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ON STANDARD L-FUNCTIONS
ATTACHED TO AUTOMORPHIC FORMS ON
DEFINITE ORTHOGONAL GROUPS

ATSUSHI MURASE AND TAKASHI SUGANO

Abstract. We show an explicit functional equation of the standard L-function
associated with an automorphic form on a definite orthogonal group over a
totally real algebraic number field. This is a completion and a generalization
of our previous paper, in which we constructed standard L-functions by using
Rankin-Selberg convolution and the theory of Shintani functions under certain
technical conditions. In this article we remove these conditions. Furthermore
we show that the L-function of f has a pole at s = m/2 if and only if f is a
constant function.

Introduction

The purpose of this paper is to prove a meromorphic continuation and
a functional equation of the standard L-function attached to an auotomor-
phic form on a definite orthogonal group. In our previous paper [4], we
have proposed an approach to construct standard L-functions associated
with automorphic forms on classical groups. In particular, we proved an
explicit functional equation of the standard L-function in the case of def-
inite orthogonal groups over Q under certain conditions. In this paper,
removing those technical conditions, we obtain a satisfactory result for the
functional equation of the standard L-function.

To be more precise, let k be a totally real algebraic number field with
maximal order ox. Let S € M,,(0r) be an even integral (totally) positive
definite symmetric matrix of rank m > 2 and assume that o7 is a maximal
ok-integral lattice with respect to S. We denote by G the orthogonal group
of S. For each nonarchimedean place p, let Ky = {g € Gy | (9 — 1S te
M (0k,p)}, where Gy is the p-adic completion of G. Clearly K} is a normal
subgroup of a maximal open compact subgroup K, = Gy N GLy,(0kp). We
consider the space &(K7) of left G and right Goo [ [, K} invariant func-
tions on the adelized group G 4 of G, where G, means the direct product of
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G, over all archimedean places v. Then the Hecke algebra Hy, = H(Gy, Ky )
of the pair (Gp, K;7) acts on the space G(K7}) naturally. Notice that Hy is
not commutative in general. We say that f € G(K7) is a Hecke eigenform
if f is a simultaneous eigenfunction of ’H; , the center of H;, for all p. For
a Hecke eigenform f, we denote the local standard L-function by Ly(f;s),
which is normalized in (1.16). At the archimedean places, we introduce the
gamma factors Loo(f;s) as in (4.3). Our main theorem is as follows.

THEOREM.  Let f € G(K7}) be a simultaneous eigenfunction of Hy
for all p. Then the (completed) standard L-function £(f;s) = Loo(f;s)
Hp <oo Lp(f; 8) is continued meromorphically to the whole s-plane and in-
variant under the transformation s — 1 — s. It is holomorphic except for
possible simple poles at s =m/2 -k (0<k <m-—1,k €Z). Further-
more, £(f;s) has a simple pole at s = m/2 if and only if f is a constant
function.

We prove the theorem by an induction on m. Let T' € M, +1(0) be an
even integral positive definite symmetric matrix and S the upper left m xm
block of 7. We assume that of't! (resp. of*) is a maximal lattice with
respect to T (resp. S). We embed G into the orthogonal group H = O(T) in
a natural manner. Let F (resp. f) be a right He [[, Uy (resp. Goo [, Kp)
invariant automorphic form on Hy (resp. G4). We assume that F (resp.
f) is a simultaneous eigenfunction of the Hecke algebra of the pair (Hy, Up)
(resp. (Gp, Kp)) for all nonarchimedean place p. Under the condition

[%] K, CUp:= HyN GLpyi1(0p) for "p < oo,

the main result of [4] asserts that the identity
(0.1) / F(h) E*(h, f;s —1/2)dh = ¢ <F,F>¢ £(F;s)
Hi\Ha

holds. Here E* stands for a normalized Eisenstein series on the orthogonal
group O(S;) of degree m + 2 and < F, f >¢ means the Petersson inner
product. Since the analytic continuation and the functional equation of
E*(h, f;s) is obtained from those of £(f;s), our theorem is valid for F' if
<F, T>G7ﬁ 0.

To complete the induction argument, we need to remove the condition
[¥] , which is not always satisfied, and to take an f such that < F, f >¢#
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0. This is why we introduce subgroups K and consider right G np Ky
invariant automorphic forms. Actually, the inclusion

KycUs:={ueU | (u—1)T"" € Mpnyi(okp)}

is always satisfied. Moreover, the identity (0.1) holds for any Hecke eigen-
forms F' € 6(U}) and f € 6(K7}).

We now give a brief account of the paper. In §1, we determine the
structures of Hy and its subalgebra ’H; respectively (Theorem 1.3) and
describe the Satake isomorphisms (Theorem 1.8). After introducing local
standard L-functions, we calculate certain integrals needed in §4. In §2,
we define certain norm functions on G, which appear in an integral expres-
sion of local L-functions (Theorem 2.10). We recall the definition of local
Shintani functions and prove an integral formula for them, which follows
from several properties of norm functions. The object of the next section is
to prove a crucial fact about arithmetic of quadratic forms (Theorem 3.3),
which enables us to take an f such that < F, f >g# 0. Namely we show
that, for any even integral, maximal, positive definite symmetric matrix 7’
of rank m + 1, there exists an element « in SL;,4+1(0) such that the upper
left m x m bolck of T'[y] satisfies the maximality condition. In §4, our main
result is proved by combining the result of Eisenstein series (Proposition
4.3) and the basic identity (Theorem 4.4) together with local results proved
in the preceding sections.

NoOTATION. For a ring R, we denote by Sym,,(R) the set of symmetric
matrices of degree m with entries in R. For S € Sym,,(R) and X,Y €
M n(R), we put S(X,Y) =!XSY and S[X] = S(X, X). For an algebraic
group G defined over an algebraic number field k and a place v of k, we
denote G, (resp. Ga) the completion of G at v (resp. the adelization of
G).

§81. Hecke algebra

1.1. Preliminaries

In this subsection we recall several facts on quadratic forms and or-
thogonal groups over local fields. Let k be a nonarchimedean local field
with characteristic different from 2. We denote by o the maximal order of
k, by p = (p) the maximal ideal of 0 and by g the order of the residual

-1

field. We normalize the valuation | | = | |, of k so that |p| = ¢7" and
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put ordy(z) = —log,(|z|) for = € kX. A non-degenerate symmetric ma-
trix S = (s;5) € My (k) is said to be even integral if s;; € 0 and s;; € 20
for 1 < 4,7 < m. We say that S is maximal if L = 0™ is a maximal
o-integral lattice with respect to S; namely, there is no integral matrix
g € M (0) N GLy (k) — GLy(0) such that S[g™1] is also even integral. We
denote by L* = S~!L the dual lattice of L with respect to S. From now
on we assume that S is maximal. Taking a suitable o-basis of L, we may
assume

Jy
(1.1) S=8,= So ,

J, = € GL,(k) (1 appears v times),

where v = v(S) = vp(S) is the Witt index of S over k and Sy is an
anisotropic maximal even integral matrix of size ng : ng = no(S) = ngp(S)
= m—2v. It is well-known that 0 < ng < 4. From the maximality condition,
L' ={z € L* | S[z]/2 € p~!} forms a lattice and L'/L admits a structure
of a vector space over o/p equipped with a non-degenerate quadratic form
1pS[z]. We denote its dimension by 8 = 9(S) = 8,(S). For the sake of con-
venience, we quote the list of maximal anisotropic even integral symmetric
matrices following Eichler [1, Satz 9.7].

(1.2) List of maximal anisotropic even integral symmetric matrices

ng | 0 So ordp(det S()) XMH(SO)
01]0 0 1
110 2s e 1
111 2ps e+1 1
210 SSko/k 0 1
2 |1 58Sk, /k 2f 1< f<e)or2e+1 +1
2 2 psSkO/k 2 -1
3|1 2ps & SISkO/k e+1 -1
3|2 25 ® ps' Sy /k e+2 -1
4 2 SSko/k @pslsko/k 2 -1
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Here e = ordy(2), xmu stands for the Minkowski-Hasse character and s,s’ €
0*. For a quadratic extension k' over k, identifying its maximal order with
0%, we put Sy /k(X,Y) = Trgs x(XY). In the above list, ko (resp. k1) is the
unique unramified quadratic extension (resp. a ramified extension ) of k.

Let G be the orthogonal group of S and put
(1.3) K=GNGLy(o) > K'={geK|(g-1)L*CL}.

First we consider the structure of the quotient group E = K/K*. We
denote by Aut(L*/L) the set of o-module isomorphisms ¢ of L*/L such
that S[o(z)] = 1S[z] (mod o) for any z € L*. Each u € K defines the
element ¢(u) € Aut(L*/L) by ¢(u)(z) = uz (z € L*).

