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ON ZETA FUNCTIONS ASSOCIATED
TO SYMMETRIC MATRICES III

AN EXPLICIT FORM OF L-FUNCTIONS

TOMOYOSHI IBUKIYAMA AND HIROSHI SAITO

Dedicated to Professor Hideo Shimizu on his 60th birthday

Abstract. In [I-S2], we gave an explicit form of zeta functions associated to the
space of symmetric matrices. In this paper, the case of L-functions is treated.
In the case of definite symmetric matrices, we show the ratinality of special
values of these L-functions.

Introduction
This is the third part of the series of our papers [I-S2] on zeta functions

associated to the space of symmetric matrices. In the first part, we gave an
explicit form of zeta functions, and in the second part, we discussed some
analytic properties of them. The purpose of this paper is to give an explicit
form of L-functions associated to that space.

For this space, two kinds of L-functions have been introduced by Sato
[Sa2], Hashimoto, one of the author [Sail], and by Arakawa [A].

The first ones are associated to Dirichlet characters, and were intro-
duced as L-functions of the prehomogeneous vector space of symmetric ma-
trices. The others are associated to a symmetric matrix with coefficients in
a finite field and appeared in the calculation of the contribution of unipo-
tent elements to the trace of some operators on the space of Siegel cusp
forms.

There exists a close relation between these two kinds of L-functions.
In fact, the second ones can be written by the first ones by means of the
Gauss sums defined in Saito[Sail]. Between these two kinds of L-functions,
the first ones are easy to treat. For example, the analytic continuation
and the functional equations of L-functions of the first kind were proved in
[Sa2], [Sail], [Sai2]. Furthermore our procedure of the computation of zeta
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functions in the first part can be easily applied to the case of L-functions

of the first kind. The second kind of L-functions seem to have a rather

complicated form. For simplicity, we assume n > 3 in this paper.

In §1, we give the definition of the two kinds of L-functions. Recalling

the definition of the Gauss sums in [Sail], we describe the relation between

these two kinds of L-functions. We introduce one more matrix-valued Gauss

sum and prove a result on it, which is a complement to the results in [Sail].

In §2, we give an explicit form of L-functions assuming the result on

orbital local series proved in §3. These results contain a generalization of

[I-Sl].

In the case of positive definite matrices, using these explicit forms, we

prove the rationality of the values of the L-fucntions at non-positive integers.

In §3, we determine orbital local series for L-functions and complete

the proof of theorems in §2.

§1. L-functions and Gauss sums

For a ring R, we denote by Sn(R) the set of symmetric matrices of

degree n with coefficients in R. For a positive integer n, let Ln(resp. L*) be

the lattice in Sn(Q) consisiting of integral (resp. half-integral) symmetric

matices of degree n, and Ln (resp. Ln ^ ) its subset consisting of elements

with signature (i,n — i). Then SLn(Z) acts on Ln and Ln by g - x = gxιg

for g G SLn(Z) and x G Xn, Ln. We define some functions on Ln or Z*,

which we call characters in this paper. First, we consider characters defined

modulo pv for an odd prime p and then those modulo 2V'. Lastly, we consider

general ones. For a prime p and a positive integer v, we set Rp^υ — Z/pι'Z.

Let p be an odd prime, and let φ be a Dirichlet character with the

conductor f(φ) = pv for a positive integer v. For x G L n or L*, set

x — x mod pv and define

in) / \ _ ί <p(detί) if det x G Rp^,

y 0 otherwise.

Let χp and χo be the quadratic character and the trivial one modulo p

respectively. For ψ = χp or χo a n d and integer r with 1 < r < n, we define

/ ( r)/^ _ / ^(det xf) if rank(x) = r,
Ψ \x) ~ \

{0 otherwise,
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/ x' 0 \
where x1 is an element of Sr(Rp^ι) with gxιg — ί J for g G GLn[Rp^\)

and det x' φ 0. The above definition is independent of the choice of x!. For

r = n, the above two definitions are identical. For r — 0, we set

if τank{x) = 0,

otherwise.

When it is necessary to indicate the prime p, we write XQ^ instead of XQ .

Let p = 2, and let φ and χo = χo,2 be as above. For x G Ln and r,

0 < r < n, we define φ^ and XQ ̂  in the same way as in the case of p odd.

For x G L^, let Qx be the quadratic form in £i,t2? ' ' >*π associated to x.

Then Q x mod p is equivalent to one of

for r odd,

(1.1)

(1.2) tλt2 + '••+ tr-ztτ-2 + tl-l + *r-l*r + ^r?

for r even. We define for r even, 2 < r < n, and x G L *

1 if ζ)χ mod p is equivalent to (1.1),

ifQx mod p is equivalent to (1.2),

otherwise.

For r = 0, we define Xp (x) — 1 if x G 2L*, and χ£ (#) = 0 otherwise.

We consider general characters. Let JVi, Λ̂ 2, -/V3 be three positive

square-free integers coprime to each other. For an odd prime p \ iVi, choose

a character </?p defined modulo a power of p with φ^φ χ§. When 2 | ΛΓi,

we choose a non-trivial character ψ2 defined modulo a power of 2. For each

p I N2 and p\ N^^we choose integers rp, 0 < rp < n. Let Λ̂ 2 a n ( i ^2 be the

product of primes p dividing N2 such that rp is odd or even respectively.

