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Abstract. Let Ω be a bounded, decoupled pseudo-convex domain of finite
type in C n with smooth boundary. In this paper, we generalize results of
Bonami-Grellier [BG] and Bonami-Chang-Grellier [BCG] to study weighted
Bergman projections for weights which are a power of the distance to the bound-
ary. We define a class of operators of Bergman type for which we develop a
functional calculus. Then we may obtain Sobolev and Lipschitz estimates, both
of isotropic and anisotropic type, for these projections.

§1. Introduction

Let ί] C C n be a bounded, smooth pseudo-convex domain. Then, Ω is

said to be decoupled of finite type near ζ G <9Ω if there exists a holomorphic

coordinate system (z i , . . . , zn) mapping ζ onto 0 and a neighborhood Uζ of

ζ onto a neighborhood U of 0 and smooth, sub-harmonic but not harmonic

functions {/j}{j=i,...,n—i}^ fj:C—*R with fj(O) — 0, and each fj vanishing

to finite order at 0, such that

(1.1) {zeU: p{z) = 2 lm(zn) - £ f3{z3) > θ | ~ Ω ΓΊ Uζ.
1 3 = 1 }

Let us denote by rrij(ζ) the order of vanishing of fj at 0.

Notice that the finiteness condition here is equivalent to finite type in

the case of real analytic pseudo-convex hypersurface Z C C n since the Levi

form of Ω is diagonalizable (see Kohn [Kl], [K2]).

Let C G <9Ω. We denote by

( m i , . . . ,m n _i) = max(mi(C),... ,ra nζedΩ
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As usual, the domain Ω is called of finite type m with m = max{mχ,...,
ran_i} if m < oo. Let fj be the functions given by (1.1) and denote

d βfΊ d „ . .

Then {Zu . . . , ^ n - i } is a basis of T^°\dΩ) near ζ. Let Zn = N + iT a
complex normal vector field, i.e., Zn is a (l,0)-vector field which is C°°(Ω)
and satisfies Zn(p) = 1 on <9Ω. It means that Zn goes outwards of Ω, and
T = d/dt, t = Re(zn), is transverse to the complex tangent space at the
boundary.

As in Nagel-Rosay-Stein-Wainger [NRSW] and Chang-Nagel-Stein

[CNS], for every £-tuple of integers ( i i , . . . ,^) we define smooth functions

K{ . i£' Ai, ..,z£' a n <^ 7ίi,...,z€5
 m a neighborhood of C by the equation

w i t h Xiv €{Z3,~Zj} for ι/=l,...,£ a n d j = 1 , . . . , n - 1.

For each integer 2 < ί < m^ we define a smooth function Λ! in a
neighborhood of ζ" by the equation

Finally set

1=2

Let h -^ /ij(x, h) be the function inverse to δ —• Λj(x, <5). Thus

1=2

For x, y G <9Ω near ζ", we may consider the distance d(x, y) on <9Ω (see

Nagel-Stein-Wainger [NSW]) defined by:

d(x, y) = min{(5 > 0 : Φ : [0,1] -> δΩ, Φ(0) = x, Φ(l) = j/,
π - l

such that Φ'(ί) = Σ(aj(t)Zj + b3(t)Z3) + c(ί)Γ;

with |aj(t)| w | ^ (t)| < μj(x,δ), \c(t)\ < δ}.
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To obatin a globally defined pseudo-metric, we use a coordinate patch over

dΩ. This pseudo-metric is well defined and by the Campbell-Hausdorff

formula, we can show that the corresponding balls B(x,δ) are equivalent, up

to a holomorphic change of coordinates, to a polydisc whose size is δ in the T

direction and μj(z, δ) in the direction corresponding to Zj, j = 1,.. . , n — 1

(see McNeal [Mc2]). Furthermore, we have the following additional property

on the functions μ̂  's which is that if x E B(y, δ) then μj(x, δ) ~ μj(y, δ).

The behavior of the Bergman kernel of finite type domains in C2 (see

[Mel], [NRSW]) as well as convex domains in C n (see McNeal-Stein [McS],

[Mc3]) are now well known. In this paper, we shall generalize results

of Bonami-Grellier [BG] as well as Bonami-Chang-Grellier [BCG] about

weighted Bergman projections on finite type domains in C2 to decoupled

domains in C n .

It is well-known that the Bergman projection operator (even with re-

spect to a smooth weight function) is smooth away from the diagonal

Σ = {(x, y) E dΩxdΩ : x — y} on the boundary. Therefore, the correspond-

ing Bergman kernel function and its derivatives are uniformly bounded on

compact subsets of Ω, we may concentrate the behavior of the kernel func-

tion near a neighborhood U of dΩ in Ω where the projection π : U —> dΩ

is well-defined.

Let dV denote the Lebesgue measure in C n , and let dVa, a E Z+ =

{0,1, 2,...}, denote the weighted measure

Let B α be the weighted Bergman projection for the measure dVa, i.e.,

the orthogonal projection in L2(dVa) onto H2(dVa), the subspace of all

L2(dVa) holomorphic functions. We use the notation Ba(z,w) to represent

the corresponding weighted Bergman kernel, i.e.,

Bα(/)(*) = / Ba{z,w)f(w)dVa(w)
JΩ

= f Ba(z,w)f(w)pa(w)dV(w).
JΩ

For z, w G U, we define

D(z, w) = d{π(z),π(w)) + p(z) + p{w).

