EXPONENTIAL ASYMPTOTICS IN THE SMALL PARAMETER EXIT PROBLEM

MAKOTO SUGIURA

1. Introduction

Let \mathcal{M} be a d-dimensional Riemannian manifold of class C^{∞} with Riemannian metric $g=\left(g_{v}\right)$ and let D be a connected domain in \mathcal{M} having a non-empty smooth boundary ∂D and a compact closure \bar{D}. Suppose that $b^{\varepsilon} \in \mathfrak{X}(\mathcal{M})=$ $\left\{C^{\infty}\right.$-vector fields on $\left.\mathcal{M}\right\}, \varepsilon>0$, are given and that $\left\{b^{\varepsilon}\right\}$ converges uniformly to $b \in \mathscr{X}(\mathcal{M})$ on D^{\prime} as $\varepsilon \downarrow 0$ for some neighborhood D^{\prime} of D. Consider the diffusion process $\left(x_{t}^{\varepsilon}, P_{x}\right)$ on D^{\prime} with a small parameter $\varepsilon>0$ generated by

$$
\begin{equation*}
\mathscr{L}^{\varepsilon}=\frac{\varepsilon^{2}}{2} \Delta+b^{\varepsilon}, \tag{1.1}
\end{equation*}
$$

where Δ is the Laplace-Beltrami operator on \mathcal{M}. Uniqueness of the process requires some boundary condition on ∂D^{\prime}. However boundary conditions are not mentioned since the process is considered only before the time when it leaves a small neighborhood of \bar{D}. In this paper, we shall study the asymptotic behavior of the expectation of the first exit time τ^{ε} from the domain D; i.e.,

$$
\tau^{\varepsilon}=\inf \left\{t>0 ; x_{t}^{\varepsilon} \notin D\right\}
$$

under the following assumptions:
$\left(A_{1}\right)$ (gradient condition) there exists a potential function $U \in C^{\infty}(\bar{D})$ such that $b=-\frac{1}{2} \operatorname{grad} U$ on $\bar{D} ;$
$\left(A_{2}\right)$ the set of critical points $\mathscr{C}=\{x \in D ; \operatorname{grad} U(x)=0\}$ consists of finite number of connected components K_{1}, \ldots, K_{l} (each of which is called compactum) such that, for arbitrary two points $x, y \in K_{i}$, there is an

[^0]absolutely continuous function $\phi \in C_{01}^{x, y}\left(K_{i}\right)$ satisfying $\int_{0}^{1}\|\dot{\phi}(t)\|^{2} d t<\infty$;
$\left(A_{3}\right) \quad \operatorname{grad} U \neq 0$ on ∂D.
Here grad means the Riemannian gradient, $\|\cdot\|=\sqrt{g(\cdot, \cdot)}$ is the Riemannian norm and
$$
C_{0 T}^{x, y}(F)=\{\phi \in C([0, T], F) ; \phi(0)=x, \phi(T)=y\}, \quad x, y \in F, \quad T>0
$$
for an open or closed set F.
Introduce a quantity V_{0} by
\[

$$
\begin{equation*}
V_{0}=\max _{x \in \mathscr{C}} \inf _{\phi \in \mathcal{C}^{x, D D}} \max _{t \in[0,1]}\{U(\phi(t))-U(x)\} \tag{1.2}
\end{equation*}
$$

\]

where $C^{x, F}=U_{y \in F} C_{01}^{x, y}(\bar{D})$. By virtue of the theory of Freidlin and Wentzell [FW], one may expect

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \varepsilon^{2} \log E_{x}\left[\tau^{\varepsilon}\right]=V_{0}, \quad x \in \Omega \tag{1.3}
\end{equation*}
$$

for a certain subdomain Ω of D. Indeed, one can see in [FW, Chapter 4] that, if the dynamical system determined by $-\frac{1}{2} \operatorname{grad} U$ has a unique stable equilibrium position O and the domain D is attracted to O, (1.3) holds for $\Omega=D$. However, it is not clear whether (1.3) holds or not in case that D contains more than one compacta, although their theory [FW, Chapter 6] determines the exponential rates in terms of quasi-potentials and $\{\partial D\}$-graphs. In the present paper, by applying their results, we shall determine the subdomain Ω of D directly in terms of the potential U rather than the quasi-potentials in such a manner that (1.3) holds for all $x \in \Omega$ while the left hand side (LHS) of (1.3) is strictly less than V_{0} for $x \in$ $D \backslash \Omega$.

Let $\left\{\bar{x}_{t}(x) ; t \geq 0, x \in \bar{D}\right\}$ be the flow determined by $-\frac{1}{2} \operatorname{grad} U$, i.e., $\bar{x}_{t}=$ $\bar{x}_{t}(x)$ is a unique solution of the ordinary differential equation (ODE):

$$
\begin{equation*}
\frac{d \bar{x}_{t}}{d t}=-\frac{1}{2} \operatorname{grad} U\left(\bar{x}_{t}\right), \quad \bar{x}_{0}=x \tag{1.4}
\end{equation*}
$$

We denote the ω-limit set of a point $x \in \bar{D}$ and the domain of the attraction of a connected open or closed set F in \bar{D} with respect to this flow, respectively, by $\omega(x)$ and $\mathscr{D}(F):$ if $\bar{x}_{t}(x) \in \bar{D}$ for all $t>0$,

$$
\omega(x)=\left\{y \in \bar{D} ; \bar{x}_{t_{n}}(x) \rightarrow y \text { for some sequence } t_{n} \rightarrow \infty\right\}
$$

otherwise $\omega(x)=\emptyset$, and $\mathscr{D}(F)=\{x \in \bar{D} ; \omega(x) \subset F, \omega(x) \neq \emptyset\}$. Set $\mathbf{K}=$ $\left\{K_{1}, \ldots, K_{l}\right\} . \mathbf{K}_{\mathrm{s}}$ and \mathbf{K}_{u} stand for the set of all stable compacta and that of all unstable ones, respectively, with respect to the flow mentioned above. Every nonempty ω-limit set is connected and consists of critical points of U. Namely, if $\omega(x) \neq \varnothing$, then we have $\omega(x) \subset K_{i}$ for some $K_{i} \in \mathbf{K}$. (See, e.g., Palis and de Melo [PD].)

For every stable compactum K_{i}, we define a valley $\mathscr{V}\left(K_{i}\right)$ containing K_{i} in D. To do this, we set, for compact subsets F_{1}, F_{2} of \bar{D},

$$
\begin{gather*}
U\left(F_{1}\right)=\min _{x \in F_{1}} U(x), \tag{1.5a}\\
U_{F_{1}}\left(F_{2}\right)=\max _{x \in F_{1}} \inf _{\phi \in c^{x, F_{2}}} \max _{t \in[0,1]}\{U(\phi(t))-U(x)\} . \tag{1.5b}
\end{gather*}
$$

Then, $\mathscr{V}\left(K_{i}\right)$ is a connected component of $\left\{x \in D ; U(x)<U\left(K_{i}\right)+U_{K_{i}}(\partial D)\right\}$ containing K_{i}. We denote the depth of valley $\mathscr{V}\left(K_{i}\right)$ by Depth $\mathscr{V}\left(K_{i}\right)$: Depth $\mathscr{V}\left(K_{i}\right)=\sup _{x, y \in \mathscr{V}\left(K_{i}\right)}\{U(x)-U(y)\}$. Notice that Depth $\mathscr{V}\left(K_{i}\right)>0$ for all $K_{i} \in$ \mathbf{K}_{s} and that (1.2) is equivalent to $\max _{K_{i} \in \mathbf{K}_{\mathrm{s}}}$ Depth $\mathscr{V}\left(K_{t}\right)=V_{0}$.

Let us define the domain Ω mentioned above in (1.3). If there is no stable compactum in D, we put $\Omega=D$. In the case of $\# \mathbf{K}_{\mathrm{s}} \geq 1$, we define $\Omega=$ $\cup_{k=0}^{\infty} \Omega_{k, 0} \cap D$ by preparing subsets $\Omega_{k, j}$ and $\Omega_{k, j}^{(1)}, k, j=0,1, \ldots$, of D in the following manner. First, we write $\Omega_{0,0}=\emptyset$ and

$$
\Omega_{0,0}^{(1)}=\underset{K_{1} \in \operatorname{Ks} . D \text { Dephh } V(\mathbb{K})=V_{0}}{U} \overline{V\left(K_{i}\right)} .
$$

Then, for each fixed $k=0,1, \ldots$, with noting that each $\Omega_{k, 0}^{(1)}, k=1,2, \ldots$, is defined below from $\left\{\Omega_{k-1, j}\right\}_{j=0,1, \ldots}$, we construct $\Omega_{k, j}$ and $\Omega_{k, j}^{(1)}, j=1,2, \ldots$, by using induction on j as following:

$$
\begin{array}{ll}
\Omega_{k, j}=\overline{\Omega_{k, j-1}^{(1)}} \cup \underset{K_{1} \in \mathbf{K}_{\mathrm{W}} \cdot K_{i} \cap \overline{\Omega_{k i-1}^{(1)}} \neq \emptyset}{ } K_{i}, & j=1,2, \ldots, \\
\Omega_{k, j}^{(1)}=D \cap \mathscr{D}\left(\Omega_{k, j},,\right. & j=1,2, \ldots
\end{array}
$$

Finally, for $k=1,2, \ldots$ and $j=0, \Omega_{k, 0}$ and $\Omega_{k, 0}^{(1)}$ are defined by

$$
\begin{aligned}
& \Omega_{k, 0}=\bigcup_{j=0}^{\infty} \Omega_{k-1, j}, \\
& \Omega_{k, 0}^{(1)}=\Omega_{k, 0} \cup{ }_{K_{i} \in \mathbf{K}_{i} \cdot \overline{V\left(K_{i}\right)} \cap \Omega_{k, 0} \neq \emptyset} \bar{V} \overline{V\left(K_{t}\right)} .
\end{aligned}
$$

Here one notices that $\Omega_{k, j} \subset \Omega_{k, j+1}$ and $\Omega_{k, 0} \subset \Omega_{k+1,0}$ for $k, j=0,1, \ldots$ and that $\Omega_{k+1,0}=\Omega_{k, \# \mathbf{K}_{\mathrm{u}}}$ for $k=0,1, \ldots$ and $\Omega=\Omega_{\# \mathbf{K}_{5}, 0} \cap D$. We also note that Ω is closed in D since every $\Omega_{k, 0}, k=1,2, \ldots$, is compact.

