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WIMAN-VALIRON METHOD FOR

DIFFERENCE EQUATIONS

K. ISHIZAKI and N. YANAGIHARA

Abstract. Let f(z) be an entire function of order less than 1/2. We consider
an analogue of the Wiman–Valiron theory rewriting power series of f(z) into
binomial series. As an application, it is shown that if a transcendental entire
solution f(z) of a linear difference equation is of order χ < 1/2, then we have
log M(r, f) = Lrχ(1 + o(1)) with a constant L > 0.

§1. Introduction

In this note we are concerned with an entire solution to a linear differ-

ence equation

(1.1) ap(z)∆pf(z) + · · · + a1(z)∆f(z) + a0(z)f(z) = 0,

where ∆ is a difference operator defined by ∆f(z) = f(z + 1) − f(z), and

aj(z) =
∑Aj

k=0 a
(j)
k zk, Aj = deg aj(z) and ap(z) 6≡ 0.

Let f(z) be an entire function. We denote by M(r, f), µ(r, f) and ν(r, f)

the maximum modulus, the maximal term and the central index of f(z),

respectively. We use the standard notation of the value distribution theory

of entire and meromorphic functions, in particular, Wiman–Valiron theory,

see e.g. [5], [8]. Write Nj = {(x, y) ; x ≥ j, y ≤ Ap−j − (p − j)} for

0 ≤ j ≤ p. The Newton polygon for (1.1) is defined as the convex hull of

N = ∪p
j=0Nj.

As is well known, the Wiman–Valiron method is a powerful tool for

the study of differential equations, see e.g. [4], [6], [10]. Suppose that f(z)

satisfies a linear differential equation

(1.2) dh(z)f (h)(z) + · · · + d1(z)f ′(z) + d0(z)f(z) = 0,
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where dj(z) =
∑Dj

k=0 d
(j)
k zk and dh(z) 6≡ 0. Then it is well known that

(1.3)











log M(r, f) = Lrχ(1 + o(1)), as r → ∞
log µ(r, f) = Lrχ(1 + o(1)), as r → ∞

ν(r, f) = χLrχ(1 + o(1)), as r → ∞,

in which L is a constant, and χ is a slope of the corresponding Newton

polygon for the equation (1.2). We see that χ is a rational number and gives

the order of f(z). Thus f(z) is of finite positive order if transcendental, and

is of regular growth. In what follows, for the sake of simplicity “O(·)” and

“o(·)” mean “O(·) as r → ∞” and “o(·) as r → ∞” respectively.

On the other hand, if f(z) satisfies a linear q-difference equation

(1.4) bm(z)f(qmz) + · · · + b1(z)f(qz) + b0(z)f(z) = 0, 0 < |q| < 1,

with bj(z) =
∑Bj

k=0 b
(j)
k zk and bm(z) 6≡ 0, then we have [2],

(1.5)



























log M(r, f) =
σ

−2 log |q| (log r)2(1 + o(1))

log µ(r, f) =
σ

−2 log |q| (log r)2(1 + o(1))

ν(r, f) =
σ

− log |q| log r(1 + o(1)),

where σ is a slope of the corresponding Newton polygon for the equation

(1.4). This means that f(z) is of order 0 and is also of regular growth.

The natural question arises whether an entire solution f(z) of the linear

difference equation (1.1) would be of regular growth in some sense, or not.

For instance, the equation zf(z + 1) − f(z) = 0 has an entire solution

f(z) = 1/Γ(z), which satisfies m(r, f) = 1
πr log r(1 + o(1)), see e.g. [1].

However, the general situation is not so simple. Indeed, for any periodic

entire function π(z) with period 1, the product π(z)f(z) is also a solution.

If a0(z) = 0, then f(z) + π(z) is also a solution. On the other hand, in the

case aj(z) are constants, f(z +π(z)) is also a solution. Hence growth of the

solution is not necessarily determined by the equation.

Throughout this note, we mainly pay attention to entire functions of

order less than 1/2. We will prove the following theorem.

Theorem 1.1. Let f(z) be a transcendental entire solution of (1.1)
and of order χ < 1/2. Then we have

(1.6) log M(r, f) = Lrχ(1 + o(1)),
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where a rational number χ is a slope of the Newton polygon for the equation
(1.1), and L > 0 is a constant. In particular, we have χ > 0.

We state some remarks below.

Remark 1.1. The Newton polygons for the differential equation (1.2)
and the q-difference equation (1.4) are given in e.g. [6], [2].

Remark 1.2. For a set E ∈ [0,∞), we denote by lm(E) the logarithmic
measure of E. Namely lm(E) stands for the size of the integral a < b being
∫ b
a dt/t. Let φ(r) be a non-decreasing function in [0,∞), let α be a rational

number, and let C be a nonzero constant. Suppose that

φ(r) = Crα(1 + o(1))(1.7)

holds outside an exceptional set E ∈ [0,∞). If lm(E) < ∞, then (1.7) holds
for all r ∈ [0,∞). See e.g. [6].

Remark 1.3. In general, (1.6) does not always hold for entire solutions
of order at least 1, which is seen by the example 1/Γ(z) mentioned above.

Remark 1.4. It is possible to construct an example of a difference equa-
tion of the form (1.1) which has two solutions f and g of different order
χ(f) 6= χ(g), χ(f), χ(g) < 1/2. See Example 6.4. It is an open problem to
explicitly determine which slopes actually appear as the orders of the entire
solutions of (1.1).

We define

(1.8) z(0) = 1, z(1) = z, z(n) = z(z−1) · · · (z−n+1) = n!

(

z
n

)

(n ≥ 2).

We call
∑∞

n=0 anz(n), an ∈ C, n = 0, 1, . . . , binomial series (or factorial

series) in this note. It is easy to see that

∆z(n) = nz(n − 1), ∆z(0) = 0 and ∆z(1) = 1.

The key idea of the proof of Theorem 1.1 is that we modify the Wiman–

Valiron theory for binomial series and apply it to the difference equation.

In Section 2, we study basic properties of binomial series, and we rewrite

power series into binomial series. Sections 3 and 4 are devoted to the
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construction of the Wiman–Valiron theory for binomial series. We prove

Theorem 1.1 in Section 5. It is not obvious whether there would be a

difference equation which has an entire solution of order < 1/2. Finally we

give an example of difference equation with entire solution of order less than

1/2.

Acknowledgements. The authors would like to thank the referee
for a careful reading of the manuscript and for valuable comments. We
also would like to thank Professor Aimo Hinkkanen for his suggestions and
encouragements.

§2. Preliminaries

In this section we state basic properties of the difference operator ∆,

and of binomial series.