Furthermore, for any w E U, we define the utenV over the ball

B(π(w),δ) = {z E dΩ, d(z,π(w)) < δ}
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as the set

,δ)=Tιn{ze cn, D(z,w) < δ}.

Then
rΠ-l -,

Yo\a[B#(w,δ)} ~ JJ μ2j(w,δ)\ x δ2+a.

The first step to understand the weighted Bergman projection is to

establish the following size estimates for Ba(z,w) for {z,w) E Ω x Ω \ Σ.

THEOREM 1.1. Let a E Z + . For eαc/i £, ί/iere exists a constant Q so

£/m£ if l χ , . . . , YJ? are vector fields (acts either in z or w variable), each of

which is one of {Z3,Z3}
rf=1, with βk either Z^ or Z^, k — 1,... , n — 1, and

βn = t> ~ {βι H h /?n-i) either Zn or Zn, then

(1.2)

for any (z, w) G Ω x Ω \ Σ.

Next, we may use techniques in [BCG] to obtain the commutation rela-

tions with vector fields T and Zj, j = 1,.. . , n— 1. From these commutation

relations, it is easy to show Sobolev and Lipschitz estimates, both isotropic

and anisotropic, for the operator B α . Inspire of the work in [McS], we

shall discuss BM0(Ω, dVa) estimate for the operator B α in the last section.

The first author would like to thank Sandrine Grellier and Jeff McNeal for

inspiring conversations about this project.

§2. Operators of weighted Bergman type

In order to obtain the commutation relations between the operator B α

with vector fields T and Zj, j = 1,... , n — 1, we need to introduce a class

of operators called "operators of weighted Bergman type" and get some

estimates for this class. For the convenience of our computation, let us fix

the number α G Z + in the wieghted function dVa in the rest of the paper.

DEFINITION 2.1. A kernel K(z,w) e C°°(Ω x Ω \ Σ) corresponding to

an operator K is a kernel of weighted Bergman type of order r — [r\,. . . , rn)

if it satisfies the following estimates:

For each £1 there exists a constant C^ so that if Y\,..., Yg are vector

fields, each of which is one of {Zj, ZJ}ΊJ:=1I with β^ either Z^ or Z^, k =
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1,..., n — 1, and βn = £ — (βi -\ + βn-i) either Zn or Zn, then

[Π"=ί μϊ

j

J'βi(φ),D(z,w))} x D(z,w)rn-βn

(2.1) \Yί...YeK(Z,w)\<Ce^ Yola[B#{zMz]w))]

for ( z , i i j ) G ί ] x ί l \ Σ . Each Y3 acts either in z or w.

Remarks.

(1) Operators of weighted Bergman type of order 0 do not form an algebra.

We need a further assumption on this class which is the action of Έϊa

on a suitable collection of bump functions. We shall discuss this point

later. For more detail, see Stein [S, pp. 293-297].

(2) If K is a weighted Bergman type operator of order r — ( r i , . . . , r n ) ,

then from the definition, we know that ZjK. and Z^K are weighted

Bergman type operator of order ( r i , . . . , rj — 1,. . . , r n ) , j = 1,..., n.

As we have mentioned in the above remark, we shall need to define a

class of normalized "bump functions" as follows.

DEFINITION 2.2. Let M E N . A function φ of class CM in Ω is said to

be a bump function of order M if ψ is supported in some B^(w, δ) and if,

for any i G N, ί < M,

n-ϊ -j

sup Π μf{w,δ)\ δβ- \Yλ . ..Y£φ(z)\ < 1

whenever βk of the Yĵ 's are either Zj,. or Z&, k = 1,. . . , n — 1, and βn =

f> - ( β i H + βn-ι) are either Zn or Zn.

DEFINITION 2.3. We call a weighted Bergman type operator K of order

r is "resticted regular" if both K and its adjoint K* satisfy the following

estimates:

For any £ G N, there exists a constant CV and a positive integer Nj> such

that, whenever φ is a bump function of order > Nι supported in B#(w, <5),

then

sup \Y1..ΎiK(φ)(z)\<Ci\l[μr>-β>(w,6) X δr"~^
zeB#{w,δ) lj=i

whenever βk of the Y^s are either Z^ or Z&, k = 1,..., n — 1, and βn =

f- - (βi H + βn-i) are either Zn or Zn.



152 D.-C. CHANG AND B. Q LI

From now on, we denote the class of all restricted regular weighted

Bergman type operators of order r by 2 3 ^ (Ω). In fact, it can be shown

that Uf e Z nϊφ (Ω) forms an algebra.

Remark For the case Ω CC C2 of finite type with smooth boundary, it

has been proved independently in [Mel] and in [NRSW] that the Bergman

projection belongs to the class S- (Ω) with a = 0.

Define functions hj : 1R —> {2, rπj}, j = 1,.. ., n — 1, as follows

hj(t) = 2 χ { ί > 0 } + mjχ{t<0}

where %# is the characteristic function of the set E.