Now we formulate our main result.

Theorem 1. We have

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \varepsilon^{2} \log E_{x}\left[\tau^{\varepsilon}\right]=V_{0} \tag{1.6}
\end{equation*}
$$

for all $x \in \Omega$. When $x \notin \Omega$, the LHS of (1.6) is strictly less than V_{0}.

The proof essentially consists of two parts. In Section 2, Freidlin-Wentzell's quasi-potentials will be characterized by valleys of the potential U and the flow determined by $-\frac{1}{2} \operatorname{grad} U$. Then, the set Ω will be expressed in terms of valleys and quasi-potentials. We shall also show that the assumption (A) in [FW, p.169] is fulfilled, which guarantees the existence of the limit in (1.6). In Sections 3 and 4, we shall recall that the limit in (1.6) can be represented by using FreidlinWentzell's quasi-potentials and $\{\partial D\}$-graphs, and get the results by calculating the $\{\partial D\}$-graphs together with the estimates of quasi-potentials derived in Section 2. The main tool is the $\{\partial D\}$-graph with partially reversed arrows. Moreover two problems concerning the value of the LHS of (1.6) for $x \in D \backslash \Omega$ will be considered in Section 5. Namely, we shall show that, if the valley \mathscr{V} is a bottom one in the sense that $\min _{x \in V} U(x)=\min _{K_{j} \in \mathbf{K}_{\mathrm{s}}} U\left(K_{j}\right)$, the LHS of (1.6) is equal to the depth of \mathscr{V} for every $x \in \mathscr{V}$, and represent the values of the LHS of (1.6) for all x $\in D$ directly in terms of $U(x), x \in D$, when \mathcal{M} is one-dimensional Euclidean space. We notice that the technique in this paper is also applicable to getting the asymptotic behavior of the distribution, $P_{x}\left(x_{\tau_{D}^{\varepsilon}}^{\varepsilon} \in A\right), A \subset \partial D$, of the exit position of x_{t}^{ε} from the boundary. (See [Su1] for details.)

This result will be applied in the collaborative papers [Su1], [Su2] to investigate metastable behaviors for a class of diffusion processes $\left\{x_{t}^{\varepsilon}\right\}$ of gradient type.

2. Properties of quasi-potentials

The action functional S_{T} is defined on $C([0, T], \mathcal{M}), T \geq 0: S_{T}(\phi)=$ $\frac{1}{2} \int_{0}^{T}\|\dot{\phi}(t)-b(\phi(t))\|^{2} d t \quad$ if $\quad \phi \in C([0, T], \mathcal{M}) \quad$ is absolutely continuous, and $S_{T}(\phi)=+\infty$ otherwise. In particular, for an absolutely continuous $\phi \in$ $C([0 T], \bar{D})$,

$$
\begin{equation*}
S_{T}(\phi)=\frac{1}{2} \int_{0}^{T}\left\|\dot{\phi}(t)+\frac{1}{2} \operatorname{grad} U(\phi(t))\right\|^{2} d t \tag{2.1}
\end{equation*}
$$

Moreover we define

$$
\begin{equation*}
V_{D}(x, y)=\inf \left\{S_{T}(\phi) ; \phi \in C_{0 T}^{x, y}(\bar{D}), T \geq 0\right\}, \quad x, y \in \bar{D} \tag{2.2a}
\end{equation*}
$$

which is called quasi-potential. We also denote, for compact subsets F_{1}, F_{2} of \bar{D},

$$
\begin{align*}
V_{D}\left(x, F_{2}\right) & =\inf _{y \in F_{2}} V_{D}(x, y) \tag{2.2b}\\
V_{D}\left(F_{1}, y\right) & =\inf _{y \in F_{1}} V_{D}(x, y) \tag{2.2c}\\
V_{D}\left(F_{1}, F_{2}\right) & =\inf _{x \in F_{1}, y \in F_{2}} V_{D}(x, y) \tag{2.2d}
\end{align*}
$$

We state three lemmas without proofs: Lemmas 2.1 and 2.3 are written as a comment after [FW, Chapter 6, Lemma 1.1] and Lemma 5.2 in [FW, Chapter 6], respectively, and Lemma 2.2 can be shown by straightforward arguments.

Lemma 2.1. $V_{D}(x, y)$ is continuous for $x, y \in \bar{D}$. In particular, we have the following:
(i) $\quad V_{D}(x, y)<\infty$ for all $x, y \in \bar{D}$;
(ii) the maps $x \mapsto V_{D}(x, F)$ and $y \mapsto V_{D}(F, y)$ are both continuous for every compact subset F of \bar{D}.

Lemma 2.2. Let us suppose that compact subsets F_{1}, F_{2} and \mathscr{F} of \bar{D} are mutually disjoint and have the property that every trajectory in \bar{D} connecting F_{1} and F_{2} traverses \mathscr{F}; i.e., for every $\phi \in C([0,1], \bar{D})$ satisfying $\phi(0) \in F_{1}$ and $\phi(1) \in F_{2}$, there exists $t \in(0,1)$ so that $\phi(t) \in \mathscr{F}$. Then, we have $V_{D}\left(F_{1}, F_{2}\right)=\inf _{x \in \mathscr{F}}\left\{V_{D}\left(F_{1}\right.\right.$, $\left.x)+V_{D}\left(x, F_{2}\right)\right\}$.

Lemma 2.3. If α is an unstable compactum K_{i} or a regular point x of U, then either there exists a stable compactum K_{j} such that $V_{D}\left(\alpha, K_{j}\right)=0$ or $V_{D}(\alpha, \partial D)=0$.

The next lemma is an easy consequence of the assumption $\left(A_{2}\right)$.
Lemma 2.4. We have $V_{D}(x, y)=V_{D}(y, x)=0$ for arbitrary two points x, y belonging to the same compactum K_{\imath}.

Proof. From $\left(A_{2}\right)$, there is an absolutely continuous $\phi \in C_{01}^{x, y}\left(K_{i}\right)$ such that $S_{1}(\phi)<+\infty$, where we recall $\operatorname{grad} U \equiv 0$ on K_{r}. If one sets $\phi(t)=\phi(t / T)$, $T>0$, then $S_{T}(\psi) \leq S_{1}(\phi) / T$. This immediately verifies $V_{D}(x, y)=0$ by letting
$T \rightarrow \infty$.

The following two lemmas establish basic relations between the quasipotential and the depth of the valley. Recall (1.5) for the notation $U_{F_{1}}\left(F_{2}\right)$.

Lemma 2.5. For all compact subsets F of \bar{D}, we have

$$
\begin{gather*}
V_{D}(x, F) \geq U_{\{x\}}(F), \quad x \in D \tag{2.3}\\
V_{D}\left(K_{i}, F\right) \geq U_{K_{i}}(F), \quad K_{i} \in \mathbf{K} . \tag{2.4}
\end{gather*}
$$

In particular, if K_{i} is stable and satisfies $F \cap \mathscr{V}\left(K_{i}\right)=\emptyset$, then $V_{D}\left(K_{i}, F\right) \geq$ $U_{K_{i}}(\partial D)$.

Proof. We shall prove only (2.4) since (2.3) is obtained in a quite parallel manner. Let $x_{0} \in K_{i}$ be fixed arbitrarily. For $\delta>0$, (2.2) and Lemma 2.4 verify the existence of an absolutely continuous $\phi \in C([0, T], \bar{D}), T \geq 0$, so that $\phi(0)=x_{0}, \phi(T) \in F$ and

$$
V_{D}\left(K_{\imath}, F\right) \geq S_{T}(\phi)-\delta .
$$

From (1.5), one can find $0 \leq T_{0} \leq T$ satisfying

$$
U\left(\phi\left(T_{0}\right)\right)-U(\phi(0)) \geq U_{\left\{x_{0}\right\}}(F) .
$$

On the other hand, with the help of the definition (2.1) of the action functional $S_{T}(\phi)$ and the gradient condition $\left(A_{1}\right)$, we have

$$
\begin{aligned}
S_{T}(\phi) & \geq \int_{0}^{T_{0}} g(\dot{\phi}(t), \operatorname{grad} U(\phi(t))) d t \\
& =U\left(\phi\left(T_{0}\right)\right)-U(\phi(0)) .
\end{aligned}
$$

From these estimates, we obtain

$$
V_{D}\left(K_{\imath}, F\right) \geq U_{\left\{x_{0}\right\}}(F)
$$

by letting $\delta \downarrow 0$. Since it holds for every $x_{0} \in K_{i}$, (2.4) is now derived.

