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ON STANDARD L-FUNCTIONS
ATTACHED TO AUTOMORPHIC FORMS ON

DEFINITE ORTHOGONAL GROUPS

ATSUSHI MURASE AND TAKASHI SUGANO

Abstract. We show an explicit functional equation of the standard L-function
associated with an automorphic form on a definite orthogonal group over a
totally real algebraic number field. This is a completion and a generalization
of our previous paper, in which we constructed standard L-functions by using
Rankin-Selberg convolution and the theory of Shintani functions under certain
technical conditions. In this article we remove these conditions. Furthermore
we show that the L-function of / has a pole at 5 = ra/2 if and only if / is a
constant function.

Introduction

The purpose of this paper is to prove a meromorphic continuation and

a functional equation of the standard L-function attached to an auotomor-

phic form on a definite orthogonal group. In our previous paper [4], we

have proposed an approach to construct standard L-functions associated

with automorphic forms on classical groups. In particular, we proved an

explicit functional equation of the standard L-function in the case of def-

inite orthogonal groups over Q under certain conditions. In this paper,

removing those technical conditions, we obtain a satisfactory result for the

functional equation of the standard L-function.

To be more precise, let k be a totally real algebraic number field with

maximal order Ofc. Let S G Mm(θfc) be an even integral (totally) positive

definite symmetric matrix of rank m > 2 and assume that 0™ is a maximal

Ofc-integral lattice with respect to 5. We denote by G the orthogonal group

of S. For each nonarchimedean place p, let Kp = {g G Gp \ (g — l)S~λ G

Mm(θfc5p)}, where Gp is the p-adic completion of G. Clearly Kp is a normal

subgroup of a maximal open compact subgroup Kp = Gp Π GLm(θfc5p). We

consider the space Θ(UΓΪ) of left G^ and right GQQ Πρ<oo ̂ -p iϊiVcLrisLΠt func-

tions on the adelized group GA of (?, where GQQ means the direct product of
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Gv over all archimedean places υ. Then the Hecke algebra Hp = 7ί(Gp, K?)

of the pair (Gp,Kp) acts on the space Θ(ίfί) naturally. Notice that Tip is

not commutative in general. We say that / £ Θ(lfί) is a Hecke eigenform

if / is a simultaneous eigenfunction of Wjj~, the center of Wp, for all p. For

a Hecke eigenform /, we denote the local standard L-function by Lp(/; s),

which is normalized in (1.16). At the archimedean places, we introduce the

gamma factors Loo(/; s) as in (4.3). Our main theorem is as follows.

THEOREM. Let f £ Θ(ATΪ) be a simultaneous eigenfunction of 7ί^

for all p. Then the (completed) standard L-function £(/;s) = Loo(/;s)

Πρ<oo -kp(/; s) is continued meromorphically to the whole s-plane and in-

variant under the transformation s t—>- 1 — s. It is holomorphic except for

possible simple poles at s = ra/2 — k (0 < k < m — 1, fc £ Z). Further-

more, £(/; s) has a simple pole at s — ra/2 if and only if f is a constant

function.

We prove the theorem by an induction on m. Let T £ Mm+i(θfc) be an

even integral positive definite symmetric matrix and S the upper left mxm

block of T. We assume that o]™+1 (resp. o™) is a maximal lattice with

respect to T (resp. 5 ) . We embed G into the orthogonal group H = O(T) in

a natural manner. Let F (resp. / ) be a right Hoc Y[p Up (resp. G^ f L Kp)

invariant automorphic form on HA (resp. GA). We assume that F (resp.

/) is a simultaneous eigenfunction of the Hecke algebra of the pair (iϊp, Up)

(resp. (GpjKp)) for all nonarchimedean place p. Under the condition

[*] Kp C Up := Hp Γ) GLm+ι(θp) for v p < oo ,

the main result of [4] asserts that the identity

(0.1) / F(h)E*(hJ s-1/2) dh = c <FJ>G ξ(F;s)
JHk\HA

holds. Here E* stands for a normalized Eisenstein series on the orthogonal

group O(S\) of degree ra + 2 and < F,f >Q means the Petersson inner

product. Since the analytic continuation and the functional equation of

E*(h,f\s) is obtained from those of ^(/ s), our theorem is valid for F if

To complete the induction argument, we need to remove the condition

[*] , which is not always satisfied, and to take an / such that <
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t0. This is why we introduce subgroups Kl and consider right G^ ]̂ L Kt

invariant automorphic forms. Actually, the inclusion

κ; c u; := {u e u; \ (u - i)τ-λ e Mm+ι(ok,p)}

is always satisfied. Moreover, the identity (0.1) holds for any Hecke eigen-

forms F G 6(£/*) and / G &(K*f).

We now give a brief account of the paper. In §1, we determine the

structures of Hp and its subalgebra Ήp respectively (Theorem 1.3) and

describe the Satake isomorphisms (Theorem 1.8). After introducing local

standard L-functions, we calculate certain integrals needed in §4. In §2,

we define certain norm functions on G, which appear in an integral expres-

sion of local L-functions (Theorem 2.10). We recall the definition of local

Shintani functions and prove an integral formula for them, which follows

from several properties of norm functions. The object of the next section is

to prove a crucial fact about arithmetic of quadratic forms (Theorem 3.3),

which enables us to take an / such that < JF, / >GΦ 0. Namely we show

that, for any even integral, maximal, positive definite symmetric matrix T

of rank m + 1 , there exists an element 7 in SLm+ι(θk) such that the upper

left mxm bolck of T[η\ satisfies the maximality condition. In §4, our main

result is proved by combining the result of Eisenstein series (Proposition

4.3) and the basic identity (Theorem 4.4) together with local results proved

in the preceding sections.

NOTATION. For a ring i?, we denote by Symm(iϊ) the set of symmetric

matrices of degree m with entries in R. For S G Symm(i?) and 1 , 7 E

Mm,n(R), we put S(X,Y) = ιXSY and S[X] = S(X,X). For an algebraic
group G defined over an algebraic number field k and a place v of fc, we

denote Gv (resp. GjCj the completion of G at v (resp. the adelization of

G).

§1. Hecke algebra

1.1. Preliminaries
In this subsection we recall several facts on quadratic forms and or-

thogonal groups over local fields. Let έ be a nonarchimedean local field

with characteristic different from 2. We denote by 0 the maximal order of

&? by p = (p) the maximal ideal of 0 and by q the order of the residual

field. We normalize the valuation | | = | |p of k so that |p| = q~ι and
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put oτdp(x) = — logg(|a;|) for x G kx. A non-degenerate symmetric ma-

trix 5 = (sij) G Mm(k) is said to be even integral if Sij G 0 and sa G 2o

for 1 < z,j < ra. We say that 5 is maximal if L = o m is a maximal

o-integral lattice with respect to 5; namely, there is no integral matrix

g G M m (o) Π GLm(k) - GLm{p) such that Ŝ flΓ"1] is also even integral. We

denote hy L* = S~ιL the dual lattice of L with respect to S. From now

on we assume that 5 is maximal. Taking a suitable o-basis of L, we may

assume

(1.1) So

G GLv{k) (1 appears v times),

where v — v(S) = Vp(S) is the Witt index of S over k and SO is an

anisotropic maximal even integral matrix of size ΠQ : no = no(S) — no^(S)

= m—2v. It is well-known that 0 < no < 4. From the maximality condition,

L' = {x G L* I S[x]/2 G p" 1 } forms a lattice and L'/L admits a structure

of a vector space over o/p equipped with a non-degenerate quadratic form

|j?5[x]. We denote its dimension by d = d(S) — dp(S). For the sake of con-

venience, we quote the list of maximal anisotropic even integral symmetric

matrices following Eichler [1, Satz 9.7].

(1.2) List of maximal anisotropic even integral symmetric matrices

n 0

0

1

1

2

2

2

3

3

4

d

0

0

1
0

1

2

1

2

2

So

2s

2ps
sSk0/k

sSki/k

PsSko/k
2ps Θ s'Sko/k

2s®ps'SkoLk

sSko/kΦps'Sko/k

ordp(det5o)
0

e

e + 1
0

2/ (1 < / < e) or 2e + 1
2

e + 1
e + 2

2

XMH(SΌ)

1

1

1

1

±1
- 1

- 1

- 1

- 1
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Here e = ordp(2), χM H stands for the Minkowski-Hasse character and s, s' G

o x . For a quadratic extension k' over fc, identifying its maximal order with

o2, we put Stfβ(X,Y) = Trjfe//fc(XY). In the above list, fco (resp. fci) is the

unique unramiίied quadratic extension (resp. a ramified extension ) of k.

