ON MAXIMALLY CENTRAL ALGEBRAS
GORO AZUMAYA

Introduction

Let A be a primary algebra with unit element over a field K and Z its center.
Let A be the simple residue class algebra of A modulo its radical. Then it is
known, and can readily be seen, that there holds the inequality [A : K]= ¢[Z : K],
where ¢ is the rank of A over its center. We call A maximaily central if in
particular [A : K] = tTZ : K] i.e. if the rank [Z : K] takes its maximum value.
Further, an algebra which is a direct sum of those primary algebras will be
called maximally central too. The notion was introduced in Azumaya-Nakayama
[5], as a by-product of the study of absolutely uni-serial algebras.

In the present paper, we shall investigate maximally central algebras as a
main subject. For this purpose, it seems very natural to the writer to extend
the definition of these from coefficient fields to coefficient rings.” From this
view point, we consider throughout this paper algebras® over coefficient rings,
and show that maximally central algebras behave quite similarly as simple
algebras in the theory of ordinary algebras. In the former part of this paper,
we introduce, after some considerations about general rings and algebras, the
notton of maximally central algebras over general coefficient rings in an appar-
ently different way from above, and in the latter part we confine ourselves to
particular type of coefficient rings called Hensel rings. Our methods used in this
paper are related not only to the algebraic theory of ordinary algebras but alsg
to the arithmetical theory of p-adic algebras, particularly obtained by Witt and
Nakayama.”

The main object of this paper is however to prove, in the last section 7,
an existence theorem of inertial algebras, which may be seen as a generalization
of the Wedderburn-Malcev’s theorem?’ as well as that of Nakayama’s theorem.”

Received Dec. 25, 1950.

1 Cf. also the footnote (3) in Azumaya-Nakayama [5].

2 As for the term ‘“algebra,” see p. 125 below.

3 Witt [13], Nakayama [12].

4 Altert [1], III, Theorem 23; Deuring [5], II, § 11, Satz 1; Malcev [10].
5 Nakayama [11], Satz 3.
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Although most properties concerning simple algebras can be transferred, without
much difficulty, to maximally central algebras over general coefficient rings, our
existence theorem does not hold untill the coefficient rings are assumed to be
Hensel rings, and it seems to the writer that this is a principal theorem that
has a deeper significance in the theory of maximally central algebras; most
results from §1 to §6 should rather be regarded as preparation for this theorem.

The writer is grateful to Prof. T. Nakayama for his useful advices during
the investigation of this subject.

1. Preliminaries on radicals

Let R be an (associative) ring. R may have an operater domain K such
that a(a+ b) = aa + ab, a(ab) = (aa)b = a(ab) for every a € K and @, b E R.
An element ¢ of R is called right quasi-regular® if there exists an element ¢’
in R such that ¢¢’ =c¢ + ¢’ ; ¢’ is then called a 7ight quasi-inverse of c. In order
that an element ¢ is right quasi-regular it is necessary and sufficient that the
right ideal g(c¢) consisting of all elements of the form x —cx with xER is
identical with R. The notions of the left quasi-regularity and the left quasi-
inverse are also defined in the similar way. Further, an element ¢ is called
quasi-regulay simply if it is right as well as left quasi-regular; in this case
every right quasi-inverse and every left quasi-inverse of ¢ coincides with each
other and is called the quasi-inverse of ¢. For a quasi-regular element ¢ with
quasi-inverse ¢’ we put x° = ¥ — ¢’x — x¢ + ¢/xc for every x & R. Then the mapp-
ing x » x° is an automorphism of R, which we call the inner automorphism
generated by c¢. If d is a second quasi-regular element then ¢ + d — ¢d is.also
quasi-regular and (x°)? = x°+¢-¢ holds for every x & R. In case R has a unit
element 1, ¢ is quasi-regular if and only if 1 — ¢ is regular; and when this is
the case the inner automorphism x - x° is nothing but the ordinary inner auto-
morphism % - (1 —¢)-'x (1 —¢). Finally, it is to be noted that there exists no
non-zero right (or left) quasi-regular idempotent element, because from e*=e
and e + ¢ = e it follows that e -+ ee’ = e¢'.

A (right or left) ideal consists merely of right quasi-regular elements if
and only if it consists merely of left quasi-regular elments, and such an ideal
we call a quasi-regular ideal. Let q be a quasi-regular two-sided ideal. Then
an element of R is quasi-regular if and only if it is quasi-regular modulo g.

LemMMA 1. Let o be a quasi-regular two-sided ideal of R and a any two-sided
ideal of R. Then an idempotent element lies in a if (and only if) it lies in q + a.

% For the following statements, see Jacobson [9].
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Proof. Let e be an idempotent element of R Jying in q+a. Then the
residue class of ¢ modulo o is also idempotent and lies in q-+ a/a. But since
G+ a/a is a quasi-regular ideal of R/a it follows e = 0 (mod a),

Following N. Jacobson” the radical N of R is defined to be the join of all
quasi-regular right ideals of . Then N is itself a quasi-regular two-sided ideal
of R and is also the join of all quasi-regular left ideals of R, Further, N is
characterized as the intersection of all maximal right (or left) ideals of R that
has left- (or right-)modulo units.,” An element of R is quasi-regular if and only
if it is quasi-regular modulo N, and bence the residue class ring R/N has the
radical zero. Let us call a ring semi-primitive if it possesses the radical zero;
if moreover it satisfies the minimum condition for right, or equivalently, for
left ideals then we call it semi-simple.”

THEOREM 1. Let M be a finitely generated R-right-module such that MN = M.
Then mnecessarily M = 0.

The proof is virtually the same as that of Jacobson [9], Theorem 10, but

we give it here for completeness. Let #,, ., . .., #, be finite generators of
P. Then M=MN=u,N+uN+ ...+ u,N, and u, is expressed in a form
%2y + u22+ . . . + un2, with each z; in N. Denoting by z,/ the quasi-inverse

of zy, %y = oy ~ ws(2;+ 2/ — 2:2)) = (s — w;2) —~ (06 — w,2,)2 is in s N+ . . .
+ %, NV, and we have M = u N+ . . . + u,N. Proceeding in this way it follows
finally It = 0.

Consider an idempotent element ¢ and the subring eRe. Let ¢ be in eRe
and be quasi-regular in R. Then denoting by ¢’ the guasi-inverse of ¢ we have
céc’e = et’ec = e(c + c')e = ¢ + ec’e, that is, ec’e is a right guasi-inverse of ¢, and
similarly ec’e is a left quasi-inverse of ¢. Thus an element of eRe is quasi-
regular in eRe if (and only if) ¢ is quasi-regular in R; in particular, if q is a
quasi-regular two-sided ideal of R eqe = q(\ eRe is a quasi-regular two-sided
ideal of eRe.

Now two idempotent elements e and f are said to be isomorphic in R if
there exist two elements @ and b in R such that ab = e and ba = f; here we
may assume without loss of generality that a € eRf and b& fRe. e and f are
isomorphic if and only if the right ideals eR and fR, or by symmetry, the left
ideals Re and Rf are operator-isomorphic.’”)

7 Jacobson [9].

8 An element # of R is called a left-modulo unit of a right ideal r of R if ua=a
(mod t) for every a € R,

9 In Jacobson [9], the term “semi-simple” was used for “semi-primitive” in our sense.

1) For these, see Azumaya [3], I
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THEOREM 2. Let q be a quasi-regular two-sided ideal of R and let e and f
be two idempotent elements of R. Then:

1) e = f whenever ef = fe and e = f (mod q).

ii) e and f are isomorphic in R if and only if their residue classes € and
7 modulo q are isomorphic in R = R/q; further, for any given residue classes
@€ eRf and b= FRE such that b = ¢ and b@ = 7 we can find representatives
a€E eRf and bE fRe of @ and b respectively such that ab = e and ba = f.

Proof. i) If ef = fe then e —ef = e(e — f) is idempotent, while if e=f
(mod q) it lies necessarily in q. Therefore it follows that ¢ — ¢f = 0 ie. e = ¢f,
and similarly we have f = e¢f; this shows that e = f.

ii) Suppose that & and 7 are isomorphic and there are given residue classes
€ eRf and b= FRZ such that @b =& and bd@ = 7. Take from eRf and fRe
two elements @, and &, so that «, and b; are representatives of @ and & respec-
tively. Then a b & eRe and a,b, = ¢ (mod eqe). Since e is the unit element of
the subring eRe and eqe is a quasi-regular ideal of eRe, a;b, must be regular
in eRe, that is, there exists an element ¥ & eRe such that a,6,x = e. Similarly
there exists an element y & fRf such that yb,a, =f. From this follows that
yby = ybe = ybya;byx = fbyx = byx. Hence ¢ = a, and b = b,x are required rep-
resentatives of @ and b, and e and f are isomorphic. That conversely if ¢ and
f are isomorphic then & and 7 are isomorphic is clear.

THEOREM 3. Let q be a quasi-regular two-sided ideal of R. Then:

1) If e, e, ..., en and e*, e, ..., es* are two systems of mutually
orthogonal idempotent elements of R such that e; = e/* (mod o) for every i,
there exists a (quasi-regular) element ¢ in q such that e = ei* for every i.

i) Ifdej; 4,i=1,2, ..., n) and {ef5 4, j=1,2, ..., n} are two
systems of matrix units in R such that ei; = e}; (mod q) for every i, j, there
exists a (quasi-regular) element ¢ in q such that e; = ef; for every i, j.

Proof. Indeed, we have only to put ¢ = e+ e* — ee* — ie;ez* in the first
i=1

case, while ¢ = e+ e* — ee* — En_‘, ei;ef; in the second case; where e = nEe.-, e*
i=1 =1
= lz;ei* or e = il} ei;, e* = ie;‘;, respectively.
i= i= i=1
Now we say that R is of the type (S) if R satisfies the following condition :
(S) The residue class ring R/N modulo the radical N is semi-simple (i.e.
R/N satisfies the minimum condition for right, or equiualently, for left ideals).
THEOREM 4. Let R be of the type (S) and let {eij; i, j=1,2, ..., n} and
ij; 4, 7=1,2, ..., n} be two systems of matrix units of R such that two
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idempotent elements e = > ei; and [ = nE fii are isomorphic. Then there exists
=1 . =]

a quasi-regular element ¢ in R such that e;° = fi; for every i, j.