Corollary 2.6. We have $U(x)=U(y)$ for arbitrary two points x, y belonging to the same compactum.

Proof. If x, y are belonging to the same compactum, one has $V_{D}(x, y)=$ $V_{D}(y, x)=0$ from Lemma 2.4. By applying Lemma 2.5, this implies $U_{\{x\}}(\{y\})=$
$U_{\{y\}}(\{x\})=0$, which is equivalent to $U(x)=U(y)$.
Lemma 2.7. Let each of α and β be a point of \bar{D} or a compactum in \mathbf{K}. Then we have

$$
\begin{equation*}
V_{D}(\alpha, \beta)-V_{D}(\beta, \alpha)=U(\beta)-U(\alpha) \tag{2.5}
\end{equation*}
$$

In particular, if $V_{D}(\alpha, \beta)=0$, then $V_{D}(\beta, \alpha)=U(\alpha)-U(\beta)$.

Proof. We shall treat only the case where both of α and β are compacta, because the other cases are shown similarly. Write $\alpha=K_{i}$ and $\beta=K_{j}$. For an arbitrary $\delta>0$, there exists an absolutely continuous $\phi \in C([0, T], \bar{D}), T \geq 0$, such that $\phi(0) \in K_{i}, \phi(T) \in K_{j}$ and

$$
V_{D}\left(K_{i}, K_{j}\right) \geq S_{T}(\phi)-\delta
$$

Put $\psi(t)=\phi(T-t), 0 \leq t \leq T$. Then, we have

$$
\begin{aligned}
S_{T}(\phi)-S_{T}(\psi) & =\int_{0}^{T} g(\dot{\phi}(t), \operatorname{grad} U(\phi(t))) d t \\
& =U(\phi(T))-U(\phi(0))
\end{aligned}
$$

On the other hand, since $\psi(0) \in K_{j}$ and $\psi(T) \in K_{i}, V_{D}\left(K_{j}, K_{i}\right) \leq S_{T}(\psi)$. Hence, by letting $\delta \downarrow 0$, we get

$$
V_{D}\left(K_{i}, K_{j}\right)-V_{D}\left(K_{j}, K_{i}\right) \geq U\left(K_{j}\right)-U\left(K_{i}\right)
$$

By reversing the symbols K_{i} and K_{j}, it holds that

$$
V_{D}\left(K_{i}, K_{j}\right)-V_{D}\left(K_{j}, K_{i}\right) \leq U\left(K_{j}\right)-U\left(K_{i}\right),
$$

and now (2.5) is obtained.

The next lemma gives an important property of regular points.
Lemma 2.8. Let $x \in D$ be a regular point of U, namely, $\operatorname{grad} U(x) \neq 0$ and suppose $\bar{x}_{t}(x) \in \bar{D}$ for $0 \leq t \leq T$. Then, we have $V_{D}(x, y)>0$ for every point $y \in$ $\bar{D} \backslash\left\{\bar{x}_{t}(x) ; 0 \leq t \leq T\right\}$ such that $U(y)>U\left(\bar{x}_{T}(x)\right)$. Recall that $\bar{x}_{t}(x)$ is the solution of the ODE (1.4).

Proof. Set $\rho_{0}=\inf _{0 \leq t \leq T} \rho\left(\bar{x}_{t}(x), y\right)>0$, where $\rho(\cdot, \cdot)$ denotes the Riemannian distance on \mathcal{M}. From Lemma 2.1 of [FW, Chapter 4], we know that

$$
I_{T^{\prime}}=\inf \left\{S_{T^{\prime}}(\phi) ; \phi \in C\left(\left[0, T^{\prime}\right], \mathcal{M}\right), \phi(0)=x, \max _{0 \leq t \leq T^{\prime}} \rho\left(\bar{x}_{t}(x), \phi(t)\right)>\rho_{0} / 2\right\}>0
$$

for every $0<T^{\prime} \leq T$. Since $I_{T^{\prime}}$ is a non-increasing function of T^{\prime},

$$
\inf \left\{S_{T^{\prime}}(\phi) ; \phi \in C_{o T^{\prime}}^{x, y}(\bar{D}), 0 \leq T^{\prime} \leq T\right\} \geq I_{T}>0
$$

Let $0<T_{1}<T_{2}<T$ satisfy $U(y)>U\left(\bar{x}_{T_{1}}(x)\right)$. Then, by using the same argument of Lemma 2.2 in [FW, Chapter 4], one can find $a>0$ such that $S_{T^{\prime}}(\phi) \geq$ $a\left(T^{\prime}-T_{2}\right)$ for every $T^{\prime}>T_{2}$ and $\phi \in C\left(\left[0, T^{\prime}\right], \bar{D}\right)$ with $\phi(0)=x$ and $U(\phi(t)) \geq U\left(\bar{x}_{T_{1}}(x)\right)$ during $0 \leq t \leq T^{\prime}$. Hence, combining this with Lemma 2.5, we obtain

$$
\inf \left\{S_{T^{\prime}}(\phi) ; \phi \in C_{o T^{\prime}}^{x, y}(\bar{D}), T^{\prime} \geq T\right\} \geq \min \left\{a\left(T-T_{2}\right), U(y)-U\left(\bar{x}_{T_{1}}(x)\right)\right\}>0
$$

and the proof is completed.
Corollary 2.9. If x satisfies $\omega(x)=\emptyset$ and F is a compact subset of \bar{D} satisfying $\omega(y) \neq \emptyset$ for all $y \in F$, then $V_{D}(x, F)>0$.

Proof. Let $T=\inf \left\{t>0 ; \bar{x}_{t}(x) \notin \bar{D}\right\}$. If one denotes

$$
\begin{equation*}
\mathscr{F}=\left\{z \in \bar{D} ; \delta / 2 \leq \inf _{0 \leq t \leq T} \rho\left(\bar{x}_{t}(x), z\right) \leq \delta\right\} \tag{2.6}
\end{equation*}
$$

for sufficiently small $\delta>0$, three compact subsets $\{x\}, F$ and \mathscr{F} of \bar{D} are mutually disjoint. From Lemma 2.8, we can obtain $\inf _{z \in \mathscr{F}} V_{D}(x, z)>0$, where we use a sufficiently smooth function \tilde{U} on a neighborhood of \bar{D} satisfying $\tilde{U}=U$ on \bar{D}. Hence, since every trajectory in \bar{D} connecting x and F traverses \mathscr{F}, by applying Lemma 2.2 we get

$$
\begin{aligned}
V_{D}(x, F) & =\inf _{z \in \mathscr{F}}\left\{V_{D}(x, z)+V_{D}(z, F)\right\} \\
& \geq \inf _{z \in \mathscr{F}} V_{D}(x, z) \\
& >0 .
\end{aligned}
$$

Corollary 2.10. If $x \in K_{i}$ and $y \notin K_{i}$, then either $V_{D}(x, y)>0$ or $V_{D}(y, x)>0$.

Proof. From Lemma 2.5, it suffices to show the case where $U(x)=U(y)$. Let $T>0$ satisfy $\bar{x}_{t}(y) \in \bar{D}$ for $0 \leq t \leq T$. By choosing a sufficiently small $\delta>$ 0 , we can suppose that $\{y\},\{x\}$ and \mathscr{F} are mutually disjoint, where we define \mathscr{F} by (2.6) in which x should be replaced by y. For $0<T^{\prime}<T$ Lemmas 2.5 and 2.8
imply, respectively,

$$
\begin{aligned}
& \inf _{z \in \mathscr{F}: U(z) \leq U\left(\bar{x}_{T^{\prime}}(y)\right)} V_{D}(z, x) \geq U(x)-U\left(\bar{x}_{T^{\prime}}(y)\right)>0, \\
& \inf _{z \in \mathscr{F}: U(z)>U\left(\bar{x}_{T^{\prime}}(y)\right)} V_{D}(y, z)>0 .
\end{aligned}
$$

Hence, combining these estimates with Lemma 2.2, we obtain

$$
V_{D}(y, x)=\inf _{z \in \mathscr{F}}\left\{V_{D}(y, z)+V_{D}(z, x)\right\}>0 .
$$

We define a subdomain $\tilde{\Omega}$ of D in terms of quasi-potentials. Set $\tilde{\Omega}=D$ if there is no stable compactum. In the case of $\# \mathbf{K}_{\mathrm{s}} \geq 1$, determine $\tilde{\Omega}_{k}^{(1)}$, $k=0,1, \ldots$, and $\tilde{\Omega}_{k}, k=1,2, \ldots$, inductively, by

$$
\begin{aligned}
& \tilde{\Omega}_{0}^{(1)}=\underset{K_{i} \in \text { Ks }^{2} \cdot \operatorname{Depth} V\left(K_{i}\right)=V_{0}}{\bigcup} \overline{\mathscr{V}\left(K_{t}\right)}, \\
& \tilde{\Omega}_{k}=\left\{x \in \bar{D} ; V_{D}\left(x, \tilde{\Omega}_{k-1}^{(1)}\right)=0\right\}, \quad k=1,2, \ldots, \\
& \tilde{\Omega}_{k}^{(1)}=\tilde{\Omega}_{k} \cup \underset{K_{1} \in \mathbf{K} \cdot \bar{V} \overline{\left(V K_{i}\right)} \cap \tilde{\Omega}_{k} \neq \varnothing}{ } \overline{\mathscr{V}\left(K_{i}\right)}, \quad k=1,2, \ldots .
\end{aligned}
$$

We remark that Lemma 2.1 (ii) implies the compactness of the sets $\tilde{\Omega}_{k}$ and $\tilde{\Omega}_{k}^{(1)}$. Noting that the sequence $\left\{\tilde{\Omega}_{k}\right\}_{k=1,2, \ldots}$ is not decreasing and that $\tilde{\Omega}_{k_{0}}=\tilde{\Omega}_{k_{0}+1}=\cdots$ for $k_{0} \geq \# \mathbf{K}_{\mathrm{s}}$, we define $\tilde{\Omega}=\tilde{\Omega}_{k_{0}} \cap D$.