PROPOSITION 1.1.  The mapping ¢ is an isomorphism beteween K /K*
and Aut(L*/L). Furthermore

{1}  ifo=o0
Awt(L*/L)={ Z/2Z if 8=1
Dgyn if 9=2,

where Dy 1 is the dihedral group of order 2(g + 1).

Proof. 1t is obvious that ¢ is an injective homomorphism. To see the
surjectivity, we may assume that S is anisotropic because of (1.1). We can
check the surjectivity case-by-case following the list (1.2). For example,
we consider the case (ng,8) = (2,2). Let ko (resp. 0p) be the unramified
quadratic extension field over k (resp. the maximal order of kg). We set

S=p- Sk =p [12) 2bc]’ where {1,w} is an o-basis of 0p and w? —bw +
¢ = 0 is the minimal polynomial of w over k. Take any ¢ € Aut(L*/L)
and put 0([(1)]1)“1) = [;}p_l (mod L). Since Ny /p(0g) = 0%, we

may suppose that = + wy is in 081) = {a € 0p | Niyi(a) = 1}. Then

T —cy

.. _ s 1( _
Jotwy = ['y x+by] is in K and 0’ = ¢(gs4uy) 1o stabilizes [0]1) !

modulo L. It is easily seen that 0'([(1)];0‘1) = [?}p_l or [ bl ]p_l

bl }) Therefore we know that ¢ is

(mod L), namely o’ = (1) or ¢( [(1)
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surjective. Moreover from the above argument, Aut(L*/L) is isomorphic

to the semidirect product of o )/(0(1) N (1+pog)) =Z/(g+ 1)Z and the
Galois group of ko/k. The other cases are treated similarly. 0

From now on we suppose that S is of the form (1.1). When we need to
emphasize the Witt index v, we write vasasuffix;, G =G,,K = K,,L = L,
etc. For a1,...,a, € kX and u € Gy = Ky, we put

a
d(ay,...,ap;u) = v €G,,

1
ay

=
Il
r—'H
Q
oy

RN Ial, a,,ek",ueKo},

A, = {9 d(az, ..., au51n,)
{

% 1 *
N,,: g = /,;k/ ’nlz
1

€ My(k),n, = J,,'ltnl_lJ,,}.

aiy,.. ,a,,ekx} and
*
*
1

Identifying u € Ky with d(1,...,1;u) € K,,, we have K, = KK because
of Proposition 1.1. For an n-tuple r = (r1,...,7,) € Z” and u € K, we set

(1.4) Tru =d(p™,...,p™;u) € H, and 7 =m; € A,.

From the usual Iwasawa and Cartan decompositions G, = N H, K, =
K, H,K,, we have

PROPOSITION 1.2.  The following Iwasawa and Cartan decompositions
hold.
i) G =NHK = [[ NmK;
reZv,cck
(i) G, =KHK,= [] KK,
reA,,e€E
where E = K,/K} and A, = {r = (r1,...,7,) €ZY |r1 > --- > 1, > 0}.
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1.2. Structure of Hecke algebra

We denote by H = H, = H(G, K*) the Hecke algebra of the pair
(G,K*). Namely, H is the set of compactly supported, bi-K*-invariant
C-valued functions on G. Then H forms a C-algebra by the convolution
product:

(1.5) (fr* fo)(z) = /;;fl(-’fy_l)fz(y) dy (f1,fo € Hy),

where dy is the Haar measure of G normalized so that the total volume
of K* is 1. For any g € G, we denote by [l the characteristic function
of K*gK* and we put frc = fr,.]- Proposition 1.2 says that {fre|r €
Ay,e € E = K/K*} forms a C-basis of H. We introduce a subalgebra of H
by

(1.6) Mt =H =HT(G, K*) = {f € H| flulgu) = f(g) for "u € K}

Our aim in this subsection is to determine the structures of H* and
H. Let B = C[E] be the group algebra of £ = K, /K}, = Ky/K{} over C
and Z(B) its center. Let X;,...,X, be independent variables over C and
C[Xli,...,Xf,t] the polynomial ring generated by Xl,Xl_l,...,X,,,X,,_1
over C. Then B[XE,...,XF] = B®c C[XE,...,XF] forms a C-algebra
naturally. We denote by W, the group of automorphisms of B[X 1*, o XE
generated by all permutations of X;,...,X, and o; : X; — Xi_l,X]- —
X; G #19)

For f e H,,h € H,,r € Z¥ and ¢ € E, we put
(1.7)  &p(h) =68(R)Y? [ f(hn)dn and By(r,e) = Gf(my.),

N,

where dn is the Haar measure of N, normalized so that the volume of
N,NK}is1 and
(1.8) 8(h) = d(hnh™1)/dn for h € H,.

THEOREM 1.3. Through the mapping

G fr—Pp(X)= Y Bs(r,e)eX"
r€Z,e€E

(Xr:X;I...X;V for r—= (Tl,---a"'l’))’

the Hecke algebra H, (resp. H} ) is isomorphic to the algebra B[Xf:, ey
XE|We (resp. Z(B)[XE,...,XE|"" ) of W, -invariant polynomials.
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Proof. Clearly @ is a C-algebra homomorphism of H, into B[X li e
XZ]. To see the injectivity and to determine the image of &, we trace the
argument in Satake [5, §6]. For h = d(ay,...,a,;¢) € H,, we put

v
(19)  D(h) =[] 11— a7 a;| 1 —a; e [] I det(1 —c71a; ).
i<j i=1
When D(h) # 0, n — h™n"lhn gives a bijection from N, to itself and
d(h"'n"'hn) = D(h)dn. Because of §(h) = H|ai|2(”_i+"°/2), we know

=1
that
def 1/2
A(h) = D(h)é(h)
= H la; + a;t — (aj + aj_l)l H|det(ai +a;l—e—e7h)H/2
i<j i=1

is invariant under the Weyl group W, and the conjugation by u € Kj :
e u"teu. If D(h) # 0 and f € H}, then

/ f(g~ hg)dg = A(h)—1¢f(h)/ du.
AV\GV v

Thus we obtain @;(wr,u teu) = &¢(r,e) (f € Hf, w € Wy, u € Kj) and
S(H}) C Z(B)[XE,..., X" Let { C1,...,C; } be the set of conjugate
classes of E and put e; = Z e. Then it is well-known that {e;,..., e}

e€C;
forms a C-basis of Z(B). Therefore as a C-basis of H} (resp. Z(B)[X*]"»)

we can take {Zf,.,e |re A, 1<i<I} (resp. {e; Z X¥T|reA, 1<
eeC; weWw,
i <1}). The representation matrix of ¢ with respect to these bases is upper

triangular and non-degenerate. Therefore we get the bijectivity of & | H;.
Using the fact that fre * flo) = freer and &(ff]) = ¢, we similarly obtain
the surjectivity of @. 0

Remark 1.4. It follows from Theorem 1.3 that H;! is the center of H,,.

1.3. Zonal spherical functions
We say that a function w on G, is a zonal spherical function on G,
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(z.s.f. for brevity), if it satisfies the following conditions.

((i)) wgulaltug))z w((m)) \;ul,uQ € K}
i wu zu) = w(x u € K,
(1.10) ()  w)=1

(iv) wxf=C,(flw YfeH:.

From the definition, C,(f) = / w(z) f(z™1)dx defines a character of H;
G

(a C-algebra homomorphism of H} to C). As in the usual bi-K-invariant
case, a z.s.f. w is uniquely determined by its character C,, up to a constant.
Indeed, the following assertion holds.

LEMMA 1.5. Let ¢ be a bi-K ) -invariant function on G,. If p satisfies
e(u"tzu) = p(z) for any u € E and (¢ * f)(1) = 0 for any f € H}, then
e=0.

Proof. Our proof is quite similar to that in Tamagawa [7, §2]. Take
any continuous function f on G, with compact support and put

= [ [ smewdndn a0 =BT 20 )

u€FE

Clearly f° € H, and f% € H}. From our assumption we have

0= /G ey )" (y)dy = |B| ™! Z/G ey ) (u yu)dy

uck

=|E|_1Z/G w(uy“1U"1)f°(y)dy=/G ey ") (y)dy

uelE

= / v / ) / ;w(y'l)f(ulyuz)dulduzdy= /G ] o(y™")f (y)dy.