We define N£, Nξ similarly. For L n, we assume ( 2 , ^ ) = 1. For x G L n,

we define

(1.3) ^(x) - π <4n)o*) Π 4rp)(^) Π x ί ΐ w
p\Ni p\N2 p\N3
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For Ln, we assume (2, iViiV îVa) = 1, and we define a character φ by

(1.3) replacing X2 by X2 when 2 | Nξ. It is easy to see φ is invariant

under the action of SLn(Z).

For φ, and L = L n , L*, we define

Σ φ(x)μ(x)\detx\~s,
xeLW/SLn{Z)

where
( / )

and μ(x) is the volume attached to x, the definition of which is given in §1

of the part I. This series converges absolutely for Re(s) > Ώ^ unless n = 2

and i = 1.

We give the definition of another kind of L-functions introduced by

Arakawa. Let p be an odd prime. For a G R and a positive integer ra, we

set em(α) = exp(2πα\/^ϊ/ra). For S G Sn(Rp^) and x G L * , set

where y is extended over all y G Sn(Rp^ι) which are equivalent to S. Here we

understand ep(tτ(z)) = ep(tr(z)) for 2 G Sn(Rp^) with 2 (G *ί?n(2)) mod p =

z. Then Arakawa's L-function is defined by

Q(s,L,S) = cn Σ 4n)(x)μ(x)\detx\-s,
x£LM/SLn(Z)

for L — Ln, L^. This series converges absolutely also for Re(s) > Ώ^

unless n — 2 and i = 1.

To describe the relation between these L-functions, we recall the Gauss

sums introduced in [Sail]. For 77 = χ p, or χo, and x G Sn(Rp,ι) of rank r,

we define

77(0?) = ^(detx 7 ) ,

(x' 0\
where xf is an element of Sr(RPiι) such that ^ x ^ = I 1 with g G

GLn(RPjι) and detx ; 7̂  0. Then η(x) is well-defined. If r = 0, we set

η(x) = 1. We define
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where y runs through all elements of Sn(Rp^) of rank r. For x G i n or L*,
we set W?(x,η) = W?{x,η) with x = x mod p. Then for S G Sn(RPjι) of
rank r, we have

(1.4) 4 n ) (x) = |(W?(*,Xb) + Xp(S)W?(*,XP)).

For two integers r, t such that 0 < r, £ < n and r Ξ ί mod 2, we define

Wn(r,t) as follows. When r = t = 1 mod 2, we set

Wn(r,t) = W?(x,χp)χp{x),

where x is an element of Sn(Rp^ι) of rank t. Then by Cor. 1.2 of [Sail],
this is independent of the choice of x (denoted by W™(i,j) with r = 2% — 1,
£ = 2j — 1 in [Sail]). When both of r and t are even, we set

for x G Sn(Rp^ι) with rank x — t. This is also independent of the choice of
x by Cor. 1.14 of [Sail] (The proof of Cor. 1.14 there is incomplete in the
case where n is even and rankx = t = n. But this case can be deduced
easily from Prop. 1.12 of [Sail].). Let G(χp) be the usual Gauss sum for
χp. In these notations, we can prove

PROPOSITION 1.1. Let p be an odd prime and let x G Sn(Rp^ι).
(1) If r is odd, then

Wr

n(x,χp) = £ Wn(r,2j

[n/2]

3 = 1

(2) Lei r > 2 be even, and let x be an element of Sn+ι(RPiι) such that
Xp(x) = Xp{%) and rank(x) = rank(x) + 1. Then one has

[n/2]
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Here we understand that Xp (x) = 0 for m > n when n is even, and On is
the zero matrix of degree n.

Proof. These assertions follow easily from Cor. 1.2, Cor. 1.14, Prop.
1.13, Prop. 1.11 and Prop. 1.12 of [Sail].

This shows that the L-functions ζi(s,L,S) can be written as linear
combinations of &(s, L, χ). For example, if the rank r of S is odd, then by
(1) of Prop. 1.1. and (1.4) we have

3=0

[n/2]

We can prove a similar formula for S of rank r even by (2) of Prop. 1.1.
Hence the rationality of special values of ζi(s,L,S) follows from that of
ζi(s,L,ψ).

Here we insert a result on Gauss sums, which is a complement to
Th. 1.15 and Cor. 1.17 of [Sai] (in Th. 1.15, W^{χp) should be read W^(χp)

2.)
There, for u, v such that 0 < u, v < [n/2], we define

( W2u(xi Xo)Xp(x) if n i s even and n = 2u,

+ W2u(x-> Xo))Xp(x) otherwise,
with x G Sn(Rp^ι) of rank x = 2v, which is independent of the choice of x,
and the Gauss sum

We define one more matrix-valued Gauss sum

K(Xp) = (Wn(2i-2,2j-2)),

where the (i,j) component of U"(χp) is Wn(2i - 2,2j - 2).
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THEOREM 1.2. The notation being as above, one has

where -B[n/2]+i is the unit matrix of degree [n/2] + 1.

Proof. We give a proof only for the case n odd, since the other case

can be treated in the same way. Then the (i,j) component of the product

of matrices on the left hand side is equal to

(1.5) ] Γ W 5 _ 2 ( P P

k=l

where x,y G Sn(Rp^ι) of rank 2k — 2, 2j — 2 respectively. Using the fact

that (cf. Prop. 1.13 of [Sail])

for x, x1 G Sn(Rp^ι) of rank 2k — 1, 2k —2 respectively, we see (1.5) is equal
to

Σ

) Σ ep(tY((y + w)z))
z£Sn(Z/pZ)

- nn

— P

where w runs through all elements of Sn(Rp^) of rank 2% — 2. Here we used

the fact that the rank of y is even. This completes the proof.