Proposition 2.11. We have $\Omega=\tilde{\Omega}$.

Proof. If there is no stable compactum in D, the statement is obvious. So we assume $\# \mathbf{K}_{\mathrm{s}} \geq 1$. Claim that $\Omega_{1,0}=\tilde{\Omega}_{1}$. It is obvious that $\Omega_{1,0} \subset \tilde{\Omega}_{1}$. In order to prove $\Omega_{1,0} \supset \tilde{\Omega}_{1}$, it is sufficient to show $V_{D}\left(K_{i}, \tilde{\Omega}_{0}^{(1)}\right)>0$ for every compactum K_{i} in $\mathrm{D} \backslash \Omega_{1,0}$. Indeed, let $x \in D \backslash \Omega_{1,0}$ be a regular point. Then, if $\omega(x)=\emptyset$, we know $V_{D}\left(x, \tilde{\Omega}_{0}^{(1)}\right)>0$ from Corollary 2.9, and, if $\omega(x) \subset K_{\imath}$ and $V_{D}\left(x, \tilde{\Omega}_{0}^{(1)}\right)=0$, by using a similar argument to Corollary 2.9 or 2.10 we get $V_{D}\left(\bar{x}_{T}(x), \widetilde{\Omega}_{0}^{(1)}\right)=0$ for all $T>0$ from Lemmas 2.1, 2.2 and 2.8 and, consequently, $V_{D}\left(K_{i}, \tilde{\Omega}_{0}^{(1)}\right)=0$ from Lemma 2.1. First, suppose that $K_{i} \in \mathbf{K}$ satisfies $U\left(K_{\imath}\right)=\min \left\{U\left(K_{j}\right) ; K, \subset\right.$ $\left.D \backslash \Omega_{1,0}\right\}$. For a stable compactum $K_{\imath} \subset D \backslash \Omega_{1,0}$, one has $V_{D}\left(K_{i}, \tilde{\Omega}_{0}^{(1)}\right) \geq$ Depth $\mathscr{V}\left(K_{\imath}\right)>0$ from $\Omega_{0}^{(1)}=\tilde{\Omega}_{0}^{(1)}$ and $K_{\imath} \cap \tilde{\Omega}_{0}^{(1)}=\emptyset$. If K_{i} is unstable, there is an open neighborhood G of K_{i} such that $\omega(y)=\emptyset$, which implies $V_{D}\left(y, \tilde{\Omega}_{0}^{(1)}\right)>0$ from Corollary 2.9, for all $y \in G \backslash K_{\imath}: U(y) \leq U\left(K_{\imath}\right)$. Hence, by a parallel method to Corollary 2.10 with using Lemmas 2.1, 2.2 and $2.5, V_{D}\left(K_{i}, \tilde{\Omega}_{0}^{(1)}\right)>0$ is obtained. Next, take $K_{i} \in \mathbf{K}$ such that $V_{D}\left(K_{j}, \tilde{\Omega}_{0}^{(1)}\right)>0$ for all $K_{j} \subset D \backslash \Omega_{1,0}$:
$U\left(K_{j}\right)<U\left(K_{i}\right)$. Then, one can find an open neighborhood G of K_{i} such that every $y \in G \backslash K_{i}: U(y) \leq U\left(K_{i}\right)$ satisfies either $\omega(y)=\emptyset$ or $\omega(y) \subset K_{j}$ for some $K, \subset D \backslash \Omega_{1,0}: U\left(K_{j}\right)<U\left(K_{i}\right)$, namely, $V_{D}\left(y, \tilde{\Omega}_{0}^{(1)}\right)>0$ from Lemma 2.8. Lemmas 2.1, 2.2 and 2.5 also verify $V_{D}\left(K_{i}, \tilde{\Omega}_{0}^{(1)}\right)>0$. Hence, we obtain $\Omega_{1,0}=\tilde{\Omega}_{1}$ by induction.

Since one can show that $\Omega_{k, 0}=\tilde{\Omega}_{k}$ implies $\Omega_{k+1,0}=\tilde{\Omega}_{k+1}$ for $k=1,2, \ldots$, by using the methods explained above, the proof is immediately concluded by induction.

3. Summaries of Freidlin and Wentzell's results

We recall Freidlin-Wentzell's $\{\partial D\}$-graph. (See also [FW, Chapter 6].) Let L be a finite set and let W be a subset of L. A graph consisting of arrows $\alpha \rightarrow \beta$ ($\alpha \in L \backslash W, \beta \in L, \alpha \neq \beta$) is called a W-graph on L if it satisfies the following conditions:
(1) every $\alpha \in L \backslash W$ is the initial point of exactly one arrow;
(2) there are no closed cycles in the graph.

We note that condition (2) can be replaced by the next one:
(2') for every $\alpha \in L \backslash W$ there exists a sequence of arrows leading from it to some $\beta \in W$.
We denote by $G^{L}(W)$ the set of W-graphs on L and, for $\alpha \in L \backslash W$ and $\beta \in W$, $G_{\alpha \beta}^{L}(W)$ stands for the set of W-graphs on L each of which contains the sequence of arrows leading from α to β. For $\alpha \in L \backslash W$, we set, if $\#[L \backslash W] \geq 2$,

$$
G^{L}(\alpha \nrightarrow W)=G^{L}(W \cup\{\alpha\}) \cup \underset{\beta \in L \backslash W, \beta \neq \alpha}{\cup} G_{\alpha \beta}^{L}(W \cup\{\beta\})
$$

and, if $\#[L \backslash K]=1, G^{L}(\alpha \nrightarrow W)=\emptyset$.
Let us define

$$
\begin{align*}
W_{D} & =\min _{g \in G^{\mathbf{K}}\{(\partial D)} \sigma(g), \tag{3.1}\\
M_{D}(x) & =\min _{g \in G^{K *(U x)}(x \rightarrow\{\partial D))} \sigma(g), \quad x \in D, \tag{3.2}\\
M_{D}\left(K_{i}\right) & =\min _{g \in G^{\mathbf{K}^{*}\left(K_{i} \rightarrow(\partial D)\right)}} \sigma(g), \quad K_{i} \in \mathbf{K}, \tag{3.3}
\end{align*}
$$

where $\mathbf{K}^{*}=\left\{K_{1}, \ldots, K_{l}, \partial D\right\}$ and

$$
\sigma(g)=\sum_{(\alpha \sim \beta) \in g} V_{D}(\alpha, \beta)
$$

for a graph g. From Lemma 2.4 and Corollary 2.10, our system satisfies the assumption (A) in [FW, p.169]. Hence, under the assumptions $\left(A_{1}\right)-\left(A_{3}\right)$, we have the next theorems stated in [FW, Chapter 6, §5].

Theorem 3.1. Let us assume $\# \mathbf{K}_{\mathrm{s}} \geq 1$. We have

$$
\begin{align*}
& W_{D}=\min _{g \in G^{\mathbf{K}^{\mathbf{s}}}\{\partial D\}} \sigma(g), \tag{3.4}\\
& W_{D}=\min _{\left.g \in G^{K *}\right)^{\frac{*}{y}(x)}\{\partial D)} \sigma(g), \quad \text { for } x \in D, \tag{3.5}\\
& M_{D}(x)=\min _{g \in G^{\mathrm{K}_{\mathrm{s}} \cup(x)}(x \rightarrow\{\partial D)} \sigma(g), \quad \text { for } x \in D, \tag{3.6}\\
& M_{D}\left(K_{i}\right)=\min _{g \in G^{\mathbf{K}_{\mathbf{s}}^{s}\left(K_{i} \rightarrow(\partial D)\right)}} \sigma(g), \quad \text { for } K_{i} \in \mathbf{K}_{\mathrm{s}}, \tag{3.7}
\end{align*}
$$

where $\mathbf{K}_{\mathrm{s}}^{*}=\mathbf{K}_{\mathrm{s}} \cup\{\partial D\}$.

Theorem 3.2. We have

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{2} \log E_{x}\left[\tau^{\varepsilon}\right]=W_{D}-M_{D}(x)
$$

uniformly in x belonging to every compact subset of D.

Remark 3.3. Theorem 3.2 guarantees the existence of the limit in the LHS of (1.6).