Thus we get ¢ = 0. a

Now we construct all zonal spherical functions. Take any ¢rreducible
representation p of E with underlying vector space V, and denote by x,
(resp. n,) the character (resp. the degree) of p. The same letter p is used
for the corresponding representation of the group ring B. For a v-tuple
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A = (A1,...,Ay) of unramified characters of k¥, we define an End(V,)-
valued function ¢y , on G, by

(1.11) $x0(hnu) = p(e)6(R)2 T Ai(as)

1=1

= p(e) H Xi(ag)|as|" =0/ € End(V,),

=1

where h = d(ay,...,a,;¢) € H,, n € N, and u € K. Clearly
(1.12) ¢ p(hoguo) = éa,,(ho)da,p(g9)p(wo) for ho € Hy,up € K.

LEMMA 1.6. For any f € H,,

brp T =00 CoglD), Onl = [ rpy™ )

In particular, Cx ,(f) € C for f € H.

Proof. For z = honouo (ho € Hy,np € Ny,ug € K};), we have

(Pa,0 % f)(2) = /G V $x0(y) F(y~ hono) dy = /G V $x,0(honoy) f(y ™) dy
= ¢a,p(ho) /G V $ap(y) fy™H) dy

and hence get the first assertion. If f € H}, for any u € E,
Orpl£) = [ nplugn™) Fluy™ ™) dy = plu) Co () o).

Since p is irreducible, we have Cj ,(f) € C. 0

We define a C-valued function on G, by

1
(1.13) wap(z) = — / tr(dn (vz))do.
Tp JK;
LEMMA 1.7.  The function wy , ts a zonal spherical function corre-
sponding to the character Cy ,.
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Proof. It is clear that wy , is bi-K}-invariant and wy ,(1) = 1. For any
u € E we have

1
anpluan™) = — [ (o ouen o= [ wx(on fur'au)a’
pJK PIKS

= - [ o pwm)ofn) o = (o).

Finally for any f € H;, by Lemma 1.6,

rps D@ = [ [ ixony(o0) 16~ )

! -1
" n, d
ny Ji: tr{/a, Pa0(y) F(y v:n)dy} v
1
= — tr(¢)‘,p(vl‘) CA);,(f))d’U = CA,p(f) . WA,,;(Z'),
Np JK;
and hence our assertion is proved. 0

Let {C1,...,C;} be the set of conjugate classes of E and p be an irre-
ducible representation of E. Then

(1.14) 3w nl 3 xolw)

ueC; p u€eC;

gives a C-algebra homomorphism of Z(B) into C. Conversely every C-
algebra homomorphism of Z(B) is obtained in this way. Therefore we get
the following theorem.

THEOREM 1.8. Any C-algebra homomorphism A of H; into C comes
from the character corresponding to a zonal spherical function on G,. In
particular, there exists a v-tuple X = (A1,...,A,) of unramified characters
of k* and an irreducible representation p of E such that A = C) ,, where
A (resp. p) is uniquely determined modulo W, (resp. up to equivalence).
We call (A, p) the Satake parameter of A.
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1.4. Local standard L-functions
From Proposition 1.1, F has a unique cyclic normal subgroup C of index
2, if @ > 1. We denote by p; the one dimensional non-trivial representation

of F whose restriction to C is trivial. For an irreducible representation p of
E, we define a number Ao = Ao(p) by

1 if p is trivial
(1.15) X(p)=4 -1 ifp=p
0 otherwise.

In particular Ag(p) =1 (resp. Ao(p) = 1) if 8 = 0 (resp. 9 =1).

Let A be a character of ‘H} and (), p) the Satake parameter of A
(A= (A1,--+,A0), 20 = Ao(p)). We define the local standard L-function
of A by

(1.16) Lp(4;8) = LY(A;8)App(s) (s €C),

where ,

@1 ) = [J{a - e -5 e}
j=1

and

(1.18) App(s)

(1 (no,8) = (0,0) or (1,0)
14 dog~(-1/2) (no,d) = (1,1)
(1—-g )" (n0,0) = (2,0)
(1= 2og™*)7" (n0,0) = (2,1)
=¢ (1= 20g*) 711+ Aog= V) (no,8) = (2,2)
(1 — Aog” (s+1/2))—1 (n(]?a) = (3’ 1)
(1= Aog~ /D)1 4 Aog= /D) (ng,8) = (3,2)
(1= Xog~®)"1(1 — Ngg~(s+D)~1 (no,d) = (4,2) and Ao # 0
L (1 —¢72%)7t (no,d) = (4,2) and Ao = 0

Note that our definition agrees with [4, (1.6)—(1.8)] in the case A\ = 1.
The rest of this section is devoted to the calculation of a certain integral,
which will be used to study the constant term of Eisenstein series in §4.2.
Let p = (p1,. .., #v+1) be a (v+1)-tuple of unramified characters of £* and
p an irreducible representation of E = Ko/K{. For an z € V,, = k2™ we
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put
1
(1.19) () = T 12p4n, € Gyi1-
-S,[z)/2 -tzS, 1

THEOREM 1.9.  When |u1(p)| < |nj+1(p)| < |m1(p)™}| (1 <5 < v),

— _ 1= (ki) ®) 1 - g (i) (0)
/VV bup(7(z))dz = ¢u,p(1)j11 1-— (p,l;l,j—,:l)(p) 1— (pipjs1)(p)
S { (1 + pop1(p)g® ™) (1 — popr(p)g™™/%) o #0
1—u2(p) | 1 - pd(p)g® ™ pto = 0,

where ¢, , (resp.po = Ao(p)) is defined in (1.11) (resp.(1.15)) and the Haar

measure dr on V, is normalized so that the total volume of L, is 1.

The following corollary is a direct consequence of Theorem 1.9 and the
definition (1.16) of the standard L-function.

COROLLARY 1.10. Let A be a character of H} and (A, p) its Satake
parameter. Let p be a (v + 1)-tuple of unramified characters defined by
p=(x|°,) (s € C). Then

/ bu P(ﬁ(x))dm =du p(l)M Cp(123) no : even
v, T Ly(A; s+ 1) AT no : odd,

where (y(s) = (1 —¢~°) 7L

Proof of Theorem 1.9. We shall demonstrate our assertion following the
argument of Langlands [3, §5]. We introduce several subgroups of N =

{7(z) | z € V, }:

Il
—
3l
—
| ——|
—_—
~
<
m
X
8
m
N

L
—
N
=1
Q.

(1.20)
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For these subgroups M of N, we put
(1.21) Ay () = /H b p.p ()T,

where the Haar measure dm is normalized so that the total volume of M N

K} is 1. First using the decomposition

1 v 0.1 0 -1 0
0 1 _ vl 0 =1 0 1
v 0 1 = v 0 1 0 »1 0
0 —v 0 1 v 0 -1 0 wo!
(v €k —o),

we have

1 — g pipjr1)(p) <
1 — (p1pj+1)(P) Lsiswy)

(1.22) A“,p(m) = Au,p(_J\Tj) X

Secondly we consider the relation between A, ,(N,) and A, ,(N/). Note
that for z € Vy — Ly,

(| @ |) = p@)k(a),

where
[2z;1 0 2728, 0 -1
1, 0 0 0
p((L‘) = 1n, 0 -z | €NA,,
1, O
L Zx
[0 0 0 0 -1
0 1, 0 0 0
k(z)=1] 0 0 €z 0 z;'z| €K,
0 O 0 1, O
| -1 0 2z 'xSpe, 0 27!

zg = So[z]/2 and e, = 1 — 271225 € Kj. Since

y
p(z) ™7 8 )p(z)
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10 0 tyd, 0
L, yz'tzSe —yz;''yd, —y yzg !
= 1no ~zzztyd, 0 ﬁ(! 0 ]) (y € k),
L, 0 0
1

we have

App(N,) = Ay p(N]) % {1 +/ /‘l(zm_l)|zz|_n°/2p(5w)d$}

Vo—Lo

[ o] [0 0]
= Ap,o(V]) x {1 +q7 1 (p) > m(0?) Ao+ ) #1(1’2)11‘11},
=0 =1
where we set

Ay / p(1 = z;'z'xSy)der and A; = / p(1 — 27 teteSy)dz.
LG—LO Lo—Li)p

The next lemma will be proved at the end of this section.

LEMMA 1.11.  Notation being as above, we have Ay = (¢° — 1)pg and
A =1- qa—n().

Therefore we get
(123) Au,(W)

_ AN [ (U4 nom(P)g® )1 = popa(p)g™™%)  po #0
L=m®? | (1= pp)®™) #o = 0.

Finally taking account of

0)-[7 [0 A] wer-o

we have

— ¢ Y(mpy)(p)
1 - (mujy)(P)

_ 1 .
(1.24)  App(N}) = App(N]_4) 1<j<w).