LEMMA 2.4. There exists a constant C such that, for any ε > 0, any

Proof. By the definition of numbers πij and a basic property of func-

tions μj(C, <S)j we know that
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For the other integral, the computation is similar. Π

LEMMA 2.5. For any operator K G B^ (Ω), there exists a constant Ca

such that, for any z G Ω7 for any 7 = (71, . . . , ηn) with

and
n-l .

that the kernel K(z,w) of K satisfying the following estimate:

r T l - 1

Ω ' LjLi J

in—1

7=i ( π ( Z ) ' P ( ^

Proof. We may rewrite the above integral as follows:

|iί(;z,iί;)| x TT μ^J(π(κ;),p(κ;)) x p7n(w;)(iVα(iϋ)
n L/i J

+

Ifiu G i3^(π(z), p(z)), then τr(κ ) G β(π(z),p(^)). It follows that p(tu) <

p(z) and μj(π(w),p(w)) w μj(π(z),ρ(w)) < μj(π(z),p(z)). Besides, we

know that

p(z) < ,0(2:, w) < 3

Therefore, the integral

r n — 1

w)| x J | μ]J(π(w),p(w))\ x p7n

Ί/+
< C [Π μΊ/+ri(φ),p(z))\ X p^+I-"(z).
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Similarly, we have

n-1

£;=0

The above infinite series converges if YJjZi (rj +7j)/(^ j ( r i +7j)) + rn
0. This completes the proof of the lemma. Π

COROLLARY 2.6. Let a E Z+ and let K E S- (Ω) be a restricted
o

regular weighted Bergman type operator of order 0. Then the operator K

orginally defined on C°°(Ω) can be extended to a bounded operator from

Lp(dVa) to itself with 1 < p < oo.

Proof. As usual (see [BG] and [BCG]), we may deduce this corollary by

using Schur's Lemma (see Rudin [R]). In fact, It suffices to find a positive

function g such that

' \K(z,w)\g*{w)dVa(w)<C g*(z)
Ω

where s = p, p1. By Lemmas 2.4 and 2.5, the function g — p~ ε, with ε

small enough has this property (0 < ε < 1). The proof of the corollary is

therefore complete. Π

THEOREM 2.7. Let a e N. Let Ti and T2 be two operators in T>^\Ω)

and in 2 3 ^ (Ω) respectively. Then T1T2 is in 23^L(Ω) if the following
condition holds:

n — 1 -\- —9
v=Y. , / . j rr + rn + sn - a - 2 < 0.

Proof. When a = 0, the proof can be reduced to composition of NIS

operators in finite type domains in C2 (see [NRSW]) and decoupled domains

in Cn (see Chang-Grellier [CG]). When a > 0, we borrow the same ideas

from [BG] and [BCG]. For completeness, we give some details of the proof
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here. It suffices to consider the operator T1T2, the conditions for its adjoint
will follow.

First, we show that, under the assumption of the proposition, the ker-
nel of T1T2 and its derivatives satisfy the right pointwise estimates. For
(Z)W) (Ξ Ω x Ω, let δ — D(z,w). Let K\ and K2 be the corresponding
kernels of Ti and T2 respectively. We shall show that

)1 ̂ V o i α [ g # M ) ]

The estimates for the derivatives will follow the same argument.
Let ψι be some bump function supported in B#(z, ^) and

= l on

for some C > 1 depending on the pseudo-distance D. We also assume that
Ψ2 is a bump function supported in B#(w, ^) and ^2(2) = 1 in B#(w, ^ ) .
Define

By definition

KλK2(z,w)= f K1(zX)K2(ζ,w)dVa(ζ).

So

f K1(z,ζ)K2(ζ,w)φ2(ζ)dVa(ζ)
JΩ

K1(zX)K2(ζ1w)φ3(ζ)dVa(ζ)

But

sup \K2(ζ,w)

<
Vo\a[B#(z,δ)}
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since, on supp(^i), D(ζ,w) ~ δ.
To handle /2, the argument is similar (it uses the assumption on the

adjoint of T2). It remains to estimate the last term 73. Denote by E the
set of C e Ω where D{z, 0 > dϋ and D(w, C) > 2ϋ

<c ί |ϋr1(̂ ,
JE

En{D(z,ζ)<2δ} JEn{D(z,ζ)>2δ}

= h + ̂ 3 •

In the region of the integral 1% , we have D(z,ζ) ~ δ and D(w,ζ) ~ <5.
Therefore,

Vola[B#(z,δ)}

In the region of the integral 1% , we have D(ζ,w) ~ D(z, ζ) Hence, by
Lemma 2.5,

r(2)
i 3 *°L

[Σ?=i Mj(«,5)rJ+si] X δr"+Sn

D(z,ζW

" Vol[5#(,5)] έ ί ( J !

It remains to show that T1T2 is restrictedly regular. Let φ be a bump
function supported in some B^(w1 δ) of order sufficiently large.

As in [NRSW], it is possible to construct a partition of unity 1 =
Σ/c>o Ψk with ψjς a bump function supported in B^(w, c2kδ) \
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k > 1, where c > 1 is some fixed constant, and φo is a function supported

in B#(w,cδ).

We have

/c>0

But, using the properties of T2, we have

φkT2(φ)(z) = φk(z) f K2(zX)φ(ζ)dVa(ζ)

= ΊkΨk(z)

where φk is a bump function supported in B#(w,2kδ) and

For k = 0, this follows immediately from the estimates on T2 (φ). For

k > 1, we use only the size estimates of the kernel K2(z,ζ) and its deriva-

tives which give (with the notations of Definition 2.1)

\Y1...YeK2(z,ζ)\< 3~l

when C G B*(w,δ) and z G B*(w,c2kδ) \B#(w, 2kδ) (since D(«,C) ^ 2fc<5).
So

T ! T 2 ^ ) = j Kι{z,ζ)T2{φ)(ζ)dVα{Q

so that

sup sup

Π - 1

j = l

n - 1

The proof of the proposition is therefore complete. D
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The next two results give simple rules of functional calculus in the
operators of weighted Bergman type. The proofs of these two lemmas can
be also founded in Bonami-Grellier [BG].