§2. Explicit form of L-functions

In this section, we give an explicit form of L-functions assuming the

results in §3 and discuss the rationality of the values of L-functions at non-

positive integers. As for the calculation of the L-functions, we follow the

procedure of [I-S2], and only give an outline.

Let Nu ΛΓ2, N3 and ^ be as in §1. We set φv = φ^\ χ^\ or χ ^ }

according to whether p divides 7Vχ, iV2, or TVβ, and extend ψp to Sn(Rp^)

for a large v and to Sn(Zp) naturally. For p prime to Λ/ΊΛΓ2ΛΓ3, let ψp be

the characteristic functions of Sn(Rp^) or Sn(Zp). For p = 2, let Sn(Zp)e
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be the subset of Sn(Zp) consisting of elements (xij) such that xu = 0 mod p
for all i, and let Sn(Rp^)e be the similar subset of Sn(RP)V).

If 2 I ΛΓf, we set <ψ;(χ) = χfv\x) = xfP\y) for x E S n ( i ^ ) e or
Sn(Zp)e taking I / G L ; such that 2y = x mod p". When (2, Nξ) = 1, let ^*
be the characteristic function of Sn(Rp^) or Sn(Zp). In the following, we
assume rp > 1, since the case of rp = 0 can be easily reduced to the case
where p \ N2N3.

For i, 0 < i < n, let

e = ( _

and set

The first step is to express di(d) and α*(d) by local data. For this, we
introduce some notations. Let ιp and εp be the constant function with
value 1 and the Hasse invariant on Sn(Zp) or Sn(Rp^) respectively, and for
α, b E Qp , let (α, b)p be the Hubert symbol of a and 6. For ωp = ιp or εp

and d E Zp, d φ 0, we define

\p(ψp,d,ωp) = lim \P,v{^P,d,uup)

(\;(φp,d,ωp) = im^K^d^p) for p = 2),

where

x

Here υ is the additive valuation of Zp such that v(p) = 1, and

Sn(Rp,u, d) = { x E Sn(RpjV) I detx = d mod p^}

(Sn(RPtU,d)e = Sn(Rp,v, d) Π Sn(Rp,v)e for p = 2).
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For ω = i or ε, and d G Z, d φ 0, we define

λf(ψ, d, ω) = Yl λp(ψp, d, ωp)
p

(\}(φ,d,ω) = \2(<ψ*,d,ωp) [ J λp(ψp,d,ωp) for p = 2).

Then by SiegeΓs formula and the invariance of ψ in a genus, in the same

way as Prop. 2.2 of [I-S], we obtain

Oi(d) = Cniλfiφ, d, t) + eλf(ψ, d, e)) |d |(" + 1 )/ 2 ,

<{d) = cn JJ ψp{2-n) Π χP(2-p")(λ}(^, d, ή + eλ}(ψ, d,

As in the case of zeta-functions, our L-functions depends only on δ and e,

and we set

To sum up the above quantities, we introduce another local data

and some power series. Let n = n\ + n2 + + nm be a partition of n

into m positive integers. We denote this by {rii} and call m the length

of {rii}. A patition is called even if all ni are even and odd otherwise. A

sequence tι,t2,- - - ,tm of integers of the same length m is called a sequence

associated to {rii} if it satisfies t\ < t2 < < tm. For {^}, {t{} as above,

let Sn(RPjv, d, {n^}, {U}) be the subset of Sn(Rp^, d) consisting of elements

equivalent to

ίpllx\ 0 0

(2.1) ° pt2X> ••• °
κ } o o ... o

V 0 0 ptrnX<m
with respect to GLn{Rp^), for X{ G Sni(Rp^,RpV), and let

The matrix of the form (2.1) will be denoted by {@ptχXi). Similarly as

above, for {n^} and {t^}, we define

\p(φ,d, ω, {nΛ, Hi}) = lim \Vv{φ,d,ωAnΛAti}),
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where

φP(x)ωp(x)

Σ ψ;(x)ωp(x)
RuMnr},{ti})e

for p = 2).

Let t = ΣiL\ Πiti. Then we have

λp(ψpj d, ωp) =

Here {n-i} and {ti} run through all partitions of n and all sequences asso-
ciated to them satisfying υ{d) — t. By these constants, we define orbital
local series with characters as follows. For ψp, ψ*, ωp as above, we set

\p(ψp, d, ωpj {rii}, {U}) = λ(^p, d, CJP,

A; ; (^ ; , d, wp, {n<>, {ίi» = \;(<φ;, d, ̂ , {no, {<*})for v = 2)

((-l)(n + 1)/2,p)* if n is odd and ωp = εp,
x

[ 1 otherwise,
and for dg E Z^, define

; ; ^ for p = 2),

where {WJ} runs through all partitions of n and {ij} runs through all se-
quences associated to {rii} satisfying 0 < t\. In the case n is even, define

Zn,o(u>Ψp>tP>dθ) = 2^Zn^U'^PίLPjd°^ ~ Zn{-u^ΦP^

Zn,e(u' V>p> Lpi dθ) = l^Zn(u, ψp, Lp, d0) + Zn(-U, ψp, Lp, do)),
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and define Z* o(u, ψ*, ιp, do) and Zn^e(u, ψ*, ιp, do) similarly. We denote the

series aoociated to the characteristic functions of Sn(Zp), or Sn(Zp)e simply

by

and so on. These are calculated in §5 of [I-S2]. The other series will be

calculated in §3.