Proof. By virtue of Theorem 3, ii), it suffices to treat the case where R
is itself semi-simple. Then R possesses a unit element and is the direct sum of
the left ideals Re and R(1 —¢) as well as Rf and R(1 — ). Further Re and
Rf are operator-isomorphic and are the direct sum of Re,,, Régg, ..., Rep, and
Rfy, Rfw, ..., Bfun respectively. From these follows, since R is completely
reducible for left ideals, that ¢; and fi; as well as 1 — ¢ and 1 — f are isomor-
phic, that is, there exist elements a, & ¢, Rfy, 5, € fyuRegand & & (1~ e)R(1 ~ f),
Ve (1-)R(1 —e) such that aby =ey, bhay=fand dV =1—¢, b'ad =11
Now we pui a = i‘;;l g frid @ and b :;Zl}ffxb;e;; + &. Then it can readily be
seen that ab = bz = 1 and e;ja = ei;a,f,j = afij for every i, j, and our assertion
is proved.

CororLary. Let M be a module with operator domain and let W be a direct
sum of mutuclly operator-isomorphic (allowable) submoduli W;, M., ..., My
as well as of similar submoduli Ny, N2, ..., Nn. Suppose further that the
operator-endomorphism ring of WM, or equivalently, that of Mi is of the iype
(S). Then M; and N; are operator-isomorphic.

Proof. Let R be the operator-endomorphism ring of . Then we can con-
struct, as usual, two systems of matrix units {e;j;} and {fi;} so that Dlei; = > fii
=1, the identity endomorphism, and Me;; = Wi, Mfii=Pifor i=1,2, ..., n
Since R is of the type (S) there exists, by Theorem 4, a quasi-regular element

¢ such that &f; = fi;, and so e;; and fi; are isomorphic; this means that M; and
Mi are operator-isomorphic.

2. Algebras over a general coefficient ring
From now on, we assume that K is a commutative ring with unit element
and when we deal witn moduli with operator ring K we assume always that the
unit element of K operates as an identity endomorphism.

THEOREM 5. Let M be a finite K-module such that yI = M for every maximal
tdeal » of K. Then we have M = 0.

Proof. Let (#y, #s, . . ., ) be a finite (but not necessarily linearly inde-
pendent) basis of I over K and let a be the ideal of K consisting of all elements
a« of K such that a#u; & Ku,+ . . . + Ku,. Suppose that a K. Then there
exists a maximal ideal p of K such that p contains a so that pu, + Ku. 4 . .
+ Kty % Kuty + Kutg + . . . + Kun = T. But this contradicts to our assumption
that pu; + psts + . . . 4+ Dun(=pIM) = M, and therefore a = K i.e. M= Kuo + . . .
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+ Ku,. Continuing this way we have finally It = 0.

CoOROLLARY. Let M be a K-module and W its K-submodule such that M =N
+ YM for every maximal ideal p of K. Then M =N whenever M is, or more
generally, the residue class module /N is finite with respect to K.

A K-module M is called regular (with respect to K) if M has a linearly
independent finite basis over K.

THEOREM 6. Let M be a finite K-module. Then a finite system of element
(U, Ua, ..., Un) tn M forms a basis of M (over K) if (and only if) it is a
basis of M modulo Y for every maximal ideal p of K. If moreover M is regular,
then the system (#;, %sye. . ., %n) i @ linearly independent basis of M if (and
only if) it is a linearly independent basis of WM modulo Y over the residue class
field K/p for every p.

Proof. The first part follows from Corollary to Theorem 5 if we apply it
to the submodule N = Ku, + Ku.+ . . . + Ku,. To prove the second part, let
(vy, ©2, ..., Um) be a linearly independent basis of the regular module M.
Then it forms modulo pIN also a linearly independent basis over K/p. It follows
therefore that m = » and if we put #; = 2«,‘; vj (aij € K) the square matrix [la;j
is regular modulo p, that is, the detérrhinant |@ij | # 0 (mod b). This is the
case for every p, and | a;ij| is a regular element of K, that is, || ai;| is a regular
matrix in K, which means nothing but that (u;, #., ..., #,) is a linearly
independent basis of MM over K.

As was shown in the above proof, the number # of the basis elements is
independent of the choice of the basis, and we call it the rank of I over K.

THEOREM 7. Let M be a finite K-module with a finite (but not necessarily
linearly independent) basis (#;, #s, . . ., #n) over K. Let 0 be a K-endomorphism
of M and let M be a square matrix of degree n in K such thalt (u s . . . un)0
= (ytts . . . un)M. Then 6 is a root of the (so-called) characteristic polynomial
|tE—~ M| of M.

Proof. Consider the square matrix F ~ M in the commutative ring K[0],
the totality of polynomials of § with coefficients in K. Let J be its “adjoint
matrix,” so that there holds (0E -~ M)J = J(@E — M) = |6E —M |-E. It follows
then (4. . . ) |0E — M| = (ths . . . n) OE~M)J = ((u1%2 . . . %n)0 — (2505

.. us)M)J =0, and we have |6E ~ M| =0.

Now, let R be a ring. We say that R is a ring with coefficient ring K if
R is a K-module such that a(ab) = («a)b = a(ab) holds for every a, b& R and
ae= K. R is called faithful with respect to K if a = 0 is the only element of
K such that aR = 0. If R has a unit element and is faithful with respect to K
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then K is regarded in the natural manner as a subring of the center of R
containing the unit element; if moreover K coincides with the center we call
R normal over K. Let us call a ring R with coefficient ring K an algebra over
K if R is finite with respect to K. '
Let R be a ring with coefficient ring K and let ¢;, ¢z, . . ., ¢s be a finite
number of mutually commutative elements of R. Then we denote by K<{c;,cq,
., ¢sy the commutative subring of R consisting of all polynomials of ¢, ¢.,
. ., ¢s with coefficients in K and without constant terms, while in case R has
a unit element we mean by K[c,, ¢, . . ., ¢s], as usual, the commutative sub-
ring consisting of all polynomials of ¢, ¢:, . .., ¢s with coefficients in X but
with perhaps constant terms. We may assert here that if R is an algebra over
K so are also both subrings K<{¢;, ¢s, ..., ¢s» and K[cy, €5, . . ., ¢s]; in fact
from Theorem 7 we have immediately

THEOREM 8. Let R be an algebra over K with a finite basis (a, az, . . . , Gn).
Let ¢ be an element of R and M a square matrix of degree n in K such that
claa:...an) = (@@ ...an)M. Thencis aroot of the polynomial ti| tE —~ M|,
while in case R has a unit element c is indeed a root of the polynomial |tE — M|.

Now let ¢ be an element of an algebra R and denote by ¢(c) the right ideal
consisting of all elements of the form x — cx with x & R. Then the right quasi-
regularity of ¢ means that g(¢) = R. Therefore for a maximal ideal p of K
the right quasi-regularity of ¢ modulo pR means that g(c¢) + pR = R. Hence if
we apply Corollary to Theorem 5 to M = R and N = ¢(c¢), we have

LEMMA 2. Let R be an algebra over K. Then an element of R is right
(or left) quasi-regular if and only if it is right (or left) quasi-regular modulo
pR for every maximal ideal p of K.

CoRrROLLARY. Let R be an algebra over K and let N(p) be, for each maximal
ideal p of K, the two-sided ideal of R such that N(p) 2 pR and N(p)/pR is the
radical of the residue class algebra R/pR. Then the radical N of R is the inter-
section of all N(p)’s: N= QN(p),

Now we prove

THEOREM 9. Let R be an algebra over K. Then every right (or left) quast-
regular element ¢ is left (or right) quasi-regular too, and moreover its quasi-
tnverse ¢’ is expressible as a polynomial of ¢ with coefficients in K and without
constant term: ¢ € K{c).

Proof. First, we prove the theorem in the special case where K is a field.

1) This theorem was suggested to the writer by Nagata.
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Let (ay, @, . . ., as) be a linearly independent basis of R over K and let M(x)
be the left regular representation of R with respect to this basis: x(a;, as, . . .,
an) = (a1, G2, . . ., ax)M(x). Then the right quasi-regularity of ¢ implies the
right quasi-regularity of the corresponding matrix M(c): M(c)M(c") = M(c)
+ M(c’), and this means also that E — M(c) is a regular matrix, that is, the
determinant | E— M(c) | %0. Now we put |tE — M(c)| = t* -+ 11" 1 + ret"~2
+ ...+ 7rn then it follows 14+ 11+ 712+ ...+ (= | E—~M(c)|) % 0. Put then
a=—-(ri+72+...+7s)"" and further ay=a, as=a(l+71)), ..., an=a(l
+ 714+ 74+ ...+ 7a). Then we have ay— a;=ar;, &3 —a2=Qrz, . . ., An
~ Xy = AFn.y and an + 1= ~ar,. These shew, combined with the fact that
¢ is by Theorem 8 a root of the polynomial ¢ |tE — M(e)| = t" + 118" + 1277}
4 ...+ 71at, that ¢ = a;c® + ac? '+ . . . + axc is the (right as well as left)
qguasi-inverse of ¢: ¢’ =c¢ + ¢

Next we turn to the case of general coefficient ring K. Let p be a maximal
ideal of K. Then the right quasi-regular element ¢ is of course right quasi-
regular modulo pR, and since R/pR is an (ordinary) algebra over the residue
class field K/p ¢ is quasi-regular modulo pR, as was shown just above. This
is the case for every p, and by virtue of Lemma 2 ¢ is indeed quasi-regular in R.

We want now to show that the quasi-inverse ¢ lies in K{¢>. For this
purpose, we may assume without loss of generality that R coincides with the
(commutative) subalgebra K{c¢, ¢’>: R = K{¢, ¢’>. Let p be a maximal ideal
of K and consider again the residue class algebra R/pR over the field K/p.
Then it was also shown above that ¢’ lies in K{¢) modulo pR: ¢’ & K{c) + pR
i.e. R = K{c) + pR. Since this is the case for every p we have R = K{c¢) by
Corollary to Theorem 5, and this completes our proof.

CorOLLARY. Let R be an algebra over K and S its subalgebra. Then an
element of S is quasi-regular in R (if and) only if it is quasi-regular in S.