Combining (1.22) — (1.24), we get the theorem. g
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Poof of Lemma 1.11. Take any ¢ € Lo—Lyp and o € L. Since z, € 0,
we have (1 — e;)a = z;'z'zSa € Lo, and hence we have e, € K and
Ay =vol(Lo— Ligp) =1 - q®~™0. Now we consider Ag. It is easily seen that
e K§ =¢,,,Kg for ¢ € Ly — Lo and y € L. Thus we have

Ay = Z p(ez)-

zE(Lé)—Lo)/Lo

We evaluate the sum by a case-by-case argument. For example, we con-
sider the case (ng,d) = (2,2) and use the same notation in the proof of

. z1 | 1.
Proposition 1.1. For z = scl p~!in L — Lo, we have
2
I bu + cv . —z? + cx? o — —2x129 — b2
z v —u |’ z? + brizo + cx3’ z? + bzyz9 + T3

Being C the unique cyclic normal subgroup of E = D, of index 2, we
know

Ag=(g-1) Y pl9).

geE-C

Therefore our assertion follows from the definition of g in (1.15). 0

§2. Norm functions

2.1. Definition and properties of norm functions

Keep notation in the previous section. First we introduce a function u

on M,,(k) by
(2.1) we) = leil,

e; <0

where (p®,...,p%,0,...,0) is the elementary divisor of g in M,,(k). Note
that p~#(9) coincides with the o-module generated by o and all minors of g.
The following properties are elementary.

LEMMA 2.1. (i) u(g) < u if and only if there exists an element
A € My (o) such that ordydet A = p and Ag is in My (o).

(i)  For g1,92 € Mm(k), n(g192) < p(g1) + p(g2).
() Forg € Mn(k) and & € M), (| § 3 ]) 2 ) + o)
(iv) For g € Mu(k) and A € Mp(0), u(g + A) = u(g).
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Let S be a non-degenerate even integral symmetric matrix of rank m
and G the orthogonal group of S. We set K = GNGLy,(0) and K* = {u €
K| (u—1)S7! € M,,(0)}. We do not suppose the maximality of S in this
subsection. We define the norm function pg on G by

(2.2) pa(g) = p((g-1)87")  forgeg.
Evidently ug(g) = 0 if and only if g € K*.

ProposITION 2.2. (i) pug(g™!) = pg(g) for g € G.
(i)  ug is bi-K*-invariant and pg(ulgu) = pg(g) for u € K.
(iii) For g1,92 € G, pc(9192) < pc(g1) + pac(g2)-

1
(iv) We put S; = ) S } and Gy = O(Sy). Then for a € k* and

B Eeq, -
ok *
par(| T B ¥, ]) > ua(B) + [ordyal.

Proof. Since (g71—1)S7! =%((g—1)S™1), we get (i) from the definition
of p. For any uj,us € K*, (u1gus—1)S™! = uy(g—1)u2S™ 1 +(ujug —1)S71L.
Thus from Lemma 2.1 (iv), we have ug(uigus) = p(ui(g — 1)S™ tuyt) =
pc(g). Similarly for u € K, pa(u™gu) = u(u™(g — 1)uS™?) = u((g -
1)S7'y=1) = pg(g) and we obtain (ii). To see (iii) we take an A; (resp.
Aj) in Mp,(0) such that ord,det A; = pg(g1) (resp. ordydet Ay = pg(g2))
and Aj(g1 —1)S™! € My, (0) (resp. (g2 — 1)S™1 A € M;(0)). Then

B = A;(g1g2 —1)S7 1Ay
= Ai(g1 —1)S7'S(ga —1)S P As+ A1 (g1 — 1)S Ay + Ay(g2 — 1)S7 4y

is in Mp(0) and hence pg(g192) = p(A7'BA;'Y) < p(ATY) + u(B) +
(A7) = pe(g1) + pe(gz)- Finally by using Lemma 2.1 (iii), we get

| % %

a -1

> pa(B) + u(e— 1) + p(a™ = 1) = pg(B) + |ordye

m[“ 5 a1]>:ﬂ<[°‘_1 B-Ds x|

and our assertions are proved completely. 0
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Now we take a non-degenerate even integral symmetric matrix 7' =

[—%S :‘g:] of rank m + 1 and put H = O(T). We embed G into H

through o given by

(2.3) to(g) = [g 1 ‘1-")0‘] (9 € G).

PROPOSITION 2.3.  For g € G, uc(g) = pnu(w(g)). In particular,
w(K*) =U*Nuw(G), where U* ={u € H| (u—-1)T"t € Mp41(0)}.

. _ 1 S-1 0 10
Proof. Since T™! = [0 ?}[ 0 —(2a+S[a])_1] [ta 1],we get

_ -1
(to(g) = 1T~ ! = [ (9 (1))5 8] and hence our assertion is verified. []

Remark 2.4. In [4, Lemma 4.3], we proved u(g) = u(to(g)) under a
certain condition, which is not satisfied in general. This is a reason why we
now use ug instead of p.

2.2. Parametrization

From now on we assume that S is maximal in the sense of §1.1. Put
L =0™CV =k™ and denote by L* the dual lattice of L. For a primitive
element n € L* with S[n| # 0, we put

(2.4) V,,={xev)S(n,x):o}aL,,szV,,.

We denote by Gy, the stabilizer subgroup of 7 in G. Our aim in this subsec-
tion is to give a double coset decomposition G,\G/K* explicitly. For | € Z
we put

(2.5) G(mpl) = {9 €G I g 'n-pe L;Zrm},

where L., stands for the set consisting of all primitive elements in L*.

Clearly G(n;1) is left-G,, right-K invariant.

LEMMA 2.5. Assume that L, is a mazimal o-integral lattice with re-
spect to the restriction of S. Then
G G=]]cm.
1>0

i)  Min =1.
(i) ~ Min ualg)
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Proof. The first part was shown in [4, Proposition 3.9]. We shall
prove (ii) for | > 1 (the assertion is trivial for [ = 0). For g € G(n;l),
(' -1)81-Sp =g np—n ¢ L -p "D and hence (g~ —1)S~! ¢
M, (0) - p~U=Y. Thus we know that pg(g) = p((g~! —1)S~1) > I. Let us
show the existence of g € G(7n;!1) such that pug(g) = I. Taking a suitable

o-basis of L we may assume S = . s’ and 7= %], because

G # K implies that S is isotropic. Then M; = P r has the

required property. g O
We set

K("):{ueKl(u—l)neL} and

(2.6)
L8[ = 4Sln] (mod o)}

L0 ={y e L*

It is clear that K™ is a subgroup of K containing K* and L™ is a union
of several L-cosets in L*. For z € V with S[z] # 0, we put

1
2.7 zg = =Slz] € kX and e, =1- 271225 € G.
2 x

LEMMA 2.6. The mapping ¢ : u — un gives a bijection between
K/K™ and L™/L.

Proof. Clearly ¢ is well-defined. If p(u) = p(u') for u,u’ € K, then
u”lun —n = u (u'n — un) € L. So we know that ¢ is injective. Take any
7’ € L such that £ = 7 — ' € L. Then we easily know that z € Lp~?,

—1.%

Zze € p7r0* and ¢, € K. Since
plez) =n— 27 (25 — 2y + 2;) =0 (mod L),
we get the surjectivity of . 0
Combining Proposition 3.9 in [4] with this, we obtain

PROPOSITION 2.7. Let S be mazimal and n primitive in L* with S[n] #

0. We assume that L, is a mazimal o-integral lattice with respect to S|L,.
Then
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i) Gml)=GMK* (1>1) and
() Gmo)= [] Gpuk*= 1T Gpet K ] GoK™,

ueKM\K n'eL™ /L, n—n'&L
where M is an element in G(n;1) such that pg(M;) =1 and e,_,y is defined
n (2.7).

We say that g € G is minimal (with respect to n) if ug(g9) < pc(gog)
for any go € Gy. For g € G(n;1) with [ > 1, g is minimal if and only if

pe(g) =1

2.3. Norm functions and the Iwasawa decomposition

S —So

Let S (resp. T = [—taS 9

]) be a maximal even integral sym-

1
metric matrix of rank m (resp. m + 1). Then S; = [1 S } is also

0
L
0}

V=L®k, W=MQ,k, Ly ®, k,
G=0(8), K=Gn GLm(o),
K*={ueK|(u-1)8"1¢e Myo)},
H=0(T), U=HOnNGLpii(o),
Ur={uecU|(u—-1)T"' € Mpi1(0)},
= 0(S1), K1 = G1 N GLya(0),
Ki={u€ K1 | (u=1)57" € Mmy2(0)},

maximal. We put

L=om Mz[l;]:o +1,

a
n= [?} €L} =S7"Li, A=2a+S[a]€k”,
€= [?]A—leM*=T—1M.