We treat the cases of n odd and n even separately. First let n be odd.

To state our result, we introduce some notations. For Ψ, we define Dirichlet

characters ψ and ψ by

Φ = Π <PP>
p\Nχ

For p I 7V2N3, set

otherwise,

otherwise.

Ap(u, ψp, Lp) = Zn(u, ψp, LP, 1)/Zn(u, LP, 1
f(1_

I 1
Ap{u, φp, βp) = Zn(u, ψp, εp, l)/Zn{u, εp,

If p = 2 I iVf, we set

For ω — 1, ε, and Ln define

A(s,ψ,ω)= [J Ap(
p\N2N3 q\N! q\N- qφp

and for Z£, define A*(s,<φ,ω) = A(s,ψ,ω) if 2 / Nξ and if 2 | Nξ, define
A*(s, 0,α;) replacing ^2(^5^p?^) by A^n, 1/?*,^) in the above definition
of Λ(s, ψ,ω). In these notations, we can prove

THEOREM 2.1. Let n 6e an odd integer > 3, and assume rp > 1 for
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p I N2N3. Let A(s,φ,ω), A*(s,φ,ω), and φ, φ be as above. Then one has

τ[n/2] B

, φ, i)L{s ~
2 '

L(2s - (2i - 1), φ2)

[n/2]

ίn / 2l

^ 2

n - 1

Φ)

Π
p|ΛΓi

[ n / 2 ]

Π

Π
p|JV2°

[n/2]

Proof. We give a proof only for Ln. We note (d, iVi) = 1 if λf(φ, d, ω)

0. For δd > 0, let

= ptpd0,p, do,p G Z*.

By the results in §3, Zn(u,ψp,LPido) is independent of do if p

we see for ω = 1

, and

Π Π

From this we see
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Π

Π M(Π^) Π

From this we easily obtain our formula. The case of ω = ε can be treated
in the same way, and will be omitted.

From this theorem, we can deduce the following result on the rationality
of the values at non-positive integers of L-functions.

COROLLARY 2.2. Let Q(ψ) be the field generated by the values of ψ

over Q. Then for a positive integer m, the values ξ(l — ra, Ln, Ψ, <5, e) and

ξ(l — 77i, L*, -0,6, e) are contained in Q(ψ).

Proof Since
[n/2]

we have

i πίn / 2 ] B
- m, Ln, ^, δ, e) = ' ^ g ' ^ l - m,

π
Our assertion for Ln easily follows from this. The case of L^ is similar.

Now we turn to the case of n even. We introduce more notations.
For a quadratic field if, we denote by dx the discriminant of K and for
K — Q 0 ζ), we set dx = 1. For a quadratic field if, we denote by \κ
the Dirichlet character corresponging to if, and for if = Q@ Q by xx the
trivial character.
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To describe the ^-part of the L-function, we define two Dirichlet series

D(s,ψ,δ) and D*(s,ψ,δ). If N% φ 1, we set D{s,φ,S) = D*(s,φ,δ) = 0.

For K as above and an odd prime p \ N2N3, we set

_ np{u, Lp, dκ/p) if p \ N2N3, p \

\znie(u,ψp,Lp,dκ)/Znie(u,Lp,dκ) Up I ̂ 2^3, P \

for p = 2 I N3

ί
Zn,o{μ, ψp, Lp, dκ/p3)/Zn,o(u, Lp, dκ/p3) if p 3

Zn,e{u, ψp, LP, dκ/p2)/Zn,e(u, tp, dκ/p2) if p 2

Zn,e(u,ψv,Lp,dκ)/Zn,e{u,Lv,dκ) if p

and for K with (dκ, 2) = 1

B2(u,K)

= Γ (1 - (1 - ^2)(1 - 2 - ^ 2 ) ( l - χ^(2)2"/ 2 -V)- 1 ) if 2

1 (1 + χκ(2)2-n'2)-\l + 2'n + 2χ*(2)2-"-"/2) if 2 | M-

If 2 I ΛΓ| for L = L*, we define ^ ( ω . i/Ί, ι>2,K) in the same way as above

taking Z*t0(u,φ^, L2,d0), Z*<e(u,ψ%,L2,d0) instead of Zn>0(u,ψ2,ί2,do),[ϊ\

Znie(u,ip2,i-2,d,o). Using these functions, we define
B(8,ψ,L,K)

B (ά(υ)v- Φ t K)xί Ψ(dκ)B2(Φ(2)2-s, K) if 2 )(dκ,

B*(s,φ,L,K)

ΠP|JV2ΛΓ3 Bp(φ(p)p-S, φp, ip, X ) if 2 |7V | ,

xUP\N2N3/2BP(Φ(p)p-s,ΦP,ιP,K) if 2 I iV|.

and the Dirichlet series by

xB (s,il>,L,K)il>(dK)L(-,XK)—— ' . ' i λ ?9 -\dκ

^ L(2s- (n/2- l),φ2)
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(-l)n/2δdκ>0

1 L{2s-{n/2-l),ψ2χκ)

Here K runs through quadratic fields or Q θ Q such that (— l)n/2δdχ > 0,
and d'κ = dκ/(dκ,4). In the above definition, we understand ψ2χκ as a
character modulo Nιdχ.