LEMMA 2.8. Let a e N and let K e £^α)(Ω) be a restricted regular
weighted Bergman type operator of order f. Define the operator K* as
follows:

K*/ = K(pf).

Proof. It is easy to see that the kernel K*{z, w) of K* satisfies the right
pointwise size estimates since Vola[B^ (z ̂  w)] xD(z^w)

Next, we want to show that K* belongs to the class

φ be any bump function supported in B#(w,δ) of order sufficiently large.
With the notations of Definition 2.3,

sup \Yλ . . . YίK
k{φ)\{z) = sup \Yλ... Y£K(pφ)\(z)

•j=i

since C^φ is a bump function. The same holds for the adjoint in L2(dVa)
since the adjoint operator of K* equals to K.*(pφ). D

LEMMA 2.9. Let a G N and K be an operator in BLα^(Ω). Let

τ ι - 1

ψ(z,w) =

be a C°°-function in Ω x Ω satisfying

for θj G {0,1}, j = 1,.. . , n — 1. Let us consider the operator K defined by

= TK(φ(z,.)f)(z).
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Proof. It is obvious that the kernel of K is equal to

r Π - 1

K(z,w) = [TzK(z,w)} x >w.

and that it satisfies the right pointwise estimate. So is the kernel of its
adjoint.

Let us consider the action of K on bump functions. Let φ be any bump
function supported in B#(w,δ) of order sufficiently large.

sup \K(φ)\(z)= sup \TK(φ(z,-)φ)\(z)

- 1

<C- '

since [Π?=i Ψj(ziw)/Vjί2^) 1 ' Ψ *s bump for any z £
Next, let us consider the action of the adjoint operator of K on bump

functions. Here we use the same bump function φ. Then, by integration by
parts, we have

K*(¥>(*)) = [ [TwK(w,z)]φ(w1z)φ(w)dVa(w)
Jn

where aa is a smooth function. Therefore, we have

sup \k*{φ){z)\ <CΛ \Πμj{w,6)r'+θA δrn~λ

since _
Γ Λ ih(. ?.λ

\Tφ

is a bump function for any z G B#(w,δ) and δμj(w,δ)~θj < δ1/2 < C for
j = l , . . . ,n— 1. The estimates for the derivatives are similar. The proof
of this proposition is therefore complete. Π
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§3. The weighted Bergman projection

In the introduction, we have mentioned that the first step to obtain

Sobolev and Lipschitz estimates for weighted Bergamn projections is to

establish the size estimates. The following theorem will achieve this goal.

THEOREM 3.1. The weighted Bergman projection B α belongs to the

class £gα)(Ω) for any a G N.

Proof. We are going to prove this result by induction on a. As we

noticed before, the result is well known when a — 0 (see [BGC], [Mel] and

[NRSW]). Now, assume that B ( α_!) E ̂ " ^ ( Ω ) for some a > 1. We want

to prove that B Q E s i α ) (Ω). D

We first prove the following result by using the same method in [BG].

THEOREM 3.2. There exist an o

functions Φχ7 Φ 2 ̂
n Ω x Ω such that

THEOREM 3.2. There exist an operator H α G S- (Ω) and two C°

with

- ΓBΩ_i(Φ lP/)]

an operator in the class Έ\^ 1 0 ) ( ^ ) ^ e r e H^, is the adjoint ofΉα taken

m L2(dVa).

Remark.

(1) From Theorem 3.2, it is easy to see

M

fc=0

for any M G N. This identity holds for general finite type domains in

C2 as well as convex domains in C n, i.e., Ω is not necessary a domain

like {{z\1Z2) ' Im(z2) > fi(zi)}. When Ω is a decoupled domain,

then we have E α = 0. This can be derived easily by using the special

coordinates {z\,. .., z n -i , t, p) on the neighborhood Uζ and integration

by parts. Here

n-l

p = 2Im(zn) - ^ Λ'(^ ), t = Re(zn).
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(2) The idea is to construct H α as a non-canonical projection in L2(dVa)

to "approximate" the Bergman projection B α . Such a construction

has been first used in Kerzman-Stein [KS] for strictly pseudo-convex

cases. However, the kernel for H α still relies on the kernel Bα_χ.

Therefore, we don't have a similar formula as [KS].

Proof of Theorem 3.2. First, since by assumption Znρ = I o n <9Ω, there

exist two functions ^ 1 , Φi m C°°(Ω), φ\ = 1 on <9Ω, so that

1 = ψι(w)Znρ(w) + ψ2(w)ρ(w).

Let / be a holomorphic function in C°°(Ω). By the reproducing prop-

erty, we have, for any z G ί l ,

/CO = / -
JΩ

= / Ba-ι(z,w)f(w)[ψι(w)Znp(w)+ψ2(w)p(w)]dVa-ι(w)

dV{w)a^{^)f{)U)
Ω OL

ί
JΩJΩ

By integration by parts, there exists some smooth function φs such that

But BQ-ι(zjw) is antiholomorphic in the w-variable, it follows that

Therefore, we have

( 3 . 1 ) f(z)= ί \-
JΩlo:

This gives us two C°°(Ω)-functions Φi and Φ2 with Φi real valued on

<9Ω, such that

Ha(z,w) =
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is a reproducing kernel for the holomorphic functions in C°°(Ω) with respect
to the measure dVa. From a result of Ligocka [L], we know that B Q / G
C°°(Ω) if / G C°°(Ω), then we have

(3.2) B α / = H Q B α / .