Now let I be a module with operator ring K and Q a regular algebra over
K with unit element. Then we can readily construct their direct product M x Q
over K to be an @-double-module in which 9 is contained as a submodule
element-wise commutative with @ and such that every linearly independent
basis of @ over K is also the same of I X @ over M. When MM forms further
a ring R with coefficient ring K, so is also the direct product R x @; if more-
over R possesses a unit element and is faithful with respect to K then @ (as
well as R) may be regarded as a subalgebra of R x @ so that R and @ are
element wise commutative and they have, with.-R x @, a unit element in common.

2) For the general definition of direct products, cf. Artin-Nesbitt-Thrall [2], VL.
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Now we can assert

TueorReEM 10. Let N be the radical of R. Then N X Q is a quasi-regular
two-sided ideal of R x Q.

Proof. Consider an arbitrary element ¢ of N x @ and denote by g(c¢) the

right ideal of R x @ consisting of all elements of the form ¥ — ¢x with x & R
X @. Then we have evidently R x @ = g(¢) + c(R % @) = g(¢) + N x @, which
implies by virtue of Theorem 1 that R x @ = ¢(c), i.e., ¢ is right quasi-regular
in R x Q.

A commutative ring £ in which K is contained as a subring is called an
extention ring of X if the unit element of K is also the unit element of 2. If
moreover 2 is finite with respect to K, 2 is called a finite extension ring of K;
such an extension ring may be regarded as a faithful algebra over K. If R is
an algebra over K and if £ is a (finite and) regular extension ring of X. Then
the direct product R x 2 may be looked upon as an algebra over 2, which we
shall somtimes denote by Ra.

Finally we prove the following

THeoREM 11." Let R be a ring with coefficient ring K and possessing a unit
element and let S be its subring such that the commuter ring Va(S) of S in R
is of the type (S). Furthet, let Q be a regular algebra over K with unit element,
and consider the direct product R x Q over K. Then an isomorphism ¢ of S into
R can be extended to an inner automorphism of R if (and only if) it can be
extended to an inner automorphism of R x Q.

Preof. Suppose that ¢ can be extended to an inner automorphism x - #~!xx
of Rx Q: u'au = a? (ae S). Then #R may be seen as an S-R-double-module.
Let (b, b, . . ., b,) be a linearly independent basis of @ over K. Then it forms
also a linearly independent basis of R x @ over R, that is, R x @ is a direct
sum of submoduli Rb,, R, . . ., Rb, each (R-R-whence) S-R-isomomorphic to R.
On the other hand, since R x @ = (R X @), R x @ is a direct sum of submoduli
uRb,, uRb,, . .., uRb, each S-R-isomorphic to #R. The operater-endomor-
phism ring of the S-R-double-module R is, regarded as a right operator ring,
inverse-isomorphic to Vz(S),” and hence is of the type (S). We may therefore
apply Corollary to Theorem 4 to these two direct decompositions of R x @, so
that R and #R are S-R-isomorphic. Let v be the element of R corresponding
to # in #R, under an S-R-isomorphism between R and #R. Then v is evidently

13) Cf. Azumaya [4], Theorem 8, 1).
) QObserve that R has a unit element.
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a regular element of R and, moreover, since au = ua® for every a € S there
must hold a@v = va? for every ¢ €S. These show that ¢ can be extended to
an inner automorphism x - v»~'xv of R.

3. Proper maximally central algebras over a general coefficient ring

Let A be a regular algebra over K possessing a unit element 1. Let A’ be
an algebra inverse-isomorphic to A. under a correspondence a «» a’, and construct
the direct product A x A’ over K. Then every A-double-module It can be looked
upon, in the usual fashion, as an A x A’-right-module by defining the multipli-
cation of @ & A’ on the right as the multiplication of a & A on the left. In
particular, A itself may be seen as an A x A’-right-module. Let us call A

proper maximally central over K if A x A’ coincides with the K-endomorphism
ring of A.

THEOREM 12. Let A be a faithful algebra over K with unit element. Then.
in order that A is proper maximally central over K it is necessary and sufficient

that there exists a basis (a\, a=, ..., am) of A over K such that the square
matrix
iaa aa...ana
QiQs A2Qs . . . A Qg
” a]_a‘ ” =] e

...........

asqm C:CQm . . AmQm
is regular; and in fact, when this is the case, this condition is satisfied for every
linearly independent basis (a,, as, . . ., am).

Proof. First, we observe that the regularity of ||ajai| implies the linear

independency of (a;, a.,. . .,an). For, if elements a,, a-, . . ., an, of K satisfy
the relation gdi a; =0 then ?1:31, a;aja; =0 for 7=1,2, ..., m, and hence we
have ay=az= ... =am=0.

Now the regularity of the matrix || @;a;| means that for any system of m
elements (by, bs, .. ., bm) of. A there exists a uniquely determined system of
elements (%1, %2, . . ., ¥m) Oof A such that (%, ... xm) | @jai{ = (b:d2. . .bm).

But this is also equivalent to saying that y = m_z a;x{ is the only element of
A X A’ such that (&), a2, ..., am))(=(a, az:—.l o, am))Y =(ay, a, . .., an)
i a;xi) = (by, bs, . .., bm), which means nothing but the proper maximal cen-
trality of A.

COROLLARY 1. Let A be a proper maximally central algebra of rank m over

K. Then A x A’ is, as A x A’-right-module, operator-isomorphic to the m-times
direct sum A™ of A.
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In fact, if we associate with each 7 & A x A’ the vector (a;, @, ..., an)¥
=(ai ), a:), . ..,am}() E A™ we obtain a desired operator-isomorphism of A x A’
onto A™,

CoROLLARY 2. Every- full matrix 7ing (K), over K of degree n is proper
maximally central over K.

In fact, if {e;j: 4, j=1,2, ..., n} is a system of matrix units in (K)», it
forms a linearly independent basis of (K), over K and the corresponding square
matrix | eweij| ij, kp» (of degree »®) has an inverse matrix [ ej; ! because
E epqlijeipeqp = %{‘,eqpejiekleqp = 0iij), ki

THEOREM 13. Let A be a proper maximally central algebra over K. Then
K coincides with the center of A, and two-sided ideals a of A and ideals ¥ of K
correspond one-to-one by the following relation:

a=14, t=an K

Further, when a and t correspond, A/a is a proper maximally central algebra
over K/t.

Proof. Let (a;, @., . . ., am) be a linearly independent basis of A over K.
Then there exists, for each i=1, 2, ..., m, an element Y; in A x A’ such
that @;Xi =1 and a; (i =0 (5 =% 7).

Consider an element 7 from the center of A and let ra; = kia; + ke + . . .
+ kmam with every k; in K, Then we have r =ra s = 6ia )i + ke@s i + .

+ kmam¥: = k;, and thus the center coincides with K.

Next let a be a two-sided ideal of A and take an element @ = a;a, + a-a-
+ ...+ amam(a; € K) from it. Since a is then allowable with respect to A x A/,
a)iis in a; on the other hand, we have a/i=a,a: /i + ...+ @iaiYi+ ...+ &mam )i
= @i, and a; lies in t = a K. This is the case for every a & a and for e.very
i=1,2, ..., m,and therefore a =ta, +ta@ + . ..+ tam =1A. The converse
direction follows readily from the regularity of A over K.

The last assertion is an immediate consequence of Theorem 12, since every
linearly independent basis of A over K is also the same of A modulo a over K/f.

THEOREM 14. In case K is a field, proper maximally central algebras over K
are nothing but normal simple algebras over K.

Proof. That every proper maximally central algebra is normal simple
follows from Theorem 13, while the converse is a well-known fact in the theory
of simple algebras.!”

15 Cf. Artin-Nesbett-Thrall [2], Theorem 7.1F, for instance.
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TuroreM 15. Let A be a regular algebra over K with unit element. Then
A is proper maximally central over K if and only if for every maximal ideal p
of K A/pA is a normal simple algebra over the residue class field K/p.

Proof. Let (@i, a2, . . ., an) be a linearly independent basis of A over K.
Then it is also the same of A modulo pA over K/p, for every p. Consider the
full matrix ring (A)n of degree m over A. If we apply Lemma 2 to the algebra
(A)m we know that the matrix ||a@;a:| is regular in (A)» if and only if it is
regular modulo p(A)n, = (pA),, for every p, and this means, by Theorem 12
and in view of Theorem 14, the validity of our theorem.

CororLARY. The rank of a proper maximally central algebra A over (its
center) K is a complete square number.

Proof. Let p be a maximal ideal of K. Then A/pA is, by Theorem 15, a
normal simple algebra over K/p and has the same rank (over K/p) as the
rank of A, and our assertion can be reduced to the well-known theorem of
simple algebras.

Now we prove a theorem which may be seen as a generalization of (the
second part) of Theorem 13:

THEOREM 16 Let A be a proper maximally central algebra over K. Let
T be an A-double-module for which the unit element of A is an identily operator
on both sides and let N be the K-submodule consisiing of all elements of M
element-wise commutative with A. Then WM is a direct product of N and A over
K: M =N xA. A-double-submoduli WM, of M and K-submoduli N, of N corre-
spond one-to-one by the following relation:

PTo=Tox A, Ro=TM NN

Proof. Looking upon MM as an A x A’-right-module, M is a sum of submoduli
of the form #(A4 x A’) with 2 M. But since #(A x A’) is operator-homomor-
phic to A x A’ and A x A’ is by Corollary to Theorem 12 operator-isomorphic
to the m-times direct sum A™ of A, M is expressible as a sum of submoduli
m, each operator-homomorpic to A. Let #, be the element of m, corresponding
to the unit element 1 of A, under an operator-homomorphism of A onto m,.
Considered MM again as A-double-module, %, is element-wise commutative with
A and moreover m, = u, A. We have therefore M = > m,=>u, A = NA. Now

let (a1, @2, . . ., am) be a linearly independent basis of A over K and let y:
be, for each :1=1, 2, ..., m, the element of Ax A’ such that @;¥%; =1 and
a;7i =0 (j=1), as in the proof of Theorem 13. Suppose that v,. v, . . ., vm

18) Cf. Azumaya [4], Lemma 1.
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are elements of i satisfying the relation v,a; -+ v.@.+ . .. + vmam =0. Then
it follows vi = vyai i+ . . . 4+ viagi)i+ . . . 4 vman )i = 0 for every 7, and thus
ay,a., ..., an are linearly independent with respect to : M =N x A.

The second assertion follows immediately from the first one, just proved.