2.1. Properties of difference operator

First we observe n ∈ N times iteration of the difference operater to a

function f(z). We have

∆nf(z) =

n
∑

j=0

(

n
j

)

(−1)n−jf(z + j),(2.1)

and

f(z + n) =

n
∑

j=0

(

n
j

)

∆jf(z).(2.2)

Using the relation (2.1), we can rewrite (1.1) as

ãp(z)f(z + p) + · · · + ã1(z)f(z + 1) + ã0(z)f(z) = 0,

where ãj(z), j = 0, . . . , p, ãp(z) = ap(z) are polynomials.

By induction, we obtain for any n ≤ k

∆nzk =
∑

s1≥1,··· ,sn≥1
s1+···+sn≤k

k!

s1! · · · sn!(k − s1 − · · · − sn)!
zk−s1−···−sn .(2.3)

Next we consider an analogue of Leibniz formula for higher derivatives.

For two functions f(z) and g(z), and for n ≥ 1, we have

∆n(f(z)g(z)) =
n
∑

`=0

(

n
`

)

(

n−
∑̀

k=0

(

n − `
k

)

(

∆n−kf(z)
)(

∆k+`g(z)
)

)

.(2.4)
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2.2. Properties of binomial series

Let f(z) be a transcendental entire function of finite order χ = χ(f) <

1/2. To construct the the Wiman–Valiron theory for binomial series, we

need to prepare the following estimates and calculations. We write

(2.5) f(z) =
∞
∑

n=0

bnzn =
∞
∑

n=0

anz(n), z(n) = z(z − 1) · · · (z − n + 1),

where an, bn ∈ C. We define

(2.6) f#(z) =
∞
∑

n=0

|bn|zn.

Obviously χ(f#) = χ(f), and M(r, f#) = f#(r) ≥ M(r, f). Write

f#(z) =
∞
∑

n=0

a#
n z(n).(2.7)

We write ∆nzk|z=0 = Λn,k. It follows from (2.6), (2.7) and (2.3) that

an =
1

n!

∞
∑

k=n

Λn,kbk, a#
n =

1

n!

∞
∑

k=n

Λn,k|bk|,(2.8)

Λn,k =
∑

s1≥1,··· ,sn≥1
s1+···+sn=k

k!

s1! · · · sn!
.

We see that

nk ≥ Λn,k.(2.9)

Obviously a#
n ≥ 0. Recall that χ is represented by the Taylor coefficients

as, see e.g. [3, p. 9],

χ = lim sup
k→∞

k log k

log 1
|bk|

.

We fix a sufficiently small ε > 0 satisfying 1/(χ+ ε) > 2, and for the sake of

simplicity we put γ = 1/(χ+ε). Then we see that |bk| ≤ k−γk for sufficiently
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large k. We get by Stirling’s formula, for some constants K0 and K1 > 0,

|an| ≤ a#
n ≤ K0

en

nn

∞
∑

k=n

nk

kγk
≤ K0

en

nγn

∞
∑

k=n

nk

nn

nγn

kγk
(2.10)

= K0
en

nγn

∞
∑

k=n

( n

kγ

)k−n (n

k

)γn

≤ K0
en

nγn

∞
∑

k=n

1

k(γ−1)(k−n)
≤ K1

en

nγn
,

if n is sufficiently large. Retaking K1, if necessary, we may suppose that

this is valid for n ≥ 1. Hence in the domain |z| < r we have for K1 and

K2(r) which are independent of N

N
∑

n=1

|a#
n z(n)| ≤

N
∑

n=1

|a#
n ||r(r + 1) · · · (r + n − 1)|

≤ K1

N
∑

n=1

en

nγn
([r] + n)! ≤ K2(r)

N
∑

n=1

(

4n2

nγ

)n√
n,

where [r] is the greatest integer not exceeding r. This implies that the

right-hand side of (2.7) converges uniformly on every compact subset in C.

We define

z∗(k) = z(z + 1) · · · (z + k − 1), z∗(0) = 1, z∗(1) = z,

and, for a#
n given by (2.8), we put

(2.11) f ∗(z) =

∞
∑

n=0

a#
n z∗(n) =

∞
∑

n=0

a#
n z(z + 1) · · · (z + n − 1) =

∞
∑

n=0

b∗nzn.

Similarly to the proof of the convergence of
∑∞

n=0 a#
n z(n), we see that

∑∞
n=0 a#

n z∗(n) converges uniformly on every compact subset in C. Next

we estimate b∗n in (2.11). Write z(k) = zk +
∑k−1

j=1 η
(k)
j zj. Then we have

z∗(k) = zk +
∑k−1

j=1 |η
(k)
j |zj and

|η(k)
j | ≤ j(j + 1) · · · (k − 1)

(k − 1)!

(j − 1)!(k − j)!
=

(

(k − 1)!

(j − 1)!

)2 1

(k − j)!
.
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We get by (2.11), with a constant K2 > 0,

b∗n =
1

n!

∞
∑

k=n

a#
k

dn

dzn
z∗(k)|z=0 =

∞
∑

k=n

a#
k |η(k)

n |(2.12)

≤ K1

∞
∑

k=n

ek

kγk

(

(k − 1)!

(n − 1)!

)2 1

(k − n)!

≤ K1n
2

(n!)2

∞
∑

k=n

e−k

k(γ−2)k

1

(k − n)!
≤ K1n

2

(n!)2

∞
∑

k=n

e−k

n(γ−2)k
≤ K2

n2en

nγn
,

where η
(n)
n = 1. Hence we see that f ∗(z) is an entire function having the

Taylor expansion as in the right-hand side of (2.11). Further (2.13) shows

χ(f∗) ≤ 1/γ = χ(f) + ε, and hence χ(f ∗) ≤ χ(f). We have χ(f ∗) = χ(f)

since M(r, f) ≤ M(r, f ∗) as easily seen. Obviously µ(r, f) = µ(r, f#) and

ν(r, f) = ν(r, f#). We write

(2.13) µ~(r) = µ~(r, f#) = µ~(r, f∗) = sup
0≤n<∞

( sup
|z|=r

|a#
n z(n)|),

Note that µ~(r) = |a#
N |r∗(N) = |a#

N |r(r +1) · · · (r +N − 1) for some N . We

define

(2.14) ν~(r) = ν~(r, f#) = ν~(r, f∗) = max{n | |a#
n |r∗(n) = µ~(r)}.

We call µ~(r) and ν~(r) the ~-maximal term and the ~-central index of

f∗(z) (or call sometimes of f#(z)), receptively. We have χ(f) = χ(f#) =

χ(f∗). Since µ~(r) ≤ M(r, f ∗), we have

χ(µ~) = lim sup
r→∞

log log µ~(r)

log r
≤ χ(f∗) <

1

2
.(2.15)

In the case R > r, we have (R + `)/(r + `) < R/r, for any ` > 0. Hence

writing ν~(r) as N(r), we have for N = N(r),

(

R + N − 1

r + N − 1

)N

≤
(

R

r

)(

R + 1

r + 1

)

· · ·
(

R + N − 1

r + N − 1

)

=
a#

NR∗(N)

a#
Nr∗(N)

≤ µ~(R)

µ~(r)
,

N log

(

R + N − 1

r + N − 1

)

≤ log µ~(R) − log µ~(r) ≤ log µ~(R),
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provided that r is sufficiently large. Set R = 2r+(N−1). Then N(r) log 2 ≤
log µ~(2r + N(r) − 1) and

log N(r)

log r
+

log log 2

log r
(2.16)

≤ log log µ~(2r + N(r) − 1)

log(2r + N(r) − 1)

log(2r + N(r) − 1)

log r
.