We embed V into W (resp. W into V;) by jo (resp. j) :

—az — S(a,y)
Y

z

8) o) = [§] and j([f‘;].)=[ ] (yeV,zeh).
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Then jo(V) (resp. j(W)) is the orthogonal complement of ¢ (resp. n) in W
(resp. V7). We define embeddings ¢p : G — H and ¢ : H — G to be

(29)  w(g)(€t+iho(y)) =&t +Jo(gy) (g€ G,yeV,tek),
(2.10) t(h)(nt + j(w)) =t + j(hw) (h€ HyweW,tek).

Then 19(G) (resp. «(H)) coincides with the stabilizer subgroup Hg of £ in
H (resp. Gi, of 7 in Gy). Since

S —Sa 0 0 1,, O 1
—taS -2a¢ 1 |[|0 0 1]|]= S ,
0 1 0 1 taS a 1

Proposition 2.3 implies that
(2.11) w(K*) =U"Nw(G) and (U*)=KinN«H).
From the Iwasawa decomposition, any g € G; can be written in the form

a(g1) * *
[ Pl a(g)™!

(a(g1) € k™, B(g1) € G,u(g1) € K7)

(2.12) g1 = ] u(g1)

The following theorem is a refinement of Lemma A in [4].

THEOREM 2.8. (i) Let M € H be minimal with respect to £. Then for

any g € G, pu(0(9)M) = pe(g) + pa(M).
(i) For any h € H, we have pg(h) = pe(B((h))) + ordya(i(h)).

Proof. We put apy = a(t(M)) € k* and By = B(:(M)) € G. Because
of «(M)~1n =7, we have aps € 0. By Proposition 2.2 (iv) and Proposition
2.3, we have

(2.13) ordy(am) + pe(Bm) < pu(M).
Noting that
1 ~folg™' =1)S S((g7" - 1), q)

(2.14) «(w0(9)) = g (1-9)a for ge€g,
1
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we can write

eo(Byu) ™M) = [ Y _1} [ . LMI/\I/I]/ ]UM
oy 1

(zu € V,up € K7).

Since uym — n € Ly, zpaps must be in L and hence

L(Lo(ﬁ,;;)M)er[aM 1 _I]Kf.
A

From Proposition 2.2, Proposition 2.3 and the minimality of M, we have

(2.15) ordp(an) = um(to(Bm) ™M) > pa(M).

Inequalities (2.13) and (2.15) implies

(2.16) ordp(aym) =pp(M) and pe(Bm) =0 (ie. fum € K¥).

Therefore for g € G,

apy *x % .
Wo(g)M) € g x| K]
A

and hence pg(M) + pc(g) < pa(o(g)M). On the other hand, Proposition
2.2 (iii) implies the inequality pg(M) + pe(g) > pa(w(g)M). Thus we
have proved the first part. Because of Proposition 2.7, to see (ii) we may
assume h = 19(g)M. Then from the above discussion, 3(:(k)) € gK* and
a(t(h)) € apo0™ and hence the identity (ii) holds. 0

2.4. Construction of the standard L-function by the norm
function

For g € G and s € C, we put
(2.17) Nag,s(g) = g+

Our purpose of this subsection is to give a formula corresponding to Lemma
B in [4]. We start with a key proposition.
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PROPOSITION 2.9. Fort € k* and g € G,

t
fei(t g;8) Ciéf/‘/NGl,s+m/2([ g t_l}ng(w))d:c

/2 —lom 1— q—(2s+m)
= Itl /2q | dpﬂSNG’s_l.er/z(g) '—1-:——(]_—25—,
1 —'zS -S[z]/2
where we put ng(z) = 1 T €Gy forz eV =k™

Proof. Since
fa.(t g;8) = [t| ™ fo, (¢ 9705 8),

it is sufficient to see that
(2.19) fe,(p",g;5)

B 1— -—-(2s+m)
=4q ﬂ(s+m/2)NG,s—1+m/2(g) —4

= for g >0.
-9

We first consider the case where S is anisotropic. If z € V — L, then

2z
1
ng(z) € | —z €z K* (zp, = 55[1‘],% =1-z71z'zS).

—1t -1
-1 27 'zSep 2z

Thus for g € G = K and 8 > 0, we have

-8
_ p
fGl(p ﬁag;s) :NGl,s+m/2(|: g pﬂ:l)

-8
P T2z
+ Ng,,s+my2( [
V-L

= q—ﬁ(s+m/2)NG,s+m/2(g)

+5(1 = g R gImEDEEmAN, (g)
=1

JEx . |dez
pPz; 1]

e}
+ ) g (A s+m/2) /L - NG,s+m/2(g€z)dz.
=0 -
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A case-by-case argument implies that

(2.20) / Negimya(ges)de
L'—L

0 ifo=0

(g — 1)g~(tm/2) if0=1and g € K*
=< ¢qg-—1 ifod=1and g ¢ K*

(q% — 1)g~(stm/2) ifo=2andgeC

(q—1) (g 26+m/2)+1 1 1) ifd=2and g ¢ C,

where C is the unique normal cyclic subgroup of K/K* of index 2. Thus
our assertion is true in this case. Now we shall prove (2.19) by an induction
on m. We assume that (2.19) holds for m — 1 and S is isotropic. We set

1
S = [1 S’ ] We suppose that g is not in K. Then there exists an

prm

a
n= [ ?] € L, such that g7'n & L* and T = S|L, is maximal. As is seen

-2
in the proof of Lemma 2.5, g € G,M)K* with M) = lp 1 A} and
p

1
A = pg(g). Note that zg = 8 € L is isotropic and satisfies S(n, zo) = 1.

We embed H = O(T) into G as the stabilizer subgroup of n (cf. §2.3).

1
Similarly the orthogonal group H; of T7 = T is embedded into

0

G as the stabilizer subgroup of n~ = | 7 ] . For h € H = G,
0

fe, (PP, hMy; s)

p
=/ /NG1,3+m/2([ h ﬂ]nG(y+wgu)[ M, ])dydu
V, Jk P 1

-3
p 1 _
_ /V ANGI,HM([ h pﬂ:|nc;(y)[ M, l]nG(MAlxou))dydu
nvp~

-y -8
P
+ E Ng, s+m h n
/V,,/z:—lox G1,s+ /2([ Pﬂjl c(y)

=241
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plu
X 1 - gu)dydu
p~ M
=A,,—1 u
pu -1 . 1~ -1
where g, = M, \ ng(My “zou). Since g; 0~ = | My 'n
pu 0

€ Lf,prmp”l and

pay (gu) = p( (My-1)S1 Tou

p Mt -1 —t(M,\—l-’EOP_)‘) ~S[zolp~*u/2
)
p’\u -1

= pe(My) +1- A,

we know that g, is minimal with respect to ™ and pg, (gu) = . Therefore
by Theorem 2.8 (i), fq,(p™?, hMy; s) is equal to

-8
p —_ S+m
/k -1 q/\NHl,s+m/2([ h pﬂ] nH(y))q Als+ /2)d?/

o . 1 p_(ﬂ'i'l"A)
+ Y d-q° )Am_lNH1,3+m/2({ h pw_l}ny(y))
I=X+1

x q(l—A)(m— 1)=l(s+m/2) dy

= q—/\(s—l+m/2){fH1 (p~ﬁ, hys+1/2)

+ 3 (=g gD by (N s 1/2) )
I=X+1

Thus the induction assumption implies that

fe (7P, hM); s)

. 1-— q——(23+m)
= NG,s~1+m/2(M>\)q Alet /2>NH1,s—1+m/2(h) 1 — q—(st1)
[e o]
x{l-{- Z 1- q—l)q—-Zs(l—-)\)}
I=2+1

—(2s+m)

_ 1-
= Ng, s—14m/2(hM))q 'B(s+m/2)—‘1(i—’q_2‘s—
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Finally we assume that g € K. Then we can take an 7 € Ly, such that

g € GpK* and T|L,, is maximal. Replacing M) by 1, we can prove this case
similarly. ad

THEOREM 2.10. Let f be a right-K*-invariant function on G. We
assume that f is a simultaneous eigenfunction of H*(G,K*) : f* ¢ =
Mi(9)f Yf € HT(G,K*). Then for go € G,

v—1

: /G F(909)Ng,s—14m/2(9)dg = £(g0)Lp(Ag3 s) [ (1 — ¢~ +2)) B, (s),
Jj=0
where
1 ng=0or1
_ 1- q_2s ng = 2
Bro(s) = 1— q—(25+1) no =3

(1= )1 -g ) np=4,
v =v(S) is the Witt index of S, ng = no(S) =m — 2v and Ly(\y;s) is the

standard L-function normalized in (1.16).