Let G be the orthogonal group of S and put

(1.3) K = GΠ GLm(o) > K* = {geK\(g- 1)L* C L } .

First we consider the structure of the quotient group E = K/K*. We

denote by Aut(L*/L) the set of o-module isomorphisms σ of L*/L such

that 7j;S[σ(x)] = ^S[x] (mod o) for any x G L*. Each u G K defines the

element φ{u) G Aut(L*/L) by φ(u){x) = ux (x G L*).

PROPOSITION 1.1. TΛe mapping φ is an isomorphism beteween K/K*

and A\xt(L*/L). Furthermore

( {1} ifd = O

AvΛ(L*/L) S < Z/2Z if d = l

{ Dq+1 ιfd = 2,

where Dq+i is the dihedral group of order 2(q + 1).

Proof. It is obvious that φ is an injective homomorphism. To see the

surjectivity, we may assume that 5 is anisotropic because of (1.1). We can

check the surjectivity case-by-case following the list (1.2). For example,

we consider the case (no, d) — (2,2). Let fco (resp. Oo) be the unramified

quadratic extension field over k (resp. the maximal order of &o) We set
r 2 L 1

S = p 5fc0 /k = p , 9 L where {1, ω} is an o-basis of Oo and ω2 — bω +

c = 0 is the minimal polynomial of ω over k. Take any σ G Aut(L*/L)

and put σ( J L" 1 ) = J p " 1 (modi). Since Nfco/fc(oo

x) = o x , we

may suppose that x + ωy is in OQ = {α G OO | Nfco/fc(α) = 1}. Then

9x+ωy = X

y χ~~+y

by is in K and σ1 = φ(gxjrωy)-1σ stabilizes Q

modulo L. It is easily seen that σ'( -

(mod L), namely σ' = φ{l) or φ{ \ ~ _^

? P-1

l r o r i - i V
- 1

). Therefore we know that φ is
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surjective. Moreover from the above argument, Aut(L*/L) is isomorphic

to the semidirect product of 0^/(0^ Π (1 + po0)) = Z/(q + 1)Z and the

Galois group of ko/k. The other cases are treated similarly. Π

From now on we suppose that 5 is of the form (1.1). When we need to

emphasize the Witt index z/, we write ί/asa suffix; G = Gv, K = Kv, L — Lv

etc. For αχ ? . . . , av G fcx and u £ GQ = KQ, we put

u , - 1

Hv = \9 — d(a>ι,..., av\ u)

• αΓ 1

, . . . , av G fcx,ix G ϋΓo K

and

5 =
U\

n\

* *

1

Identifying it G ίίo with d ( l , . . . , 1; u) G iί^, we have Kv — KQK* because

of Proposition 1.1. For an n-tuple r = (7*1,..., rv) G ϊv and u G KQ, we set

(1.4) j , a n d π Γ = τr Γ | i G A^.

From the usual Iwasawa and Cartan decompositions Gv — NvHvKυ —

KVHVKV, we have

PROPOSITION 1.2. The following Iwasawa and Cartan decompositions

hold.

(i) Gv = NvHvKt=

(ii) Gv = K*vHvKl=

where E = # „ / # * and Av = {r = (r i , . . . , TV) € Z" | rx > > rv > 0}.
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1.2. Structure of Hecke algebra

We denote by Ίi = Hv = H(G,K*) the Hecke algebra of the pair
(G, if*). Namely, W is the set of compactly supported, bi-if-invariant
C-valued functions on G. Then 7ί forms a C-algebra by the convolution
product:

(1.5) [
JG

where dy is the Haar measure of G normalized so that the total volume
of K* is 1. For any g G G, we denote by / ^ the characteristic function
of K*gK* and we put / r ? ε = f[πr e]- Proposition 1.2 says that {fr,ε | r G
yl̂ , ε G i? = K/K*} forms a C-basis of 7ΐ. We introduce a subalgebra of 7ί

by

(1.6) H+ = HΪ = H+(G,K*) = {feTί\ f{u-ιgu) = f(g) for v<z € A"}.

Our aim in this subsection is to determine the structures of 7ΐ+ and
H. Let B = C[E] be the group algebra of E = # „ / # * = i^o/^o o v e r C

and Z ( 5 ) its center. Let Xi,...,-XΊ, be independent variables over C and
C[X^, . . . , X^] the polynomial ring generated by Xi, X-j"1,..., X^, X~ι

over C. Then β[Xf, ...,X±]=B®C C[Xf,..., X±] forms a C-algebra
naturally. We denote by VΓ̂  the group of automorphisms of B[X1 , . . . , X^\

generated by all permutations of X\,...,XV and σ{ : X{ —> X~[ι,Xj —>

For / G ̂ , h e Hu,r eZu and ε G £ , we put

(1.7) φf{h) = δ(h)1'2 ( f(hn)dn and Φ/(r,e) = Φ/(πPje),
/AΓ

where dn is the Haar measure of iV̂  normalized so that the volume of

Π K* is 1 and

(1.8) ί(Λ) = d{hnh-ι)/dn for

THEOREM 1.3. Through the mapping

the Hecke algebra Ήv (resp. Ή^ ) is isomorphic to the algebra B[Xγ,...,

X±]w > (resp. Z{B)[Xf,.. .,X?]Wv ) of Wu-invariant polynomials.
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Proof. Clearly Φ is a C-algebra homomorphism of Ήv into
X^]. To see the injectivity and to determine the image of Φ, we trace the
argument in Satake [5, §6]. For h = rf(αi,..., av\ ε) G Hu, we put

(1.9) D(h) = U\1- a-W |1 - a~ιaf\ f[ | det(l - e^αf *)l
i<j t=l

When D(fo) ^ 0, Π H h~ιn~ιhn gives a bijection from TVj, to itself and
V

d{h-ιn-χhn) = £>(/ι)dπ. Because of <5(/ι) = J J |αi | 2^- ί + τ l 0/ 2>, we know
i=l

that

=f D{h)8{h)χl2

V

= Π lα* + α^rl - (αi + α7x)l Π

is invariant under the Weyl group Wv and the conjugation by u 6
ε ι-> u~ιεu. If D(/ι) / 0 and / G W+, then

/
AV\GV

f άu.

Thus we obtain Φf(wr, u~1εu) = Φ/(r,ε) (/ G W+, t^ G W ,̂ u G ϋfo) and
Φ(W+) <zZ{B)[Xf,...,X±]w". Let { Ci,...,Cz } be the set of conjugate
classes of E and put eι = \_] ε* Then it is well-known that {ei,..., e{\

forms a C-basis of Z{B). Therefore as a C-basis of W+ (resp. Z{B)[K±)W^)

we can take {^/ r,ε | r G Λ,,, 1 < i < 1} (resp. {ef ]Π X^ r | r G Λ ,̂ 1 <

* ^ 0) The representation matrix of Φ with respect to these bases is upper
triangular and non-degenerate. Therefore we get the bijectivity of Φ \ 7ί+.
Using the fact that fr,ε * /[e/j = /r,εε' a n d Φ(f[ε]) = ε> we similarly obtain
the surjectivity of Φ. Π

Remark 1.4. It follows from Theorem 1.3 that H^ is the center of Ήv.

1.3. Zonal spherical functions
We say that a function ω on Gv is a zonal spherical function on Gv
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(z.s.f. for brevity), if it satisfies the following conditions.

(i) ω(uχxu2) = ω(x) vui,U2 € K*
(ii) ω{u~ιxu) = ω{x) vu 6 Kv{
(iii)

(iv)

v

From the definition, Cω(f) — \ ω(x)f(x~1)dx defines a character of 7ί£
JGU

(a C-algebra homomorphism of Ή.^ to C). As in the usual bi-if-invariant

case, a z.s.f. ω is uniquely determined by its character Cω up to a constant.

Indeed, the following assertion holds.

LEMMA 1.5. Let φ be a bi-K*-invariant function on Gμ. If φ satisfies

φ(u~ιxu) = φ(x) for any u G E and (φ * /)(1) = 0 for any f G T~C^, then

Proof. Our proof is quite similar to that in Tamagawa [7, §2]. Take

any continuous function / on Gv with compact support and put

f°(x) = f f f(u1xu2)du1du2 and foo(x) = \E\~ι V f^xu).