Next we introduce notations necessary to describe the ε-part of the
L-function. We set

fi
κ{n,δ,ψ) — I x

[ 0 otherwise,

and denote by H the quadratic field or Q® Q such that dπ = (—l)n/2δN<
when κ;(n, δ,ψ) = 1. For a prime p \ N2N3, we set

Bp(u, ψp, Sp) = Zn(tt, -0P, εp, dulp)lZn{u, εp, dff/p)

^(l-tt-lf/Vw)^2)"1 if:
otherwise,

and when 2 | Λ |̂ for L£, for p = 2, we set

B*(iί)ψp,εp) = Zn(u, ψ*,εp,dπ)/Zn(u, εp, dπ).

Finally we define

R { ς 7/1 C") — 1 1 / ^ i ^ / j f Ή l T ) 7A F I

? | A Γ 2 i V 3

/;p,εp) if 2 /iV|,

In these notation, we can prove

THEOREM 2.3. Let n be even > 4, and assume rp > 1 forp
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Let the notation be as above. Then one has

I r W 2 - 1
 D I

o(n+2)/2D/

n
n/2

2 >• p\Nτ. p\N°

2 = 1

)
it

n/2

w/iere

Proo/. We treat the case of L*. In this case, (NχN%N3, 2) = 1. As in

the case of n odd, the L-function is, up to the factor

the sum of the following two series

(2.1) cf

(2.2) cn

δd=l
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We note (d, JVi) = 1 if \*f{d,ψ,ω) φ 0.

First we calculate the series (2.1). Let d = det 2x for x G L£. Then

there exists K and a positive integer / such that (— l)n/2d — dχf2- Let

do^p be as in the proof of Th. 2.1. Then by the results in §3, we have

(p,2iVi)=l

If N% φ 1, this vanishes by (2) of Th. 3.1. Hence we assume N$ = 1. Let

Ln (K) be the subset of Ln consisting of all the elements x such that

(—l)n/ 2det2x = dκf2 for a positive integer /, and set

C £ W , 0 = ( Π M 2 " n )) - 1 2- n s c n ^ ^(a;)/i(x)|detx|-β.
Pl^ 1 L*n

M{K)/SLn{Z)

Then the series (2.1) is the sum of these series over K such that (d,κ, N\) = 1

and {—l)n/2δdκ > 0. Since cί̂ : is fixed, we see as in the case of n odd

X JJ Zn!θ(ψ(p)p~S,ψp, Lp, dK/p)
(p,ΛΓi)=l, p # 2 , p|djf

x ΓJ Zn!e(φ(p)p-s,^p,Lp,dκ)
)=1, P#2

if 8 I djζ,

if 4 || dκ->

\ί2idκ.

Then we see

n/2-l

x

From this we obtain our result for i.
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To compute the series associated to ε, first we note d contributing to

(2.2) is of the form δN%f2 for a positive integer / by the results in §5 of

[I-S2] and Th. 3.1 and Th. 3.2. At p = 2, d^2/δN% e Q^2. Taking account

of the factor 2- χ ( l + ( ( - l ) n / 2 d 0 , 2 - 1)2) of Z*(^2,^0,2)(c£ Th. 5.3 of [I-

S2]), we see (2.2) vanishes unless {-l)n>2δN% = 1 mod 4. Let H be the

quadratic field or Q® Q such that djj = (—l) 7 2 / 2 ^^. Then we see under

this condition that (2.2) is equal to

(

p\Ni

JJ Zn{φ(p)p-s,φp,εp,dH) JJ Zn(ψ{p)p-s,ψp,εp,dH/p),
=l p\N°

and hence is equal to

n/2

x 2(2τr)-n(n/2 - l)\L^
Δ

, ψ, ε) - (2z - 1),

This completes the proof. The case of Ln can be treated in the same way

and will be omitted.

We give a special case of the above result as a corollary, which is a

generalization of Th. 1 of [I-Sl].

COROLLARY 2.4. Let L = L^, and ψ = χpp for an odd prime p and

an odd integer rp. Then one has

nns\ ττn/2—1 p I

x 2(2π)-(n/2 - l)\L(^χH) Yltl CP* ~ (2i - 1))
if(-l)n/2δp= Imod4;

^ 0 otherwise.

In the above corollary, B*(s,ψ,ε) can be given explicitly by

->V J [ ( n -[(n-rp+l)/2]
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in the notation of §3.
Next we discuss the rationality of the values of the L-functions at non-

positive integers. For a Dirichlet character φ and a Dirichlet series A(s) =
Σ^Li αnn~ s, we set

oo

(A I Rφ)(s) = Σ ^nψ{n)n~s.
n=l

For the trivial character χo,p modulo p, we set

(A I RχoJ(s) = Σ *»""',
(n,p)=l

and

8\n

Lastly we set

(A\I)(s)=A(s).

Let D*(s,δ) be the Dirichlet series introduced in §1 of [I-S2], which is
D(s,ψ,δ) for the trivial φ and is associated to Eisenstein series of weight
(n + l)/2. For abbreviation, we set D*(s) = D*(s,δ). We show our series
D(s, Ψ, δ) and D*(s, ψ, δ) can be written as a linear combination of Dirichlet
series of the form
(2.3)

Π Rxo.P)(s), B(S)(A I Rφ Π Rxv Π
pes

for A(s) = ί?*(s), where B(s) is a rational function in p~s for p.\ N. First

we note

/ -i\[n/4l \ Λ o/Ό -̂λ— 71/^ /o iMI

-,

H2s-(n/2-l),rl>*XK)
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where

ηκ(s) = 2(2τr)-n(n/2 - l)\\dκ\^-1^2

n L{2s,ψ2)L(2s-n+l,ψ2)
x L ( X κ

L(2s-(n/2- l),

Let p be an odd prime with (p,N\) = 1. Then we see

(D* I RψRX0,p)(s)

(-l)n/2δdκ>0

Hence for ε = ± 1 we have

(D*\RφRχoJεRXp+I)/2)(s)

ι-l-2s\

and

Σ fa*

Subtracting the above series for ε = ± 1 from (D* | i2?)(s), we obtain an

expression for

by the series of type (2.3).