Put A = χ(µ~) + ε < 1/2. If we assume there is a sequence rk ↑ ∞ such

that N(rk) > rk. Then we have 2rk − 1 ≤ 2N(rk) and from (2.17)

1 ≤ log N(rk)

log rk
≤ A

log N(rk) + log 3

log rk
− log log 2

log rk
,

(1 − A) < (1 − A)
log N(rk)

log rk
<

A log 3 − log 2

log rk
,

if k is large. Letting k → ∞, we get a contradiction, since we now suppose

A < 1. Hence N(r) ≤ r for any r sufficiently large. Hence it follows from

(2.17) that
log N(r)

log r
≤ A

log(3r − 1)

log r
− log log 2

log r
,

for any r sufficiently large. Therefore, we obtain with γ = 1/(χ(µ~)+ε) > 2,

(2.17) lim sup
r→∞

log ν~(r)

log r
≤ χ(µ~) and ν~(r)γ ≤ r.

On the other hand, since log a#
N ≤ 0, if N = N(r) is sufficiently large, we

have

log µ~(r) = log a#
N + N log r +

N−1
∑

j=1

log

(

1 +
j

r

)

≤ N log r +
N−1
∑

j=1

log(1 + j−γ+1) = N log r + O(1),

which implies that

χ(µ~) ≤ lim sup
r→∞

log ν~(r)

log r
.
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By (2.8) we see |bn| ≤ a#
n hence µ(r) ≤ µ~(r). Thus, if χ(f) < 1/2, then,

by (2.15),

χ(f) = χ(f ∗) = χ(µ) = χ(µ~)(2.18)

= lim sup
r→∞

log ν(r, f)

log r
= lim sup

r→∞

log ν~(r)

log r

We now give definitions of maximal term and central index for the

binomial series (2.5). We write

(2.19)

µ∗(r, f) = sup0≤n<∞(sup|z|=r |anz(n)|)

ν∗(r, f) = max{n | |an|r∗(n) = µ∗(r)}.

and call them the ∗-maximal term of f(z), and the ∗-central index respec-

tively.

Remark 2.1. Obviously µ∗(r) ≤ µ~(r). Using just the same arguments
as above, we see that χ(µ∗) ≤ χ(µ~) < 1/2 and ν∗(r)γ < r.

Remark 2.2. When r > n we have for the binomial series in (2.5),

an =
1

2πi

∫

|ζ|=r

f(ζ)

ζ(n + 1)
dζ(2.20)

=
1

2πi

∫

|ζ|=r

f(ζ)

ζ(ζ − 1) · · · (ζ − n + 1)(ζ − n)
dζ,

which corresponds to the Cauchy integral formula. In fact, we can write

f(ζ)

ζ(n + 1)
=

∞
∑

`=0

a`ζ(`)

ζ(n + 1)
=

n−1
∑

`=0

a`

(ζ − `) . . . (ζ − n)
+

an

ζ − n
+ ϕ(ζ)

=

n−1
∑

`=0

n−
∑̀

k=0

B`k

ζ − ` − k
+

an

ζ − n
+ ϕ(ζ),

where ϕ(ζ) is an analytic function, and B`k are constants satisfying
∑n−`

k=0 B`k = 0 for all `. This gives (2.21) immediately.
Suppose r ≥ nγ , γ > 2. Then

(2.21) |an|r∗(n) ≤ r(r + 1) · · · (r + n − 1)

(r − 1)(r − 2) · · · (r − n)
M(r, f) ≤ KnM(r, f),
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where

Kn ≤
(

1 +
1

nγ−1

)n(

1 − 1

nγ−1

)−n

< 1 + εn, εn → 0 as n → ∞.

Remark 2.3. It is seen that the ∗-central index ν∗(r) is a increasing
function in r. In fact, we fix r arbitrary, and put ν∗(r) = N for the sake of
brevity. For any ρ > r, we have |aN |r∗(N) ≤ |aN |ρ∗(N) ≤ |aM |ρ∗(M), where
M = ν∗(ρ). Assume that M < N . From the inequalties above, we have
|aM |/|aN | ≥ (ρ + M) . . . (ρ + N − 1). On the other hand, by definition we
have |aN |r∗(N) ≥ |aM |r∗(M), namely |aM |/|aN | ≤ (r + M) . . . (r + N − 1).
Combining these estimates, we have (r+M) . . . (r+N−1) ≥ (ρ+M) . . . (ρ+
N − 1), a contradiction. Hence we see that M ≥ N .

§3. A modification of the Wiman–Valiron theory

Let f(z) and f ∗(z) be entire functions which are represented as in (2.5)

and (2.11). We construct a modified Wiman–Valiron theory for f(z) and

f∗(z) following the idea in [5], [7]. Put

α′(t) =







− 1

t log t(log log t)1+δ
, t ≥ t0;

α′(t0), 0 ≤ t ≤ t0,

α(t) =

∫ t

0
α′(τ)dτ = α′(t0)t0 −

1

δ

1

(log log t0)δ
+

1

δ

1

(log log t)δ
,

in which δ > 0 is a positive number, t0 ≥ ee. Then α(t) ∈ C1[0,∞) and

− log 2 ≤ α(t) ≤ 0 if t0 is sufficiently large. Write

αn = exp

[∫ n

0
α(t)dt

]

, ρn = exp[−α(n)].

Then

(3.1) 1 < ρ0 <
α0

α1
,

αn−1

αn
< ρn <

αn

αn+1
, n ≥ 1,

so that ρn increases. For f(z), a value r is said to be ∗-normal if for some

N

(3.2)















|an|r∗(n) ≤ |aN |r∗(N) αnρn
N

αNρN
N

(n ≥ N)

|an|r∗(n) ≤ |aN |r∗(N)(1 + εn,N )
αnρn

N

αNρN
N

(n < N),
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in which

εn,N =
n

Nγ
+

n + 1

Nγ
+ · · · + N − 1

Nγ
<

1

2

1

Nγ−2
(n < N),

where γ = 1/(χ(f) + ε) > 2. We have for k = |N − n|,

αnρn
N

αNρN
N

= exp

[∫ n

N
(α(t) − α(N))dt

]

≤ exp

[∫ n

N
(t − N)α′(t)dt

]

(3.3)

≤ exp

[

−1

2
αN,kk

2

]

, αN,k = min
|t−N |≤k

|α′(t)|.