CoroLLARY.”) Let R be a ring with coefficient ring K and possessing a unit
element and let A be its proper maximally central subalgebra containing the
unit element of R. Then R is a direct product of A and its commuter ring
Q= Vs(A) in R: R=Q x A. Between two-sided ideals Ry of R and two-sided
ideals @, of @, or between subrings Ry of R containing A and subrings Q, of @
containing K, there exists a one-to-one correspondence by the following relation:

Ro=QoXA, Q0=RonQ.

THEOREM 17. Let A and B are both proper maximally central algebras over
K. Then the direct product A x B over K is also proper maximally central.

Proof. Let (ay, @2, . .., am)-and (by, be, . . ., bs) be respectively a linearly
independent basis of A and B over K. Then aibr (i=1,2,...,m; k=1,2,...,n)
form a linearly independent basis of A x B and the corresponding matrix [l @a;jbr
aibe|ir), 1 is the so-called Kronecker product of ||a;a;|| and || b:be]]. The regu-
larities of | a;jai| and | bk || implies therefore the regularity of || a@jbiaib ||, and
this proves our theorem by virtue of Theorem 12.

Now let A be a faithful algebra over K with unit element and consider a
full matrix ring (A), over A of degree 7, then for every maximal ideal b
of K the residue class algebra (A),/p(A), is a full matrix ring over A/pA, and
(A)-/p(A), is normal simple over K/p if and only if so is A/pA. It follows
therefore from Theorem 15 that (A), is proper maximally central over X if and
only if so is A. This fact enables us to introduce the notion of algebra classes
over K, as in the case of simple algebras; namely, two proper maximally central
algebras A and B over K are called similar (notation: A ~ B) if there exist
two natural number 7 and s such that (A), and (B)s are isomorphic. Similarity
is an equivalent relatidn, and divides the set of all proper maximally central
algebras over K into classes; every class we shall call an algebra class over K.
Since the direct product of two proper maximally central algebras over K is also
proper maximally central by Theorem 17 and since A~ B implies AXx C~Bx C
for every proper maximally central algebra C, there is defined in the natural
manner a multiplication among algebra classes over K. The tatality of algebra
classes over K forms then an abelian group, which we shall call the algebra

) Cf. Azumaya [4], Theorem 1. Cf. also Artin-Nesbitt-Thrall [2], Theorems 7.1B and 7.3F.
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class group over K. Indeed, the class {K} of all full matrix rings over K is
the unit class, and for every class {A} the class {A’} represented by an algebra
A’ inverse-isomorphic to A is the inverse class of {A} because of the very
definition of the proper maximal centrality: A X A’~K,

Finally we define the general notion of maximal centrality: an algebra A
is called maximally central over K simply if A is decomposable into a (finite)
direct sum of mutually orthogonal subalgebras A;, A., ..., A, such that
each A, is proper maximally central over its center. Once the notion is defined

it can readily be seen from Theorem 12 that proper maximally central algebras
are nothing but regular, normal maximally central algebras.

4. Algebras over a completely primary coefficient ring

A (not necessarily commutative) ring with unit element is called completely
primary if the sum of any two non-regular elements is always non-regular too,
or what defines the same, if it has a unique maximal right (or left) ideal;
indeed, when this is the case, the maximal (right as well as left) ideal is the
radical of the ring and consists of all non-regular elements.

Throughout the following we assume that K is a completely primary commu-
tative ring with unit element and with unique maximal ideal (= radical) p and
shall consider those rings or algebras which have K as their coefficient ring;
Jurther we denote by K the residue class field K/p.

Let R be an algebra over K. From Corollary to Lemma 2, it follows that
the radical N of R contains pR and N/pR is the radical of the residue class
algebra R/pR. Since R/pR is an (ordinary) algebra over K = K/p, the residue
class ring R/N is semi-simple, ie., R is of the type (S). Let us say that R is
unramified over K if pR is the radical of R, that is, if R/pR is semi-simple.

Suppose now that R is not necessarily unramified but a subalgebra A is
unramified. Then evidently AN\ N2 ANpR 2pA. On the other hand, ANN
is by Corollary to Theorem 9 a quasi-regular ideal of 4, i.e., A N N is contained
in the radical pA of A: AN NE pA. We have therefore ANN=ANPR =pA;
or in other words, the natural homomorphism of R onto its residue class algebra
R/N or R/pR induces on A the natural homomorphism onto its residue class
algebra A/pA. Finally, we call (the unramified subalgebra) A an inertial algebra
of R if every residue class of R modulo N is represented by elements from A,
that is, if R= A+ N.

Now, from Theorem 15 it follows in particular that a regular algebra A
with unit element is proper maximally central over K if (and only if) A/pA is
normal simple over K. We can however assert that this is the case even if we

assume the faithfulness of A instead of its regularity. For, if a;, a-, . . ., am
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be elements of A which form modulo pA a linearly independent basis of A/pA
over K then they form by Theorem 6 a (not necessarily linearly independent)
basis of A over K. Further, since A/pA is normal simple, that is, proper
maximally central over K (Theorem 14), the square matrix || aja;| is regular
modulo p(A)m = (pA)m, and so | a;a;| is by Lemma 2 regular in (A),, which
means again by Theorem 12 the proper maximal centrality of A over K,

TueorREM 18. Let R be a faithful algebra with unit element 1 over (com-
Dletely primary) K and A its proper maximally central subalgebra containing K.
Then every isomorphism ¢ of A into R which leaves K element-wise fixed can
be extended to an inner automorphism of R.

Proof. Consider the direct product R x A’, where A’ is a (proper maximally
central) algebra over K inverse-isomorphic to A. Then it contains the subalgebra
AXx A, and A x A’is a (full) matrix algebra over K, i.e., there exists a system
of matrix units {e;;} such that 31Ke;; = A x A’ and S}eii =1. Now ¢ can be
extended in the natural way to an isomorphism of A X A’ into R X A’ which leaves
invariant every element of A’. Let fi; be the element of R x A’ corresponding
to e;;, under this extended isomorphism. Then {fi;} is also a system of matrix
units and > fii = 1. Hence there exists, by Theorem 4, a regular element u in
R such that #~'e;;u = fi; .for every i, j. The inner automorphism % - »~'xu
induces therefore the extended isomorphism on A x A/, that is, there holds
ulau = a” and u~'a’u = a’ for every a = A and o’ & A’. Since R is by Corollary
to Theorem 16 the commuter ring of A’ in R x A’, the latter relation implies
that both # and «~! lie in R, and the proof is completed.

COROLLARY. Let A be a proper maximally central algebra over K. Then cvery
automorphism of A which leaves K element-wise fixed is an inner automorphisni.
Now we want to see that in case K is a field our definition of maximal

centrality coincides with the definition formerly given in Azumaya-Nakayama,
[5]. For this purpose, it is evident fromn Theorem 13 that we have only to treat
the case of primary algébras. Let K be a field, and consider a primary algebra
A over K with unit element. Let A be the simple residue class algebra of A
modulo its radical N and #* the rank of A over its center. Let further Z be
the center of A. Then Z is a completely primary commutative ring and in
fact 3 = NN Z is the unique maximal ideal of Z. Suppose that A is maximally
central in our sense. Then, since A is two-sided directly indecomposable, A is
necessarily proper maximally central over Z. Hence A is regular over Z and
A =A/N is by Theorem 13 (also proper maximally ceqtral whence) normal
over the residue class field Z = Z/;. We have therfore that [A: Z]1=[A:Z]
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=2 whence [A: K]=[A:Z][Z:K]=#[Z: K], which shows the maximal
centrality of A in the sense of Azumaya-Nakayara [5]. Suppose conversely
that [A: K] < #[Z : K]. Then it was shown in (the proof of) Azumaya-
Nakayama [5], Theorem 2 that N =3A and A = A/N is normal over Z == Z/3.
Hence A is, as was pointed out in the above, proper maximally central over Z.
Thus our assertion is proved.

5. Algebras over a Hensel ring

Let K be a completely primary commutative ring with unit element and
with maximal ideal ».

First, we consider a polynomial rings K[¢] and K[¢] of one variable ¢ over
K and K = K/p respectively. If we associate with each polynomial f(¢) in K[#]
the polynomial f(¢) in K[¢] which is obtained by replacing every coefficient of
f(t) by its residue class modulo p, then we have the natural homomorphism
of K[t] onto K[t]; in this case, we call f(f) an image polynomial of f(t)
and f(t) a representative polynomial of f(t) respectively. We say that two
polynomials f(#) and g(¢) in K[#] are relatively prime if (f(t))+ (g(¢))=K[¢],"®
i.e., if there exist two polynomials ¢(#) and ¢(¢) such that f ()¢ () + g(t)¢ (D)
=1. When this is the case, every polynomial I(#) divisible by both f(#) and
g(t) is also divisible by f(#)g(¢), because I(¢) = I(t)f (£)o(t) + (1) g ¢(2).
This means that (f(#)) N (g((#)) = (f(2)g(?)), and therefore the residue class
ring K[t]/(f(t)g(t)) is a direct sum of two ideals (f(¢))/(f($)g(t)) and (g(¢))
/(f(t)g(t)). Now we note that two polynomials f(¢#) and g(¢) in K[#] are
relatively prime if (and only if) they are relatively prime modulo p[#], provided
that f(¢) has the highest coefficient 1. For, since that f(¢) and g(¢) are rela-
tively prime modulo p[¢] means that K[t]= (f(#)) + (g(¢)) + p[#] and since
K[t1/(f () whence K[t]/(f(¢))+ (g(¢)) is finite with respect to K we have
K[t]=(f(®)) + (g(#)), by virtue of Corollary to Theorem 5. We can moreover
assert:

LeMMA 3. Let f(#) be a-polynomial in K[¥] with highest coefficient 1. Then
every decomposition of the residue class ring K[t]/(f (#)) into a direct sum of
two ideals is always given in the following form:

K1/ (£ () = (g /(£ (1)) ® (R()) /(S (),

where g(t) and h(t) are relatively prime polynomials both with highest coef-
ficients 1 and such that g(t)h(t) = f(t).
' Under (f(Z)) we mean the principal ideal f(¢)K[¢].

