AN EXTENSION OF POINCARÉ FORMULA IN INTEGRAL GEOMETRY

MINORU KURITA

1. A curve c_{2} of finite length L_{2} moves on a euclidean plane. Let the number of points of intersection of c_{2} with the fixed curve c_{1} of length L_{1} be n, and the element of kinematic measure of the position of c_{2} be $d K$. Then, owing to Poincaré, we have

$$
\int n d K=4 L_{1} L_{\mathrm{o}},
$$

where the integration extends over all the positions of the moving curve c_{2}. An analogous formula was obtained by Santalo [1] in the case of a curve and a surface in the euclidean 3-space, and by Blaschke [2] in the case of two surfaces. Here I extend these to the case of general Klein spaces by the method of moving frames of E. Cartan [3]. The method used is analogous to that of the paper of S. S. Chern [4], but I have worked out independently. Moreover I show examples which may be of some interest.
2. In Kein spaces, whose fundamental group is a Lie group G, we call the left cosets $a H$ of G by a Lie subgroup H points, and let F_{1} and F_{2} be manifolds which consist of points x, the former being space fixed and the latter moving. Hereafter we assume the differentiability to the order we need. We attach to every point of F_{1} and F_{2} Frenet's frames, whose motion along F_{1} and F_{2} is denoted by S_{1} and S_{2}. Then we take one of the intersection points and call it. O. Let the motion, which removes the Frenet's frame of F_{1} at O to the one of F_{2} at O , be T and let the fixed frame of F_{1} be R_{0} and the frame that is relatively fixed to F_{2} be R. Then R can be represented as

$$
R=S_{1} T S_{2}^{-1} R_{0}
$$

which can be understood by the fact that the relative position between R and $S_{1} T R_{3}$ is represented by $S_{2}{ }^{-1}$. So when we put

$$
\begin{equation*}
S=S_{1} T S_{2}^{-1}, \tag{1}
\end{equation*}
$$

the position of moving manifold F_{2} can be determined by S. We denote the
parameters of the fundamental Lie group G by a symbolically and those of S_{1}, S_{2} and T by a_{1}, a_{2} and t respectively. Hereafter we use the notation o for the infinitesimal relative motion; for example $\delta S=S(a)^{-1} S(a+d a)$. Hence we get by (1)
$\delta S=S(a)^{-1} S(a+d a)=S_{2}\left(a_{2}\right) T(t)^{-1} S_{1}\left(a_{1}\right)^{-1} S_{1}\left(a_{1}+d a_{1}\right) T(t+d t) S_{2}^{-1}\left(a_{2}+d a_{2}\right)$.
So we have

$$
\begin{equation*}
S_{2}^{-1} \cdot \delta S \cdot S_{2}=\left(T^{-1} \cdot \delta S \cdot T\right) \delta T\left(\delta S_{2}\right)^{-1} \tag{2}
\end{equation*}
$$

Let the dimension of Lie group G be r and the relative components of δS be $\omega_{i}(i=1,2, \ldots, r)$ among which the principal components of points are $\omega_{i}(i$ $=1,2, \ldots, n)$. It is easily seen that the relative components of the product of several infinitesimal motions are the sum of the corresponding relative components of each infinitesimal motion. So, when we denote the relative components of

$$
T^{-1} \cdot \delta S_{1} \cdot T, \quad \delta T, \quad\left(\delta S_{2}\right)^{-1}
$$

by

$$
\sum_{j=1}^{r} t_{i j} \omega_{j}^{(1)}, \quad \omega_{i}^{(0)}, \quad-\omega_{i}^{(2)} \quad(i=1,2, \ldots, r),
$$

those of $S_{2}^{-1} \cdot \delta S \cdot S_{2}$ are

$$
\begin{equation*}
\sum_{j=1}^{r} t_{i j} \omega_{j}^{(1)}+\omega_{i}^{(0)}-\omega_{i}^{(2)} \quad(i=1,2, \ldots, r) . \tag{3}
\end{equation*}
$$

Here $\omega_{j}^{(1)}(j=1,2, \ldots, r)$ are the relative components of δS_{1} and the transformation matrix ($t_{i j}$) means the matrix of the linear adjoint group that corresponds to T.