In particular, in the case n < N , N ≥ t0, we have

αnρn
N

αNρN
N

≤ exp[−1

2
α

(−)
N,kk

2],(3.4)

α
(−)
N,k = min

N−k≤t≤N
|α′(t)| =

1

N log N(log log N)1+δ
.

Thus (1 + εn,N )αnρn
N/αNρN

N < 1 for n < N. Hence if r is ∗-normal, then

|an|r∗(n) = |an|r(r + 1) · · · (r + n − 1) < |aN |r∗(N)

for n 6= N, and N is necessarily the ∗-central index in the sense (2.19).

Theorem 3.1. Suppose f(z) is an entire function of order χ < 1/2.
If ρn, αn are defined as above, then the set E of ∗-exceptional (that is, not
∗-normal) r has finite logarithmic measure.

Proof. If the ∗-central index N(r) jumps from N to N+k as r increases
through the value rN+1, we define rN+1 = · · · = rN+k. We see

|aN+k|rN+k(rN+k + 1) · · · (rN+k + N + k − 1)

= |aN |rN+1(rN+1 + 1) · · · (rN+1 + N − 1),

|aN+k| =
|aN |

(rN+k + N) · · · (rN+k + N + k − 1)

=
|aN |

(rN+1 + N) · · · (rN+k + N + k − 1)
,

|aN+ν | ≤
|aN |

(rN+1 + N) · · · (rN+ν + N + ν − 1)
(1 ≤ ν ≤ k).
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Thus we always have

|aN |
|a0|

≤ 1

r1(r2 + 1) · · · (rN + N − 1)
.

On the other hand we have

αN

α0
≥ 1

ρ1 · · · ρN
,

|aN |
αN

≤ |a0|
α0

ρ1

r1

ρ2

r2 + 1

ρ3

r3 + 2
· · · ρN

rN + N − 1
.

Since rN > Nγ , γ > 2, if rN is sufficiently large (cf. Remark 2.1), and
ρn ≤ 2, we have

AN =
|aN |
αN

≤ C02
N

(N !)γ
≤ C0(2e

γ)N

NγN
,

where C0 is some positive number independent of N . Thus F (z) =
∑∞

n=0 Anz(n) =
∑∞

n=0 Anz(z − 1) · · · (z − n + 1) is an entire function (cf.
the proof of convergence of (2.7)), which is of order ≤ 1/γ < 1/2 as seen
by (2.13). It follows that, for 0 < ρ < ∞, F (z) has a ∗-maximal term for
|z| = ρ. If M = M(ρ) is the ∗-central index of F (z) for |z| = ρ, we deduce
Anρ∗(n) ≤ AMρ∗(M), hence for n > M,

|an|ρ∗(n)ρn−M
M

|aM |ρ∗(M)
=

|an|(ρ + M) · · · (ρ + n − 1)ρn−M
M

|aM | ≤ αnρn
M

αMρM
M

, and

|an|(ρρM )∗(n)

|aM |(ρρM )∗(M)
=

|an|(ρρM + M) · · · (ρρM + n − 1)

|aM |

≤ |an|(ρρM + ρMM) · · · (ρρM + ρM (n − 1))

|aM | =
|an|ρ∗(n)ρn−M

M

|aM |ρ∗(M)
≤ αnρn

M

αMρM
M

.

Note that for 0 < xj < 1,
∑n

j=1 xj < 1 we have
∏n

j=1(1 + xj/2) ≤ 1 +



WIMAN-VALIRON METHOD 87

∑n
j=1 xj. For n < M, since ρ ≥ M γ ,

|an|(ρρM )∗(n)

|aM |(ρρM )∗(M)
=

|an|
|aM |(ρρM + n) · · · (ρρM + M − 1)

=
|an|/|aM |

(ρρM + ρMn) · · · (ρρM + ρM (M − 1))

· (ρρM + ρMn) · · · (ρρM + ρM (M − 1))

(ρρM + n) · · · (ρρM + (M − 1))

=
|an|ρ∗(n)

|aM |ρ∗(M)ρM−n
M

(1 + n/ρ) · · · (1 + (M − 1)/ρ)

(1 + n/(ρρM )) · · · (1 + (M − 1)/(ρρM ))

≤ |an|ρ∗(n)

|aM |ρ∗(M)ρM−n
M

(1 + n/ρ) · · · (1 + (M − 1)/ρ)

(1 + n/(2ρ)) · · · (1 + (M − 1)/(2ρ))

≤ |an|ρ∗(n)ρn
M

|aM |ρ∗(M)ρM
M

M−1
∏

`=n

(

1 +
`

2ρ

)

≤ |an|ρ∗(n)ρn
M

|aM |ρ∗(M)ρM
M

M−1
∏

`=n

(

1 +
`

2Mγ

)

≤ |an|ρ∗(n)

|aM |ρ∗(M)
· ρn

M

ρM
M

· (1 + εn,M ) ≤ (1 + εn,M )
αnρn

M

αMρM
M

.

Thus, if r = ρρM , it follows that N(r) = M , and the inequality (3.2) holds.
Hence r is ∗-normal if r is of this form, i.e. if we can write r = ρρM where
M is the ∗-central index of F (z) for |z| = ρ.

Let (Rn, Rn+1) be the interval in which the ∗-central index of F (z) is
n. Then the intervals (Rnρn, Rn+1ρn) are ∗-normal for n of f(z), so that
the ∗-exceptional values of r are contained in the complementary intervals
of the form (Rnρn−1, Rnρn). Let EN be the union of these complementary
intervals for n = 1, . . . , N. Then

lm(EN ) ≤
N
∑

n=1

∫ Rnρn

Rnρn−1

dt

t
= log

ρN

ρ0
.

Also the ∗-exceptional values satisfying r ≤ RN+1ρN are contained in EN .
We recall that the ∗-central index of f(z) is n in the interval

(Rnρn, Rn+1ρn), so that rn ≤ ρnRn. Thus if rn ≤ r ≤ rn+1, we deduce
that r ≤ ρn+1Rn+2, so that the ∗-exceptional values in (0, r) are contained
in En+1 and so have logarithmic measure at most log(ρn+1/ρ0). Thus if E
is the set of ∗-exceptional values, we have

lm(E ∩ [1, r]) ≤ log(ρn+1/ρ0), rn ≤ r ≤ rn+1.

Since ρN is bounded above, so is lm(E ∩ [1, r]) as r → ∞.
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By Theorem 3.1, and (3.2), (3.3) and (3.4), we obtain the following

theorem.