Proof. We prove our theorem by an induction on v. We set S = S, as
in (1.1) and denote by (A;p) = (A1,...,A; p) the Satake parameter of Ay.
On account of Proposition 2.2 and Theorem 1.8, we have

(2-21)/G f(909)Ng, s—14m/2(9)dg = f(go)/G #x,0(9) NG, s—14m/2(9)dg,

where ¢y , is defined in (1.11). Namely, it is sufficient to show our assertion
in the case that f = ¢ , and go = 1. When S is anisotropic (i.e. v = 0),
we have

/G ¢A,p(g)NG0,s—l+no/2(g)dg = Z p(u)NGo,s——l—l—-no/Q(u)
]

uEKo/K}
1 =0
1+ Aoq—(s—1+n0/2) a=1
(14 Aog~(=1Hm0/2) (1 4 Ngg~(5=2+m0/2)) 9 =2 and A\g # 0
1 — g~ (25—2+no) d=2and \g =0

= Ap,p(8)Bno(s)-
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We now assume that the theorem holds for »—1. From the definition (1.11),

(2:22) ¢A,p(lt g t_1])=Itl"_1+"°/2)\1(t)¢x,p(g),

where we put A’ = (\g,...,\,). Hence using the Iwasawa decomposition
and Proposition 2.9, we get

/ 2,09 NG, s—14m/2(9)dg

/G, /k /km / D3 (9" TN (1)

XNg, s 1+m/2([ g 1 ]nc;,,_l(X)u)dgdxthdu

_ 1— q-—(25+m—2)
= ‘/G 4/'1(:>< ¢A’,P(g))\1(t)q |0rdpt|SNG,,—1,s—-2+m/2(g) Tq_zs— dg dxt.
v—1
Therefore the inductive assumption implies that this equals

v—1

[T = X @)a) @ = X11() 2 7)} " App(s)

i=1

v—2
x J] (1 = g~ =+not2) B, (s)
=0

_ q—(23+m—2)

1+ et o+ um |
=1

Thus the theorem has been proved completely. 0

1—q2

2.5. Local Shintani functions

We return to the situation in §2.3. Let A (resp. A) be a non-trivial
character of H*(H, U*) (resp. H*(G, K*)). We denote by Sh(), A) the set
of left-K* and right-U* invariant functions W on H satisfying

(2.23) (6% W x&)(h) /G d /H dy $(2)W (zhy~1)B(y)

= M@)A(P)w(h)
Y e HT(G,K*),"® € H*(H,U*),"h € H.

We call Sh(A, A) the space of local Shintani functions associated with (A, A).
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THEOREM 2.11. Let W € Sh(A, A) and s € C with sufficiently large
real part. Then

Zw(s) o /G\H W (10(B(e(h))")R)|a(e(R))|*Hm=1)/24p

Ly(4; ) { 1 m: even

- W(l)Lp(/\; s+1/2) | ¢(2s)" m: odd.

Proof. We calculate the integral

(2.24) /H W (h) Nigo— 14 (ms1y2(R)dR

in two ways. First from Therorem 2.10 for H, (2.24) equals

v(T)-1
(2.25) W()Ly(4;5) [T (=g Gt B, 1y(s).
3=0

Secondly by using Theorem 2.8 and Theorem 2.10 for G, we know that
(2.24) is equal to

(2.26) /G . /G W (10(9B((h)) " Vh)Ng s—1/24m/2(9)|(e(h)) [P/ 2dg dh

v(S)-1
=Ly(Xs+1/2) [] (1 —q Gt B, 5 (s+1/2)

x / W (10(BG(R) ) m)lau(R) [~/ dh
G\H

Comparing (2.25) and (2.26), we obtain our theorem. a

83. Reduction of maximal symmetric matrices

3.1. Locally principality of lattices in a quadratic extension

Let k£ be an algebraic number field, o the ring of integers in k and K
a quadratic extension over k. We say that an ogx-submodule L of K is a
lattice if L is finitely generated and contains a k-basis of K. Moreover a
lattice which forms a ring containing 1 is called an order of K. For a given
lattice L, we define its order O(L) by

(3.1) OL)={zxeK|zLCL}.
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Let O be an order of K and denote by H(O) the set consisting of all lattices
L with order O. We recall that any lattice L € H(O) is locally principal in
the following sense (cf. [2] Proposition 1, [6] Lemma 2.4).

For a place v of k, k, means the completion of k£ at v. We identify
a prime ideal with the corresponding nonarchimedean place. For a prime
ideal p, o, means the maximal order of k;. We also put Ly = L ®,, 0p
and K, = K Qg k,. Locally principality says that for any L € H(O) and
any prime ideal p, there exists an ap € K;( such that Ly = 0pOp. For
a = (o) € K (the idele group of K), we put

(3.2) a0 = [ (ep0p N K).

p<oo

Since ayp is uniquely determined modulo (9;‘ and L = ﬂp <ooLlp NK), we
get

LEMMA 3.1. The mapping o — aO gives a bijection between K ; | KX -
[To<oo O, and H(O). Here Ko means the direct product of K, for all
archimedean places v and p runs through all non-archimedean places.

For two lattices L and M, we define its product L- M by the og-module
generated by zy (z € L,y € M). Under this multiplication, H(O) forms
an abelian group and the bijection given in the above lemma becomes an
isomorphism. We say that two elments L and M € H(O) are equivalent if
L = ¢(M for some £ € K*. Let H(O) the quotient group of H(O) by the
equivalence. Then from Lemma 3.1, we obtain

(3.3) K3 /K*KZ [] o5 = H(0).
p<oo

When L = aO € H(O), we denote by n(L) the (fractional) ideal of k
corresponding to Ng /(). Clearly L ~ n(L) gives a homomorphism from
H(O) (resp. H(O)) into the ideal group of k (resp. the ideal class group of
k). We say that T € Sym,,(k) represents an ideal a if (3T'[z]) = a for some
z € op".

2a b
b 2¢c

and m the ideal generated by a,b,c. We assume that D = b* — 4ac is
not a square i1n k. Then there exist infinitely many primes q such that T
represents mq.

PROPOSITION 3.2. Let T = [ ] € Symy(k) be non-degenerate
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Proof. We consider a quadratic extension K = k(v/D) = k + kw,w =
(b —+/D)/2. Tt is easily seen that the order of the lattice L = oza + opw is
O = o +m~lw. Using Lemma 3.1 we can take an a € K so that L = aO.
As is well-known, there exist infinitely many prime ideals q which satisfy
the following condition:

There exists a 3 € (a‘leKgf, I_[Koo(’);() N (Koo [Th<oo Op)
such that N/, (8) corresponds to g.

We take such q and 8, and put M = BO. From (3.3) there exists an element
& € K* such that M = £L~!. Because of n(M) = q and n(L) = (a)m, we
have n(é0) = (Ng/(£)) = (a)mg. Since £ € M - L C L, we can write
§ = ax +wy (z,y € ox) and obtain Nk x(§) = a(az? + bxy + cy?). This
completes the proof. g

3.2. Reduction of totally positive definite maximal symmetric
matrices

Hereafter let k£ be a totally real algebraic number field of degree n. We
denote by L, the set of even integral symmetric matrices of degree m, i.e.
Ly ={T = (tij) € Mu(k) | tij = tji € 0,13 € 20r}. We say that T' € L,y
is maximal if it is maximal in £, p = £y, ®,, 0p at each prime ideal p in
the sense of §1.1. For a non-zero symmetric matrix T' = (t;;) of degree m
with entries in k, we denote by m(T') the (fractional) ideal in k generated
by ti; (i # 7) and t;;/2.

THEOREM 3.3. Assume that T € L, is totally positive definite and
mazimal. Then there exists an element v € SL,,(0r) such that the upper-
left (m — 1) x (m — 1) block S of T[] is also mazimal. Moreover we can
take v so that 9y(S) < 1 for all prime ideals p, where 3y(S) was defined in
§1.1.

The proof is given in the next subsection. We prepare a proposition.

PROPOSITION 3.4. Let T be a totally positive definite symmetric ma-
triz of rank m > 2. Then there exist infinitely many prime ideals q such
that T represents m(T')q.