Clearly f° G Ήv and / 0 0 G W$. From our assumption we have

ί f
0 = / ψ{y )f (y^jdy — \E\ / I ψ\y )/ (u yu)dy

= \E\-^JG φ{uy-lu-ι)f\y)dy = j φ(y~1)f(y)dy

= / / / φ{y~l)f(u\yui)duιdu2dy = / φ(y'1)f(y)dy.
I f1 I IS* I IS* Iί^1

Thus we get φ = 0. Q

Now we construct all zonal spherical functions. Take any irreducible

representation p of E with underlying vector space Vp and denote by χp

(resp. rip) the character (resp. the degree) of p. The same letter p is used

for the corresponding representation of the group ring B. For a z/-tuple
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λ = (λij. .jλj,) of unramified characters of fcx, we define an End(Vp)-

valued function φχ^p on Gv by

V

(1.11) Φχ,P(hnu) = p{ε)δ{hγl2 J ] λ K)

/2 G End(Fp),

2 = 1

where /ι = d(αχ,.. ., α^; ε) G £Γi,, n G iV^ and u G K*. Clearly

(1.12) φχ,p(hoguo) = Φ\,p(ho)φ\iP(g)ρ(uo) for Λo G i ϊ ^ ^ o € i ^

LEMMA 1.6. For any f G Wy,

JGU

In particular, CχiP(f) G C /or / G W+.

Proo/. For x = honouo (ho G Hv,no G Nu,uo G if*), we have

* /)(») = / Φ\P(y) f(y~lfιono) dy= Φx,P(honoy) f{y~l) dy
JGV JGU

and hence get the first assertion. If / G 7ί£, for any u G E,

CxM) = ί ΦλΛuyu'1) fiuy^u-1) dy = p{u) CλlP(/) pin)'1.
JGV

Since p is irreducible, we have CχiP(f) € C. D

We define a C-valued function on Gv by

(1.13) ωXiP(x) =
n

LEMMA 1.7. T/ie function ωχ^p is a zonal spherical function corre-

sponding to the character Cχp.
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Proof. It is clear that ωχ^p is bi-if*-invariant and ω\φ{l) = 1. For any

u £ E we have

ωχp(uxu~1) = — / tτ(φ\ p(vuxu~ι))dv = — / tτ(φ\ p(uv'xu~ι))dv'

= — / tτ{p{u)φχ^{vx)p{u)~1)dv = ωx,p(x).
nP Jκ;

Finally for any / £ W+, by Lemma 1.6,

(<*>ΛϊP*/)(a0= ' — tr(φχ}P(vy)) f(y-1x)dydv
JGU

 UP JKt

= — / tr{ / ^

and hence our assertion is proved. Q

Let {Ci,. . . , Q } be the set of conjugate classes of J5 and p be an irre-

ducible representation of E. Then

(1.14)

gives a C-algebra homomorphism of Z(B) into C. Conversely every C-

algebra homomorphism of Z(B) is obtained in this way. Therefore we get

the following theorem.

THEOREM 1.8. Any C-algebra homomorphism A of 7ί^ into C comes

from the character corresponding to a zonal spherical function on Gv. In

particular, there exists a v-tuple λ = ( λ i , . . . , Xu) of unramified characters

of kx and an irreducible representation p of E such that A = C\p, where

λ {resp. p) is uniquely determined modulo Wu (resp. up to equivalence).

We call (λ, p) the Satake parameter of A.
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1.4. Local standard L-functions

From Proposition 1.1, E has a unique cyclic normal subgroup C of index
2, if d > 1. We denote by p\ the one dimensional non-trivial representation
of E whose restriction to C is trivial. For an irreducible representation p of
E, we define a number λo = λo(p) by

1 if p is trivial
(1.15) λ o (p)= { - 1 if p = Pi

0 otherwise.

In particular λo(p) = 1 (resp. λo(p) = ±1) if d = 0 (resp. d — 1).
Let A be a character of Ή^ and (λ,p) the Satake parameter of Λ

(λ = (λi,... ,λI/),λo = λo(p)). We define the local standard L-function
of A by

(1.16) Lp(Λ; s) = Lj(Λ; s)APjP(s) (5 e C),

where

(1.17) £j(Λ;s) =

and

(1.18) Ap,p(s)

) = (0,0)or(l,0)
(no, 9) = (1,1)

(1 — λoζf s) 1 (no, d) = (2,1)
(1 — λoq~s)~ (1 + λo#~^s~ )̂ (̂ o? 9) = (2, 2)

(1 - λ o ϊ - ^ ^ Γ H l + λ 0 ς- ( s - 1 / 2 ) ) (no, 9) = (3, 2)
(1 - λog""5)"71^ ~ λog""(β+1))"'"1 (no, θ) = (4, 2) and λ0 7̂  0
(1 - q~2s)~ι (no, d) = (4, 2) and λ0 = 0

Note that our definition agrees with [4, (1.6)-(1.8)] in the case λo = 1.
The rest of this section is devoted to the calculation of a certain integral,

which will be used to study the constant term of Eisenstein series in §4.2.
Let μ = (μi,. . . , μu+i) be a (ẑ  + l)-tuple of unramified characters of kx and
p an irreducible representation of E = KQ/KQ. For an x £ Vv — k2uJrno, we
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put

(1.19) n(x) =
1

x

L

. -Sv[x]/2 -

THEOREM 1.9. When \μi(p)\ < \μj+i(p)\ <

, (-( WJ A (Λ\T\
 ι ~

μ,p{n{X))dx = φμ,p{\) [[

τv+l-

1 ! (1 < j < v),

_ i

, 1 ί (1
Ί - μ ? ( p ) l l -

(1 + μoμi(p)qd-no/2)(l ~ μoμi(p)q-no/2) Mo φ 0

where φμ^p (resp.μo — λo(p)) is defined in (1.11) (res;?.(1.15)) and the Haar
measure dx on Vv is normalized so that the total volume of Lu is 1.

The following corollary is a direct consequence of Theorem 1.9 and the

definition (1.16) of the standard L-function.

COROLLARY 1.10. Let Λ be a character of 7ί+ and (λ,p) its Satake

parameter. Let μ be a (y + 1)-tuple of unramified characters defined by

μ = ( | * | s , λ ) ( s e C ) . Then

L
1 no : even

no : odd,

where ζp(s) = (1 — ,-s\-l

Proof of Theorem 1.9. We shall demonstrate our assertion following the

argument of Langlands [3, §5]. We introduce several subgroups of N =

{n(x) I x £ Vv}\

Ni =

(1.20)

Then

n = {n(

evv-t
and

! ) (0 < » < i / ) .

^ = {i}
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For these subgroups M of JV, we put

(1.21) Δμ
M

where the Haar measure dm is normalized so that the total volume of M Π
K*+1 is 1. First using the decomposition

v-1 0
1
0
V

0

1
0

—v
1
0 1

1
0
V

0

0
V

1
0

0
- 1

- 1

V
0

0
1
0,

v~ι

we have

, - 1 /

(1.22) Δμ,p{Nj-i) = Δμ>p(Nj) x -j-2-

(i; € k - o),

(1 < j < ")•

Secondly we consider the relation between Δμ^(Nv) and ΔμiP{Nl). Note
that for a G ^ o " ^o5

n(

where

p(x) =

C 1 0

) =p(x)k(x),

0 - 1
0 0
0 -x

lu 0

0
0
0
0

.-1

0
lu
0
0
0

0
0
εx

0
z-uxSoεx

0
0
0

lu
0

- 1
0

zχlχ

0
k(x) =

= SQ[X}/2 and ε x = 1 — zx

 1xtxSo € KQ- Since

V-l^rn(
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1 0

U

0

yz~nχS0

ιyJu
-yz-uyJv

-xzx

ιyJv

lu

0 "

-y
0

0

1

n(

• y z - i -

0
0

we have

x

= Δμ,p(Nl) x {l + ?-no/Vi(p) +

where we set

and = /
JLO-L'O

/
LO-L'OP

The next lemma will be proved at the end of this section.

LEMMA 1.11. Notation being as above, we have Ao — (qd — l)μo

Aι = 1 -qd-n°.