Theorem 3.2. Let f(z) be as in (2.5). Let E be the ∗-exceptional set
of r. Then lm(E) < ∞. For r /∈ E and N = ν∗(r) we have

(3.5)



















|aN+k|r∗(N+k)

µ∗(r)
≤ exp(−1

2
b(k + N)k2), k ∈ N,

|aN−k|r∗(N−k)

µ∗(r)
≤ (1 + εN ) exp(−1

2
b(N)k2), 0 ≤ k < N,

where εN = 1/(2Nγ−2) and

(3.6) b(N) = 1/(N log N(log log N)1+δ).

Furthermore, we obtain the following theorem.

Theorem 3.3. Let b(N) be as in (3.6). Let ω > 0 be a constant. Write

k =

[

{

ω

b(N)
log

1

b(N)

}1/2
]

(3.7)

([x] is the greatest integer not exceeding x ∈ R).

Then for any fixed real h and ω1, 0 < ω1 < ω we have

(3.8)
∑

|n−N |≥k

nh|an|r∗(n) = o(µ∗(r)Nhb(N)(1/2)ω1−(1/2))

uniformly as r → ∞, r /∈ E.

This theorem can be proved similarly to Lemma 2 in [5, p. 326].

Proof. Let η be an arbitrary number satisfying 0 < η ≤ 1/2. In the
proof, we divide the left-hand side of (3.8) into four parts:

∑

|n−N |≥k

nh|an|r∗(n)(3.9)

=
∑

n≤(1−η)N

nh|an|r∗(n) +
∑

(1−η)N<n≤N−k

nh|an|r∗(n)

+
∑

N+k≤n<(1+η)N

nh|an|r∗(n) +
∑

(1+η)N≤n

nh|an|r∗(n).



WIMAN-VALIRON METHOD 89

First we consider the case (1 + η)N ≤ n. Since r is ∗-normal, we have
for n = N + p, p ∈ N

nh|an|r∗(n)

|aN |r∗(N)
≤ nhαnρn

N

αNρN
N

≤ exp(−1

2
αN,pp

2 + h log(N + p)),

where αN,p is defined in (3.3). In this case, we see that αN,p = 1/[(N +
p) log(N + p)(log log(N + p))1+δ]. Since ν∗(r) = N tends to infinity (as
r → ∞), we choose r0 so large that the following inequality holds for p ≥ ηN
and for r ≥ r0

−1

2
αN,pp

2 + h log(N + p) ≤ − η

2(1 + η)

p

log(N + p)(log log(N + p))1+δ

+ h log p + h log

(

1 +
1

η

)

≤ −p1/2.

Hence we have

(3.10)
1

|aN |r∗(N)

∑

(1+η)N≤n

nh|an|r∗(n) ≤
∑

ηN≤p

e−p1/2 ≤
∫ ∞

ηN−1
e−x1/2

dx.

For x ≥ ηN − 1, we have x1/2 ≥ 1
2x1/2 + 1

2(ηN)1/2 − 1, which implies that

∫ ∞

ηN−1
e−x1/2

dx ≤ e−
1
2
(ηN)1/2

∫ ∞

0
e1− 1

2
x1/2

.

Hence we see that

1

|aN |r∗(N)

∑

(1+η)N≤n

nh|an|r∗(n) = O(e−(ηN)1/2/2).(3.11)

Secondly we consider the case n ≤ (1 − η)N . Similarly to the case above,
for n = N − p, p ∈ N

nh|an|r∗(n)

|aN |r∗(N)
≤ (1 + εn,N ) exp(−1

2
α

(−)
N,pp

2 + h log(N − p)),

where α
(−)
N,p is defined in (3.4). This gives that

1

|aN |r∗(N)

∑

n≤(1−η)N

nh|an|r∗(n) = O(e−(ηN)1/2/2).(3.12)
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Finally we treat the case (1 − η)N < n ≤ N − k and N + k ≤ n <
(1 + η)N . Given ε > 0 satisfying ε < εN (cf (3.5)), we choose η so small
that

b(N + |p|) > (1 − ε)b(N) for |p| ≤ ηN, and (1 − η)−|h| < 1 + ε,

which is possible under the hypotheses of Theorem 3.3. Then (3.5) yields
for n = N + p, |p| < ηN ,

nh|an|r∗(n)

|aN |r∗(N)
≤ (1 + εN )2Nhe−b∗p2

,

where b∗ = 1
2(1 − ε)b(N).

It follows from (3.10), (3.10), (3.11) and (3.12) that

∑

|n−N |≥k

nh|an|r∗(n)(3.13)

≤ 2(1 + εN )2Nhµ∗(r)

( ∞
∑

p=k

e−b∗p2

+ O(e−(ηN)1/2/2)

)

.

We have

∞
∑

p=k

e−b∗p2 ≤
∫ ∞

k−1
e−b∗x2

dx = (b∗)−1/2

∫ ∞

y0

e−y2

dy

= (b∗)−1/2

(

e−y2
0

2y0
−
∫ ∞

y0

e−y2

2y2

)

with y0 = (b∗)1/2(k − 1). Thus in view of (3.8) we deduce that

∞
∑

p=k

e−b∗p2

= O

(

e−y2
0

(b∗)1/2y0

)

= O

(

exp[12ω(1 − ε) log b(N)]

b(N)1/2[log(1/b(N))]1/2

)

= O(b(N)(1/2)ω1−(1/2))

since ω1 < ω and ε may be chosen small enough. Hence (3.8) follows from
(3.14).



WIMAN-VALIRON METHOD 91

§4. Behaviors of differences

Lemma 4.1. Let P (z) be a polynomial satisfying deg[P (z)] = m, and
|P (z)| ≤ M for |z| ≤ r. Then, if R ≥ r, we have

|∆P (z)| ≤ eMm(R + 1)m−1

rm
, |z| ≤ R.

Proof. By [5] p.337 Lemma 7, we have |P ′(z)| ≤ eMm(R+1)m−1/rm,
|z| ≤ R + 1. Hence

|∆P (z)| = |P (z + 1) − P (z)| ≤
∫ 1

0
|P ′(z + t)|dt ≤ eMm(R + 1)m−1

rm
,

since |z + t| ≤ R + 1 if |z| ≤ R.

Theorem 4.2. Let f(z) be as in (2.5), and suppose that r /∈ E. Then

(4.1)
( z

N

)h
∆hf(z) = f(z) + O

(

k

N

)

M(r, f), |z| = r,

for h ∈ N, with N = ν∗(r) and k in (3.8).

Proof. We write

(4.2) f(z) =

N+k
∑

n=N−k

anz(n) + φ(z) = z(N − k)P (z) + φ(z).

First we treat φ(z). By Theorem 3.3,

rh|∆hφ(z)| = rh

∣

∣

∣

∣

∣

∣

∑

|n−N |>k

ann(n − 1) · · · (n − h + 1)z(n − h)

∣

∣

∣

∣

∣

∣

≤
∑

|n−N |≥k

nh|an|r∗(n) rh

(r + n − h) · · · (r + n − 1)

= o(µ∗(r)Nhb(N)(1/2)ω1−(1/2)),

if h ≤ n. We choose ω = 10 and ω1 = 9 in the statements of Theorem 3.3.
Then we have b(N)(1/2)ω1−(1/2) = o(N−4) so that

(4.3) rh|∆hφ(z)| = o(µ∗(r)Nh−4).