19 The validity of this Lemma and that of Theorem 19 were pointed out to the writer by
Nakayama.
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Proof. Suppose that 7and I’ be two ideals of K{¢] containing (f(#)) such that
K[t]/(f(t)) is a direct sum of I/(f(t)) and I'/(f(1)) : K[£1/(f(£)) =1/(f(£)) ® I’
/f((t)). Then I and I’ consists of all polynomials which annihilate 7/ and 7
modulo (f(#)) respectively. Let f(¢), I, I’ be the homomorphic images of f(1),
I, I’ respectively, by the natural homomorphism of K[t] onto K[#]. Then the
residue class ring K[¢1/(f (#)) is a direct sum of T/(f(¢)) and I'/(F (t)):
K[t1/(F#&) =1/(J @) ®I'/(f(#). Since K is a field, ideals 7 and I’ of K[#]
are principal, i.e., there exist polynomials g(#) and %(¢) in K[t] such that (gt
=T and (%(f)) =7'. Suppose that Z(f) and %(#) are of degrees 7 and s respec-
tively. Then the 7+ s polynomials g(¢), tg(¢),. .., @), =), th(), . . .,
=" (t) form modulo (f(¢)) a linearly independent basis of K[t1/(f(¢)) over
K. Now take from I and I’ two polynomials g(¢) and ho(t) respectively so
that they are representaive polynomials of Z(#) and %(#). Then, since K[¢]
/(£ (t)) is the residue class ring of K[t1/(f(#)) modulo its ideal p(K[t1/(FEN)
=T+ (S () /(f(2)), the » + s polynomials g (1), tg(2), . . ., E57'gu(t), Mu(?),
tho(t),. .., 1" 'Iy(t) form modulo (f(f)) a linearly independent basis of K[?#]
/(f(2)) over K, by virtue of Theorem 6. Observing further that K[t1/(f(¢))
is a direct sum of 7/(¥(¢)) and I’/ (f(t)), we can conclude that the s polynomials
a (), ta(t), . . ., t57'g(t) and the 7 polynomials A,(2), tho(t), . . ., £ ke (¢) form
modulo (f(¢)) a linearly independent basis of 7/(f(¢)) and I'/(f(¢)) over K, re-
spectively. It follows therefore that the polynomial #5g,(¢) in 7 is modulo (f(¢))
expressible in the following form: #5g,(f) = au@(t) + ait@@) + . . . + as_ #5718 (¢)
(mod f(t)), with a; in K. Now we put A(f) =1 —as_i#*'— ... —a;ft — as
then we have h(#)g(¢) =0 (mod f(¢)), and A(¢) annihilates 7 modulo (f(¢))
ie. h(t) lies in I’. Conversely, take any polynomial k(t) from I’. Then it an-
nihilates g,(#) modulp (f(): E(#)& ()= 0 (mod f (t)). Since k(¢) is a polynomial
of degree s and with highest coefficient 1, we can find a polynomial 7r(¢) of
degree at most s — 1 such that &(¢) =7(¢) (mod k(¢)) whence k()& (t) = 7(2) g (%)
(mod =($)g,(t)). We have therfore 7(¢t)& (¢) =0 (mod f(¢)). But from the linear
independency of gy(2), t& (), ..., 57 g,(#) modulo (f(#)) it follows that 7(¢) = 0,
and thus every polynomial k(¢) in I’ is divisible by h(t) i.e. we have I’ = (h(f)).
Similarly, if we denote by g(¢) the polynomial of degree 7 and with highest coef-
ficient 1 such that g(#)%,(¢) = 0 (mod f(¢)) then we have I = (g(¢)). Since I+ 1’
= K[t], g(t) and h(t) are relatively prime. Hence (g(£)k(8)) = (g(t)) N k(1))
= (f(t)); but since both g(#)A(¢) and f(¢) have the highest coefficients 1 it
follows that g(¢)%(¢) = f(¢), and the proof is completed.

Now let f(¢) be a polynomial in K[#] and let f (#) be its image polynomial
in K[#] (by the natural homomorphism of X[¢] onto K[#]). Let us say that the
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Hensel lemma holds for f(t) if for any given relatively prime polynomials g (¢)
and %(#) in K[t] such that g(#)k(¢) =f () and Z(f) has the highest coefficient
1 there exist in K[t¢] two representative polynomials g(¢) and k(?) of g(t) and
%o(t) respectively such that g(2)2(¢) = f(¢) and g(¢) has the highest coefficient 1.
Here, we note that g(¢) and 2(t) are relatively prime (since they are relatively
prime modulo p[¢] and g(¢) has the highest coefficient 1).

Noticing the fact that in every commutative ring with unit element there
exists a one-to-one correspondence in a definite manner between idempotent
elements and direct decompositions into two ideals, we have immediately from
Lemma 3 the following

THEOREM 19. Let f(t) be a polynomial in K[t] with. highest coefficient 1.
Then in order that the Hensel lemma holds for f(t) it is necessary and sufficient
that for every idempotent element of (the residue class ring) K[t]/(f(t)) there
exists in K[1]/(f(t)) an idempotent representative of it.

CoroLLARY. Let f(t) be a polynomial in K[t] with highest coefficient 1 for
which the Hensel lemma holds and let g(t) be a polynomial in K[t] by which.
f(b) is divisible. Then for every idempotent element of (g(t))/(f(t)) there exists
in (g(t))/(f(t)) an idempotent representative of it.

Proof. K[t1/(f(t)) is the residue class ring of K[t]/(f(¢)) modulo its ideal
p(K[t1/(f(t))), which is quasi-regular since X[?]/(f(#)) is finite with respect
to K. Hence it follows from Lemma 1 that an idempotent element of K[¢]
J(f(t)) lies in the ideal (g(£))/(f(¢)) if its residue class (& K[t]/f(t)) lies in
F@N/(F@®)).

TueoreM 20. Let f (1) be a polynomial in K[t] with highest coefficient 1 for
which the Hensel lemma holds. Let Z be a finite extension ring of K such that
Z =K[c] with f(c) =0 and let 3 be an ideal of Z. Then for every idempotent
element @ of the residue class ring Z = Z/3 there exists in Z an idempotent
representative e of e.

FProof. First, we treat the special case where 3 = pZ. Since Z = K[c] with
f(¢) =0,Z is K-homomorphic to K[t]/(f(¢)) by associating with ¢ (mod f(¢))
the element ¢. Similarly, if we put ¢ the residue class of ¢ modulo pZ, Z = Z/pZ
is K-homomorphic to K[t]/ (f(¢)) by associating with ¢ (mod 7 (¢)) the element
¢. Suppose that there is given an idempotent element ¢ in Z. Then, since
K[t1/(f(t)) may be looked upon as an (ordinary) algebra over the field K
= K/p, there exists in K[t]/(f(#)) an idempotent representative of &, as is
well-known. Hence there exists in K[#]/(f(¢)) an idempotent representative of
it by virtue of Theorem 19. Let ¢ be the homomorphic image of this idempotent
element (of K[t]/(f(?))) in Z. Then e is evidently a required idempotent
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representative of 2.

Next, we proceed to the general case. Consider the residue class ring
Z/vZ. Then the residue class of ¢ modulo pZ is an idempotent element of
Z/vZ. On the other hand, since Z/rZ (= Z/pZ +3) is a residue class ring of
Z =Z/pZ and since Z is an (ordinary) algebra over K = K/p, we can find in
Z an idempotent representative ¢ of & (mod pZ). Then we can find further an
idempotent element ¢ in Z so that ¢ is the residue class of ¢ modulo pZ, as was
shown just above. If we take the residue class of ¢ modulo 3 we have a second
idempotent representative of & (mod rZ) in Z. Since pZ is however a quasi-
regular two-sided ideal of Z this must coincide with the given € by virtue of
Theorem 2, i), and thus our theorem is proved.

THEOREM 21. Let f(t) be a polynomial in K[t] with highest coefficient 1
and without constant term for which the Hensel lemma holds. Let Z be a
(commutative) algebra over K such that Z = K{c) with f(c¢) =0 and let ; be an
ideal of Z. Then for every idempotent clemeni ¢ of the residue class algebra
Z = ZJ; there exists in Z an idempotent representative e of €.

Proof. The proof can be obtained in the same way as that of the preceding
theorem if we consider the algebras K{>/(f(¢)) = (¢)/(f(¢)) and KEa/(F (1)
= (£)/(f(t)) instead of K[t]/(f(t)) and K[t]/(f(t)) and make use of Co-
rollary to Theorem 19 to these algebras.

Now let us call (completely primary) K a Hensel ring if the Hensel lemma
holds for every polynomial in K[{] with highest coefficient 1.

THEOREM 22. In order that K is a Hensel ring it is necessary and sufficient
that the following condition holds for every finite extension Z of K and for
every ideal 3 of Z:

For any given idempotent element ¢ of the residue class ring Z = ZJ; there
exists in Z an idempolent representative e of €.

Proof. Assume that K is a Hensel ring. Take from Z a representative ¢
of the residue class ¢ and consider the subring K[c]. Then c¢ is a root of a
polynomial f(¢#) in K[¢] with highest coefficient 1 (Theorem 8), and the Hensel
lemma holds for f(¢). Hence there exists by Theorem 20 an idempotent ele-
ment e in K[c] which is a representative of ¢ (& K[¢]).

The sufficiency follows directly from Theorem 19.

TurEOREM 23. Let K be a Hensel ring. Then every residue class ring of K as
well as every completely primary finite extension ring of K is also a Hensel ring.

Proof. That every residue class ring of K is a Hensel ring is clear. The
other assertion is an immediate consequence of Theorem 22, since every finite
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extension of a finite extension of K is also a finite extension of K.

Example. The valuation ring of a p-adic number field is a Hensel ring.
More generally, Let K be a completly primary commutative ring with unit
element and suppose that the intersection of all powers of the maximal ideal
p is zero: F\ p*=0. Then we introduce in K a topology by taking all the:
powers p¥ a;=121 neighbourhood system of 0 so that K becoms a topological ring.
Suppose further that K is complete with respect to this uniform topology; such
K is called a complete local ring® in the generalized sense. Then for every
polynom‘ial in K[t] (not necessarily with highest coefficient 1) the Hensel
lemma holds,?” and hence K is a Hensel ring. The proof may be obtained by
modifying slightly the proof of the usual Hensel lemma in the case of p-adic
number fields, and should be omitted.