4. Proof of Theorem 1

In this section we shall show Theorem 1. By combining Theorem 3.2 with Proposition 2.11, the next theorem immediately verifies Theorem 1.

Theorem 4.1. We have

$$
\begin{array}{ll}
W_{D}-M_{D}(x)=V_{0}, & x \in \tilde{\Omega}, \\
W_{D}-M_{D}(x)<V_{0}, & x \notin \tilde{\Omega} . \tag{4.2}
\end{array}
$$

Let us suppose that there is no stable compactum in D. Fix an arbitrary $x \in$ D. For $g \in G^{\mathbf{K}^{*} \cup\{x\}}(x \rightarrow\{\partial D\})$ attaining the minimum in the right hand side (RHS) of (3.2), we consider a $\{\partial D\}$-graph on $\mathbf{K}^{*} \cup\{x\}$ derived from g by exchanging one arrow starting from x with an arrow $(x \rightarrow \partial D)$. Since $V_{D}(x, \partial D)=$

0 , from Lemma 5.3 in [FW, Chapter 6] we obtain $W_{D}-M_{D}(x)=0$ and this completes the proof of Theorem 4.1 when $\# \mathbf{K}_{\mathrm{s}}=0$. Therefore we assume $\# \mathbf{K}_{\mathrm{s}} \geq 1$ throughout the rest of this section.

For a graph g in $G^{\mathbf{K}_{s}^{*}}\{\partial D\}, G^{\mathbf{K}_{0}^{*}}\{\partial D\}, G^{\mathbf{K}_{s}^{*}}\left(K_{t} \nrightarrow\{\partial D\}\right)$ or $G^{\mathbf{K}_{0}^{*}}\left(K_{i} \nrightarrow\{\partial D\}\right)$, we introduce a notation $K_{t} \xrightarrow{g} K_{j}$ for $K_{i}, K_{j} \in \mathbf{K}_{0}^{*}$ if g contains a sequence of arrows leading from K_{\imath} to K_{j}; we also use the notation $K_{i} \stackrel{g}{\rightarrow} K_{j}$ if g does not contain such a sequence of arrows. Here, taking the formulae (3.5) and (3.6) into account, we set $K_{0}=\left\{x_{0}\right\}\left(x_{0} \in \bar{D}\right), K_{l+1}=\partial D, \mathbf{K}_{0}^{*}=\mathbf{K}_{\mathrm{s}} \cup\left\{K_{0}\right\} \cup\left\{K_{l+1}\right\}$.

Let g be a $\{\partial D\}_{\text {-graph }}$ in $G^{\mathbf{K}_{s}^{*}}\{\partial D\}_{\text {on }} \mathbf{K}_{\mathrm{s}}^{*}$ and $K_{i} \in \mathbf{K}_{\mathrm{s}}$. For a sequence of arrows $\left(K_{i} \rightarrow K_{i_{1}}\right),\left(K_{i_{1}} \rightarrow K_{i_{2}}\right), \ldots,\left(K_{i_{n}} \rightarrow \partial D\right) \in g$, we set

$$
\mathbf{n}=\min \left\{p \geq 0 ; K_{t_{p+1}} \not \subset \mathscr{V}\left(K_{\imath}\right)\right\}
$$

where we write $K_{i_{0}}=K_{i}$ and $K_{i_{n+1}}=\partial D$ simply. Then, we call $K_{i_{\mathrm{n}}}$ the last compactum of g in a valley $\mathscr{V}\left(K_{i}\right)$ from K_{v}. For a graph g in $G^{\mathbf{K}_{\mathbf{s}}^{*}}\left(K_{i} \rightarrow\{\partial D\}\right)$, there is a unique compactum (except ∂D) which does not become the initial point of any arrows. We call it the end compactum of g.

Lemma 4.2. Let a $\{\partial D\}_{\text {-graph }} g \in G^{\mathbf{K}_{\mathbf{s}}^{*}}\{\partial D\}$ attain the minimum in the RHS of (3.4). Then, for each valley $\sqrt[V]{ }$, the last compactum of g in \mathscr{V} does not depend on any particular choice of stable compacta in \mathscr{V}.

Proof. Suppose that there exist more than one last compacta of g in $\mathscr{V}=$ $\mathscr{V}\left(K_{i}\right), K_{i} \in \mathbf{K}_{\mathrm{s}}$. Let K_{i} be a last compactum. We consider a connected compact subdomain $\mathscr{V}_{r}=\{x \in \mathscr{V} ; U(x) \leq \gamma\}$ of \mathscr{V} for $\max _{x \in \mathscr{V} \mathscr{C}} U(x)<\gamma<U\left(K_{i}\right)+$ $U_{K_{i}}(\partial D)$, and set
$\mathscr{V}_{r}^{(1)}=\left\{x \in \mathscr{V}_{r}\right.$; there exists $K_{j} \in \mathbf{K}_{\mathrm{s}}$ in \mathscr{V} such that $K_{j} \stackrel{g}{\rightarrow} K_{\mathrm{i}}$ and $\left.V_{D}\left(x, K_{j}\right)=0\right\}$, $\mathscr{V}_{r}^{(2)}=\left\{x \in \mathscr{V}_{r}\right.$; there exists $K, \in \mathbf{K}_{\mathrm{s}}$ in \mathscr{V} such that $K_{j} \stackrel{g}{\longrightarrow} K_{\mathrm{i}}$ and $\left.V_{D}\left(x, K_{j}\right)=0\right\}$.
Then, since both $\mathscr{V}_{r}^{(1)}$ and $\mathscr{V}_{r}^{(2)}$ are non-empty closed subsets of \mathscr{V}_{r} and Lemma 2.3 varifies $\mathscr{V}_{r}^{(1)} \cup \mathscr{V}_{r}^{(2)}=\mathscr{V}_{r}$, we have $\mathscr{V}_{r}^{(1)} \cap \mathscr{V}_{r}^{(2)} \neq \emptyset$; i.e., there exist $x_{1} \in V_{r}$ and $K_{j_{0}}, K_{j_{1}} \in \mathbf{K}_{\mathrm{s}}$ in \mathscr{V}_{r} so that $K_{j_{0}} \xrightarrow{g} K_{\mathbf{i}}, K_{j_{1}} \stackrel{g}{\Rightarrow} K_{\mathbf{i}}$ and that $V_{D}\left(x_{1}, K_{j_{0}}\right)=V_{D}\left(x_{1}, K_{j_{1}}\right)$ $=0$. From Lemmas 2.2 and 2.7, one knows

$$
\begin{align*}
V_{D}\left(K_{j_{1}}, K_{j_{0}}\right) & \leq V_{D}\left(K_{j_{1}}, x_{1}\right)+V_{D}\left(x_{1}, K_{j_{0}}\right) \tag{4.3}\\
& =U\left(x_{1}\right)-U\left(K_{j_{1}}\right) \\
& \leq \gamma-U\left(K_{j_{1}}\right) .
\end{align*}
$$

Let K_{j} be the last compactum of g in \mathscr{V} from $K_{j_{1}}$. For a sequence of arrows ($K_{j_{1}} \rightarrow$
$\left.K_{j_{2}}\right),\left(K_{j_{2}} \rightarrow K_{j_{3}}\right), \ldots,\left(K_{j_{n-1}} \rightarrow K_{\mathbf{j}}\right),\left(K_{\mathbf{j}} \rightarrow K_{j_{n+1}}\right) \in g$, \tilde{g} denotes a $\{\partial D\}_{\text {-graph }}$ obtained from g by replacing these n arrows with n arrows ($K_{\mathbf{j}} \rightarrow K_{j_{n-1}}$), \ldots, ($K_{j_{2}}$ $\left.\rightarrow K_{j_{1}}\right),\left(K_{j_{1}} \rightarrow K_{j_{0}}\right)$. Since Lemma 2.5 verifies $V_{D}\left(K_{\mathbf{j}}, K_{j_{n+1}}\right) \geq U_{K_{\mathrm{j}}}(\partial D)$, by using Lemma 2.7 and (4.3) we have

$$
\begin{aligned}
& \sigma(\tilde{g})-\sigma(g) \\
& =\sum_{k=1}^{n-1}\left\{V_{D}\left(K_{j_{k+1}}, K_{j_{k}}\right)-V_{D}\left(K_{j_{k}}, K_{j_{k+1}}\right)\right\}+V_{D}\left(K_{j_{1}}, K_{j_{0}}\right)-V_{D}\left(K_{j_{n}}, K_{j_{n+1}}\right) \\
& \leq U\left(K_{j_{1}}\right)-U\left(K_{\mathbf{j}}\right)+\gamma-U\left(K_{j_{1}}\right)-U_{K_{1}}(\partial D) \\
& =\gamma-\left\{U\left(K_{\mathbf{j}}\right)+U_{K_{1}}(\partial D)\right\} \\
& <0
\end{aligned}
$$

where $K_{j_{n}}=K_{\mathbf{j}}$. But this contradicts the assumption that g attains the minimum in the RHS of (3.4).