Now we assume that G has measure which is independent of the choice of the frame attached to the moving manifold. Then the measure element $d K$ of δS is equal to that of $S_{2}{ }^{-1} \cdot \delta S \cdot S_{2}$. So by virtue of (2) and (3) we have

$$
d K=\prod_{i=1}^{r}\left(\sum_{j=1}^{r} t_{i j} \omega_{j}^{(1)}-\omega_{i}^{(2)}+\omega_{i}^{(0)}\right)
$$

where the product of pfaffian forms means alternating product. For the relative motion δT of T, which is the rotation about the point O , the principal relative components $\omega_{i}{ }^{(0)}(i=1,2, \ldots, n)$ are all zero. So we have

$$
\begin{equation*}
d K=\prod_{i=1}^{n}\left(\sum_{j=1}^{r} t_{i j} \omega_{j}^{(1)}-\omega_{i}^{(2)}\right)_{i=n+1}^{r}\left(\sum_{j=1}^{r} t_{i j} \omega_{j}^{(1)}-\omega_{i}^{(2)}+\omega_{i}^{(0)}\right) \tag{4}
\end{equation*}
$$

Now we treat the case in which the relation $n=p+q$ holds, where p and q are dimensions of the manifold F_{1} and F_{2} respectively. As the matrix ($t_{i j}$) which operates on $\omega_{1}, \ldots, \omega_{r}$ keeps the relation $\omega_{1}=0, \ldots, \omega_{n}=0$ invariant, we
have the relation

$$
t_{i j}=0 \quad(i=1, \ldots, n ; j=n+1, \ldots, r) .
$$

On the other hand let $\pi_{i}^{(1)}(i=1, \ldots, p)$ and $\pi_{j}{ }^{(2)}(j=1, \ldots, q)$ be the principal relative components of the Frenet's frames of F_{1} and F_{2} that are linearly independent with respect to the differential. Then all the principal relative components of F_{1} and F_{2} are represented by

$$
\begin{equation*}
\omega_{i}^{(1)}=\sum_{j=1}^{p} \lambda_{i j}^{(1)} \pi_{j}^{(1)}, \quad \omega_{i}^{(2)}=\sum_{j=1}^{q} \lambda_{i j}^{(2)} \pi_{j}^{(2)} \quad(i=1, \ldots, n) . \tag{5}
\end{equation*}
$$

After these considerations we get from (4)

$$
\begin{equation*}
d K=\Delta \prod_{i=1}^{p} \pi_{i}^{(1)} \cdot \prod_{j=1}^{q} \pi_{j}^{(2)} \cdot \prod_{k=n+1}^{r} \omega_{k^{(0)}} \tag{6}
\end{equation*}
$$

Here

$$
\Delta=\sum \pm T\left(\begin{array}{c}
j_{1}^{\prime} \tag{7}\\
i_{1} \\
i_{1}^{\prime} \\
i_{2}
\end{array} \ldots . i_{p_{p}^{\prime}}^{\prime} . \ldots . i_{p}\right) \Lambda^{(1)}\left(i_{1} i_{2} \ldots i_{p}\right) \Lambda^{(2)}\left(j_{1} j_{2} \ldots j_{q}\right),
$$

and $A^{(1)}\left(i_{1} \ldots i_{p}\right)$ is the determinant constructed from i_{1}-th, i_{2}-th, ..., and i_{p}-th row of the matrix $\left(\lambda_{i j}^{(1)}\right)$, and the same for $\Lambda^{(2)}\left(j_{1} j_{2} \ldots j_{q}\right)$, while $T\binom{j_{1}^{\prime} j_{j_{2}}^{\prime} \ldots j_{p^{\prime}}}{i_{1} i_{2} \ldots . i_{p}}$ is the minor of the matrix $\left(t_{i j}\right)$ and $j_{1}, j_{2}^{\prime}, \ldots, j_{p^{\prime}}, j_{1}, j_{2}, \ldots, j_{q}$ is any permutation of $1,2, \ldots, n$, and the summation in (7) extends over all the permutations of i_{1}, \ldots, i_{p} and j_{1}, \ldots, j_{q}.
3. We now make two assumptions and integrate (6). One of them is that (A)