THEOREM 24. Let R be an algebra over a Hensel ring K and let a be its
two-sided ideal. Then for any given svstem of mutually orthogonal .idempotent
elements €,,8., . . ., €, in the residue class algebra R = R/a we can find actually
a system of mutually orthogonal idempotent elements ey, e, .. .,e, in R such
that each e; is a representative of ;.

Proof. It is evidently sufficient to show that if e, is an idempotent element
of R and if € is an idempotent element of R =R/a which is orthogonal to the
residue class &, of ¢, modulo a then there exists in R an idempotent representa-
tive e of ¢ which is orthogonal to e): ey = eve = 0. To prove this, consider the
subalgebra #(es) of R consisting of all two-sided annihilators of ¢ in R, As is well-
known, #(e,) coincides with the set of all elements of the form x — eux — xeo + €sxes
with x& R, and so the homomorphic image of £(e)) by the natural homomorphism
of R onto R = R/a is nothing but the subalgebra #(&;,) of R consisting of all
two-sided annihilators of &, in £. Since & is orthogonal to &,, that is, since &
lies in #(€,), we can find in #(e,) a representative ¢ of €; ¢ is by Theorem 8 a
root of a polynomial f(¢) in K[?] with highest coefficient 1 and without constant
term, and the Hensel lemma holds for f{?). Considér further the subalgebra
K{c) of t(e)). Then there exists in K<{c¢) an idempotent representative e of
€ by virtue of Theorem 21, and e is the required idempotent element.

THEOREM 25. Let R be an algebra over a Hensel ring K and let q be its
quasi-regular two-sided ideal. Suppose thal there is given a system of matrix

units {€i;;4,7=1,2,...,n) in the residue class algebra R = R/q. Then there
exists in R a system of matrix units {e;;;1,j=1,2,...,n} such that each

20 The notion was introduced by W. Xrull and was generalized by Nogata [11].
2h Nagata [11], Proposition 5; cf. also Cohen [7], Theorem 4.
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ei;j is arepresentative of €ij.

Froof. Since €y, €, . . . , €4n are mutually orthogonal idempotent elements
of R, there exist by the preceding theorem mutually orthogonal idempotent ele-
ments &, €, . . ., ¢, in R such that each e; is a representative of €;;. Further,
since €€y = €,i€;; = €yi, €;i€;; = €i€n'= €;; and €,€;; = &, €;,€,; = &;; for every
i%1, we can find, by applying Theorem 2, ii) to & = &,;, 7 = &;; and a = &,
b = 2.1, representatives e; and e;; of &y and &;, such that ee,; = eye; = e, eiei
= eie, = ejy and eje;; = ey, €6y = e for every i 1. Put now e; =e¢, and ¢;;
=¢e; for ix1, j=x 1. Then e; = e; {for every 7, and {ejj;i,j =1, 2,.. ., M)
is a desired system of matrix units in R, as can readily be verified.

Now an algebra R with unit element over a Hensel ring K is called primary
if the residue class algebra R = R/N modulo its radical N is a simple algebra.

THEOREM 26. A#n algebra R with unit element over a Hensel ring K is
brimary if and only if R is a full matrix ring over a completly primary algebra ;
and such a completely primary algebra is uniquely determined by R up to K-
isomorphisms.

Proof. Let R be primary. Then the simple residue class algebra R = R/N
is a full matrix ring over a division subalgebra R,, that is, there exists a system
of matrix unit {£;;) in R such that R = 3%;;R, and R, is the commuter ring
of {¢;;}. Hence we can find by virtue of Theorem 25 a system of matrix units
{eij} in R such that each e;; is a representative of ¢;;. Denoting by R, the
commuter ring of {e;;} in R, R is a full matrix ring over Ry: R = > eijR,;
further, the radical N of R is the totality of matrices in the radical NV, of R,.
R = R/N is therefore a full matix ring over Ro/N,, and we have R,= Ry/N,.
Thus R, is completely primary. The uniqueness of such R, follows readily
from Theorem 4.

Let us turn to an arbitrary algebra R over a Hensel ring K. Then the
residue class algebra R = R/N modulo its radical N is semi-simple, that is, a
direct sum of mutually orthogonal simple subalgebras E, E,. c e, Ry

R=R®R,®... DR,

Let E, be, for each #, the unit element of R,. Then E,,E,, ..., Ep are
mutually orthogonal idempotent elements of R, and there exist by Theorem 24
mutually orthogonal idempotent elements E;, E.,. .., Er in R such that each
EF is a representative of E.. Every subalgebra E.RE, has the unit element E,
and if we take it modulo its quasi-regular two-sided ideal E.NE: we have the
simple residue class algebra R, = ERE,, that is, (E.NE, is the radical of ERE,
and) E.RE, is primary. Furthermore there holds the following direct decomposi-
tion of R:
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R=ERE ®ERE,®... ®E.RE,®n,
where n is a K-submodule of the radical N. Therefore if in particular R is

unramified over K, that is, if V= pR it follows from Corollary to Theorem 5
that R = E;RE] (‘B EgREg@ e s @ EkREk:

TueoreM 27, Every unramified algebra over a Hensel ring K has a unit
element and is a direct sum of mutually orthogonal primary subalgebras.

Remark. The notibn of radicals considered throughout this paper was
first introduced by Jacobson, The writer has however defined in his previous
paper? another notion of radicals; a two-sided ideal C of a ring R was called
a radical if all its (right as well as left) subideals, including C itself, and
only those contain no non-zero idempotent element. This radical C does not
always exist, and even when it exists, it does not coincide in general with the
Jacobson’s radical N; but it contains always N. However in case R is an
algebra over a Hensel ring K both notions of radicals coincide. . In fact, if
I is a (right or left) ideal of R not contained in (the Jacobson’s radical) NV
then it contains modulo N a non-zero idempotent element &, because R = R/N
is semi-simple. Hence if we apply Theorem 24 to the algebra 7/ it contains
indeed a (non-zero) idempotent representative e of ¢, and this shows that N is
the radical in the writer’s sense too; R is in fact a strongly semi-primary ring.
Furthermore, the notion of primary as well as completely primary algebras
coincides with the same ones given in the writer’s paper, provided that the
existence of unit elements is assumed.

6. Unramified extensions, crossed products and algebra class groups

Throughout this section we assume that K is a Hensel ring (with maximal
ideal p and with residue class field KX = K/p). Then every completely primary
finite extension ring of K is also a Hensel ring by virtue of Theorem 23.

LeEMMA 4. Let f(t) be a polynomial with highest coefficient 1 in K[t] and
let f(t) be its image polynomial in K[t] (by the natural homomorphism of K[t]
onto K[t]). Suppose that f (t) has a non-multiple root @ in K. Then f(t) has
one and only one root a in K which is a representative of a.

Proof. Since @ is a non-multiple root of f(t), we have f(t) = (t — @) f(?)
where f;(¢) is a polynomial in K[#] such that f,(@) % 0, i.e,, £ —a and f,(¢) are
relatively prime. IHence we can choose suitable representative polynomials’
t—a and f,(¢) of ¢t —&@ and f,(t) respectively such that f(¢¥) = (¢ — a)fi(}).
The element a is then a root of f(¢) in K which is a representative of a.

22) Azumaya [3].
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Suppose that @, is a second such root of f(¢). Then (@ — a@)fi(a;) = 0 and f, (ay)
is, since f(a@;) % 0, a regular element of K, and therefore g, must be equal
to a. This shows the uniqueness of a.

LemMA 5. Let Z be a completely primary unramified and regular extension
ring of K such that its residue class field Z = Z|vZ is separable over K and
let L be a completely primary finite extension ring of K whose residue class
field L is K-isomorphic to Z. Then for any K-isomorphism of Z onto L there
exists one and only one K-homomorphism of Z into L which induces modulo pZ
the given isomorphism on Z ; this homomorphism is an onto-mapping if and
only if L is unramified over K, and moreover this is an (onto-)isomorphism
if and only if L is regular with respect to K.

Proof. Since Z is finite and separable over K, there exists an element @
in Z such that Z = K[a]. Then @ is a root of an irreducible poiynomial 7 (¢)
in K[t] with highest coefficient 1 and of degree 1, where n is the degree of
Z over K. Let f(t) be a representative polynomial of f(¢) in K[t] also with
highest coefficient 1 and of degree #. Then, since z is a non-multiple root of
f(@), f(#) has by Lemma 4 one and only one root ¢ in Z which is a representa-
tive of @. Since Z is unramified over X and since 1, @, @*,. . . a”"! form a basis
of Z over K it follows from Corollary to Theorem 5 that 1,4, a?,. .. a"* form
a basis of Z over K; further since Z is regular with respect X and 1, @, &, . . .,
@~ are linearly independent with respect to K it follows agaih from Corollary
to Theorem 5 that 1,a,a%,...,a" ! form in fact a linearly independent basis
of Z over K.

Now let @ be the image of @ by the given K-isomorphism of Z onto L.
Then L = K[@] and @, is also a root of f(f). Hence it can be seen similarly
as just above that f(f) has one and only one root @ in L which is a repre-
sentative of @,. Therefore if we associate with ¢ the conjugate a, we obtain a
K-homomorphism of Z into L which induces the given isomorphism (@ -~ &) on
Z. On the other hand, any K-homomorphism of Z into L inducing on Z
the isomorphism (@ - @) maps @ on a root of f(¢) in L which is a representa-
tive of @, and this must coincide with @, because of its uniqueness, i.e., this
homomorphism is the homomorphism (@ - a,) defined above.

Now let the K-homomorphism (a ~a;) be an onto-mapping (i.e. L = K[ao]).
Then L is evidently unramified over K. Suppose conversely that L is un-
ramified over K. Then, since 1, @, @?°, . . ., @""* form a basis of L over K, it
follows from Corollary to Theorem 5 that 1, @, @®, . . . , @""! form a basis of L
over K, and the K-homomorphism (@ - @) is an onto-mapping. The last asser-
tion is also clear, if we observe that the regularity of (the unramified extension)
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L/K means the linear independency of 1, ao, a?, . . ., &”".

TueoReM 28. For any given finite separable extension field Z of K there
exists one and—up-to-K-isomorphisms-—only one completely primary unramified
and regular extension ring Z of K whose residue class field is Z.

Proof. Let a be the element of Z such that Z = K[@] and let £ (¢) and f(¢)
have the same significances as in the proof of Lemma 5. Then the residue
class ring Z = K[t]/(f(¢)) is a required extension ring of K, as one can readily
see. The uniqueness of Z/K is an immediate consequence of Lemma 5.