Therefore we get

(1.23) Z V P T O

_ ΔμtP(Np f (1 + μoμi(p)?a-n o / 2)(l - /xoμi(p)g-no/2) μo φ 0

Finally taking account of

l ol ϊv-1 l l Γo - l 1 , _ , v

we have

(124) Δ (W)-Δ f l 1 9

1 -
(1 < j < ^)

Combining (1.22) - (1.24), we get the theorem. •
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Poof of Lemma 1.11. Take any x G Lo~Lf

op and α G LQ Since ^

we have (1 — εx)a = z~1xtxSa G Lo, and hence we have ε x G ϋΓg

4̂X = vol(Lo — LQP) = 1 — qd~n°. Now we consider τ4o. It is easily seen that

€XKQ = εx+l/i^Q for a: G LQ - Lo and y G Lo Thus we have

xe(L'o-Lo)/Lo

We evaluate the sum by a case-by-case argument. For example, we con-

sider the case (no, 8) = (2, 2) and use the same notation in the proof of
r I

Proposition 1.1. For x = \ * \p~ι in L'o — Lo, we have
L J

1 0 0 0

—X-, + cxn —2x\X2 — bx2

y^ -==i i £ y ^^ £ ^
T* 1 ΠT*-! T*r> I ΓΉf Φ I ΓIΦi T*r» 1 /Γ"Ύt

Being C the unique cyclic normal subgroup of E = D^+i of index 2, we

know

Therefore our assertion follows from the definition of μo in (1.15). D

§2. Norm functions

2.1. Definition and properties of norm functions
Keep notation in the previous section. First we introduce a function μ

on Mm(k) by

(2.1) μ(g) = Σ \βi\,

where ( p β l , . . . , p β r , 0, . . . , 0) is the elementary divisor of g in Mm(k). Note

that p~^9^ coincides with the o-module generated by o and all minors of g.

The following properties are elementary.

LEMMA 2.1. (i) μ(g) < μ if and only if there exists an element

A G M m (θ) such that ordpdet A = μ and Ag is in M m (o).

(ii) For gug2 G Mm(k), μigm) < μ(gi) + μίtfO

(iii) For g G Mm(fe) and g' G Afm/(fe), μ( ί jj *, 1) > μ( f l) +

(iv) For # G Mm(fc) and A G Afm(o), μ(g + A) = μ(g).
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Let S be a non-degenerate even integral symmetric matrix of rank m

and G the orthogonal group of 5. We set K — G Π GLm(o) and if* = {u £

K I (u - 1 ) 5 - 1 G M m (o)}. We do not suppose the maximality of S in this

subsection. We define the norm function μc on G by

(2.2) μG(g) = μ((<? - l jS" 1 ) for 5 e G.

Evidently μdg) = 0 if and only if g G if*.

PROPOSITION 2.2. (i) μcig'1) — μσig) for g e G.

(ii) μc is bi-K*-invariant and μc{u~ιgu) = μdg) for u G K.

(iii) For gug2 G G, μG{9ι92) < μσ(ffi) + μσ(ff2)

lΓ l
(iv) VFe j9^ί 5i = 5 αnrf Gλ = O(Si). TΛen for a e kx and

βeG, Γ 1

Proof. Since (̂ f"1 —1)5~1 = 4((p —1)5~1), we get (i) from the definition

of μ. For any uι,U2 G if*, (u\gu2 — l)S~ι = u\(g — l)u2S~ι + {u\U2 — 1)S~"1.

Thus from Lemma 2.1 (iv), we have μG(v>igu2) = μ{u\{g — l)S~ltU21) =

μdg)- Similarly for u £ K, μG(u~ιgu) = μ(u~1(g — l ) ^ ^ " 1 ) = μ((<7 —

l)5~ l t /u~ 1) = μdd) and we obtain (ii). To see (iii) we take an A\ (resp.

A2) in M m (o) such that ordpdet A\ = μG(gi) (resp. ordpdet A2 = MG(^2))

and Ai(<7! - l ) 5 - χ G Mm(o) (resp. (</2 - l ) ^ - 1 ^ G M m (o)). Then

- l)S-ιS(g2 - 1)5- 1 A 2 +A 1 (^ 1 - l)S~lA2

is in M m (o) and hence μG(gi92) = ^{A^BA^1) < μ{A~^1) + μ(B) +
x) = μσigi) + MG(^2) Finally by using Lemma 2.1 (iii), we get

a * *
8 *

α - 1 * *

•'-1 J L

> //G(/3) + ̂ (α - 1 ) 4 - μ{a~ι - 1) = /iG(/3)

and our assertions are proved completely. Π
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Now we take a non-degenerate even integral symmetric matrix Γ =

-2α ° f Γ a n k m + X a n d p U t ff = °^T^ W β e m b e d G i n t o ^
through £o given by

(2-3) *o0r)= [g ( 1 7 ) α ] (J6G).

PROPOSITION 2.3. For g e G, μdg) — μii(ι<θ{g)) In particular,
LO{K*) = U*Π io(G), where U* = {u € H \ (u - I)!7"1 € Mm+1(o)}.

Proof. Since T - ! = [ J J ] [ 5
Q' _ ( 2 α + ° 5 [ α ] ) - i ] [ ̂  J ] , we get

(Lo(g) — 1 ) T - 1 = ^ ) ^ and hence our assertion is verified. Π

Remark 2.4. In [4, Lemma 4.3], we proved μ{g) = μ(to(g)) under a
certain condition, which is not satisfied in general. This is a reason why we
now use μc instead of μ.

2.2. Parametrization
From now on we assume that 5 is maximal in the sense of §1.1. Put

L = o m C V = km and denote by L* the dual lattice of L. For a primitive
element η € L* with Sfy] ^ 0, we put

(2.4) Vη =

We denote by G^ the stabilizer subgroup of η in G. Our aim in this subsec-
tion is to give a double coset decomposition Gη\G/K* explicitly. For / G Z
we putp

(2.5) G(η; I) = [g 6 G pl €

where L^τm stands for the set consisting of all primitive elements in X*.

Clearly G(η\ΐ) is left-G^, right-if invariant.

LEMMA 2.5. Assume that Lη is a maximal o-integral lattice with re-

spect to the restriction of S. Then

(i) G ]}

(ii) Min μG{g) = Z.
geG(mi)
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Proof. The first part was shown in [4, Proposition 3.9]. We shall

prove (ii) for / > 1 (the assertion is trivial for / — 0). For g G (7(7/;/),

(g-1 - l)S-λ Sη = g~ιη - η <£ L p-C" 1) and hence (g'1 - l j S " 1 £

Mm(o) -p-(ι-χ\ Thus we know that μG(g) = μ((g~λ - l ) ^ " 1 ) > I. Let us

show the existence of g G G(η;ΐ) such that μdd) = J Taking a suitable

o-basis of L we may assume 5 = S' and η =

G φ K implies that S is isotropic. Then Mi =

required property.

We set

= < u G K (u — I)?/ E l f and

= < 77 G L

V
-i

a

V

, because

has the

D

i5[V] = %S[η] (modo)}
(2.6)

It is clear that K^ is a subgroup of K containing UΓ* and Lvu is a union

of several L-cosets in L*. For x G V with S[x] φ 0, we put

(2.7) zx = -S[#] G fcx and ε x = 1 — z~1x<x5 G G.

LEMMA 2.6. TΛe mapping φ \ u \-+ uη gives a bisection between

Proof. Clearly ψ is well-defined. If φ(u) — φ{v!) for u, v! G K, then

u~λu'η — η = u~1(ufη — uη) G L. So we know that φ is injective. Take any

ηf G Z^) such that x = η — η' & L. Then we easily know that x G Lp~ι,

z>x £ p - 1 o x and εx G i ί . Since

(^(ε^) =η-zx

 1x(zx - zηι + ̂ ) = V (mod L),

we get the surjectivity of φ.

Combining Proposition 3.9 in [4] with this, we obtain

D

PROPOSITION 2.7. Let S be maximal and η primitive in L* with S[η] Φ

0. We assume that Lη is a maximal o-integral lattice with respect to S\Lη.

Then
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(i) G(η] I) = GηMιK* (I > 1) and

(ii) G(η; 0)= GηuK* = ^K* ]} GηK*,

where Mi is an element in G(η; I) such that μc(Mι) = I and eη-ηι is defined

in (2.7).

We say that g £ G is minimal {with respect to η) if μc{d) £ βG{dog)

for any go £ Gη. For g £ G{η;ΐ) with Z > 1, g is minimal if and only if

μc(g) = ί.