On the other hand, we may use the identity

H Q / = B α H α /

to obtain H* (/ — Bα/) = 0 since the operator B α is self-adjoint. Plugging
in (3.2), we get

Baf = H* / + HaBaf - Ή*af = H* / + H α B α / - Ή.*aBaf

= H;/ + (HQ-H;)Bα/

Therefore, we have

(3.3) B Q / = H α / - B α ( H α - H * ) /

for / e C°°(Π) which is dense in L2{dVa). Hence, (3.3) holds for / 6
L2(dVa).

It remains to show that H α G £- (Ω) and that

First, let us consider H α . By construction, we know the kernel H^(z, w) of
the operator H ,̂ is

K(z,w) = -ϊ$1

It follows that

By assumption, Bα_i G Φ- (^)? t h e n Lemmas 2.8 and 2.9 conclude that

4 )
4

Next, let us consider the operator Έa. We first look at the term corre-
sponding to the kernel
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We have

i I TwBa^ι(z,w)^1(w)f(w)dVa(w)
Jn

= i
Jn

Hence,

= [BΩ_X((Φ 2

= [B a _!((Φ 2

Notice that

= O Π μj{z,D{z,w))

and that, since Φi is real valued on <9Ω,

(\Φi(z) - Φi(̂ ) = θ(\[ μj(z,D(z,w))

Therefore, by Lemmas 2.8 and 2.9, the corresponding operators of the last

two terms are in T>Y^ 1 0\(Ω) Similarly, by Lemma 2.8, the first two terms

It remains to prove that the remaining term,

is smoothing. In order to do that, we need the following lemma.

LEMMA 3.3. There exist two C°°-functions Φi and Φ2 in Ω x Ω so that

B Ω _iΓ(p/)-ΓB Ω _i(p/)

= BΩ_![Φ2 P/] + B α - i ^ B α
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where

with

and RJ is the adjoint o/Ri in L2(dVa-ι).

Remark. We are going to show that the right hand side is smoothing.
Close commutation properties can be found in the context of NIS operators
(see [CNS]).

Proof of Lemma 3.3. Let ( , •) be the inner product in the Hubert space
L2(dVa-ι). Denote

" a

~hΊkZ dz*
since Bα-\{z,w) is holomorphic in the z. For a g (Ξ L2(dVα-ι), we have

Ω-i(7 f c(^) -lk)(pf))(z),g(z) - \Ba-l9]{z)

Σ ( Έ~ [ β «-i i-ykPf)] (z),g(z)- Ba-l9(z)
k=ιχoZk

(
fe=l X k

Here we use the fact that

= Σ

Σ

Σ F-([(B«-! " B2_1)(7fcP/)]( )̂,g( )̂) = 0.
fc=i σ 2 f c
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Similarly,

([I-Bα-iKp/X^ΓB^ίsX*)) = <RΪ (/>/), 3).

This gives us

(3.4) - (B Ω _i(p/),TB Ω _ l f l ) = -{pf,TBa-ig) + (Rl(pf),g).

Therefore, by integration by parts, we have

), 5) = <ΓB Ω _ 1 (p/) ,B Q _ l 5 ) + <R

(3-5) = - < B α _ i ( p / ) , Γ B Ω _ i 5 )

( B α _ 1 ( p / ) , Φ 1 B Q _ l 5 )

Plugging (3.4) into the last line of (3.5), we have

(TBa-ι(pf),g) = -{Pf, TBa-l9)

<Γ(p/), B α _ l 5 ) + (Φ2p/, Ba-ig)

The last line of (3.6) holds because integration by parts. Hence we have

ΓB α _ 1 (p/)-B o _ 1 Γ(p/)

= Bα_i(Φ2p/) + Bα-^ΦiBα-αίp/)) + [Rί + Ri](p/).

Conclusion of the proof of Theorem 3.2. Now we may apply Lemma 3.3

to complete the proof of Theorem 3.2. By Lemmas 2.8 and 2.9, we get that

the two first operators appearing in the preceding lemma are in 23 ̂  Q 1

It remains to consider R4. Let us prove that the operator defined by

n d

κ(/)(*) = y

is in !BQ χ 0)(Ω). It is first obvious that the kernels of K and its adjoint

satisfy the right estimates. Assume now that φ is a bump function of order

sufficiently large supported in some B#(w,δ). It follows immediately from

the definition of 23- (Ω) that K(φ) satisfies the right property. Let us3-
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consider the action of its adjoint. Since αGN, then by integration by parts,

we have

£ JΩ y ^ ] z)φ(w)dVa(w)

+ / Ba-ι(z,w)[Bι(z,w)φ(wjφk(w, z)

+B2(z,w)φ(w)p(w)]dVa^1(w)

^ ' )ΨP\ •

The result follows from the assumption on BQ_i and from the fact that

is a bump function for any z E B^1(w1 δ). Π

Once we have Theorem 3.2, we may conclude the proof of Theorem 3.1

as follows.

Conclusion of the Proof of Theorem 3.1. By Theorem 3.2, we have

B α = H^ + E α B α .

So, by iteration,
M-l

k=o

Taking the adjoint in L2(G?V^), we have also

B
M-l

α

By substitution in the above, we get

M - l M - l

Λ-β Qj

fc=O k=0

B , T7»Mτ3 /TΓ\* \ M
α,M + -^α ^αi-^αj
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where ~Ba,M
 ιsi by Proposition 2.7, an operator in B- (Ω) for each M.