$$
\Delta \text { depends only on }\left(t_{i j}\right)
$$

while the other is that

$$
\begin{array}{cl}
c=\int \mid \Delta \prod_{k=n+1}^{r} \omega_{k}^{(0)} & \text { is finite, where the integration extends over } \tag{B}\\
\text { all the rotations about } \mathrm{O} .
\end{array}
$$

Then, when the number of intersection points of F_{1} and F_{2} is ν, we get

$$
\begin{equation*}
\int \nu d K=c M_{1} M_{2}, \tag{8}
\end{equation*}
$$

where

$$
\int\left|\prod_{i=1}^{N} \pi_{i}^{(1)}\right|=M_{1} \text { and } \int\left|\prod_{j=1}^{q} \pi_{j}^{(2)}\right|=M_{2}
$$

the integration ranging over the whole mamifold F_{1} and F_{2}. (8) is a generalızation of Poincare's theorem.

The assumption (A) is satisfied if all $\lambda_{i j}^{(1)}$ and $\lambda_{i j}^{(9)}$ are constant. This means that F_{1} has only one p dimensional area and F_{2} only one q-dimensional area.
4. Before we show some examples, we make one remark. When the fundamental Lie group is a linear group, we can take $P I^{0}$ as the frame which is obtained by the transformation $P=\left(p_{i j}\right)$ from the fundamental frame $I^{0}=\left(I_{1}{ }^{0}\right.$, $\left.I_{2}{ }^{0}, \ldots, I_{n}{ }^{0}\right), I_{0}$ being a set of independent vectors. Then the point x, which has $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as coordinates with respect to I^{0}, is transformed into the point

$$
x^{\prime}=\sum_{i=1}^{n} x_{i} I_{i}=\sum_{i, j=1, \ldots, n} x_{i} p_{i j} I_{j}^{0}
$$

namely into $x^{\prime}=\left(x_{1}^{\prime}, x_{2}{ }^{\prime}, \ldots, x_{n}{ }^{\prime}\right)$ that is determined by $x^{\prime}=P^{\prime} x, P^{\prime}$ being the transposed matrix of P. Thus if we denote the point transformation by $x^{\prime}=P^{\prime} x$, the frame transformation is $I=P I^{0}$. So the order of the products of the matrices of the point transformation and the frame transformation are inverse. For example from the frame transformation $I=P Y^{0}$, we get for the infinitesimal relative motion $d P . P^{-1}$, whose elements are relative components.
5. In the euclidean space of dimension n the infinitesimal relative motion can be represented by

$$
d A=\sum_{i=1}^{n} \omega_{i} I_{i}, \quad d I_{i}=\sum_{j=1}^{n} \omega_{i j} I_{j} \quad(i=1, \ldots, n)
$$

where A is the vertex of the frame and I_{1}, \ldots, I_{n} are unit orthogonal system. Let F_{1} and F_{2} be respectively p - and q-dimensional surfaces and their independent principal relative components be $\omega_{i}^{(1)}(i=1,2, \ldots, p)$ and $\omega_{j}^{(2)}(j=1,2$, ..., q), the other principal components being zero. Moreover we denote by $T=\left(t_{i j}\right)$ the rotation about O that removes the Frenet's frame of F_{1} at O to that of F_{2} at O . When the relation $n=p+q$ holds, we get by calculation

$$
d K=(-1)^{q} \Delta \prod_{j=1}^{q} \omega_{j}^{(2)} \prod_{i=1}^{p} \omega_{i}^{(d)} \cdot d K_{0}
$$

where

$$
\Delta=\left|\begin{array}{cc}
t_{q+1}, 1 & \ldots t_{q+1, p} \\
\ldots \\
t_{n, 1} & \ldots t_{n, p}
\end{array}\right|
$$

and $d K_{3}$ is the measure element of rotation about O. Thus the assumptions (A) and (B) are both satisfied and we get (8).