Proposition 4.3. We have

$$
\begin{equation*}
W_{D}-M_{D}\left(x_{0}\right) \geq V_{0} \tag{4.4}
\end{equation*}
$$

for all $x_{0} \in \tilde{\Omega}$.
Proof. Let a $\{\partial D\}_{\text {-graph }} g \in G^{\mathbf{K}_{\mathbf{*}}^{*}}\{\partial D\}$ attain the minimum in the RHS of (3.4) and be fixed throughout the proof. Consider $K_{*} \in \mathbf{K}_{\text {s }}$ satisfying $U_{K_{*}}(\partial D)=$ V_{0} and the last compactum $K_{\mathbf{i}}$ of g in the valley $\mathscr{V}\left(K_{*}\right)$. For a sequence of arrows $\left(K_{*} \rightarrow K_{i_{1}}\right),\left(K_{i_{1}} \rightarrow K_{i_{2}}\right), \ldots,\left(K_{i_{n-1}} \rightarrow K_{\mathbf{i}}\right),\left(K_{\mathbf{i}} \rightarrow K_{i_{n+1}}\right) \in g$, we define $g_{0} \in$ $G^{\mathbf{K}_{\mathbf{5}}^{*}}\left(K_{*} \rightarrow\{\partial D\}\right)$ from g by deleting these $n+1$ arrows and adding n arrows $\left(K_{\mathbf{i}} \rightarrow K_{i_{n-1}}\right), \ldots,\left(K_{i_{2}} \rightarrow K_{i_{1}}\right),\left(K_{i_{1}} \rightarrow K_{*}\right)$. Then, Lemmas 2.5 and 2.7 imply

$$
\begin{aligned}
\sigma(g)-\sigma\left(g_{0}\right) & =\sum_{k=1}^{n}\left\{V_{D}\left(K_{i_{k-1}}, K_{i_{k}}\right)-V_{D}\left(K_{i_{k}}, K_{i_{k-1}}\right)\right\}+V_{D}\left(K_{\mathrm{i}}, K_{i_{n+1}}\right) \\
& \geq U\left(K_{\mathbf{i}}\right)-U\left(K_{*}\right)+U_{K_{\mathbf{i}}}(\partial D) \\
& =V_{0}
\end{aligned}
$$

where $K_{i_{0}}=K_{*}$ and $K_{i_{n}}=K_{\mathbf{i}}$. Since Lemma 4.2 proves $g_{0} \in G^{\mathbf{K}_{\mathbf{s}}^{*}}\left(K_{i} \nrightarrow\{\partial D\}\right)$ for all stable compacta $K_{\imath} \subset \mathscr{V}\left(K_{*}\right)$, one obtains the estimate

$$
\begin{equation*}
W_{D}-M_{D}\left(K_{i}\right) \geq V_{0} \tag{4.5}
\end{equation*}
$$

for all stable compacta K_{i} satisfying Depth $\mathscr{V}\left(K_{i}\right)=V_{0}$. On the other hand, for every $x_{0} \in \tilde{\Omega}_{1}$, there is a stable compactum K_{i}, Depth $\mathscr{V}\left(K_{i}\right)=V_{0}$, so that $V_{D}\left(x_{0}\right.$, $\left.K_{i}\right)=0$. This implies $M_{D}\left(x_{0}\right) \leq M_{D}\left(K_{i}\right)$ and therefore the estimate (4.4) holds for every $x_{0} \in \tilde{\Omega}_{1}$.

For a stable compactum $K_{i} \subset \tilde{\Omega}_{2} \backslash \tilde{\Omega}_{1}$ there exist a point $x_{1} \in \overline{\mathscr{V}\left(K_{i}\right)} \cap \tilde{\Omega}_{1}$ and stable compacta $K_{j_{0}} \subset \tilde{\Omega}_{1}, K_{j_{1}} \subset \mathscr{V}\left(K_{i}\right)$ such that $V_{D}\left(x_{1}, K_{j_{0}}\right)=V_{D}\left(x_{1}\right.$, $\left.K_{j_{1}}\right)=0$. Note that Lemmas 2.2 and 2.5 imply

$$
\begin{equation*}
V_{D}\left(K_{j_{1}}, K_{j_{0}}\right)=U_{K_{j_{1}}}(\partial D) \tag{4.6}
\end{equation*}
$$

Since Depth $\mathscr{V}\left(K_{j_{0}}\right)=V_{0}$, one can construct $g_{0} \in G^{\mathbf{K}_{5}^{*}}\left(K_{j_{0}} \nrightarrow\{\partial D\}\right)$ from the $\{\partial D\}_{\text {-graph }} g$ (fixed at the top of the proof) such that

$$
\sigma(g)-\sigma\left(g_{0}\right) \geq V_{0}
$$

by the previous methods. Then, define $g_{1} \in G^{\mathbf{K}_{\mathbf{*}}^{*}}\left(K_{i} \nrightarrow\{\partial D\}\right)$ from g_{0} in the following manner: if $K_{j_{1}} \xrightarrow{g_{Q}} K_{*}$, set $g_{1}=g_{0}$; otherwise, g_{1} is defined by exchanging m arrows $\left(K_{j_{1}} \rightarrow K_{j_{2}}\right),\left(K_{j_{2}} \rightarrow K_{j_{3}}\right), \ldots,\left(K_{j_{m-1}} \rightarrow K_{\mathbf{j}}\right),\left(K_{\mathbf{j}} \rightarrow K_{j_{m+1}}\right)$ in g_{0} (also in g), with m arrows $\left(K_{\mathbf{j}} \rightarrow K_{j_{m-1}}\right), \ldots,\left(K_{j_{2}} \rightarrow K_{j_{1}}\right),\left(K_{j_{1}} \rightarrow K_{j_{0}}\right)$, where K_{*} and $K_{\mathbf{j}}$ respectively denote the end compactum of g_{0} and the last compactum of g in $\mathscr{V}\left(K_{i}\right)$. Using Lemmas 2.5, 2.7 and (4.6), we have

$$
\begin{aligned}
\sigma\left(g_{0}\right)-\sigma\left(g_{1}\right) & \geq U\left(K_{\mathbf{j}}\right)-U\left(K_{j_{1}}\right)+U_{K_{1}}(\partial D)-U_{K_{j_{1}}}(\partial D) \\
& =0
\end{aligned}
$$

With the help of Lemma 4.2, the estimate (4.5) is verified for every stable K_{i} in $\tilde{\Omega}_{2}$. For $x_{0} \in \tilde{\Omega}_{2}$, choose a stable compactum K_{t} in $\tilde{\Omega}_{2}$ such that $V_{D}\left(x_{0}, K_{i}\right)=0$. Then, we have $M_{D}\left(x_{0}\right) \leq M_{D}\left(K_{i}\right)$. Hence, (4.4) is obtained for all $x_{0} \in \tilde{\Omega}_{2}$.

By using the above arguments inductively, one can show the estimate (4.4) for all $x_{0} \in \tilde{\Omega}_{k+1}, k \geq 1$, which concludes the proof.

Proof of Theorem 4.1. Fix an arbitrary $x_{0} \in D$ and write $K_{0}=\left\{x_{0}\right\}, K_{l+1}$ $=\{\partial D\}$ and $\mathbf{K}_{0}^{*}=\mathbf{K}_{\mathrm{s}}^{*} \cup\left\{K_{0}\right\}\left(=\mathbf{K}_{\mathrm{s}} \cup\left\{x_{0}, \partial D\right\}\right)$. We suppose that $g \in G^{\mathbf{K}^{*}}\left(x_{0}\right.$ $\rightarrow\{\partial D\}$) attains the minimum of $M_{D}\left(x_{0}\right)$ in the RHS of (3.6) and that $K^{*} \in \mathbf{K}_{0}(=$ $\mathbf{K}_{\mathrm{s}} \cup\left\{K_{0}\right\}$) is the end compactum of g.

First, we consider the case where $K^{*}=\left\{x_{0}\right\} \notin \mathbf{K}_{s}$. If there is a stable compactum K_{i} such that $V_{D}\left(x_{0}, K_{i}\right)=0$, one can suppose that K_{i} is the last compactum. Indeed, the graph $\tilde{g} \in G^{\mathbf{K}_{\mathbf{~}}^{*}}\left(x_{0} \nrightarrow\{\partial D\}\right)$ constructed from g by exchanging one arrow starting from K_{i} with an arrow ($x_{0} \rightarrow K_{i}$) satisfies $\sigma(\tilde{g}) \leq \sigma(g)$ and K_{i} is the last compactum of \tilde{g}. If $V_{D}\left(x_{0}, K_{i}\right)>0$ for all $K_{i} \in \mathbf{K}_{0}$, Lemma 2.3 implies $V_{D}\left(x_{0}, \partial D\right)=0$. Since one obtains a $\{\partial D\}$-graph $\tilde{g} \in G^{\mathbf{K}_{0}^{*}}\{\partial D\}$, which satisfies $\sigma(\tilde{g})=\sigma(g)$, by adding an arrow $\left(x_{0} \rightarrow \partial D\right)$ to g, one has $W_{D} \leq M_{D}\left(x_{0}\right)$ from Theorem 3.1. Combining this with Lemma 5.3 in [FW, Chapter 6], we conclude W_{D} $-M_{D}\left(x_{0}\right)=0$, where we remark $x_{0} \notin \tilde{\Omega}$.