Therefore it suffices to show that, for each fixed ί, M can be chosen large

enough so that Y\ .. .Y^E^1 Ba(E^)M (z,w) is bounded. This kernel corre-

sponds to an operator of the form

Y1...YeiEiίBa(E*a)
M(Y1...Yhy

for some ^1,^2 s o that ί\ + £2 = I. So, it suffices to prove that for M large

enough, this operator sends L1(cίVQ;) into L°°. Since B α maps L2(dVa)

into itself, it remains to show that for M large enough, Y\ . . . Yj^E^ maps

L2(dVa) into L°° and that (E^)M'(Y1 . . .Yi2)* maps L\dVa) into L2(dVy.

By Proposition 2.7, for J large enough, we may assume that Y\ . . . Y^E^

is in 2 3 ^ (Ω). So, we can see Y\ ... Y^XE^ as a product of M — J operators

in !B^ 1Qx(Ω). NOW, let K be an operator in 23^ 1Qx(Ω). From the

pointwise estimates of the kernel of K, it is easy to see that

\K(z,w)\rdVQ(w)<C
Ω

independently of z as long as

2m + ma + 2

2m + 777,Qί + 1
1 < r <

Here m = max{rai,... ,m n _i} is the type of the domain Ω. The same

estimate holds for the adjoint of K.

Hence such an operator maps Lι(dVa) into Lr(dVa) and U (dVa) into

L°°. By interpolation, we conclude that such an operator maps LPl{dVOL)

into LP2(dVa) if I/P2 = 1/pi — 1/τ7- This completes the proof of Theorem

3.1. D

Remarks.

(1) From Theorem 3.2, it is easy to see the following identity:

Ba(z,w) = DwBa_ι{z,w) + Fa(z,w)

where Fa G ΈY^ 1 O ^(Ω) is the operator - B α E Q and D is a first order

differential operator with C°°(Ω)-coefficients. Once again, if we use

the coordinates {z\,. . . , zn—\, ί, p) on a decoupled domain, we do have

the exact identity Ba(z,w) = DwBa^ι(z^w).
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(2) Instead of /, we may consider Bα_i/ in (3.1). Then by the same
integration by parts, we get

Bα_i/(z) = Haf(z) - / B^1(z,w)[Rf(w)]φ1(w)dVa(w)
JΩ

if / is not a holomorphic function. By Theorem 3.2, we have

( d \

α _! = Bα - Bα_! p Σ Ίk^~ ~V £ ί dzkj

§4. Sobolev and Lipschitz estimates for weighted Bergman pro-
jections

The main object of this section is to prove the following:

B Ω : Lp

k(dVa) -+ Lp

k(dVa),

boundedly for 1 < p < oc and k G Z_j_. In order to achieve this goal, we
need the following result on commutation properties for B α .

THEOREM 4.1. Let M N a e N.

(1) There exist operators {Bα^}^£0 in £- (Ω)
u

M

2 = 0

(2) Let Zj = d/dzj + idfj/dzj d/dzn, j = 1,..., n — 1; be one o/ t/ze

complex tangential vector field on dQ. Then there exists {Bα,ί}fLo

operators in B/̂  ΛT Q ^ )

N

(3) Let {!i}££o ^e -^ vector fields, each of which is Zj or Zj, j = 1,..., n—

j

1, then there exist operators {B a j i}^ 0 in T>^ yr 0\(Ω) such that

M
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Proof. Let Vj(ζ) be the vector as follows

v3(ζ)= [o,. . . ,o,T,o.. . ,o,-ΐ | | (

We first observe that there exist two smooth functions 771 and 772 such that,

for any z, ζ G Ω,

1 = m(z, ζ)(Zj)l({ζ - z, UjiOY) + η2(z, 0

with 77(2:, ζ) = 0 in a neighborhood of the diagonal <9Ω x <9Ω. Then we have

= ί Ba(z,ζ)[m(z,ζ){z3)\ ((c - z,v

After i integrations by parts, using the fact that Zj is tangent at the bound-

ary and that Ba(z,ζ) is antiholomorphic in ζ, we obtain

N

Σ

So, we conclude that

TV

[ Ba(zΛ)η2(zX)f{ζ)dVa(().

i=0

where Bα ;i is the operator of kernel

Ba,t(z,ζ) = Ba(z,ζ)\i{z,0 • {ζ - z

for i > 1 and

Ba,0(z, C) = Ba(z, ζ)\0(z, C) (C - z, v3{QY + Ba(z, Qη2{z, ζ).

3

The fact that B^τ, for 0 < i < TV, is of type (0 , . . . , 0, ? , 0,. . . , 0) follows
from the estimate

This completes the proof of assertion (2). From (2) and the holomorphicity

of Ba(z,ζ) in the ^-variable, conclusion (3) follows immediately. For (1),

we refer to Theorem 4.1.1 in [BCG] where the proof for a = 0 is given. The

general case needs a slight modification. We omit the details here. Π
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Before we state the main theorem of this section, we introduce some
notations. Let k be an integer. Let L^(dVa) be the usual Sobolev space
related to the measure dVa. Similar to [CNS], let NLp

k(dVa) be the set of
all / G LP(dVa) so that

for all (noncommutative) polynomials 7 in Zj and Zj, j = 1,... , n — 1, of
degree at most k. To define the norm, let Λ^ be any (fixed) basis for the
vector space of these polynomials and set

Wf\\NLζ(dVa)=

For more detail of the spaces NL^(dVa), see Stein [S, pp. 605-610].