Proof. We shall prove it by induction on m. Without loss of generality
we may assume T' € L,,. The case m = 2 was proved in Proposition
3.2. Thus we assume that m > 3 and the assertion holds for m — 1. For
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A € Sym,, (k) and 1 < i < m, A® stands for the (m—1) x (m—1) symmetric
matrix obtained from A by deleting the i-th row and -th column. We take
a maximal element m; (with respect to the inclusion) of {m(T[y]®) | v €

SLp(0r),1 <i<m}. We may assume that T = [1;1 : } (T € L1—1) and
m(7;) = my. From the induction hypothesis we can take an element v; €

SLy,—1(0k) such that Ty [v1] = [ 2a : , where q; = m;!(a) is a prime ideal

*
[ 24 th
|k Ty
observe that each entry of h is in m;. By the strong approximation theorem
for SL,_1, there exists a ¥ € SL,,_1(0x) such that thy = (c,0,...,0)
(1) 2, 1(™)) is a divisor
of (a,¢) and (a,c) = (m1q1,¢) = (my,c), the maximality of m; implies that
¢ € my. Now we apply our assumption to Tp. We write my = m(7T%). Take
a prime ideal q2 not dividing qim;(det T3) and an element vy € SLy,,—1(0k)

so that T2 [’)'2] = [ 2*b

not dividing detT - det T}. Setting T = T[[ ’)(/)1 (1)}] = ], let us

(mod myq;), where c € 0 is not in q;. Since m(T"|

: and (b) = maqz. Then we have

1 o 2 hip hi3
T”:T'[[O 72]]: thiy 26 hoy |,
his ‘thas has

where hqy € my, hi3 € Ml,m_g(ml), haz € Ml,m_g(mz) and h33 € L_o-myo.
Since (m;,my) = m(T") and m > 3, we have (a,b) = (m1q1, maqe) = m(T).
Therefore our assertion is implied by Proposition 3.2. 0

Remark 3.5. In the case m = 2, Theorem 3.3 follows from Proposition
3.2 immediately.

3.3. Proof of Theorem 3.3

When T is a symmetric matrix of size m, T, stands for the upper-left
r x 1 block of T (1 < 7 < m). An even integral symmetric matrix T € Ly,
is said to be p-normal if it satisfies the following conditions :
(1) T, is mazimal (1 <7 <m) and 8y(T,) =0 (1 <7 <m — y(T)).
(iira)  When p)2, T is diagonal.
(ii-b)  When p|2, t;; = 0 for |i — j| > 2 and t3;2;41 = 0 for 20 +1 < m.
Moreover tp_1m = 0 (resp. tm—2m—1 =0) if nop =1 or (ngyp, (T)) =
(3,1) (resp. (noy, 3(T)) = (3,2).
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We state a local version of the theorem, which is easily obtained from
the Witt decomposition (1.1) and the list (1.2).

LEMMA 3.6. For any mazimal T € Ly, , there exists an element v €
SLy(op) such that T[] is p-normal.

We return to the global situation. Let T' € £,,, and let m be an integral
ideal. We say that T is quasi-normal of level m if for any prime ideal p there
exists a p-normal Sp € Ly, such that T — Sy, € mL,, ;. From the strong
approximation theorem for SL,, and Lemma 3.6, we get

LEMMA 3.7.  Suppose that T € L., is mazimal and m s an integral
ideal. Then there exists an element v € SLy,(0) such that T[y] is quasi-
normal of level m.

We set
(3.4) I@y(m)= {7 € SLy,(ok) ‘ v = diagonal matrix (mod m)}

It is obvious that if T' is quasi-normal of level m, so is T'[y] for any v €
I',,(m). The proof of Therorem 3.3 is reduced to the following proposition.
[T a . .

PROPOSITION 3.8. Suppose that T = i g€ Ly, 18 totally posi-

tive definite, mazimal and quasi-normal of level (2° M), where M=(4 det T')?

and s =m — 171 > 2. We assume that

(a) T, is mazimal,

(b)  8p(Ty) =0 for "p|M,

() 8p(Ty) L1 for p.

Then there exists an element v € Ip(2°7'M) such that T' = T[y] =
! !

1;71',1 ‘g, ] satisfies the following conditions.

(a') T/, is mazimal.

(V) 8y(T!4q) < 8p(T) for "p|M. Furthermore 8p(T} ;) = 0 for "p|M if

s> 3.

(') Bp(T(yy) <1 for Vp.
Proof. From the condition (b), any odd prime divisor of M is coprime

to detT,. Thus there exists a y; € I(2°M) such that T.[y] is quasi-

t
normal of level (2°7'M detT,). Since T[[’y1 1 ]] = [1,::4[?;1] ’Yé,A} is
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quasi-normal of level (2°M), the 7-th row of *y; A is congruent to (x,0,...,0)
modulo 2°M. We can take a o € Is(2°M) such that the r-th row of
ty1 A7y, is congruent to (x,0,...,0) modulo 257 M det T,. We put ty; Ays =
(B1,Bs) (B1 € My 1(ok), By € My s_1(0x)). Taking into account of (a), we
know T [y1]7!By € M, 5_1(0k)2° M. Therefore without loss of generality,
we may assume that

T= [ tq;rl g‘ ] is quasi-normal of level (2571 M)
(3.5) T, is quasi-normal of level (257! M det T})

A= (Al,O),Al € Mr,l(ok)
The conditions (a),(b) and (c) are satisfied.

Now we put

(3.6) T[[lr _T{:lA}]= [7(; %] (R=S-— [Tr—lo[Al] 8] = (Rij))

and calculate m(R). By the definition of the p-normality, ordym(R) = 1
when s = 2 and Jp = 2. In the other cases, we get

-1 if T,71[A;] & 0y and p}2
(3.7 ordpm(R) = ¢ —2ordy2 if T ![A;] & 0, and p|2
0 otherwise.

Since (27'm(R)7'Ry;,M) = o, we have m(R) = m(R) for R\ =
R[[ 1 95 M1, ]. From Proposition 3.4 we can take a prime ideal q
not dividing M det T, and z' € M;(0x) so that (JR'[z]) = m(R)q. Set
z = [ 1 2 M1, ]:c' and take an element X € I';(2°M) whose first column

is z. Finally we prove that 7" = T[ 10T ;} ]] has the required properties.
The determinant of the upper-left (74 1) x (74 1) block T, ; of T" is easily
calculated:

(3.8) (detT!.,) = (2det T,)qm(R).

When p divides M, (a’) - (c’) are satisfied at p because of the p-normality
of T. On the other hand, suppose that p does not divide M. Then p is
prime to 2. By (3.7) and (3.8), we know that ordpdet T, ; < 1. Therefore
(') and (c’) hold. 0
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3.4. Automorphic forms on definite orthogonal groups

Let S be an even integral totally positive definite symmetric matrix
of rank m and G = O(S) the orthogonal group of S (an algebraic group
defined over k). For any prime ideal p, put

(3.9) K} ={k € GLm(0p) | (k= 1)S™" € M (op)}.

and K; = Hp <00 Kp- We denote by G the direct product of Gy over all
archimedean places. Let G(K;) be the space of automorphic forms on the
adele group G 4 defined to be

(3.10)  &(Kj)={f:Ga— C| f(vgk) = f(9)
for "y € G, "9 € G4, k € Goo x K}}.

It forms a finite dimensional vector space with the Petersson inner product

(3.11) <fi,fo>c = / £1(9) f2(9) dg,

G \G
where dg is the Haar measure normalized so that the total volume of
Goo X K; is 1. Hereafter we assume that S is maximal. The Hecke al-
gebra Hy = ®jH(Gy, K}) (restricted tensor product) acts on &(K7})
by the convolution product. In particular the action of its center H} =
®p<co HT (Gp, K;7) is normal with respect to <, >¢ (see §1.2 for the defini-
tion of H™). Take any go € G4 and write

(3.12)  go = YoCoko
(Y0 € GLm(k),Co € GLm(koo), ko = [ Ko, kop € GLm(op)).

p<oo

Then clearly S’ = S[yo] is also a maximal even integral symmmetric matrix.
We define G' = O(S'), K} and K similarly. For any f € G(K7) (resp.
¢ € H(Gy, K})), we define a function f' on G’y (resp. ¢’ on Gy ) by

F(g") = f(rg 75 90) (¢' € Gly)
¢'(¢') = d(kg,9'kop) (4’ € Gy).

’

PROPOSITION 3.9. Let notation and assumption be as above.
(i) The mapping f — f' (resp. ¢ — ¢') gives an isomorphism between
6(K7}) and &(K7F) (resp. H(Gp, K}) and H(Gy, K')).
(ii)  Both isomorphisms are compatible with respect to the actions of Hecke
algebras, namely for any f € &(K7}) and ¢ € H(Gy, Ky) the relation f =
&' = (f x ¢) holds.
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Proof. The first part of the proposition is trivial. We check here the
second part. For any z’ € G';, we have

(&) = [ 1w

=/ F(vox' ko pykg pvo ' 90)b(y " )dy
p

= (f * $)(70z"75 " 90)-
Thus we obtain (ii). 0

Remark 3.10. Under this correspondence, f(go) # 0 if and only if
f'(1) # 0. Therefore to study the L-function associated with f, we may
assume that the upper-left (m — 1) x (m — 1) block of S is also maximal

and f(1) #0.