THEOREM 29.2 Let L be a completely primary finite extension ring of K
such that its residue class field I is separable over K. Then there exists one
and only one inertial ring® of L/K.

Proof. Let Z be a completely primary unramified and regular extension
ring of K whose residue class field is L (Theorem 28). There exists by Lemma
5 one and only one K-homomorphism of Z into L which leaves every residue
class modulo pZ. Then the homomorphic image of Z by the homomorphism
is unramified over K by virtue of Lemma 5, and is the inertial ring of L/K;
that this is the only inertial ring follows also from Lemma 5.

Let us now call a completely primary finite extension ring Z of K a Galois
extension ring of K if it is regular and unramified over K and moreover its
residue class field Z is a (separable) Galois extension of K. Let then G be
the Galois group of Z/K. Then for every ¢ & G there exists by virtue of
Lemma 5 one and only one K-automorphism of Z which induces ¢ on Z; this
automorphism we may and shall denote also by ¢. The totality of those ¢’s
exhausts all K-automorphisms of Z and so it forms a group isomorphic to G;
we shall call it the Galois group of Z/K and shall denote it also by G.

Once the notion of Galois extensions is defined we can now introduce the
notion of crossed products similarly as in the case of ordinary algebras. Namely,
let Z be a Galois extension ring of K with Galois group G and suppose that
there is associated with each pair (o, r) of elements of G a regular element
a,,- of Z such that

—_ T
Qp,06105,1 = Qps,1Qp,6,

for every p,s and v in G; such a system {a,,.} we shall call a factor set of
Z/K. Then we define a crossed product (Z/K, a,,-) of Z/K (with respect to
the factor set {a,,-}) as follows:

2 Cf. Chevalley [61, 111, Proposition 3.
%) =—=inertial algebra.
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(ZIK, as,-) ~=oe26qu;

2Us = UR® (ZE Z), Utz = UgrGo,n s
where {#,; ¢ & G} are linearly independent with respect to Z. Then it is ready
to see that (Z/K, a.,:) is a regular algebra over K with unit element ua;}, Z
is looked upon as its subring in a natural manner and every u, is a regular
element. Taking the factor set {a,,-} modulo pZ, we obtain a (ordinary) factor
set {@,,-) of the residue class field Z = Z/pZ, and the corresponding crossed
product (Z/K,@,,.) of the Galois extension field Z/K is a normal, simple
algebra over K. Furthermore, (Z/K, @,,.) is the residue class algebra of
(Z /K, a,,~) modulo its two-sided ideal p(Z/K, a.,~), and we have from Theorem
15 the following

TueoREM 30. Every crossed product (Z /K, a,,-) of a Galois extension ring
Z /K is proper maximally central over K and has (Z/K, G,,-) as its simple
residue class algebra.

A Galois extension ring Z is called cyclic over K if its Galois group is
cyclic. For a cyclic extension ring Z/K with rank # and with generating
automorphism ¢ and for a regular element a of K we can also construct a
cyclic erossed product (Z|K, 0, ) =Z+ uZ +uw*'Z+ ...+ u*'Z by the relations
2u=uz’ (& Z) and u” = a. Then (Z/K, s, ) is a proper maximally central
algebra over K whose simple residue class algebra is the cyclic crossed product
(Z|K,0,a) of Z/K, where @(= 0) is the residue class of « modulo p.

Let A be a proper maximally central algebra over K and let A= A/pA be
its simple residue class algebra. Then A and A determine respectively an
algebra class {A} over K and an (ordinary) algebra class {A} over K. Suppose
that B is a second proper maximally central algebra over K with simple residue
class algebra B = B/pB. Then it is clear that if A~ B then we have A ~ B,
while it can also readily be seen that A x B is the simple residue class algebra
of the proper maximally central algebra A x B: A x B=(Ax B)/p(A x B).
These show that by means of {A} - {A} the algebra class group over K is
mapped homomorphically into the algebra class group over K. But this
homomorphism is in fact an isomorphism. For, if A ~K i.e. if there exists
a system of matrix units {&;} in A such that A = 3} Ke;j, then we can find
by Theorem 25 a system of matrix units {e;;} in A such that each e is a
representative of e;;, since A is unramified over K, it follows from Theorem 6
that A = 3 Ke;ji.e. A~ K. Now we shall moreover show that this isomorphism
is an onto-mapping. The proof is virtually the same as that of Nakayama [12],
Satz 1, but we give it here for completeness. Let {A} be a given algebra
class over K with exponent e. First, suppose that e is not divisible by the
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characteristic of K. Then there exists a (finite and separable) Galois extension
field Z of K, such that A is similar to a crossed product (Z/K, @,,-) of Z/K
with factor set (@, .} consisting of e-th roots of unity only.® Let Z be a
Galois extensions ring of K whose residue class field is Z (Theorem 28). Since
every e-th root of unity in Z is a non-multiple root of the polynomial x¢ —1,
there exists by Lemma 4 one and only one representative da.-. 0of @, - which
is an e-th root of unity in Z, for every ¢,7. Then {a,,-} forms a factor set of
Z /K, as can readily be seen, and the crossed product (Z/K, a,,-) determines,
by virtue of Theorem 30, the required algebra class over K corresponbing to the
given class {A}. Next, assume that ¢ is a power of the (prime) characteristic
of K. Then there exists a cyclic extension field Z of K such that A is similar
to a cyclic crossed product (Z/K, s, @) of Z/K with generating automorphism
s of Z/K and with non-zero element @ of X.®™ Let Z be a cyclic extension
ring of X whose residue class.field is Z and let « be an arbitrary representative
of @ in K. Then the cyclic crossed product (Z/K, o, ) determines also the
required algebra class over K. Observing that every algebra class over K is

expressible as a product of two types of algebra classes mentioned above, we
complete the proof of

TuroreMm 31. By associating with every algebra class {A} the algebra class
{A}, where A is a proper maximally central algebra over K and A = A/pA its
simple residue class algebra, the algebra class group over K is mapped isomor-
Pphically upon the algebra ciass grout over K.

Let A be a proper maximally central algebra over K. Then, since A is
primary, A is according to Theorem 26 a full matrix ring over a completely
primary algebra A, over K, and A, is also proper maximally central. Suppose
that A, is a second completely primary proper maximally central algebra over
K which is similar (to A whence) to A,, i.e., there exist natural numbers »
and s such that (&), = (A;)s then it follows again from (the second half of)
Theorem 26 that A,= A;. Thus we have that every algebra class over K
contains one and only one completely primary algebra A, and consists of all full
matrix rings over A,. From this and from the preceding theorem we can
readily obtain

TueoreM 32. For any given normal simple algebra A over K there exists
one and—up-to-K-isomorphisms—only one proper maximally central algebra A
over K such that A is the residue class algebra of A modulo pA: A= ApA.

25) Deuring [8], V, §7, Satz 1.
%) Albert [1], VII, Theorem 31.
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7. Existence of inertial algebras
After above preparations we can now prove an existence theorem of inertial
algebras, which is a main purpose of the present paper. In this section we
assume also that K is a Hensel ring with maximal ideal p and with residue class
field K = K/p. First, we treat the following special case:

LeMMA 6. Let R be a faithful primary algebra over K with unit element
such that the simple residue class algebra R = R/N modulo its radical N is
normal over K. Then there exists a proper maximally central inertial algebra
A of R which is uniquely determined up to inner automorphisms of R generated
by elements of N.

Proof. Let R’ be a normal simple algebra over K inverse-isomorphic to
R. Then there exists by virtue of Theorem 32 a proper maximally central
algebra A’ over K whose simple residue class algebra is B’. Construct then
the direct product R x A’ over K; R and A’ being contained in it as element-
wise commutative subalgebras. Then evidently the direct product B X R’ (over
K) is the residue class algebra R x A’/N x A’. Since R x R’ is a full matrix
algebra (K), of degree m =[R: K] over K and since N x A’ is a quasi-regular
(two-sided) ideal of R x A/, it follows from Theorem 25 that R x A’ contains
a full matrix algebra (K)m, of degree m over K. Since m =[A’: K], (K)m is
a direct product of two element:wise commutative proper maximaily central
subalgebras A; and A, which are inverse-isomorphic and isomorphic to A’
respectively.

Now the (X-)isomorphism of A, onto A’ can, according to Theorem 18, be
extended to an (inner) automorphism of R x A’, and under this automorphism
A, is carried isomorphically onto a proper maximally central subalgebra A of
R x A’ which is element-wise commutative with A’. But since R is the com-
muter ring of A’ in R x A’ by Corollary to Theorem 16, A is contained in R
and A is a required inertial algebra of R.

Now suppose that A* is a second proper maximally central inertial algebra
of R. Then there exists, by Theorem 32, a K-isomorphism of A onto A*, and
the isomorphism can, again by Theorem 18, be extended to an inner auto-
morphism % - #~'xu of R: w~'Au = A*, Since A* is an inertial algebra of R
there exists a (regular) element » in A* su¢h that # = » (mod N). It follows
then that #v~'=1 (mod N) and (wv~")"'Auv~' = vu™'Avu™' = vA%~" = A%, and
this completes our proof.

Now we proceed to the following general existence theorem:

TureoreM 33. (Generalized Wedderburn-Malcev’s theorem.) Let R be an alge-
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bra over (a Hensel ring) K such that the semi-simple residue class algebra
R = R/N modulo its radical N is separable over K (= K/p). Then there exists a
maximally central inertial algebra of R, and such an inertial algebra is uniquely
determined up to inner automorphisms of R generated by elements of N.

Proof. a) First, we prove the theorem in the case where R is a faithful
completely primary algebra over K (with unit element). Then the residue
class algebra R = R/N is a division algebra. For every subalgebra S of R, the
homomorphic image S by the natural homomorphism of R onto R is, being as
a subalgebra of R, a division algebra, so that the kernel S(\ NV is the radical
of S because it is quasi-regular in S by Corollary to Theorem 9. Now let Z
be the center of R. Then Z is a finite and separable extension field of K by
our asumption. Hence there exists an element @ of Z such that Z = K[a].
Take from R an arbitrary representative & of @ and consider the subring K[5]
of R. Since K[b] is a completely primary finite extension ring of K whose
residue class field is Z, K[b] contains by Theorem 29 an inertial ring Z; Z
is a completely primary finite and unramified extension ring of K which is
mapped on Z by the natural homomorphism of R onto R.