Define

l V a ) = { f e L p ( d V a ) ; T f e L p ( d V a ) , l < ί <

a n d

L k , z , ( d V < * ) = {/ e LP(dVa); Z)f € I 7 { d V a ) , l < i < k } .

Now the following theorem can be easily deduced from Theorem 4.1
and Corollary 2.6.

THEOREM 4.2. The weighted Bergman projection maps

Lv
KT{dVa) -+ Lp

k(dVa)

and

LίzjiWa) - NL{(dVa)

for 1 < p < oo and j = l , . . . , n — 1. In particular, the isotropic and
anisotropic spaces, L^(dVa) and NLv

k{dVa), are left invariant by B a .

Next, let us consider Lipschitz estimates for B α . We first introduce

spaces Λίpas(Ω) as well as Kz a s(Ω), j = l , . . . , n — 1 as follows. More

precisely, for a function g of one real variable let us define A^g(t) as the

k-th symmetric difference, which is obtained by induction from

Δhg{t)=g{t + h)
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Let ΦT = Φτ( , C) be the integral curve of T such that Φ^(0) = ζ", and let

The space Λίpas(Ω) is the space of functions / which are asymptotically

Lipschitz in the T direction. More precisely, let

Ωε = {z G Ω; ρ(z) < ε},

where p denotes the distance to the boundary, and assume that, for ζ G Ωε o,

Φτ( ,C) is defined for \t\ < ε0 < ε.

DEFINITION 4.3. A function / G L°°(Ω) belongs to Λ^ a s(Ω) if there

exist an integer /c, k > β and a constant C > 0, such that

\Δi

hf(ζ)\<C\h\i-k(p(ζ) + \h\)P, £ = 0 , 1 , . . . , k

for every ζ G Ωεo and \h\ < ^ .

Similarly, we may define spaces Λ^ a s(Ω), j — 1,. . ., n — 1 as follows:

DEFINITION 4.4. A function / e L°°(Ω) belongs to Λ§ a s(Ω) if the

exist an integer k, k > β and a constant C > 0, such that

| Δ | J Λ / ( C ) | = | Δ £ ( / O ΦZJ)(O)| < σ|Λ|̂ -fc(p(c) + \h\)^

ί = 0,. . . , fc, for every C G Ωεo and \h\ < f.

Remarks.

(1) It can be shown (see [BCG]) that a function / G L°°(Ω) belongs to

Λj l a s(Ω) if and only if there exist an integer fc, k > β and a constant

C such that, for every ί > 0, / may be written as b + g\ + 2̂̂  where

#2 is supported outside Ωε o/2, b and ^1 supported in Ωε o, and

3=0

(2) Similar to (4.1), it can be shown that a function / G L°°(Ω) belongs to

Kz, a s(Ω) if and only if there exist an integer /c, km > β and a constant
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C such that, for every ί > 0, / may be written as / = 6 + gi + #2

where #2 is supported outside Ωεo//2, b and g\ supported in Ωεo and:

Now we may write our theorem on Lipschitz estimates for the operator

THEOREM 4.5. Let a G Z + . TTien weighted Bergman projection B Q

Λ^ a s(Ω) and Λ§ ^(Ω), j = 1,... ,n - 1, info Λ/5(Ω).

Proof. The proof of this theorem follows [BCG] where the case a = 0

is considered.

Part (1). The Bergman projection maps Λj,as(Ω) into

As B α (/) is holomorphic, we have to show that, for z G Ω,

Cp{z f-k

for some k > β. Let z G Ω be fixed, p(z) < εo, and let / = b + g\ +g2, with

ρ(z) ~ 2~ .̂ There is no problem for VfcBα((/2) since it is supoorted in a

compact subset of Ω. By assumption on 6, we have

J\VkBa(zX)\.\b(ζ)\dVa(ζ)

< cJ\VkBQ(z,ζ)\ • (p(C)

by Lemma 2.5 since β < k and since the Bergman kernel Ba(z,w) belongs

to the class £gα )

So, we have to deal with the term g\. Now, let fco be the integer involved

in the definition of Λ^ a s (Ω). Assume k > fco By Theorem 4.1 (1), we can

write:

2 = 0

where B α ^ is of Bergman type (feg — fc,0). Then, by (4.1), we have

/ \Baιi(z,ζ)\
i=0J

< Cp(zf~k
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by Lemma 2.5 applied to each Baj for k > β — fco

Part (2). The Bergman projection maps kz a s(Ω), j — 1,... , n — 1,

into Λ^(Ω). Without of loss generality, we may assume j = 1. Now we may

fix variables (2:2,..., £ n _i). Then as before, it is enough to show that

for some λ > β. Here Yτ = T, Z\ or Zχ Take again / = & + <7i + #2> with

p(z) ~ 2~ .̂ Majorization for $2 is obvious. For the term 6, we can do as

Part (1).