2.3. Norm functions and the Iwasawa decomposition

Let 5 (resp. T = t c o ) be a maximal even integral sym-
— Qfo — L a

metric matrix of rank m (resp. m + 1). Then Si =

maximal. We put

L = o m ,

is also

I = 0Λ
m-fl r

= 0 , Li =

k,V = L <S)0 k, W = M

G = O{S), K = G

K* = {ueK\{u- l j S " 1 £ Mm(o)},

a

(u - l)5f x € Mm + 2(o)},

k = 2α + 5[α] € fcx,

We embed V into W (resp. W into V\) by jΌ (resp. ji) :

(2.8) jo(y)= ^ J and j( y

z
(ϊ6^6i).
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Then jo(V) (resp. j(W)) is the orthogonal complement of ξ (resp. η) in W

(resp. Vi). We define embeddings ô G —> H and i : H —• G± to be

(2.9) io(g)(ζt + jo(y)) =

(2.10)

jo(gy) (g e G,y e V,t e fc),

j (/ιw) (Λ G # , ti; G W, * G fe).

Then ^(G) (resp. L(H)) coincides with the stabilizer subgroup Hξ of ξ in

H (resp. Gi?7? of 77 in G\). Since

5 -5α 0

-ιaS -2a 1

0 1 0

Proposition 2.3 implies that

(2.11) LO(K*) = U*Π L0(G) and ι(U*) = K* Π

From the Iwasawa decomposition, any g £ G\ can be written in the form

0
0

1

lm

0

*aS

0 "
1

a
} =

(2.12) β*9i)

The following theorem is a refinement of Lemma A in [4].

THEOREM 2.8. (i) Let M £ H be minimal with respect to ξ. Then for

any g EG, μH(t0(g)M) = μG(g) + μπ(M).

(ii) For any h G H, we have μ#(/ι) = μG{β{^{h))) + oτdpa(ι(h)).

Proof. We put aM = OL(L{M)) G kx and /3M = β(ι>(M)) G G. Because

of ι{M)~1η = η, we have OLM G 0. By Proposition 2.2 (iv) and Proposition

2.3, we have

(2.13) ord p (α M )

Noting that

(2.14) i(to(g)) - for 5 G G,



78 A. MURASE AND T. SUGANO

we can write

aM 1 ! ~tχMS -S[xM}/21
1 1 XM

" M J [ 1 J

(XM € V,

Since u^V ~~ V £ -̂ l? χM&M must be in L and hence

^M J

From Proposition 2.2, Proposition 2.3 and the minimality of M, we have

(2.15) ordp(αM) = μH{^{βM)~lM) > μH(M).

Inequalities (2.13) and (2.15) implies

(2.16) ovdp(aM) = μH(M) and μG(βM) = 0 (i.e. /?M G If*).

Therefore for 5f G G,

* *

Λf J

and hence μ#(M) + μdg) ^ μH(Lo(g)M). On the other hand, Proposition
2.2 (iii) implies the inequality μjj{M) + μdg) ^ μil(Lo(g)M). Thus we
have proved the first part. Because of Proposition 2.7, to see (ii) we may
assume h = to(g)M. Then from the above discussion, β(t(h)) G gK* and
a(t(h)) G (*MOX a nd hence the identity (ii) holds. []

2.4. Construct ion of t h e s t a n d a r d L-function by t h e n o r m

function

For g G G and 5 G C, we put

(2.17)

Our purpose of this subsection is to give a formula corresponding to Lemma

B in [4]. We start with a key proposition.
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PROPOSITION 2.9. For t e kx and g £ G,

t

lv G l ' s + m / 2

= | t |-W2 g-|ordpφ

79

Jv
g Ί \nG(x))dx

t~ι\

- q~2s '

where we put ΠG(X) =
-*xS -S[x}/2

x \eGιforxeV = km.

Proof. Since

( fGΛtε,uigu2;s) = fGl(t,g;s) for v ε G o x , v?zi, v u 2 £
(2.18) < _

it is sufficient to see that

(2.19) fGl(p-β,9i8)

We first consider the case where S is anisotropic. If x G V — L, then

zx

—x

- 1 z'uxSεx z~ι

J» i i \ ^^ΓZv ^ ~ — l^j i ^j^j i * ^ , ^w —>^-^ ^ ^ y ^ ^ ^ c Ό cΌ λ*

Thus for g G G = K and /? > 0, we have

p

^ „ , >

v-L

= q-β(s+m/2)NG,s+m/2(g)

ί = l

oo

NGtS+m/2{gεx)dx.
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A case-by-case argument implies that

(2.20) / NGj8+m/2(gεx)dx

JV-L

' 0 if d = 0
(q - l)g-(*+W2) if d = 1 and # G if*

= < 5 - 1 if d = 1 and p £ if*

(?2 ~ l)9~( s+m/2) if 9 = 2 and s G C

> (g - 1) ( g - 2 ( s + m / 2 ) + 1 + 1) ifd = 2 a n d # £ C ,

where C is the unique normal cyclic subgroup of K/K* of index 2. Thus

our assertion is true in this case. Now we shall prove (2.19) by an induction

on m. We assume that (2.19) holds for m — 1 and 5 is isotropic. We set

r 11
S — Sf . We suppose that g is not in K. Then there exists an

a
η = a G L*m such that g η $ L* and T = S\Lη is maximal. As is seen

\p~λ 1
in the proof of Lemma 2.5, g G GηMχK* with Λf\ = 1 and

L P \
Γi Ί

λ = μG{g)- Note that #o = 0 G L is isotropic and satisfies S(η, xo) = 1.

We embed H = O(T) into G as the stabilizer subgroup of η (cf. §2.3).

ί i l .
Similarly the orthogonal group Hi of T\ = T is embedded into

fol
Gi as the stabilizer subgroup of η~ = M? . For h £ H = Gη,
M C P - ^ . Λ M A S)

= / / NGuβ+m/2( h nG(y + xou) M λ )dydn
^vς, Jk I P 1 L 1

ί f P~^ •'•
= / / NG s+m/2( h nG(y) Mχ nG(Mλ xou))dydu

JvηJp-χ [ jr] [ l j
00 f ί \p~β 1
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pχu

p-xu~l
gu)dydu

where gu =

^ τ* -~ι and

p λu ι

pχu
~ιx§u). Since gu

ιη~ =

1 £

0

gu) = μ( ( M λ -

= μG(Mχ)

we know that gu is minimal with respect to η~ and μ^ (gu) — l Therefore

by Theorem 2.8 (i), / G I ( P ~ ^ 5 hMy, s) is equal to

P-/?

p "

ι=x+i
n/3+i-λ

Thus the induction assumption implies that

fGl(p-β

thMχ;s)

i-?-
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Finally we assume that g G K. Then we can take an η G L^rm such that
g G GηK* and T\Lη is maximal. Replacing M\ by 1, we can prove this case
similarly. Π

THEOREM 2.10. Let f be a right-K*-invariant function on G. We
assume that f is a simultaneous eigenfunction ofΉ~*~(G,K*) : / * φ =
*f(Φ)f *f€H+(G,K*). Then for go €G,

L
v-l

f(909)NG,s_1+m/2(g)dg = f(go)Lp(λf;s)
JG

where

B (s) ~ <
no{S) —

' 1

1

1

-q~2s

- q-(2s+ι)

[ - q-2s)(l - q~(2&

3=0

no = 0 or 1
no = 2
no = 3

+ 2 ) ) n 0 = 4,

v = 1/(5) is £Λe W f̂t mdea: of S, no = no(5) — m-2v and Lp(\f, s) is the
standard L-function normalized in (1.16).

Proof, We prove our theorem by an induction on v. We set 5 = Sv as
in (1.1) and denote by (λ; p) = (λi,..., λ ;̂ p) the Satake parameter of λf.
On account of Proposition 2.2 and Theorem 1.8, we have

(2.21) / f(9og)NGu^1+m/2(g)dg = f(g0) I
JGU JG

where φχ^p is defined in (1.11). Namely, it is sufficient to show our assertion
in the case that / = φ\φ and go = 1. When 5 is anisotropic (i.e. v — 0),
we have

/ Φ\A9)NGo,s-l+no/2(9)dg =
JGQ

1 + λ og- ( s- 1 + n o / 2 ) d = 1
(1 + λog- ( s~1 + n o / 2))(l + λ0g-(s-2+n°/2)) d = 2 and λ0 φ 0
1 - g-(2*-2+no) Q = 2 and λ0 = 0

= Ap,p(s)Bno(s).
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We now assume that the theorem holds for v — 1. From the definition (1.11),

\t
(2.22) φxM g

where we put λ' = (λ2,..., λ,,). Hence using the Iwasawa decomposition

and Proposition 2.9, we get

/
JGV

/ / /

v-λ Jk* Jk™-2 Jκ;

U) dg dxtdX du

= / /
1 _ q-(2s+m-2)

1 - q-2s dgd*t.