92 K. ISHIZAKI AND N. YANAGIHARA

Secondly, we estimate P (z) and ∆`P (z) below. We remark that k =
k(r) in (3.8) is smaller than r, if r is sufficiently large, since N(r)γ < r with
γ > 2. Thus we may assume that N − k is a positive integer. We see that

N−k−1
∑

j=1

j

r
<

(N − k)(N − k − 1)

Nγ
< 1.

For 0 < xj < 1, j = 1, . . . , n,
∑n

j=1 xj < 1, we have
∏n

j=1(1 − xj

2 ) ≥
1 −∑n

j=1 xj. Hence we get

|z(N − k)| = |z(z − 1) · · · (z − (N − k) + 1)|
≥ r(r − 1) . . . (r − (N − k − 1))

≥ rN−k

(

1 − 1

r

)

· · ·
(

1 − N − k − 1

r

)

≥



1 − 2

N−k−1
∑

j=1

j

r



 rN−k

≥ rN−k

(

1 − (N − k)(N − k − 1)

Nγ

)

= rN−k(1 − ε), ε → 0 as r → ∞.

By (2.21) in Remark 2.2,

|P (z)| = |z(N − k)|−1

∣

∣

∣

∣

∑

|n−N |≤k

anz(n)

∣

∣

∣

∣

≤ rk−N (1 + ε)
∑

|n−N |≤k

|an|r∗(n)

≤ 2k(1 + ε′)rk−NM(r, f),

where ε′ = (1 + ε)(1 + max|n−N |≤k εn)− 1. By definitions of ε, εn and k, we

see that ε′ → 0 as r → ∞. Set M0 = 2k(1+ε′)rk−NM(r, f). An application
of Lemma 4.1, with R = r and P (z) in (4.2), shows that

|∆P (z)| ≤ 2eM0k(r + 1)2k−1

r2k
≤ O

(

k

r

)

M0.

Namely, we have |∆P (z)| ≤ C1(k/r)M0 for a constant C1. Similarly we get

|∆2P (z)| = |∆(∆P (z))| ≤ 2keC1M0(k/r)(r + 1)2k−2

r2k−1
≤ O

(

k

r

)2

M0.
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Repeating this process, we obtain for any positive integer `

|∆`P (z)| = O

(

k

r

)`

M0.

By (2.4),

∆h(z(N − k)P (z))(4.4)

=
(N − k)!

(N − k − h)!
z(N − k − h)P (z)

+

h
∑

p=1

(

h
p

)

∆h−pz(N − k)∆pP (z)

+

h
∑

`=1

(

h
`

) h−
∑̀

p=0

(

h − `
p

)

∆h−pz(N − k)∆p+`P (z).

We estimate the right-hand side of (4.5). To do this, we note that

∆h−pz(N − k) =
(N − k)!

(N − k − h + p)!
z(N − k − h + p)

= O

(

(N − k)!

(N − k − h)!

(

1 +
r

N

)p
z(N − k − h)

)

= O

(

(N − k)!

(N − k − h)!
z(N − k − h)

)

.

Thus, in view of (4.2), (4.3) and (4.4),

∆h(z(N − k)P (z))(4.5)

=
(N − k)!

(N − k − h)!
z(N − k − h)

(

P (z) + O

(

k

r

)

M0

)

=
(N − k)!

(N − k − h)!

z(N − k − h)

z(N − k)

(

f(z) + O(µ∗(r)N−4) + O

(

rN−kM0
k

r

))

.

We suppose χ∗ = χ(f∗) < 1/2, where f ∗(z) is the function given by
(2.11), corresponding to f(z) of (2.5). Then we can take r > N γ , γ =
1/(χ∗ + ε) > 2. Hence by (2.21)

µ∗(r)N−4 ≤ (1 + εN )M(r, f)N−4 = O

(

k

r

)

M(r, f).
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Also rN−kM0 = 2k(1 + ε′)M(r, f). Thus combining (4.2), (4.3), (4.6), we
deduce

zh∆hf(z) =
(N − k)!

(N − k − h)!

(

f(z) + O

(

k

N

)

M(r, f)

)

(4.6)

= Nh

(

f(z) + O

(

k

N

)

M(r, f)

)

(|z| = r).

§5. Proof of Theorem 1.1

Let f(z) be an transcendental entire solution of the difference equation

(1.1). We can apply (4.1) to (1.1). Then for ∗-normal z, |z| = r 6∈ E and

|f(z)| = M(|z|, f), we obtain

(5.1)

p
∑

j=0

a
(j)
Aj

N(r)jzAj−jf(z)(1 + o(1)) = 0,

Thus we have

(5.2) N(r) = ν∗(r) = Lrα(1 + o(1))

for some L and α. The number α is determined as a slope of the Newton

polygon for the equation (5.1), hence it is a rational number. By (2.19)

α = χ = χ(f). Since

(5.3) log µ∗(r) = log |aN | + log r + log(r + 1) + · · · + log(r + N − 1)

with N = ν∗(r), we have

log µ∗(r) = log |aN | + N log r +

N−1
∑

k=1

log

(

1 +
k

r

)

.

Let r1 < r2 < . . . be such that ν∗(r) = Nj for rj ≤ r < rj+1. Note that

d

dr
log µ∗(r) =

ν∗(r)

r
+

d

dr

Nj−1
∑

k=1

log

(

1 +
k

r

)

, for rj ≤ r < rj+1

and that

log µ∗(r)−log µ∗(rj) =

∫ r

rj

ν∗(t)

t
dt+

Nj−1
∑

k=1

log

(

1 +
k

r

)

−
Nj−1
∑

k=1

log

(

1 +
k

rj

)

.
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Thus for rj+1 ≤ r < rj+2,

log µ∗(r) = log µ∗(rj+1) +

∫ r

rj+1

ν∗(t)

t
dt +

Nj+1−1
∑

k=1

log

(

1 +
k

r

)

−
Nj+1−1
∑

k=1

log

(

1 +
k

rj+1

)

= log µ∗(rj) +

∫ rj+1

rj

ν∗(t)

t
dt +

∫ r

rj+1

ν∗(t)

t
dt

+

Nj−1
∑

k=1

log

(

1 +
k

rj+1

)

−
Nj−1
∑

k=1

log

(

1 +
k

rj

)

+

Nj+1−1
∑

k=1

log

(

1 +
k

r

)

−
Nj+1−1
∑

k=1

log

(

1 +
k

rj+1

)

= log µ∗(rj) +

∫ r

rj

ν∗(t)

t
dt +

Nj+1−1
∑

k=1

log

(

1 +
k

r

)

−
Nj+1−1
∑

k=Nj

log

(

1 +
k

rj+1

)

−
Nj−1
∑

k=1

log

(

1 +
k

rj

)

= log µ∗(r1) +

∫ r

r1

ν∗(t)

t
dt +

Nj+1−1
∑

k=1

log

(

1 +
k

r

)

−
j+1
∑

`=1

N`−1
∑

k=N`−1

log

(

1 +
k

r`

)

with N0 = 1. We write the last sum as RN with N = Nj+1.