Next, we suppose $K^{*} \in \mathbf{K}_{\mathrm{s}}$ and claim

$$
\begin{equation*}
W_{D}-M_{D}\left(x_{0}\right) \leq U_{K^{*}}(\partial D) \tag{4.7}
\end{equation*}
$$

For $\delta>0, F_{1}$ denotes the connected component of $\left\{x \in \bar{D} ; U(x) \leq U\left(K^{*}\right)+\right.$ $\left.U_{K^{*}}(\partial D)+\delta\right\}$ containing K^{*}. Set

$$
\begin{aligned}
& F_{1}^{(1)}=\left\{x \in F_{1} ; \text { there exists } K_{i} \in \mathbf{K}_{\mathrm{s}}^{*} \text { so that } K_{i} \xrightarrow{g} \partial D \text { and } V_{D}\left(x, K_{i}\right)=0\right\} \\
& F_{1}^{(2)}=\left\{x \in F_{1} ; \text { there exists } K_{i} \in \mathbf{K}_{\mathrm{s}}^{*} \text { so that } K_{i} \xrightarrow{g} K^{*} \text { and } V_{D}\left(x, K_{i}\right)=0\right\}
\end{aligned}
$$

Since $F_{1}^{(1)}$ and $F_{1}^{(2)}$ are non-empty closed subsets of F_{1} and satisfy $F_{1}^{(1)} \cup F_{1}^{(2)}=$ F_{1} from Lemma 2.3, one can find $x_{1} \in F_{1}^{(1)} \cap F_{1}^{(2)}$ and $K_{i_{0}}, K_{i_{1}} \in \mathbf{K}_{\mathrm{s}}^{*}$ such that $K_{i_{0}} \xrightarrow{g} \partial D, K_{i_{0}} \xrightarrow{g} K^{*}$ and that $V_{D}\left(x_{1}, K_{i_{0}}\right)=V_{D}\left(x_{1}, K_{i_{1}}\right)=0$. Then,

$$
V_{D}\left(K_{i_{1}}, K_{i_{0}}\right) \leq U\left(K^{*}\right)+U_{K^{*}}(\partial D)+\delta-U\left(K_{\imath_{1}}\right)
$$

by the same methods as (4.3). For $\left(K_{i_{1}} \rightarrow K_{i_{2}}\right),\left(K_{i_{2}} \rightarrow K_{i_{3}}\right), \ldots,\left(K_{i_{n}} \rightarrow K^{*}\right) \in g$, $g_{0} \in G^{\mathbf{K}_{0}^{*}}\{\partial D\}$ denotes a $\{\partial D\}_{\text {-graph }}$ constructed from g by deleting these n arrows and adding $n+1$ arrows $\left(K^{*} \rightarrow K_{i_{n}}\right), \ldots,\left(K_{i_{2}} \rightarrow K_{\imath_{1}}\right),\left(K_{i_{1}} \rightarrow K_{i_{0}}\right)$. From Lemma 2.7, we get

$$
\begin{align*}
& \sigma\left(g_{0}\right)-\sigma(g) \tag{4.8}\\
& =\sum_{k=1}^{n}\left\{V_{D}\left(K_{i_{k+1}}, K_{i_{k}}\right)-V_{D}\left(K_{i_{k}}, K_{i_{k+1}}\right)\right\}+V_{D}\left(K_{i_{1}}, K_{i_{0}}\right) \\
& \leq U_{K^{*}}(\partial D)+\delta
\end{align*}
$$

where $K_{i_{n+1}}=K^{*}$. Hence, (3.5) in Theorem 3.1 verifies (4.7) by letting $\delta \downarrow 0$.
Finally, we show the assertions in Theorem 4.1. Since $U_{K^{*}}(\partial D) \leq V_{0}$, (4.1) is obtained immediately by combining (4.7) with Proposition 4.3 . We move to the second assertion (4.2). To do this, let $x_{0} \notin \tilde{\Omega}$ and suppose $V_{D}\left(x_{0}, K_{j}\right)=0$ for some $K_{j} \in \mathbf{K}_{\mathrm{s}}^{*}$ since the other cases have been shown. Furthermore, from (4.7) one can suppose $U_{K^{*}}(\partial D)=V_{0}$ and, in particular, $K^{*} \subset \bar{\Omega}$. It suffices to construct $\tilde{g} \in G^{\mathbf{K}_{\mathbf{0}}^{*}}\left(K^{*} \nrightarrow\{\partial D\}\right)$ satisfying

$$
\begin{equation*}
\sigma(\tilde{g})<\sigma(g) \tag{4.9}
\end{equation*}
$$

Indeed, for $\tilde{g} \in G^{\mathbf{K}_{0}^{*}}\left(K^{*} \nrightarrow\{\partial D\}\right)$, there is a $\{\partial D\}_{\text {-graph }} \tilde{g}_{0} \in G^{\mathbf{K}_{0}^{*}}\{\partial D\}$ such that $\sigma\left(\tilde{g}_{0}\right)-\sigma(\tilde{g}) \leq V_{0}$ by using a parallel argument to the proof of (4.8). Together with (4.9), we get $\sigma\left(\tilde{g}_{0}\right)-\sigma(g)<V_{0}$ and therefore (4.2) from Theorem 3.1. For a sequence of arrows $\left(x_{0} \rightarrow K_{j_{1}}\right),\left(K_{j_{1}} \rightarrow K_{j_{2}}\right), \ldots,\left(K_{j_{m}} \rightarrow K^{*}\right) \in g$, set

$$
\mathbf{m}=\min \left\{p \geq 0 ; K_{j_{p+1}} \subset \tilde{\Omega}\right\},
$$

where $K_{j_{0}}=\left\{x_{0}\right\}$ and $K_{j_{m+1}}=K^{*}$. If $\mathbf{m}=0$, we know $V_{D}\left(x_{0}, K_{j_{1}}\right)>0$ from $x_{0} \notin$ $\tilde{\Omega}$ and $K_{j_{1}} \subset \tilde{\Omega}$, and $V_{D}\left(x_{0}, K_{j}\right)=0$ for some $K, \in \mathbf{K}_{\mathrm{s}}^{*}$. Then, the graph $\tilde{g} \in$
$G^{\mathbf{K}_{\mathbf{0}}^{*}}\left(K^{*} \nrightarrow\{\partial D\}\right)$ derived from g by exchanging an arrow $\left(x_{0} \rightarrow K_{J_{1}}\right)$ with $\left(x_{0} \rightarrow\right.$ K_{j}) satisfies (4.9). Let $\mathbf{m} \geq 1$. Note that from Lemma 2.2 one has

$$
\begin{aligned}
V_{D}\left(K_{j_{\mathbf{m}}}, K_{j_{\mathrm{m}+1}}\right) & =\inf _{y \in \partial V\left(K_{j_{\mathrm{m}}}\right)}\left\{V_{D}\left(K_{j_{\mathrm{m}}}, y\right)+V_{D}\left(y, K_{j_{\mathrm{m}+1}}\right)\right\} \\
& >U_{K_{j_{\mathbf{m}}}}(\partial D)
\end{aligned}
$$

since Lemma 2.5 and $\overline{\mathscr{V}\left(K_{\jmath_{\mathrm{m}}}\right)} \cap \tilde{\Omega}=\emptyset \operatorname{imply}_{\inf _{y \in \partial V\left(K_{f_{\mathrm{m}}}\right)} V_{D}\left(K_{j_{\mathrm{m}}}, y\right) \geq U_{K_{f_{\mathrm{m}}}}(\partial D), ~\left(V_{D}\right)}$ and $\inf _{y \in \partial V\left(K_{j_{\mathrm{m}}}\right.} V_{D}\left(y, K_{j_{\mathrm{m}+1}}\right)>0$ respectively. For $0<\delta^{\prime}<V_{D}\left(K_{j_{\mathrm{m}}}, K_{j_{\mathrm{m}+1}}\right)-$ $U_{K_{f_{\mathrm{m}}}}(\partial D)$, we denote by F_{2} the connected component of $\{x \in \bar{D} ; U(x)$ $\left.\leq U\left(K_{j_{\mathrm{m}}}\right)+U_{K_{j_{\mathrm{m}}}}(\partial D)+\delta^{\prime}\right\}$ which contains $K_{j_{\mathrm{m}}}$ and set

$$
\begin{aligned}
& F_{2}^{(1)}=\left\{x \in F_{2} ; \text { there exists } K_{i} \in \mathbf{K}_{\mathrm{s}}^{*} \text { so that } K_{i} \xrightarrow{g} K_{j_{\mathrm{m}}} \text { and } V_{D}\left(x, K_{i}\right)=0\right\}, \\
& F_{2}^{(2)}=\left\{x \in F_{2} ; \text { there exists } K_{i} \in \mathbf{K}_{\mathrm{s}}^{*} \text { so that } K_{i} \xrightarrow{g} K_{j_{\mathrm{m}}} \text { and } V_{D}\left(x, K_{i}\right)=0\right\} .
\end{aligned}
$$