Now consider a finite and separable splitting field 2 of Z/K over K. Then
the direct product Z x & is directly decomposable in the following manner:

ZxR=¢0@el®...De.8,
where ¢, e, . ..,e, are mutually orthogonal (primitive) idempotent elements
of Z x & whose sum is the unit element and n=[Z:K]=[Z: K]. Let £
be a completely primary unramified and regular extension ring of K whose
residue class field is £ (Theorem 28), and construct the direct product Z x 2.
Then Z x & is the residue class algebra of Zx £ modulo p(Zx 2): Zx 2
=Zx2/p(Z x £). Hence there exist by Theorem 24 mutually orthogonal
idempotent elements ¢, e., ..., ¢, in Z x 2 such that each e; is a representa-~
tive of ¢€;, and we have by Corollary to Theorem 5 that
ZXZ=e0@el®...Dead.
Construct furthermore the direct products R x 2 (over K) and R x £ (over K).
Then R x 2 is evidently the residue class algebra of R x 2 modulo N x 2; but
since N x 2 is quasi-regular (Theorem 10) and R is semi-simple N x 2 is the
radical of R x 2. And it is also clear that the natural homomorphism of R x 2
onto R x 2 induces on R and Z x 2 the sames onto R and Z x @ respectively.

Now let @ be the commuter ring of Z in B: Q@ = Vx(Z). Then from the
fact .that every linearly independent basis of £ over K is also the same of
R x 2 over R it follows that @ x £ is the commuter ring of (Z whence) Z x 2
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in R x 2. On the other hand, the commuter ring of ZXx 2 in R x 2 is evi-
dently the commuter ring of {e;, e:,...,e,} in R X 2, and this is nothing but
a(RX 2)e; B e:(Rx2)ee® ... @ en(R X R)en, as can readily be verifed”:
Qx2=e(RX2)ey@®e(Rx2)e:® ... Den(RX2)e,. From this it follows that
€ is an algebra over K, because e;(R X 2)e, D e:(RX Qe @D . . . Den(R X Q)ey
is an algebra over K and @ x £ is K-isomorphic to the [2: K]-times direct sum
of @. Furthermore, denoting by @ the image of @ by the natural homomor-
phism of R onto R it follows that Q x 2 =a,(Rx 2)e, ® (R x D). ® . . .
@ en(R x 2)€,. But since every &; lies in the center Z x @ of R x @, we have
that Gx 2(=e;(Rx )P e (RX 2)® ... ®en(E x 2))= R x 2, whence ¢ = R.
Since @ is the commuter ring of Z in R, Z is contained in the center of Q,
and @ may be considered as a (faithful completely primary) algebra over Z.
Hence, by applying Lemma 6 to (R =)@ and (K =)Z, we can obtain a proper
maximally central inertial algebra A of @ over Z: A/pA(= Q) = R. Since Zis
unramified over K so is also A over K, and A is a desired inertial algebra
of R.

Suppose that A* is a second maximally central inertial algebra of R with
center Z*. Then Z* is unramified over K, by virtue of Theorem 13, and is
mapped on the center Z of R by the natural homomorphism of R onto R.
Therefore, we can find, similarly as Z x 2 above, mutually orthogonal idempotent
elements e*, e, . . . ,e,* in Z* X £ such that each ¢;* is a representative of
¢; and the foilowing direct decomposition holds :

Z* X Q= 2D e.* 2D . .. & e Q2.

Since ¢; = ¢;* (mod N x 2) for every i, there exists by Theorem 3 a (quasi-
regular) element ¢ in N x 2 such that ¢;¢ = ¢;* for‘every ¢. Since £ is con-
tained in the center of R X 2 w® =w for every w& 2, and therefore we have
Z¢x Q=(ZxD°=2Z*x 2. Now let @ be an element of Z such that Z = K[&],
as above. Then @ is a non-multiple root of an irreducible polynomial f(#) in
K[t] with highest coefficient 1. Let f(¢) be a representative polynomial of
7 () in K[¢] with highest coefficient 1. Then, by applying Lemma 4 to Z, we
can find, as in the proof of Lemma 5, a root a of f(¢) in Z which is a represen-
tative of @, so that we have Z = K[a]. Similarly, there is obtained a.root e*
of f(#) in Z* which is a representative of @ and such that Z* = K[a*]. And we
have f ({) = (f —a™) f/1*(f) with a polynomial f,*(¢) in Z*[{]; necessarily f,*(a*) %0

) Generally, if ej,ee, ..., e. are mutually orthogonal idempotent elements in a ring
R then their commuter ring in R is ¢;Re;@e:Rec@® ... B en Ren Plles+ec+ ...
+ en), where £ (e; +¢2. ..+ e) is the two-sided annihilator of €i+e2+ ...+ ¢, in R.
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modulo the maximal ideal pZ* of Z*, ie., fi*(e*)is a regular element of Z*,
Consider now the e'ement af. Since ¢ is in the radical Nx 2 of Rx 2 it
follows that a° = a (mod IV x 2) whence a°=a* (mod N x 2). Observing that
a‘ is in the commutative ring (Z° x 2 =) Z* x 2, we have then f,*(¢°) = fi*(a®)
(mod N X 2) whence f,*(a°) is also a regular element; on the other hand, a°
is evidently a root of f(¢), and we have (a° — a*)fi*(a*) = 0, which implies
that a® = a* (because of the regularity of fi*(af)). Thus we have proved that
Z¢(= K(a’]) = Z* and the inner automorphism x - x°(= (1 —c)~'x(1 —c)) of
R x 2 induces on Z( € R) an isomorphism z- z* onto Z*(E R). Further,
since the commuter ring @ = Vi(Z) of Z in R is an algebra over K, as was
shown above, @ is necessarily of the type (S), and it follows from Theorem
11 that the isomorphism z - z* can be extended to an inner automorphism
x - v7'xv of R with regular element » of R. Since A* is an inertial algebra
of R, there exists an element v in A* such that w = » (mod N), so that w is
also regular and v2w™' =1 (mod N). Put now d=1-ow™". Then'd is in N
and we have 2' = wv™'zvw™! = wz*w~! = z* for every 2 = Z. Consider then the
(maximally central) subalgebra A”. Since the inner automorphism x-—x! of
R leaves invariant every residue class of R modulo N, A is, with A, also an
inertial algebra of R, and in fact, since Z* = Z* is its center, it is, with A*,
a (proper maximally central) inertial algebra of the commuter algebra @* of
Z* in R. Hence we can find, by applying Lemma 6 to (R =)@* and (K = )Z*%
an element d; of N such that (A7) = A*. Putting then d: = d+ d, — dd,, d. is
a desired element of N: A" (=(A")"1) = A*.

b) Next, assume that R is a primary algebra (with unit element). Then R
is a full matrix ring over a completely primary subalgebra R,, i.e., there exists
a system of matix units {e;;} such that R =3 e;;R, and R, is the commuter
ring of {e;;} in R. If we denote by N, the radical of R, it follows N = D] eii N,
and R = R/N is a full matrix ring over R, = R,/N,: R =3)e¢;;R,. The center
of R, conicides therefore with that of R, and so is separable over K. Hence
there exists, as was showm in a) above, a maximally central inertial algebra
A, of Ry. Then A =3 eijA, is evidently a maximally central inertial algebra
of R.

Now suppose that A* is a second maximally central inertial algebra of R.
Then we can find, by Theorem 25, a system of matrix units (e,?';-) in A* such
that e’ = ei; (mod N) for every i, j, so that there exists by Theorem 3 an
element ¢ in N such that ef; = e; for every 7, . Therefore it follows that Ry
is the commuter ring of {¢}} in R and the commuter rivng As* of {e}} in A*
is a maximally central inertial algebra of R; on the other hand, A, is, since
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¢ is in N, also a maximally central inertial algebra of R,°. Hence there exists,
from a) above, an element ¢, in the radical N of RS such that (A4,5)% = A,*.
Putting d = ¢ + ¢y — cco( N) and observing that ¢, commutes with every e,?’;,
we have A? = (A%)% = (3] ¢ A°)% =3 ef5(A)0 = 3] ef;Ag™ = A%,

c) Finally, we turn to the case of general algebra R. Let R=R,@&R,. ..
@ R be the (unique) direct decomposition of the semi-simple algebra R = R/N
into mutually orthogonal simple subalgebras. Then we can find, as in the last
part of §5, mutually orthogonal idempotent elements E, F... .., Er in R such
that each E, is a representative of the unit element of 7?-,(, and each subalgebra
ERE, is a primary algebra with radical E.INE, and with simple residue class
algebra R.(= E.RE./E.NE,). Since the center of R, is separable over K by
assumption, there exists, from b) above, a maximally central inertial algebra
Ay of ERE,, for each k. Then the direct sum A=A, CA®... . DA, is a
desired inertial algebra of R.

Now let A* be a second maximally central inertial algebra of R. Then A*
is (by definition) a direct sum of mutually orthogonal subalgebras A*, A.%, . . .,
As* such that each A.* is proper maximally central over its center. Hence,
denoting by A.* the simple residue class algebra of A.* (modulo its radical
pAX), R is a direct sum of A%, A%, ..., A/ It follows therefore that /=%
and we may assume that.A* = R, for every . Denote by E* the unit
element of A*. Then E* E* ..., Er* are mutually orthogonal idempotent
elements of the center of A* such that E* = E. (mod N) for every x, and
there exists by Theorem 3 an element ¢ in N such that £ = EX* for every «.
Since A, is a maximally central inertial algebra of E.RE,, A is also a max-
imally central inertial algebra of ((E(RE.)° =)EXRE.*. On the other hand,
AX = EFA*E:*) is evidently a maximally central inertial algebra of E*RE,.*.
Hence we can find, by applying b) to the primary algebra E*RE.*, an element
¢ in the radical E.*NE.* of E*RE.* such that (A.°)% = A,*. This is the case
for every k, and if we put d=c + > ¢ ~ ¢ > ¢, d is an element of V and we
have A®=3] A’ =3 (AE)* =2 AF = A*  This completes the proof.

CorROLLARY. Every unramified algebra A over (a Hensel ring) K is max-
imally central whenever its semi-simple residue class algebra A = A/pA modulo
the radical pA is separable over K.
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