N`−1
∑

k=N`−1

log

(

1 +
k

r`

)

≤
N`−1
∑

k=1

log

(

1 +
k

r`

)

≤ 1

Nγ−2
`

.

Since N` ≥ `, we have

RN ≤
j+1
∑

`=1

1

`γ−2
.
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When γ ≥ 3, obviously we have RN = O(log N) = o(rχ). When 2 < γ < 3,

we have

RN ≤ 1 +

∫ N

1
t2−γdt ≤ 1 +

N3−γ

3 − γ
.

Since N ≤ r1/γ , we get RN = O(r(3−γ)/γ)) = O(r(3/γ−1)) = O(r(3χ+3ε−1)) =

rχO(r2χ−1+3ε). If 0 < ε < (1−2χ)/3, we obtain RN = o(rχ). Furthermore,

Nj+1−1
∑

k=1

log

(

1 +
k

r

)

= O(N2−γ).

Hence we obtain

log µ∗(r) = log µ∗(r1) +

∫ r

r1

ν∗(t)

t
dt +

Nj+1−1
∑

k=1

log

(

1 +
k

r

)

(5.4)

−
j+1
∑

`=1

( N`−1
∑

k=N`−1

log(1 +
k

r`
)

)

=
L

χ
rχ(1 + o(1)).

We note that by the definition of ∗-nomal and by the similar arguments in

[5, pp. 330–334], we have M(r, f) ≤ µ∗(r)(log µ∗(r))1/2+δ′ for a positive

constant δ′. Combining this and (2.21), we obtain µ∗(r) ≤ Kν∗(r)M(r, f) ≤
µ∗(r)(log µ∗(r))1/2+δ , for a positive constant δ. Hence we conclude that

(5.5) log M(r, f) =
L

χ
rχ(1 + o(1)).

By the same arguments as in [6, pp. 259–261], we can show that (5.5) holds

for r ∈ R+, without exceptions.

§6. Examples

In this section we give examples of difference equations which have

entire solutions of order less than 1/2. We start with a remark.

Remark 6.1. If f(z) is a meromorphic solution of a difference equation
with a pole coinciding with neither of the zeros of aj(z), then N(r, f) ≥
Lr (L > 0), hence it is of order not less than 1.
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Remark 6.2. As we said above, we want to find difference equations of
the form (1.1) which have entire solutions of order less than 1/2. We can
easily see that the order p is at least 3 by Theorem 1.1 and the Newton
polygon. Let us show that there exists actually such a difference equation
of order p = 3.

Remark 6.3. Consider the following equation of third order, with some
constants bj and c0,

(6.1) b3z(z − 1)(z − 2)∆3f(z − 3) + b2z(z − 1)∆2f(z − 2)

+ b1z∆f(z − 1) + (c0z + b0)f(z) = 0.

For later use we write b3(z) = b3z(z−1)(z−2), b2(z) = b2z(z−1), b1(z) =
b1z. Put a formal solution in the form

(6.2) f(z) =

∞
∑

n=0

αnzλ(n), zλ(n) =
Γ(z + 1)

Γ(z + 1 − λ − n)
, α0 6= 0.

When λ ∈ N ∪ {0}, (6.2) will give an entire solution if the right hand side
converges.

Note that ∆3f(z − 3) =
∑∞

n=0 αn∆3(z − 3)λ(n). For each term, we
have

z(z − 1)(z − 2) ∆3(z − 3)λ(n)

= z(z − 1)(z − 2)∆2

{

Γ(z − 1)

Γ(z − 1 − λ − n)
− Γ(z − 2)

Γ(z − 2 − λ − n)

}

= z(z − 1)(z − 2)∆2

{

(λ + n)Γ(z − 2)

Γ(z − 1 − λ − n)

}

= (λ + n)z(z − 1)(z − 2)∆

{

Γ(z − 1)

Γ(z − λ − n)
− Γ(z − 2)

Γ(z − 1 − λ − n)

}

= (λ + n)z(z − 1)(z − 2)∆

{

(λ + n − 1)Γ(z − 2)

Γ(z − λ − n)

}

= (λ + n)(λ + n − 1)(λ + n − 2)
z(z − 1)(z − 2)Γ(z − 2)

Γ(z + 1 − λ − n)

= (λ + n)(λ + n − 1)(λ + n − 2)
Γ(z + 1)

Γ(z + 1 − λ − n)

= (λ + n)(λ + n − 1)(λ + n − 2)zλ(n).



98 K. ISHIZAKI AND N. YANAGIHARA

Similarly

z(z − 1) ∆2f(z − 2) =
∞
∑

n=0

(λ + n)(λ + n − 1)αnzλ(n),

z ∆f(z − 1) =

∞
∑

n=0

(λ + n)αnzλ(n).

Further noting that zf(z) =
∑∞

n=0 αnz · zλ(n), and that

z · zλ(n) =
(z − λ − n)Γ(z + 1)

(z − λ − n)Γ(z − λ − n)
+

(λ + n)Γ(z + 1)

Γ(z + 1 − λ − n)

= zλ(n + 1) + (λ + n)zλ(n),

we get

(6.3)
∞
∑

n=0

(λ + n)(λ + n − 1)(λ + n − 2)b3αnzλ(n)

+

∞
∑

n=0

(λ + n)(λ + n − 1)b2αnzλ(n) +

∞
∑

n=0

(λ + n)b1αnzλ(n)

+ (λc0 + b0)α0zλ(0) +
∞
∑

n=1

[c0αn−1 + ((λ + n)c0 + b0)αn]zλ(n) = 0.

Thus we obtain the indicial equation for (6.1)

(6.4) λ(λ − 1)(λ − 2)b3 + λ(λ − 1)b2 + λ(b1 + c0) + b0 = 0.

When roots of (6.4) differ by integers, we get some trouble in determining
coefficients in (6.2). We take so that b0 = 0, c0 = −1, b1 = 2 (b1 + c0 = 1)
and b2 = 1, b3 = 6, then λ = 0, 4/3, 3/2. We remark that when λ = 0,
zλ(n) = z0(n) coincides with z(n). Then

(6.5)

∞
∑

n=1

6n(n − 1)(n − 2)αnz(n) +

∞
∑

n=1

n(n − 1)αnz(n)

+

∞
∑

n=1

2nαnz(n) −
∞
∑

n=1

[αn−1 + nαn]z(n) = 0,
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from which we have

n(2n − 3)(3n − 4)αn = αn−1,

αn =
1

6

1

n(n − 3
2)(n − 4

3)
αn−1 =

1

6

1

n3

1

(1 − (3/2n))(1 − (4/3n))
αn−1.