Now let p = 2 and let χ2 be the character modulo 8 such that %2(wi) =

(—l)(m - 1 ) / 8 for an odd integer m. Then by the above procedure we obtain

an expression of

Σ (ΠK i %)(*)
/ )=l, X2(dκ)=e
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for ε = ±1 and

Σ (VK I Rφ){s)
(-l)n/2δdκ>0, p\dK

as a linear combination of Dirichlet series of the form (2.3). Now we see

, p\dκ

(l
, P2\\dκ

This shows that

can be written as linear combinations of Dirichlet series of type (2.3). Since
the rational functions Bp(u,ψp,LpiK) and B*(u,ψp, ιv, K) depend only on
χκ(p) for an odd prime p (whether (p,dκ) = 1, X/c(2) = ±1, p2 \\ dκ,
or ps I dx for p = 2), combining the above results for odd primes and
for p = 2, our assertion can be easily verified. If A(5) is a Dirichlet series
associated to a holomorphic modular form of weght (n +1)/2, by a result of
[S], the series of type (2.3) for B(s) = 1 are also Dirichlet series associated
to holomorphic modular forms of weight (n + l)/2.

Therefore in the case of δ = 1, for A(s) = D*(s) the Dirichlet series of
type (2.3) for B(s) = 1 are holomorphic at non-positive integers, as in the
case of zeta functions. By the results in §5 of [I-S2], Th. 3.1 and Th. 3.2,
we can check that in the expression of D(d,ψ,δ), or D*(s,ψ,δ) as a linear
combination of functions of the form (2.3), the denominators of i?(s)'s do
not vanish at non-positive integers. Hence we obtain

eκ(n, d,ψ)-

n/2-l

X

if L = Ln,

xnp|Ar»XP(2-r")B*(l-m,V,e) if L = L*
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From this we obtain the following result.

PROPOSITION 2.5. Let n be an even integer > 4, and let Q(φ) be as

in Cor. 2.2. Assume δ = 1. Then one has

£(l-m,L,V,l,<0e Q(Φ)

for a positive integer m and L = Ln, L£.

As a special case, we can prove

COROLLARY 2.6. Let n be as in Prop. 2.5. Let L = L^ and assume

N = Nι = p for an odd prime p, or N = N2 = p for an odd prime p and

rv — n. Let φ be a character modulo p such that φ2 Φ χo,p in the first case

and φ = χp in the second case. Let φ be the character defined by these data

as in (1.3). Then one has

ξ(l-m,L n,ψ,l,e)

2 /'

x & ( -

n/2-1

x

for a positive integer m. Here we understand L(s,φ2) = ζ(s) in the second

case.

This is a generalization of Th. 2 of [A]. The case of n = 2 can be treated

by the functional equation in [Sai2].

§3. Orbital local series

In this section, we determine the orbital local series for L-fuctions and

comopletes our calculation. Throughout this section, we fix a prime p and

sometimes we abbreviate the suffix p, for example, Rp^ = Ry, φ^n> = ψp .

For non-negative integers 772, n, and d G Zp, and indeterminates C/, g,

we set

{ 0 if n is odd,

( ( l ) " / 2 d p ) if n is even,
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Π
1 if m = 0,

Πf
1 if m = 0.

For an integer r, 0 < r < n we define a polynomial Cr(u) in -u by

^ /7Λ _ ^ - 2 \ - l ^ - 2 ^ - 1 r(n-r)/2 n-r

We recall some formal power series introduced in [I-S2]. For a partition

\jii] of length m and a sequence {^} associated to it, we set

£ 2
2=1 J<2

mr? 4- 1
h {U}) - Q(K}, {ί,}) + - y -

Z 2 = 1

We define

Σ Σ X
{rii}l<ti, tiΞθmod2 for nτ odd 2=1

ττ-4 even, ί̂  odd

ί ι Ξ θ m o d 2 for nι odd i=l

Π i
ii even t% even

Here \τii\ runs through all partitions of n, even ones in Y(u, t) and {U} runs

through all sequences associated to {n }̂ with t\ > 1, satisfying t̂  = 0 mod 2

for n̂  odd in the latter two cases.
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By Prop. 5.6 and Prop. 5.9 of [I-S2], we have explicitly

Xn(u,ή = (p-%)2]u
n(l - p<»-i>/2tt)-i

(pu2,p2)^/2] if n is odd,

[u{u\Pχ+ι)/2 if n is odd,
)
fa/2] I p n/2un^pU2^p2^1 tf n j g eγen^

un(pu2, p 2)~/ 2 if n is even.

First we treat the case of odd primes.

THEOREM 3.1. Let p be an odd prime, and let do G Z£.

(1) Let ψ = φ(n). Then, one has for ω = i or ε

(2)
(a) Let ω = L. If n is odd, then

2,P

2)^_r)/2] ifr are odd,

x (1 ~p^-^2u)-\pr+1u2,p2)^r)/2] ifr is even.