For the terms coming from c/χ, we use Theorem 4.1 (2) to write

i = 0

where the Y\ F^B^ ' s are Bergman operators of type (fco, 0,. . . , 0, —k)

and ko > mβ. We choose k > β + ko/2 and by Lemma 2.5 again, we get

This gives the result by the assumption on g\. By a result of Grellier [G],

we know that B α (/) G Λ^ a s(Ω). Now we may use the same result to obtain

B α (/) G Λ^ a s(Ω), j = 1,.. . ,n — 1. The proof of the theorem is therefore

complete. Π

Remarks. We may also consider the extremal cases for Lipschitz esti-

mates. When β tends to 0, the space Λ^(Ω) Π 7ΐ(Ω) can be replaced either

by the Bloch space E(Ω) or by the space BMOA(Ω). Let us recall the

definitions:

A holomorphic function F belongs to E(Ω) if and only if

supp(C)|VF(C)| <oo;

a holomorphic function F belongs to BMOA(Ω) if and only if F is in 7ΐ2(Ω),

and its boundary values F* are in the space BMOiβQ) which is defined in

terms of the anisotropic distance d:
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here σ denotes the Euclidean measure on dΩ and Fg,+ v denotes the mean-

value of F on B(ζ,r). Since boundary values of holomorphic functions

involved in definitions of spaces B(Ω) and BMOA(Ω), we just consider the

measure dV = dVo in the extremal cases.

Let v be a positive measure on Ω. We shall say that v is a Carleson

measure (i.e., v E 6(Ω)) if there exists a constant C such that z/(Ω) < C

and if, for any ζ E <9Ω, any 0 < ε < εo,

The smallest constant C satisfying the preceding property is called the

Carleson norm of v and is denoted by ||^||e

It can be shown that F E BMOA(Ω) if and only if p(z)\V F\2 dV (z) is a

Carleson measure (see Krantz [Kr] for strongly pseudo-convex domains in

C n and [BCG] for finite type domains in C2), i.e.,

p(z)\VF\2dV(z)<Cσ(B(ζJr)).
)

In fact, following the idea in [BCG], we have:

THEOREM 4.6.

(1) The Bergman projection BQ maps the space

f 6 L2(Ω); Σ μj(ζ,p(ζ))[\f(O\ + 13,7(01] < c }

into the Bloch space B(Ω).

(2) The Bergman projection Bo maps the space

n-i dy

E L2(Ω); X ] ( M J ( C P ( C ) ) ) 2 [ | / ( C ) I 2 + I^J/(C)I2]-TTX £ e(Ω)

into BM0A(Ω).

§5. Estimates of weighted Bergman projections in BM0(Ω,dVa)

In this section, we will study the behavior of weighted Bergman pro-

jections on L°°(Ω). The main idea of this section should go back to [McS].

Let Q(z,ε) denote the Euclidean cube in C n centered at z of diameter ε.
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DEFINITION 5.1. A function / belongs to the space BMO(Ω,dVa) if

Lloc(dVQ) satisfying

S U P T Γ T T T v v ί / 1/(*)
QCΩ Vθ\a[Q(w, ε)\ jQ(w,ε)

where fq denotes the average value of / on Q(w,ε), i.e.,

We need the following estimate of the kernel Ba(z1w) for which we

need to obtain our BMO result.

LEMMA 5.2. Let Ba(z,w) be the kernel of the weighted Bergman pro-

jection on Ω. There is a constant C, independent of z £ Ω; such that

f \VzBa(z,w)\dVa(w)<C.p(z)-\
Jn

Proof. Let U be a local coordinate patch as we have mentioned in

Section 1 and z = (z i , . . . , zn) be the coordinates of z. Since each component

of the gradient Vz can be represented as

and antiholomorphic derivatives of the kernel Ba(z,w) vanish, it suffices
(Pλ

to estimate each Σ?—i a) %j applied to Ba(z,w). The pointwise estimate
(1.2) of the kernel Ba(z,w) implies

dVa(w)

(5 1} s Σ I JAz

κf^)ΓLdva(W)
\-i

where

D(z, w) = d(π(z),π(w)) + ρ(z) + p(tί ).
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As we have discussed in Section 1, we know that

n-1

- Π βk(z,D(z,w))2 x

3 = 1

n-l /rπj

D(z,<*
3 = 1 \£=2

Using the same idea of [McS, Lemma 4], the integral (5.1) is bounded by

p(z)~λ and the conclusion of the lemma follows immediately. Π

PROPOSITION 5.3. If f e Cλ(Ω) and

\Vf(z)\<p(z)-\

then f G BMO(Ω,dVa).

Proof. Let Q(w,ε) C Ω be a cube in Ω and consider an arbitrary

z E Q(w,ε). Then, by mean value theorem,

\f(z)-f(w)\< ί1

Jo
— t(z-w)) dt

Γ1

< C / p(w + t(z — w)) \z — w\dt.

Jo

However, we know that

p(w + t(z — w)) > p(w) — t\z — w\.

It follows that

\f(z) - f(w)\ < f1 , lZ~Wl dt
Jo

<log

(5.2)
p(w) — t\z — w

p(w)

p(w) z — w\

Therefore, it follows form (5.2) that

Q(w,ε)
\f(z) - f(w)\dVa(z) < Vola{Q(w, ε)}.
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Thus,

\f(z) - fQ\dVa(z)
Q(w,ε)

Q(w,ε)
\f(z)-f(w)\dVa(z)+ ί \f(w)-fQ\dVa

JQίw.ε)

<Vo\a[Q(w,ε)}

^ / " fW\dVa(z)dVa(ξ)
jQ{w,ε) Yθ\a[Q(w,ε)\ jQ(w,ε)

<Vo\a[Q(w,ε)}.

This completes the proof of the proposition. Π

Now Lemma 5.2 and Proposition 5.3 combine to give the following

theorem.

THEOREM 5.4. Let B α be the weighted Bergman projection associated

to Ω for the measure dVσ with a G Z+. Then Ba maps L°°(Ω) to BM0(Ω,

dVa) boundedly.
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