Thus we get

αn =

(

1

6

)n 1

(n!)3

{

n
∏

t=1

(

1 − 3

2t

)(

1 − 4

3t

)

}−1

α0.(6.6)

We have
∣

∣

∣

∣

n
∏

t=1

(

1 − 3

2t

)−1(

1 − 4

3t

)−1 ∣
∣

∣

∣

= O

(

exp(C0

n
∑

t=1

1

t
)

)

= O(nC0)

for some C0. Thus we see that αk = O(6−k(k!)−3kC0), and hence

|βn| ≤ O

(

∞
∑

k=n

αk|η(k)
n |
)

= O

(

∞
∑

k=n

(

1

6

)k kC0

(k!)3

(

(k − 1)!

(n − 1)!

)2 1

(k − n)!

)

= O

(

1

(n!)2

∞
∑

k=n

1

k!(k − n)!

)

= O

(

1

(n!)3

)

,

which shows that |βn| = O(e3nn−3n). Hence we obtain χ(f) ≤ 1/3. Using
the relations

b∗3(z) = b3(z) + b2(z) + b1(z) + (c0z + b0),

b∗2(z) = b2(z) + 2b1(z) + 3(c0z + b0),

b∗1(z) = b1(z) + 3(c0z + b0),

the equation (6.1) is written as

b∗3(z)∆3f(z − 3) + b∗2(z)∆2f(z − 3) + b∗1(z)∆f(z − 3)

+ (c0z + b0)f(z − 3) = 0.

In particular, we see that f(z) satisfies the following equation in our special
case, namely b0 = 0, c0 = −1, b1 = 2, b2 = 1 and b3 = 6,

(6z2 + 19z + 15)∆3f(z) + (z + 3)∆2f(z) − ∆f(z) − f(z) = 0.

Hence the slope of the Newton polygon is 1/3, and by Theorem 1.1 we have
log M(r, f) = Lr1/3(1 + o(1)).
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Example 6.1. Here we give a difference equation which has two so-
lutions f and g of different order χ(f) 6= χ(g), χ(f), χ(g) < 1/2. First
consider the difference equation

L1[f(z)] = b3(z)∆3f(z − 3) + b2(z)∆2f(z − 2)

+b1(z)∆f(z − 1) + b0(z)f(z) = 0,

b3(z) = 6z(z − 1)(z − 2), b2(z) = z(z − 1), b1(z) = 2z, b0(z) = −z,

which also can be written as

L2[f(z)] = (6z3 +19z2 +15z)∆3f(z)+ (z2 +3z)∆2f(z)− z∆f(z)− zf(z)

= b∗3(z)∆3f(z) + b∗2(z)∆2f(z) + b∗1(z)∆f(z) + b∗0(z)f(z) = 0.

Its solution f(z) =
∑∞

n=0 αnz(n), z(n) = z(z − 1) · · · (z − n + 1), satisfies

n(2n − 3)(3n − 4)αn = αn−1.

Put g(z) = zf(z). Then g(z) satisfies an equation of the form

L3[g(z)] = b∗∗3 (z)∆3g(z) + b∗∗2 ∆2g(z) + b∗∗1 ∆g(z) + b∗∗0 (z)g(z) = 0.

Next we consider another difference equation

L5[h(z)] =
5
∑

j=0

c∗j (z)∆jh(z − j) = 0,

c∗j (z) = cj · z(z − 1) · · · (z − j + 1) (1 ≤ j ≤ 5),

c5 = 36, c4 = 228, c3 = 271, c2 = 28, c1 = 3, c∗0(z) = c0z, c0 = −1.

Note that c1 + c0 = 2. The equation L5[h(z)] = 0 can be also written as

L5[h(z)] = c5(z)∆5h(z) + · · · + c1(z)∆h(z) + c0(z)h(z) = 0.

Its solution h(z) =
∑∞

n=0 γnz(n) satisfies

n(2n − 1)(2n − 3)(3n − 1)(3n − 4)γn = γn−1, n ≥ 1,

from which we can show that χ(h) ≤ 1/5, and our theorem shows that
χ(h) = 1/5, since the slope of the Newton polygon for L5[h] is 1/5. Now
put L∗[f(z)] = L3[L5[f(z)]]. Above h(z) is an entire solution of L∗[f(z)] = 0
which is of order 1/5. Another entire solution d(z) =

∑∞
n=0 δnz(n) is given
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by L5[d(z)] = g(z), where g(z) = zf(z) is the solution of L3[g(z)] = 0,
which was obtained above. Therefore we have

n(2n − 1)(2n − 3)(3n − 1)(3n − 4)δn − δn−1 = αn−1 + nαn.

We can write δn = δ
(1)
n + δ

(2)
n , where

n(2n − 1)(2n − 3)(3n − 1)(3n − 4)δ(1)
n − δ

(1)
n−1 = αn−1,

n(2n − 1)(2n − 3)(3n − 1)(3n − 4)δ(2)
n − δ

(2)
n−1 = nαn.

Let δ
(1)
n /αn = Dn. Then we get

(2n − 1)(3n − 1)Dn = 1 + Dn−1.

Put (2n − 1)(3n − 1)Dn = D′
n. Then

D′
n = 1 +

1

(2n − 3)(3n − 4)
D′

n−1

= 1 +
1

(2n − 3)(3n − 4)
+

1

(2n − 3)(3n − 4)(2n − 5)(3n − 7)
D′

n−2 = · · · ,

hence we know that δ
(1)
n /αn = O(n−2), αn/δ

(1)
n = O(n2). δ

(2)
n can also be

estimated. Since they are non-negative, we see that d(z) is of the same
order as g(z), which is of the same order as f(z). Thus we get

χ(h) = 1/5, χ(d) = 1/3.

Finally we will consider slopes of the Newton polygon for

L∗[f(z)] =

8
∑

j=0

b∗∗∗j (z)∆jf(z) = 0.

A direct calculation yields deg[b∗∗∗8 ] = 11, deg[b∗∗∗7 ] ≤ 10, deg[b∗∗∗6 ] ≤ 9,
deg[b∗∗∗5 ] = 9, deg[b∗∗∗4 ] = 8, deg[b∗∗∗3 ] = 7, deg[b∗∗∗2 ] = 6, deg[b∗∗∗1 ] = 5 and
deg[b∗∗∗0 ] = 5. Therefore the Newton polygon is the convex hull of the union
of

D = {(x, y) | x ≥ 0, y ≤ 0}, (3, 4) + D, (8, 5) + D;

and its slopes are 1/3 and 1/5.
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