Therefore the inductive assumption implies that this equals

j = 0

J=l

1 — - 2 )

,-2s

Thus the theorem has been proved completely. •

2.5. Local Shintani functions

We return to the situation in §2.3. Let A (resp. λ) be a non-trivial

character of H+(H, U*) (resp. W+(G,iΓ<)). We denote by Sh(λ,τl) the set
of left-if* and right-U* invariant functions W on H satisfying

(2.23) (φ * W * Φ)(h) ά= ί dx [ dy φ(x)W(xhy-1)Φ(y)
JG JH

= λ(φ)Λ(Φ)ω(h)

V 0 G W+(G,K*),VΦ e H+(H,U*)*he H.

We call Sh(λ, A) the space of local Shintani functions associated with (λ, yl).
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THEOREM 2.11. Let W e Sh(λ,Λ) and s e C with sufficiently large

real part. Then

Zw(s) ά= I Wi
JG\H

m : even

77i : odd.

Proof. We calculate the integral

(2.24) ί W(h)NH}S_1+im+1)/2(h)dh

J H

in two ways. First from Therorem 2.10 for if, (2.24) equals

(2.25) W(l)Lp(Λ;s) Π (1 - q-

3=0

Secondly by using Theorem 2.8 and Theorem 2.10 for G, we know that

(2.24) is equal to

(2.26) / / W ί t o G ^ W Γ 1 ) ^ , . ^ ^
JG\HJG

ι/(S)-l

= Lp(λ; s + 1/2) Yl (1 - q-{2s+1+no(S)+2j))Bno(s)(s + 1/2)
j=Q

Lx
JG\H

Comparing (2.25) and (2.26), we obtain our theorem. Q

§3. Reduction of maximal symmetric matrices

3.1. Locally principality of lattices in a quadratic extension

Let k be an algebraic number field, Ofc the ring of integers in k and K

a quadratic extension over k. We say that an o^-isubmodule £ of K is a

lattice if L is finitely generated and contains a fc-basis of K. Moreover a

lattice which forms a ring containing 1 is called an order of K. For a given

lattice L, we define its order O(L) by

(3.1) O(L) = {xeK\xLcL}.
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Let O be an order of K and denote by Ή(O) the set consisting of all lattices

L with order O. We recall that any lattice L G Ή(O) is locally principal in

the following sense (cf. [2] Proposition 1, [6] Lemma 2.4).

For a place v of fc, kv means the completion of k at v. We identify

a prime ideal with the corresponding nonarchimedean place. For a prime

ideal p, Op means the maximal order of kp. We also put Lp = L ®Ofc Op

and Kv = K ®k kυ. Locally principality says that for any L G Ή(O) and

any prime ideal p, there exists an ap G Kp such that Lp = apOp. For

α = (aυ) G K% (the idele group of K), we put

(3.2) aθ= f](apOpΠK).
p<oo

Since αp is uniquely determined modulo Op and L = (~)p<oo(Lp Π AT), we

get

LEMMA 3.1. The mapping a ι—• αC? gύ^es α bijection between K

Y\p<ooθp and T~L{O). Here KQQ means the direct product of Kυ for all

archimedean places v and p runs through all non-archimedean places.

For two lattices L and M, we define its product L-M by the o^-module

generated by xy (x £ L,y £ M). Under this multiplication, Tί{O) forms

an abelian group and the bijection given in the above lemma becomes an

isomorphism. We say that two elments L and M G H(O) are equivalent if

L = ξM for some ξ G Kx. Let H(O) the quotient group of H{O) by the

equivalence. Then from Lemma 3.1, we obtain

(3.3) κ*/κxκ£ JJ e>p

x ^ iϊ(e>).
p<oo

When L = OLΌ G W(O), we denote by n(L) the (fractional) ideal of k

corresponding to ^κ/k(a)- Clearly L ι—> n(L) gives a homomorphism from

7ί(O) (resp. H{O)) into the ideal group of k (resp. the ideal class group of

k). We say that T G Symm(fc) represents an ideal α if (^T[x]) = α for some

PROPOSITION 3.2. Let T = ? 0 G Sym2(fc) be non-degenerate

L J
m the ideal generated by a, 6, c. We assume that D — b2 — iac is

not a square in k. Then there exist infinitely many primes q such that T

represents mq.



86 A. MURASE AND T. SUGANO

Proof. We consider a quadratic extension K = k{y/D) = k + fcα;,u; =
(6 — Λ/D)/2. It is easily seen that the order of the lattice L — o^α + o^α; is
£> = Ofc-ί-m"1^. Using Lemma 3.1 we can take an α € K% so that L = αO.
As is well-known, there exist infinitely many prime ideals q which satisfy
the following condition:

There exists a β € ( α ^ * * ^ Πp<oo0*) " (KOOUP<OO°P)

such that ^κ/k(β) corresponds to q.

We take such q and β, and put M = βO. From (3.3) there exists an element
ξ G Kx such that M = ξL'1. Because of n(M) = q and n(L) = (α)m, we
have n(ξθ) = (NK/k(ξ)) — (o)mq. Since ξ G M L C L, we can write
£ = αx + ωy (x,y G Ofc) and obtain ^κ/k(O — o,(ax2 + 6xy + c2/2) This
completes the proof. Π

3.2. Reduction of totally positive definite maximal symmetric
matrices

Hereafter let k be a totally real algebraic number field of degree n. We

denote by Cm the set of even integral symmetric matrices of degree m, i.e.

Cm = {T = (Uj) e Mm(k) I Uj = tji e Okjta e 2ofc}. We say that T e Cm

is maximal if it is maximal in Cm$ — Cm <g)Ofe Op at each prime ideal p in

the sense of §1.1. For a non-zero symmetric matrix T = (t^ ) of degree m

with entries in fc, we denote by m(T) the (fractional) ideal in k generated

by Uj(i φ j) and ta/2.

THEOREM 3.3. Assume that T G Cm is totally positive definite and

maximal Then there exists an element 7 G SLm(θk) such that the upper-

left (m — 1) x (m — 1) block S of T[η\ is also maximal. Moreover we can

take 7 so that dp(S) < 1 for all prime ideals p ; where dp(S) was defined in

§1.1.

The proof is given in the next subsection. We prepare a proposition.

PROPOSITION 3.4. Let T be a totally positive definite symmetric ma-

trix of rank m > 2. Then there exist infinitely many prime ideals q such

that T represents m(T)q.

Proof. We shall prove it by induction on m. Without loss of generality
we may assume T G Cm. The case m = 2 was proved in Proposition
3.2. Thus we assume that m > 3 and the assertion holds for m — 1. For



L-FUNCTIONS ATTACHED TO AUTOMORPHIC FORMS 8 7

A G Symm(fc) and 1 < i < ra, A^ stands for the (ra — 1) x (ra —1) symmetric

matrix obtained from A by deleting the i-th row and i-th column. We take

a maximal element mi (with respect to the inclusion) of {m(T[7]W) | 7 G

\ T * 1
SLm(θfc), 1 < i < ra}. We may assume that T = \ x (T\ G £ m _ i ) and

L * * J
m(Ti) = mi. From the induction hypothesis we can take an element 71 G

SLm_i(θfc) such that Tχ[7i] = L where qi = m^1(α) is a prime ideal

not dividing det T det 2\. Setting T' = T[ I ̂  J j ] = I ̂  *f 1, let us

observe that each entry of h is in mi . By the strong approximation theorem

for S L m _ i , there exists a 7' G 5Lm_χ(θfc) such that thryl = (c, 0, . . . , 0 )

Γ 1 0 1
(mod tπiqi), where c G o^ is not in qχ Since m ^ f π / ]^m^) is a divisor

L ^ J
of (α, c) and (α, c) = (miqi,c) = (mi,c), the maximality of mi implies that

c G mi. Now we apply our assumption to T2. We write rri2 = tn(Γ2). Take

a prime ideal q2 not dividing qimi(det Γ2) and an element 72 G SLm-ι(θk)

so that T2[72] = and (6) = rri2q2 Then we have

0 72

2a hγi

*Λi2 26

where Λ12 G mi, h13 G Mi, m _ 2 (mi), Λ23 £ Mi ? m _ 2 (m 2 ) and /ι33 G £ m _ 2 m2.