Let n be even. If r is odd, then

^n,oKXpr),^do) = Zn,e(u,χ(p\i,do) = 0,

and if r is even, then
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(n-r)/2

xp ,r/2 (-(1-p-

(b) Let ω = ε. Then one has

X s

if n is odd and r is odd,

((- l )( n - r + 1 )/ 2 ,p)(p r i t 2 ,p 2 )^_ r + 1 ) / 2 ] ifn is even and r is odd,

-n/2\

~(n-r)/2] ̂  n ^s e v e n and r ίs even.

(3)Letψ = χZ).
(a) Let ω = L. If n is odd, then

Zn(u,χQ , Lydo) = Cr(u)(l — i

(l-p-(n-

(p^u^p2^-1

7/n is even, then

^ _ r ) / 2 ]

-pn ιu2y

i / r 25 eυen,

if r is odd,

Zn,e(u, X£\L, do) =

X s ((-l)»/2do,p)p-n/2)

zs odd,

1 - P1"1)u2)(pru2,p2)^ι_r)/2] ifr i^ι_r)/2] is even.
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(b) Let ω = ε. Then one has

X <

(p~r/2 + Pr/2u)(pru2 , tfn is °dd and r is even,

if n is even and r is odd,

χ (pr+1'u2,p2) i_ , -2, z/n is even and r is even.

Proof These formulas can be proved in the same way as in the case of
zeta functions, and we give a proof only for formulas in (2). Let d = dop1

with do G Z*. If Xp (x) Φ 0 for x G Sn{Rv^dop1^ {nι}, {U}), then n\ = r
and t\ = 0. In the following we assume this condition. Let x — [®ptχXi).
Then Xp (x) = χp(detxi) = (detxi,p).

Let ω = i. Then in the same way as in §3 of the part I, we see

2 = 1

where

A(χ(;\t,{ni}) = ( p -

The summation is extended over c?i, c?2,
do mod p. For z, 1 < i < m — 1, let n̂
of n — r.

If n is odd, then we see easily

" <>dm E Rι such that d\d2 - - dm =

nz +i Then {n^} gives a partition

if r is odd, and {n }̂ is odd,

/2 if r is even.

Let n be even. If r is odd, {n }̂ is odd and as above A(χp , /,, {n }̂) = 0. If
v is even, then

((- l ) r / 2 ,p)p- r / 2 if K } is odd,
( (_1 )r/2 ) p ) p-r/2

+((- l )("- r )/ 2 d o ,p)p" ( n " r ) / 2 if {«•} is even.
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By the same calculation as in the proof of Lemma 5.7 of [I-S2], we see

•r{pr> u, i) if r is odd,

( (- l ) Γ / 2 ,p)p- ' / 2 X n _ r (p' /2«, L) if r is even,

if n is odd and

if n and r are even. This proves (a).

Next assume ω = ε. In this case, as above we have

W . e , {ni}, {U}) = ?««"*>* ( ]
2 = 1

x ε(rf0, {nj, {ίj) A(χp, ε,

where

and

ε(do,{mh{U}) = {p\d

Let n be odd. If r is odd, by substituting

we see easily Λ(%p , ε, {nt }, {t^}) vanishes unless ^ Ξ 1 mod 2 for Πi odd,

i > 1. If this condition is satisfied, then

j even, t2 even
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We see t = n — r = 0 mod 2 and

z=l n« even, t̂  even
772

Kj i<j 2=1

Hence we have

= ( ( - l ) ( n - r ) / 2 d o , p )
n4 even, tτ even

Since t = 0 mod 2 in this case, in the same way as in Lemma 5.8 of the part

I by the above formula we see

Zn(«,χ<Γ>,e,do) = ( ( - I ) ( n ^ ]

If r is even, we see easily Λ(χp , ε, {n^}, {£;}) vanishes unless there exists to

such that £2 = to mod 2 for ni odd. Assume this condition. Then we have

rii even, ti^Ξtomod.2, 2<i

χ ί ( ( - I ) r / 2 , p ) p - r / 2 if «i(= 0) = to mod 2,

\ l if t i ( = 0 ) φto mod 2.

Hence by a similar calculation, we obtain

n^even, i t ^i 0 mod2, 2<i K1 if ΐ 0 ^ 0 mod 2.

Since t — to mod 2, from this we see
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Let n be even. If r is odd, then A(χp , ε, {n^}, {U}) vanishes unless

= 1 mod 2 for rii odd, i > 1. If this condition is satisfied, then

Πi even, ti even

In this case we see t = n — r = 1 mod 2 and

)ί, "Q

eυen, ί̂  eυen
m

ί
Kj

Hence we have

If r is even, then we see easily Λ(χp , ε, {n-j}, {^}) vanishes unless there

exists to such that ti = to mod 2 for n^ odd. If this is satisfied, in the same

way as above we have

p) Π
n^even, ίt

p~ r / 2 if to Ξ 0 mod 2,

\ 1 if t 0 Ψ 0 mod 2,

for {rii} odd, and

, 2<z

^ even, ί2,^0mod2, 2<z

for {n^} even. This shows

Zn{u,χ£\ε,do) = (p-2)

x (((-l)

This completes the proof.
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For p = 2, in the same way as above, we can prove

THEOREM 3.2. Letp = 2, and let d0 e Z*.

(1) Let φ = φ^ for a non-trivial character ψ. Then one has

!

1 {if n is odd,

l + ((-l)n/2d0,-l)p'n

+ (((-l)"/2do,p) + ((-l)n/2do, -p))p-n-n/2 ifn is even,
and

Zn(u, φ(n\ε, do) = p- [ ( n

x (1 + ((—l)" /2rf0, - l ) p " n / 2 ) i/n is eυen.