The case $n=2, p=1, q=1$ is the Poincarés and the case $n=2, p=1$, $q=2$ is the Santalo's. Moreover the above consideration is available for the case of spherical space. When $n<p+q$, we get the extension of Blaschke's
theorem. Let the area element of the intersection manifold F of F_{1} and F_{2} be $d s$, and the rotation which removes the Frenet's frame at a certain point O of F_{1} to the Frenet's frame of F_{2} at O be $\dot{T}=\left(t_{i j}\right)$. When we denote by $d K_{0}$ the measure element of the rotation about the point O, we get

$$
d \sigma \cdot d K=(-1)^{a} \Delta \prod_{j=1}^{q} \omega_{j}^{(2)} \cdot \prod_{i=1}^{n} \omega_{i}^{(1)} \cdot d K_{0},
$$

where the meaning of Δ is as follows. The rotation T is decomposed into three parts, namely T_{1}, T_{2} and U, where $T_{i}(i=1,2)$ is the one which removes the Frenet's frame of F_{i}^{\prime} at O to the frame $R_{i}(i=1,2)$ whose first $p+q-n$ axes touch F, and U is the rotation which removes R_{1} to R_{2}. If we put

$$
U=\left(\begin{array}{ll}
* & * \\
A & *
\end{array}\right)
$$

where A has $n-q$ rows and p columns, then $\pm \Delta$ is the determinant which is constructed from the $r+1, r+2 ; \ldots$ and p-th columns of the matrix A. We omit the proof.
6. Next we treat the case when the assumptions (A) and (B) do not hold. Let c_{1} and c_{2} be the one-parametric sets of straight lines on a eutlidean plane and let the angles, which any straight line of $c_{i}(i=1,2)$ makes with the fixed line of $c_{i}(i=1,2)$ be $\theta_{i}(i=1,2)$. We call the intersection of c_{1} and c_{2} the line that is common to c_{1} and c_{2}, and let the distance of two points, at which the intersection line touches the enveloping curves of c_{1} and c_{2}, be $\lambda_{\text {. Then by }}$ calculation the formula (6) reduces to

$$
d K=\lambda d \lambda d \theta_{1} d \theta_{2} .
$$

So, although the assumption (A) is satisfied, the assumption (B) is not.
7. The example where (A) does not hold can be obtained if we consider two line congruences of the euclidean 3 -space. In a euclidean 3 -space we take a point A and three unit vectors I_{1}, Y_{2}, I_{3} that are orthogonal to each other and call $\left(A, I_{1}, I_{n}, I_{3}\right)$ a frame. Then the infinitesimal motion can be represented by

$$
d A=\sum_{i=1}^{3} \omega_{i} I_{i}, d I_{i}=\sum_{j=1}^{3} \omega_{i j} X_{j}\left(\omega_{i j}+\omega_{j i}=0\right)
$$

Now we take the straight line which passes through A and has the direction η_{3}. We introduce the new frame determined by

$$
\begin{equation*}
\bar{A}=A+\lambda I_{3}, \quad \bar{I}_{1}=I_{1} \cos \theta+I_{2} \sin \theta, \overline{I_{2}}=-I_{1} \sin \theta+I_{2} \cos \theta, \overline{I_{3}}=I_{3} . \tag{9}
\end{equation*}
$$

Then the infinitesimal motion can be represented as

$$
d \bar{A}=\sum_{i=1}^{3} \bar{\omega}_{i} \bar{I}, \quad d \bar{I}_{i}=\sum_{j=1}^{3} \bar{\omega}_{i j} \bar{I}_{j}
$$

where

$$
\begin{aligned}
& \bar{\omega}_{1}=\omega_{1} \cos \theta+\omega_{2} \sin \theta+\lambda\left(\omega_{31} \cos \theta+\omega_{32} \sin \theta\right) \\
& \bar{\omega}_{2}=-\omega_{1} \sin \theta+\omega_{2} \cos \theta+\lambda\left(-\omega_{31} \sin \theta+\omega_{32} \cos \theta\right) \\
& \bar{\omega}_{33}=\omega_{31} \cos \theta+\omega_{32} \sin \theta \\
& \bar{\omega}_{32}=-\omega_{31} \sin \theta+\omega_{32} \cos \theta .
\end{aligned}
$$