Since (mi,m2) = m(T) and m > 3, we have (α, 6) = (tniqi,ni2q2) = tn(T).

Therefore our assertion is implied by Proposition 3.2. •

Remark 3.5. In the case m = 2, Theorem 3.3 follows from Proposition

3.2 immediately.

3,3. Proof of Theorem 3.3

When T is a symmetric matrix of size m, Tr stands for the upper-left

r x r block of T (1 < r < m). An even integral symmetric matrix T G £m,p

is said to be p-normal if it satisfies the following conditions :

(i) Tr is maximal (1 < r < m) and dp(Tr) = 0 (1 < r < m - fy(T)).

(ii-a) When p/f2, T i«s diagonal

(ii-b) WΛen p|2, t ^ = 0 /or |i - j | > 2 and ί2t,2t+i = 0 /or 2i + 1 < m.

Moreover t m _ i ? m = 0 (resp. t m _ 2 , m _ i = 0) i/ n 0 ) P = 1 or (no,p,9p(Γ)) =

(3,1) (resp. ( n O | P , ^ ( T ) ) = (3,2)).
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We state a local version of the theorem, which is easily obtained from

the Witt decomposition (1.1) and the list (1.2).

LEMMA 3.6. For any maximal T G £™,p, there exists an element 7 G

SLm(θp) such that T[y] is p-normal.

We return to the global situation. Let T G Cm and let m be an integral

ideal. We say that T is quasi-normal of level m if for any prime ideal p there

exists a p-normal Sp G Cm$ such that T - Sp G m£m ?p. From the strong

approximation theorem for S L m and Lemma 3.6, we get

LEMMA 3.7. Suppose that T G £ m is maximal and m is an integral

ideal. Then there exists an element 7 G SLm(θk) such that T[y] is quasi-

normal of level m.

We set

(3.4) Γm(m) = S7 G SLm(θk) 7 = diagonal matrix (mod m) L

It is obvious that if T is quasi-normal of level m, so is T[y] for any 7 G

Γm(m). The proof of Therorem 3.3 is reduced to the following proposition.

\ T Aλ
PROPOSITION 3.8. Suppose that T = I t* ~ \ e Cm is totally posi-

tive definite, maximal and quasi-normal of level {2sM), where M=(4detT) 2

and s = m — r > 2. We assume that

(a) Tr is maximal,

(b) dp(Tr) = Q for v p | M ,

(c) dp(Tr)<lforvp.

Then there exists an element 7 G -Γm(2s~~1M) such that T1 = T[j] —
T' A'λ

t

r+fi satisfies the following conditions.

(a;) ϊ^+i is maximal-
(b;) dp(TΪ+1) < dp(T) for v p | M . Furthermore dp(T^+1) = 0 for v p | M if

s>3.

Proof. From the condition (b), any odd prime divisor of M is coprime

to detT r . Thus there exists a 71 G Γr(2sM) such that Tr[7i] is quasi-

normal of level (2 s " 1 MdetΓ r ) . Since Γ[ I 7 1

 1 1] = \
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quasi-normal of level (2SM), the r-th row of t/y\A is congruent to (*, 0,..., 0)
modulo 2SM. We can take a 72 G ΓS(2SM) such that the r-th row of
^71^72 is congruent to (*, 0,..., 0) modulo 2S~1MdetTr. We put ^71^72 =
(2?i,2?2) (Bι G MΓϊi(θfc),i?2'€: MrjS-ι(θk))> Taking into account of (a), we
know Tr[ηι)~ιB2 G Mr?s_i(θfc)2s~1M. Therefore without loss of generality,
we may assume that

\T A] .
T = \ t TA Q is quasi-normal of level

L A b j
(3.5) < Tr is quasi-normal of level (2 s" 1MdetT r)

The conditions (a),(b) and (c) are satisfied.

Now we put

(3.6)

and calculate m(R). By the definition of the p-normality, ordpm(iϊ) = 1
when 5 = 2 and dp = 2. In the other cases, we get

( - 1 ifT-^Ail^O
(3.7) ordpm(i?) = I -2ordp2 if T " 1 ^ ] 0 op and p|2

[ 0 otherwise.

Since (2-1m(R)-1Rn, M) = ofc, we have m(Λ;) = m(R) for i?7 =

OSΛ/ΓΛ N F r o m Proposition 3.4 we can take a prime ideal q
L Nί ±5—i J

not dividing MdetT r and x1 G MsΛ(ok) so that (%R'[x']) = m(i?)q. Set

x = \ o« Λ/f 1 χ / a n d ^ake a n element X G -Γs(2βM) whose first column
L AM. ±s—l J

is x. Finally we prove that T' — T[ \ I y ] has the required properties.

The determinant of the upper-left (r + 1) x (r + 1) block T'r+ι of T' is easily
calculated:
(3.8) (detτ;+ 1) = (2detTr)qm(i?).

When p divides M, (a') - (c') are satisfied at p because of the p-normality
of T. On the other hand, suppose that p does not divide M. Then p is
prime to 2. By (3.7) and (3.8), we know that ordpdetT/+1 < 1. Therefore
(a') and (cx) hold. D
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3.4. Automorphic forms on definite orthogonal groups

Let 5 be an even integral totally positive definite symmetric matrix

of rank m and G = O(S) the orthogonal group of 5 (an algebraic group

defined over k). For any prime ideal p, put

(3.9) K; = {k£ GLm(op) I (k - l)S-λ G M m (o p )} .

and K*f = Πp«x>^ψ* ^ e denote by GQQ the direct product of Gv over all

archimedean places. Let Θ(UΓΐ) be the space of automorphic forms on the

adele group GA defined to be

(3.10) β(K}) = {f:GA—>C\ f(Ίgk) = f(g)

for V7 G Gk^g G GA^k G G^ x K}}.

It forms a finite dimensional vector space with the Petersson inner product

(3.11) </i,/2>G=/ fi(g) f2(g)dg,
Jok\GA

where dg is the Haar measure normalized so that the total volume of

GQO χ Kf is 1. Hereafter we assume that 5 is maximal. The Hecke al-

gebra Hf — ®p<oo^H(Gp,Kp) (restricted tensor product) acts on Θ(UΓί)

by the convolution product. In particular the action of its center Tit =

®t

p<oo

/H+ (Gp, Kt) is normal with respect to <, >Q (see §1.2 for the defini-

tion of Tί^). Take any go G GA and write

(3.12) go = 7oCofco

(70 G GLm{k)Xo G GLm(fcoo),fc0 = J } ko,p,ko,p G GLm(op)).
p<oo

Then clearly Sf = S[jo] is also a maximal even integral symmmetric matrix.

We define Gf = O(S'),K'* and K'f similarly. For any / G β(K*f) (resp.

φ G W(Gp,/tf*)), we define a function / ; on G'A (resp. φ' on G'p ) by

\g'h,p) (g1 G G').

PROPOSITION 3.9. Let notation and assumption be as above.

(i) The mapping f ι—> f {resp. φ H-> φ1) gives an isomorphism between

β(K*f) ande(K'f) (resp. H{Gp,K;) and H(G'p, K'p*)).

(ii) Both isomorphisms are compatible with respect to the actions of Hecke

algebras, namely for any f G &(K*Λ and φ G Ή(Gp,Kp) the relation f *

φ1 = (/ * φ)f holds.
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Proof. The first part of the proposition is trivial. We check here the

second part. For any x' 6 G'A, we have

(f'*φ'){χ')= f fix'y'Wiy'-^dy'
JG>P

= / f(loxf ko^ykόl^o19o)Φ(y~λ)dy

= {f*Φ)(Ίox/Ίo19o).

Thus we obtain (ii). Π

Remark 3.10. Under this correspondence, f(go) φ 0 if and only if

/ ' (I) φ 0. Therefore to study the L-function associated with /, we may

assume that the upper-left (m — 1) x (ra — 1) block of 5 is also maximal

and /(I) φ 0.

