)^{2^{N}}}=-\mu_{\zeta}\left(a+2^{N} Z_{2}\right), 0 \leq a<2^{N},(a, 2)=1
$$

we have $d \mu_{-\zeta}(x)=-d \mu_{\zeta}(x), x \in Z_{2}^{*}$, so that

$$
c_{n, r}(-\zeta)=-c_{n, r}(\zeta), \quad n \geq 0, \quad r \geq 1
$$

Hence

$$
a_{n}=r \sum_{\zeta^{k} 0=1, \zeta \neq 1} c_{n-1, r}\left(\zeta^{h}\right)\left(E_{r-1}\left(\zeta^{-1}\right)-E_{r-1}\left(-\zeta^{-1}\right)\right), \quad n \geq 1 .
$$

Write $d_{n}(\zeta), \zeta \neq 1$, for the summand on the right. Then, since

$$
E_{r-1}\left(\zeta^{-1}\right)-E_{r-1}\left(-\zeta^{-1}\right)=2^{r} E_{r-1}\left(\zeta^{-2}\right)-2 E_{r-1}\left(-\zeta^{-1}\right) \equiv 0(\bmod 2)
$$

we have $\left|d_{n}(\zeta)\right| \leq\left|\frac{2 q^{n-1}}{(n-1)!}\right|$. On the other hand, it follows from (20) and (21) that $d_{n}(\zeta)=d_{n}\left(\zeta^{-1}\right)$. Now the order of ζ is odd $(\neq 1)$, so clearly $\zeta \neq \zeta^{-1}$. Hence we have

$$
\left|a_{n}\right| \leq\left|\frac{q^{n}}{(n-1)!}\right| \leq|q|, \quad n \geq 1
$$

Therefore the assertion (a) is proved. The assertion (b) is obvious from Propositions 3 and 4 . This completes the proof of Theorem 2.

Since $S_{p}(s ; r, h, k)=\bar{S}_{p}(s ; r, h, k)+S_{p}(s ; r, h, 1)$ if $(k, p)=1$, we similarly obtain from Propositions 4 and 5 the following

Theorem 3. Suppose that $(h, k)=1$ and $(k, p)=1$.
(a) If $r \equiv 0(\bmod e)$, then

$$
\begin{aligned}
& S_{p}(r-1 ; r, h, k)=\left(1-\frac{1}{p}\right) B_{r} \\
& \left|S_{p}(s ; r, h, k)-S_{p}\left(s^{\prime} ; r, h, k\right)\right| \leq\left|\frac{1}{p}\right|\left|s-s^{\prime}\right|, s, s^{\prime} \in Z_{p}
\end{aligned}
$$

(b) If $r \not \equiv 0(\bmod e)$, then

$$
\begin{aligned}
& S_{p}(r-1 ; r, h, k)=0, \\
& \left|S_{p}(s ; r, h, k)-S_{p}\left(s^{\prime} ; r, h, k\right)\right| \leq|r|\left|s-s^{\prime}\right|, \quad s, s^{\prime} \in Z_{p} \\
& \quad\left(\leq|2 r|\left|s-s^{\prime}\right| \text { if } p=2, r>1\right) .
\end{aligned}
$$

REFERENCES

$[1]$ T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J., 17 (1950), 147-157.
$[2]$ L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math., 3 (1953), 513-522.
[3] H. Lang, Über Anwendungen höherer Dedekindscher Summen auf die Struktur elementar-arithmetischer Klassenivarianten reell-quadratischer Zahlkörper, J. reine angew. Math., 254 (1972), 17-32.
$[4]$ S. Lang, Cyclotomic fields, Springer-Verlag, New York, 1978.
[5] S. Lang, Cyclotomic fields II, Springer-Verlag, New York, 1980.
[6] K. H. Rosen and W. M. Snyder, p-adic Dedekind sums, J. reine angew. Math., 361 (1985), 23-26.
[7] K. Shiratani, On Euler numbers, Mem. Fac. Sci., Kyushu Univ., 27 (1973), 1-5.
[8] K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci., Kyushu Univ., 39 (1985), 113-125.
[9] T. Uehara, On p-adic continuous functions determined by the Euler numbers, Rep. Fac. Sci. Engrg., Saga Univ., 8 (1980), 1-8.

Department of Mathematics
Faculty of Liberal Arts
Nagasaki University
Bunkyo-machi, Nagasaki 852
Japan

[^0]: Received February 27, 1989.