Quadratic differential forms

$$
\omega_{31}^{2}+\omega_{32}^{2}, \quad\left|\begin{array}{cc}
\omega_{1} & \omega_{2} \\
\omega_{31} & \omega_{32}
\end{array}\right|=\omega_{1} \omega_{32}-\omega_{2} \omega_{31}
$$

are invariant for the transformation (9) and consequently $\omega_{31}^{2}+\omega_{32}^{2}+c\left(\omega_{1} \omega_{32}\right.$ $-\omega_{2} \omega_{31}$) is invariant for any constant c. Hence we get invariant forms

$$
\begin{align*}
& A=\left[\omega_{31} \omega_{32}\right], \quad B=\left[\omega_{31} \omega_{1}\right]+\left[\omega_{32} \omega_{2}\right], \\
& C=\left[\omega_{1} \omega_{32}\right]^{2}+\left[\omega_{2} \omega_{31}\right]^{2}-2\left[\omega_{2} \omega_{32}\right]\left[\omega_{1} \omega_{31}\right]-2\left[\omega_{1} \omega_{2}\right]\left[\omega_{31} \omega_{32}\right], \tag{10}
\end{align*}
$$

where the brackt [] means alternating product. Here and hereafter we omit the details of calculation.

For a line congruence which has the property $A=\left[\omega_{31} \omega_{32}\right] \neq 0$ and satisfies a certain reality condition we can select λ and θ in (9) suitably and make one of ω_{1} and ω_{2} identically zero. So we assume that by this choice of frame we have $\omega_{2}=0$. This frame is Frenet's frame of the line congruence. If we put $\omega_{1}=a \omega_{31}+b \omega_{33}$, then we have by (10)

$$
B=b A, \quad C=a^{2} A^{2}
$$

So a and b are invariants of line congruences which correspond to $\lambda_{i j}$ in (5).
New we take line congruences F_{1} and F_{2}, the former being space fixed and the latter moving. Let the common line of F_{1} and F_{2} be l and the motion which removes the Frenet's frame of F_{1} at l to the one of F_{2} at l be represented by (9). Denote the area element $\left[\omega_{31}^{(i)}, \omega_{32}^{(i)}\right](i=1,2)$ of the spherical representation of the line congruences by $d \sigma_{i}(i=1,2)$ and the invariants a and b of $F_{i}(i=1,2)$ by a_{i} and b_{i}. Then the measure element $d K$ of the position of the moving congruence F_{2} which has a common line with the space-fixed F_{1} can be written as

$$
d K=\Delta d \lambda d \theta d \sigma_{1} d \sigma_{2}
$$

where

$$
\Delta=-\lambda^{2}+\left(a_{1}-a_{2}\right) \lambda-\left(a_{1} b_{2}-a_{2} b_{1}\right) \cos \theta \sin \theta+\left(a_{1} a_{2}+b_{1} b_{2}\right) \sin ^{2} \theta
$$

This does not satisfy the assumption (A), except when $a_{1}-a_{2}, a_{1} b_{2}-a_{2} b_{1}$ and $a_{1} a_{2}+b_{1} b_{2}$ are all constant.

REFERENCES

[1] L. A. Santalo, Integralgeomatrie 5. (Actualités scientifiques et industrielles 1935).
[2] W. Blaschke, Vorlesungen über Integralgeometrie. zweites Heft (1937).
[3] E. Cartan, La théorie des groupes finis et continus et la géométrie differentielles. (1937).
[4] S. S. Chern, On integral geometry in Klein spaces. (Annals of mathematics. Vol. 43, 1942).

Mathematical Institute, Nagoya University