§4. Functional equation of the standard L-function

4.1. Main theorem
As in the previous section, let fcbea totally real algebraic number field

of degree n and 5 G Cm a totally positive definite, maximal even integral

symmetric matrix of rank ra. We denote by G the orthogonal group of S.

As in §4.3, we consider the space Θ(UΓΐ) of automorphic forms on GA with

respect to ΛΓ* = Y[p<ooK* (K* is defined in (3.9)). Let / G 6(Kf) be a

simultaneous eigenfunction of HΪ = ® p < O o ^ + ( ^ p 5 ^ ρ ) :

(4.1) / * φ = λLp(φ)f vφ e H+(GP,K;).

Then we define the (global) standard L-function attached to / by

(4.2) L(f;s)= J lL p (λ / i P ; S ) (s G C),

where Lp(λf#]s) is the local standard L-function normalized in (1.16). As

the gamma factor, we take

(4.3) Loo(/; s) = | 4 | [ m / 2 ] s ((2π)-[™/2]s j-j[m/2] Γ ( β _ . + m / 2 ) ^

(Nfc/Q(det 5)) 5 / 2 ra : even

( N f c / Q ( 2 - 1 d e t 5 ) ) s / 2 ra:odd '

where d^ is the discriminant of k.

Now we state our main theorem of the paper.
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THEOREM 4.1. Let f G &(K*Λ be a simultaneous eigenfunction ofHt.

(i) The function £(/; s) = L<χ>(/; s)L(f; s) is continued to C as a meromor-

phic function of s and satisfies the functional equation £(/; 5) = £(/; 1 — s).

(ii) When m = 1, £(/; 5) is entire. It does not vanish at s = 1/2 i/ and on/i/

z/ / zs α constant function.

(iii) When m>2, £(/; 5) z' s holomorphic except for possible simple poles at

s = rn/2 — k (0 < k < m — 1, fc G Z). Λ /&αs α simple pole at s — m/2 if

and only if f is a constant function.

Remark 4.2. Our definition of the gamma factor is slightly different

from that in [4] §1.

To prove the theorem, we adopt the same strategy as in [4], where

the assertion was partially proved. First we check the theorem for m =

1. From the maximality condition, the ideal (5S) is a product pi pΓ

of distinct prime ideals p^. Thus for a simultaneous eigenfunction / G

β(K*f), ξ(f s) = N f c / Q(5/2) ί / 2 Π = i ( l + λ / i t, J,oN i k / Q(p j)-( s- 1/2)) ) w h e r e

λ ^ p . 0 ( = ±1) is determined by the action of —1 G Gp.. Clearly ζ(f',s) is

entire. Noting that — 1 G G& is embedded into G^ diagonally and hence

that YYj-i λ/,pj}o = 1? w e ge^ the functional equation ξ(f',s) = £(/; 1 — 5).

Moreover since / is constant on G^ if and only if λ/?pJ5o = 1 for all j>, the

characterization of constant functions is obtained.

Hereafter we assume that our theorem holds for m and let us prove it

for m + 1.

4.2. Eisenstein series
To describe the basic identity in the next subsection, we introduce an

Eisenstein series. Let G\ be the orthogonal group of S\ = . For

any prime ideal p, put K{p = {kι G GχiP \ (h - 1)SX

 λ G M m + 2 (θp)} . Let

vi, . . . , vn be the archimedean places of k. We recall the action of G\iVi on

Ί) — R m x R^ (R^ is the set of positive real numbers). For X — (a;, r) G V,

-r-S[x]/2~
put X~ = x G R m + 2 . We define the action g<X> of

1

on V and the automorphy factor j(g, X) G R x on G\iVi x V by

(4.4) g X~ = (g<X>Γ-j(g,X) (g e GltVi,X E V).
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We fix a point Xo,Vi — (^o^^o,^) € V and denote by -K"*υ. the stabilizer
subgroup of Xo,vi in Gι}Vi. Clearly K*υ. is a maximal compact subgroup of
G M i and GltVi'/Klv. °*V.

Let Pi be a maximal parabolic subgroup of G\ defined by

(4.5) Pi,k = {\ β * t *ekx,t

a * *

a

By the Iwasawa decomposition for G\A, each g G G\A is written in the
form

Γ a(g) * * 1
(4-6) g=\ β(g) *

where a(g) € &*,/?(<?) € G Λ and A(flr) € ΓL<oo*i% F o r / ^ © ( ^ ) and
s G C, we define a function /(#; 5) on G\^A by

(4-7)

where \CX\A means the idele norm of a. G k^. Then the Eisenstein series
associated with / is defined by

(4.8) ψ

which converges absolutely in a right half plane {s G C | Re s > m/2}.

When / is a simultaneous eigenfunction of Wt, we introduce the normalized

Eisenstein series by

(4.9) ^ , / ; β ) = r^(/; β + l ) ^ > / ; β ) x { ξ f c ( 2 β + 1 ) ^ \

where ξk(s) = |dfc|5/2 (π~5/2Γ(s/2))nCfc(5) is the completed Dedekind zeta

function of k and ro = Π?=i ro,vi

PROPOSITION 4.3. Lei / G ©(if?) 6e a simultaneous eigenfunction

of Of* . We assume that Theorem 4.1 is valid for f. Then the normalized

Eisenstein series E*(g,f\s) has an analytic continuation to C as a mero-

morphic function of s and satisfies the functional equation E*(g,f;s) =

E*(9i f'i ~s)- Furthermore, it is holomorphic except for possible simple poles

at s = m/2 — k (0 < k < ra, k G Z) and the residue at s — m/2 is given by

{ Res £(/; s) m : even
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Proof. It is enough to calculate the constant term of Eisenstein series:

Eo(g, f\ s) = J E(ng, /; s)dn
JNitk\NitA

%/2) + / f(wng; s + m/2)dn,
JNΛ A

— / ( # ; s

where N\ is the unipotent radical of Pi and w =

Corollary 1.10, we obtain

1
. From

Eo( βo _χ

: even

πLw-[ι

i = i j Έ t r n L

where aoj (resp. α o,^) means the finite part (resp. the V{ part) of αo We
can easily see that the last integral is equal to

lVi Γ(s + m/2) '

Therefore we know that the constant term of E*(g, /; 5) is

m : even
hi) m : odd

m : even
m : odd

From the assumption for /, we obtain the proposition. Q

4.3. Basic identity and the end of proof

Let T = \ t Q o ^ £m+i be maximal and totally positive def-

inite. We denote by H the orthogonal group of T and put Up = {u G
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Hp\ (u- 1JT- 1 G Mm+1(op)},U*f = Up<ooU;. Let F G β{U}) be a

simultaneous eigenfunction of ®p<ooH
+(Hp, Up). We shall prove the asser-

tion in Theorem 4.1 for F. In view of Remark 3.10, we may assume that

F(l) φ 0 and S is also maximal. Let us embed G = O(5) into if = O(T)

and i ϊ into Gi, similarly as in §2.3. For each archimedean place v, we

take (α, -Δ/2) (Δ = S^η] = 2a + S[a\) as the origin X^v E V. Then
L{U;) = t(fΓp) Π # * p , *(#„) C ̂ % and J (Λ(Λ),X 0 | V ) = 1 for any Λ G i ί v .

Take any simultaneous eigenfunction / £ Θ(UΓί) and introduce the (global)

Shintani function Wpj associated with F and / by

(4.10) WFJ(h) = ί FMg)h)f(g)dg.
Jθk\GA

We can prove the next theorem is proved quite similarly as in [4, Theorem

1.5].

THEOREM 4.4. (Basic Identity)

ZFJ(s) d4f / F(h)E(t(h), /; s - l/2)dh

/

GA\HA

By using Theorem 2.11, we know that

(4.11) / F(h)E*(L(h)J]S-l/2)dh = caF;s)WFJ(l) (c^O).
JHk\HA

Since -F(l) φ 0, we can take a simultaneous eigenfunction / G &(KJ) so

that Wpj(ί) = < F | G Λ , f>G Φ 0 Therefore combining Proposition 4.3 and

(4.11), we obtain the meromorphic continuation, location of possible poles

and the invariance of ξ(/; s) under s \-> 1 — s. Noting that <JP, 1>H Φ 0

(1 means the constantly 1 function) if and only if F is a constant function,

we get the characterization of the holomorphy of £(F; s) at s = (m + l)/2.

We have proved Theorem 4.1 completely. Q
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