Since $F_{2}^{(1)}$ and $F_{2}^{(2)}$ are non-empty closed subsets of F_{2} and satisfy $F_{2}^{(1)} \cup F_{2}^{(2)}=$ F_{2} from Lemma 2.3, one can find $x_{2} \in F_{2}^{(1)} \cap F_{2}^{(2)}$ and $K_{i 0}, K_{i_{1}^{\prime}} \in \mathbf{K}_{\mathrm{s}}^{*}$ so that $K_{t_{0}^{\prime}}$ $\xrightarrow{g} K_{j_{\mathrm{m}}}, K_{i_{1}^{\prime}} \xrightarrow{g} K_{j_{\mathbf{m}}}$ and that $V_{D}\left(x_{2}, K_{i_{0}}\right)=V_{D}\left(x_{2}, K_{i_{1}^{\prime}}\right)=0$. Then, we get

$$
V_{D}\left(K_{i_{1}^{\prime}}, K_{i_{0}}\right) \leq U\left(K_{j_{\mathrm{m}}}\right)+U_{K_{j_{\mathrm{m}}}}(\partial D)+\delta^{\prime}-U\left(K_{i_{1}^{\prime}}\right)
$$

in a similar manner to (4.3). For $\left(K_{i_{1}^{\prime}} \rightarrow K_{i_{2}^{\prime}}\right),\left(K_{i_{2}^{\prime}} \rightarrow K_{i_{3}^{\prime}}\right), \ldots,\left(K_{i_{n}^{\prime}} \rightarrow K_{j_{\mathrm{m}}}\right) \in g$, \tilde{g} denotes a graph obtained from g by replacing these $n^{\prime}+1$ arrows with $n^{\prime}+1$ arrows $\left(K_{j_{\mathrm{m}}} \rightarrow K_{i_{i_{n}^{\prime}}^{\prime}}\right), \ldots,\left(K_{i_{2}^{\prime}} \rightarrow K_{i_{1}^{\prime}}\right),\left(K_{i_{1}^{\prime}} \rightarrow K_{i_{0}^{\prime}}\right)$. By Lemma 2.7, one can easily prove that $\tilde{g} \in G^{\mathbf{K}_{0}^{*}}\left(K^{*} \nrightarrow\{\partial D\}\right)$ satisfies (4.9).

5. Further results

One can easily know that $W_{D}-M_{D}(x), x \in D \backslash \Omega$, is not determined generally by $U_{\{x\rangle}(\partial D), U_{\{x\}}\left(K_{i}\right)$, Depth $\mathscr{V}\left(K_{i}\right)$, etc., even if x belongs to some valley $\mathscr{V} \not \subset \Omega$. However, for the bottom valley $\mathscr{V}\left(K_{i}\right)$, one can show that $W_{D}-M_{D}(x)$ coincides with the depth of valley $\mathscr{V}\left(K_{i}\right)$ for $x \in \mathscr{V}\left(K_{i}\right)$ in a similar manner to Theorem 1. Namely, we have the next proposition.

Proposition 5.1. Let a stable compactum K_{i} satisfy $U\left(K_{i}\right)=\min \left\{U\left(K_{j}\right) ; K_{j}\right.$ $\left.\in \mathbf{K}_{\mathbf{s}}\right\}$. Then,

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{2} \log E_{x}\left[\tau^{\varepsilon}\right]=\text { Depth } \mathscr{V}\left(K_{t}\right)
$$

for all $x \in \mathscr{V}\left(K_{i}\right)$.

Proof. From Theorem 3.2 and Lemma 4.2, it is sufficient to show $W_{D}-$ $M_{D}\left(K_{i}\right)=$ Depth $\mathscr{V}\left(K_{i}\right)$. However, we have $W_{D}-M_{D}\left(K_{i}\right) \geq$ Depth $\mathscr{V}\left(K_{i}\right)$ by us. ing the same arguments as Proposition 4.3. Let $g \in G^{\left.\mathbf{K}_{s} \cup \partial D\right\rangle}\left(K_{t} \rightarrow\{\partial D\}\right)$ attain the minimum of $M_{D}\left(K_{i}\right)$ in the RHS of (3.7). We denote the end compactum of g by $K^{*} \in \mathbf{K}_{\mathrm{s}}$. Then, one can easily show that $U_{K_{i}}\left(K^{*}\right) \leq U_{K_{i}}(\partial D)$ in a similar manner to Lemma 4.2. In particular, $U_{K^{*}}(\partial D) \leq \operatorname{Depth} \mathscr{V}\left(K_{i}\right)$. Hence, the proof is completed immediately from (4.7).

For one-dimensional Euclidean space, one can calculate $W_{D}-M_{D}(x)$ for all $x \in D$. Set $D=\left(d_{1}, d_{2}\right)$ and define $U^{*}(x), x \in D$, by

$$
U^{*}(x)= \begin{cases}\max _{x \in \overline{\mathscr{V}}\left(K_{i}\right)} U(x), & x \in \mathscr{V}\left(K_{i}\right), \\ U(x), & x \notin \cup_{i=1}^{l} \mathscr{V}\left(K_{i}\right) .\end{cases}
$$

Recall Ω defined in Section 1. Let \mathscr{V}_{k}^{+}be the deepest valley at the right side of \mathscr{V}_{k-1}^{+}satisfying $\min _{x \in V_{k}^{+}} U(x)<\min _{x \in V_{k-1}^{+}} U(x)$ and let \mathscr{V}_{k}^{-}be that at the left side of \mathscr{V}_{k-1}^{-}satisfying $\min _{x \in V_{\bar{k}}^{-}} U(x)<\min _{x \in V_{\bar{k}-1}} U(x)$ for $k=1,2, \ldots$, where we write $\mathscr{V}_{0}^{+}=V_{0}^{-}=\Omega$ simply. Set $V_{k}^{+}=\operatorname{Depth} \mathscr{V}_{k}^{+}, V_{k}^{-}=\operatorname{Depth} \mathscr{V}_{k}^{-}$and $\sigma_{k}^{+}=$ $\sup \left\{x ; x \in \mathscr{V}_{k}^{+}\right\}, \sigma_{k}^{-}=\inf \left\{x ; x \in \mathscr{V}_{k}^{-}\right\}$for $k=0,1, \ldots$ We remark that they satisfy the following:

$$
\begin{gathered}
d_{1} \leq \sigma_{k_{1}}^{-}<\sigma_{k_{1}-1}^{-}<\cdots<\sigma_{0}^{-}<\sigma_{0}^{+}<\cdots<\sigma_{k_{2}-1}^{+}<\sigma_{k_{2}}^{+} \leq d_{2} \\
V_{k_{1}}^{-} \leq \cdots \leq V_{1}^{-}<V_{0}, V_{0}>V_{1}^{+} \geq \cdots \geq V_{k_{2}}^{+}
\end{gathered}
$$

where $k_{1}, k_{2} \geq 0$ are chosen so that, respectively,

$$
\min _{x \in V_{\overline{K_{1}}}} U(x)=\min _{x \in \cup_{K_{i} \in \mathrm{~K}_{\mathbf{s}}} K_{\mathrm{K}} \cap\left(d_{1}, \sigma_{0}^{-}\right)} U(x), \min _{x \in V_{K_{2}}^{+}} U(x)=\min _{x \in \cup_{K_{i} \in \mathrm{~K}_{\mathbf{s}}}^{K_{\mathrm{K}} \cap\left(\sigma_{0}^{+}, d_{2}\right)}} U(x) .
$$

With these notations in mind, we define $V^{*}(x), x \in D$, by

$$
V^{*}(x)= \begin{cases}{\left[V_{k_{1}}^{-}+U^{*}(x)-U\left(\sigma_{k_{1}}^{-}\right)\right] \vee 0,} & x \in\left(d_{1}, \sigma_{k_{1}}^{-}\right], \\ {\left[V_{k-1}^{-}+U^{*}(x)-U\left(\sigma_{k-1}^{-}\right)\right] \vee V_{k}^{-},} & x \in\left(\sigma_{k}^{-}, \sigma_{k-1}^{-}\right], k=1, \ldots, k_{1}, \\ V_{0} & x \in\left(\sigma_{0}^{-}, \sigma_{0}^{+}\right), \\ {\left[V_{k-1}^{+}+U^{*}(x)-U\left(\sigma_{k-1}^{+}\right)\right] \vee V_{k}^{+},} & x \in\left[\sigma_{k-1}^{+}, \sigma_{k}^{+}\right), k=1, \ldots, k_{2}, \\ {\left[V_{k_{2}}^{+}+U^{*}(x)-U\left(\sigma_{k_{2}}^{+}\right)\right] \vee 0,} & x \in\left[\sigma_{k_{2}}^{+}, d_{2}\right)\end{cases}
$$

Now we state the next proposition without proof since it is quite simple.

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{2} \log E_{x}\left[\tau^{\varepsilon}\right]=V^{*}(x)
$$

uniformly in x belonging to every compact subset of D.

Acknowledgement. The author wishes to thank Professor T. Funaki for his valuable suggestions and kind encouragements.

REFERENCES

[FW] M. I. Freidlin and A. D. Wentzell, "Random perturbations of dynamical systems," Springer-Verlag, Berlin Heidelberg New York, 1984.
[PD] J. Palis, Jr. and W. de Melo, "Geometric theory of dynamical systems, An introduction," Springer-Verlag New York, 1982.
[Su1] M. Sugiura, Limit theorems related to the small parameter exit problems and the singularly perturbed Dirichlet problems, preprint, 1994.
[Su2] M. Sugiura Metastable behaviors of diffusion processes with small parameter, J. Math. Soc. Japan, 47 (1995) 755-788.

Graduate School of Polymathematics
Nagoya University
Nagoya 464-01
Japan
sugiura@math.nagoya-u.ac.jp

[^0]: Received July 12, 1993.
 Revised June 23, 1995.