(2) Let φ — Xp with r even.
(a) Let ω = i. Then one has

if n is odd, and if n is even

Zl0(u,rp

{r),i,do) = 2-1Cr(u)p-r/2(-(l-p

+ (1 -p-»))p<»-i>/2u x (1 -

1 ^ ) + (1 - p-V)(p-"((-lΓ/ 2 d 0 , -1)

(b) Leΐ ω = ε.
7/n is o<M; ί/ien

Z;(u, χ W, e, do) =
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If n is even, then

(3) Let φ = χ[, r ).

(a) Ze£ ω = i

If n is odd, then

= 2"1ί7r(«)(l -

(p r + 1M2,p2)[(n_r)/2]

If n is even, then

(pr+1u2,P2)[{n-

(1 - p-( n

[{n-r)/2]

and

even.

if r is odd,

if r Ϊ S

, 2) + ((-l)n/2do, -

(b) Lei ω = ε.

If n is odd, then

p - ( " - r ) / 2 ( p r + 1 « 2 , p 2 ) ^ _ r ) / 2 ]

(p'rl2 + pr/2u)(pru2 ,p2)^_r

If n is even, then

Pr/2u(pru2,p2)^l_r+1)/2]

(p-(n-r)/2 + ( ( _ 1

is odd,

ifr is even.

ifr is odd,

ifr is even.

ifr is odd,
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Proof. We give a proof for (2), since the other case can be treated in

the same way, and give a proof for the case r > 1. The case r = 0 can be

treated in a similar way. Let x G S^(RU:d, {n^}, {U}) and 2y = x mod p^

for y G Ln Let x be equivalent to (θp^Xi), with Xi G Sni{Rv). We

see Qy is equivalent to (1.1) or (1.2) if and only if n\ = r, £χ = 0 and

( ( - l ) r / 2 d e t £ i , 2 ) - ( (- l ) r / 2 di ,2) = 1 or - 1 respectively, and Xp{r\x) =

((—I)r/2o?i, 2). Hence we have as in the proof of Prop. 3.6 of the part I

2 = 1

where

=do modp3

x Π 0-
n% even, 2<ί

Here the summation is extended over all ^ G i?3 such that

c?ic?2 * dm = do mod 23.

If n is odd, then we see

Λ*(χ;W,t,{n i},{ί0) = 2-V 3 r / 2

This shows that

If n is even, then we see

if {ni} is odd,

(p-3r/2

p- t (((-l)»/2do,2)
if {n j is even.
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This shows that

, 0 + (((-i ) n / X -i)p-n~r/2

+ (((-l)n/2d0, 2) + ((-l)Λ/2do, -2))p-^/2-r^)Yn.r(pr/2u, 0)

Let ω — ε. Then by means of the remark after Prop.3.9 of the part I

we have

2 = 1

where

= 2- ip-2 ( m-1 ) ΣΣ

Here εni(di) is as in the proof of Lemma 3.8 of the part I, and

If {n^} is odd, Λ*(χp , ε, {n^}, {ti}) vanishes unless there exists to such

that ti = to mod 2 for ni odd. We note this implies t = to mod 2 if n is odd.

Under this condition, by the same calculation as in the proof of Prop. 3.8

of the part I we obtain

i even,

if n is odd,
_ 1 ^ i f n i g
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If {rii} is even, then

This shows that Z^ι{u) Xp r , ε,do) is equal to

x ( ( ( - l Γ o , p ) Π P
U even ti odd

X r

if n is odd, and is equal to

x {{-l)nl2d

if n is even. This completes the proof.

REFERENCES

[A] T. Arakawa, Special values of L-functions associated with the space of quadratic
forms and the representation of Sp(2n, Fp) in the space of Siegel cusp forms, Adv.
Stud, in Pure Math., 15 (1989), 99-169.

[I-Sl] T. Ibukiyama and H. Saito, On L-functions of ternary zero forms and exponential
sum of Lee-Weintraub, J. Number Theory, 48 (1994), 252-257.

[I-S2] T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices I,
Π(to appear), Amer. J. Math., 117 (1995), 1097-1155.

[Sail] H. Saito, A generalization of Gauss sums and its applications to Siegel modular
forms and L-functions associated with the vector space of quadratic forms, J. reine

angew. Math., 416 (1991), 91-142.
[Sai2] H. Saito, On L-functions associated with the vector space of binary quadratic forms,

NagoyaMath. J., 130 (1993), 149-176.
[Sal] F. Sato, On zeta functions of ternary zero forms, J. Fac. Sci. Univ. Tokyo, 28

(1982), 585-604.
[Sa2] F. Sato, Remarks on functional equations on zeta distributions, Adv. Stud, in Pure

Math., 15 (1989), 4650-508.
[S] G. Shimura, On modular forma of half integral weight, Ann. of Math., 97 (1973),

440-481.
[Sh] T. Shintani, On zeta functions associated with the vector space of quadratic forms,

J. Fac. Sci. Univ. Tokyo, 22 (1975), 25-65.



ZETA FUNCTIONS ASSOCIATED TO SYMMETRIC MATRICES 183

Tomoyoshi Ibukiyama
Department of Mathematics
Faculty of Science
Osaka University
Osaka 560, Japan

Hiroshi Saito
Graduate School of Human and Environmental Studies
Kyoto University
Kyoto 606-01, Japan