84. Functional equation of the standard L-function

4.1. Main theorem

As in the previous section, let k be a totally real algebraic number field
of degree n and S € £,, a totally positive definite, maximal even integral
symmetric matrix of rank m. We denote by G the orthogonal group of S.
As in §4.3, we consider the space &(K7}) of automorphic forms on G4 with
respect to K} = [] .o, Ky (Kj is defined in (3.9)). Let f € G(K7) be a
simultaneous eigenfunction of H} = ®), o H*(Gp, K}):

(4.1) fro=Xp(@)f Yo €HN(Gy K}).
Then we define the (global) standard L-function attached to f by
(4.2) L(f;s) = H Ly(Asp;s) (s€C),

p<oo

where Lp(Afp;8) is the local standard L-function normalized in (1.16). As
the gamma factor, we take

(43)  Loolf3) = lde|™/%e ((@2m) =t/ TP (s = j + my2))
o (Ni/q(det S))s/? m : even
(N/q(27" det 5))*/2 m:odd ’

where dj, is the discriminant of k.
Now we state our main theorem of the paper.
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THEOREM 4.1. Let f € G(K;) be a simultaneous eigenfunction of 'H}".
(i) The function £(f;s) = Loo(f; s)L(f; ) 1s continued to C as a meromor-
phic function of s and satisfies the functional equation £(f;s) = &(f;1—s).
(ii) When m =1, £(f; s) is entire. It does not vanish at s = 1/2 if and only
if [ 1s a constant function.
(iii) When m > 2, £(f;s) is holomorphic except for possible simple poles at
s=m/2—k (0<k<m-—1,k€Z). It has a simple pole at s = m/2 if
and only if f is a constant function.

Remark 4.2. Our definition of the gamma factor is slightly different
from that in [4] §1.

To prove the theorem, we adopt the same strategy as in [4], where
the assertion was partially proved. First we check the theorem for m =
1. From the maximality condition, the ideal (35) is a product py---p,
of distinct prime ideals p;. Thus for a simultaneous eigenfunction f €
S(K3), £(f;5) = Niyq(S/2)* /2 [Tj=1(1 + Agp, 0Nkjq(ps)~¢71/2), where
Afp;0(= £1) is determined by the action of —1 € Gy,. Clearly £(f;s) is
entire. Noting that —1 € G} is embedded into G 4 diagonally and hence
that H§=1 Afp;0 = 1, we get the functional equation £(f;s) = &(f;1 — s).
Moreover since f is constant on G4 if and only if Agp. o =1 for all j, the
characterization of constant functions is obtained.

Hereafter we assume that our theorem holds for m and let us prove it
for m + 1.

4.2. Eisenstein series

To describe the basic identity in the next subsection, we introduce an

1
. For

Eisenstein series. Let G1 be the orthogonal group of S; = [ ) S

any prime ideal p, put K7, = {k1 € G1p | (k1 — 1)S;7t € Mpia(op)}. Let

v1,...,Un be the archimedean places of k. We recall the action of Gy, on

D =R™xRJ (R} is the set of positive real numbers). For X = (x,r) € D,
—r — Slz]/2 :

put X~ = x € R™*2. We define the action g<X> of Gy,

1
on D and the automorphy factor j(g,X) € R* on Gy, X D by

(4.4) g- X" =(9<X>)"-j(9,X) (9 € G, X€ED).
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We fix a point Xg ., = (Z0,;,T0;) € D and denote by K7, the stabilizer
subgroup of Xo,,; in G1,y;. Clearly K7, is a maximal compact subgroup of
G1,; and Gl,vi/Kivi =3

Let P; be a maximal parabolic subgroup of G defined by

(87

(4.5) Pl,k={[a 8 :_IMaekx,ﬂeGk}.

By the Iwasawa decomposition for G 4, each g € Gy 4 is written in the
form

(4.6) o= a(g) * *

* k(g),
B(g) a(g)_l] (9)

where a(g) € k},8(9) € Ga and k(g) € [[,<oo K1, For f € 6(K7) and
s € C, we define a function f(g;s) on G1 .4 by

(4.7) f(g;8) = f(B(g)ledg)la,

where |a|4 means the idele norm of @ € k). Then the Eisenstein series
associated with f is defined by

(4.8) E(g,f;s)= Y, flrgss + 2,

2
YEPk\G1,k

which converges absolutely in a right half plane {s € C | Re s > m/2}.
When f is a simultaneous eigenfunction of H7, we introduce the normalized
Eisenstein series by

1 m : even
&k(2s+1) m:odd ’

where £;(s) = |dg|*/? (n=%/2(s/2))™(k(s) is the completed Dedekind zeta
function of k and ro =[], 70,v;-

(49) E*(g, fis) = ri%(fr 5+ DE(g, ;5) X {

PROPOSITION 4.3. Let f € 6(K}) be a simultaneous eigenfunction
of 'H}'. We assume that Theorem 4.1 is valid for f. Then the normalized
Fisenstein series E*(g, f;s) has an analytic continuation to C as a mero-
morphic function of s and satisfies the functional equation E*(g,f;s) =
E*(g,f; —s). Furthermore, it is holomorphic except for possible simple poles
at s=m/2 —k (0 <k <m,k € Z) and the residue at s = m/2 is given by

Res &(f;s) m: even

* LN —m/4 s=m/2
sBﬁ?zE(g’f’s)—m f(1) x 35325(10;3)5(25) m - odd
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Proof. Tt is enough to calculate the constant term of Eisenstein series:
Eo(g, f;5) = / E(ng, f; s)dn
N1,k\N1,4

= f(g;s +m/2) +/N f(wng; s +m/2)dn,

where N; is the unipotent radical of P and w =

1
. 1m . From

Corollary 1.10, we obtain

(o))
EO( ﬂO _1] >f;3)
Qg
e L(f; ) 1 m : even
= F(Bo)lwo|™ + D2 L ((25) .
A L(f,8+1) m m : odd

x|di| "™ 2|ag 113 ™2 £ (Bo)

e 1 —tzS —S[z]/2 | | o,
x]__I/Rm |a(w[ 1n 2 Bowi  _, )™/ 2 de,
=1

aO,vi

where aq s (resp. agy;) means the finite part (resp. the v; part) of . We
can easily see that the last integral is equal to

(2m)™2 ()
I'(s+m/2)"

Therefore we know that the constant term of E*(g, f;s) is

ro 51000, 7™ det S| /2

1 m : even

r(s,/z{(f; s+1) { €x(2s+1) m:odd } flgss +m/2)

1 m : even

+7‘o—s/2€(f;3){ £x(25) m : odd }f(g;—s+m/2)-

From the assumption for f, we obtain the proposition. 0

4.3. Basic identity and the end of proof

Let T = [ ——ti g __gg ] € Ly+1 be maximal and totally positive def-

inite. We denote by H the orthogonal group of T' and put Uy = {u €
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Hy | (w—1)T7' € Mpti(op)}, U = [My<coUp- Let F € &(U7) be a
simultaneous eigenfunction of ®} . H*(Hp, Uy). We shall prove the asser-
tion in Theorem 4.1 for F. In view of Remark 3.10, we may assume that
F(1) # 0 and S is also maximal. Let us embed G = O(S) into H = O(T)
and H into Gj, similarly as in §2.3. For each archimedean place v, we
take (a,—A/2) (A = Si[n] = 2a + S|a]) as the origin Xo, € D. Then
WUy) = «(Hp) N K7, «(Hy) C KT, and j(¢(h), Xo,y) = 1 for any h € H,.
Take any simultaneous eigenfunction f € &(K7}) and introduce the (global)
Shintani function Wp ; associated with F' and f by

(4.10) W s(h) = / Fuo(g)h)f(g)ds.

Gr\Ga

We can prove the next theorem is proved quite similarly as in [4, Theorem
1.5].

THEOREM 4.4. (Basic Identity)

def

Zrye) 2 | . OB, i3 1/2)dh

= [ Waslio(BGm) Wl m) " .
Ga\Ha
By using Theorem 2.11, we know that

(4.11) F(R)E™(u(h), f;s —1/2)dh = c&(F;s)Wrs(1) (c#0).
H\H 4

Since F'(1) # 0, we can take a simultaneous eigenfunction f € G(K7}) so
that Wg¢(1) = <F|g,, f>c # 0. Therefore combining Proposition 4.3 and
(4.11), we obtain the meromorphic continuation, location of possible poles
and the invariance of £(f;s) under s — 1 — s. Noting that <F,1>p # 0
(1 means the constantly 1 function) if and only if F is a constant function,
we get the characterization of the holomorphy of £(F';s) at s = (m +1)/2.
We have proved Theorem 4.1 completely. 0
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