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MODULAR FORMS ARISING FROM ZETA
FUNCTIONS IN TWO VARIABLES ATTACHED TO
PREHOMOGENEOUS VECTOR SPACES RELATED TO
QUADRATIC FORMS

TAKAHIKO UENO

Abstract. In this paper, we prove the functional equations for the zeta func-
tions in two variables associated with prehomogeneous vector spaces acted on
by maximal parabolic subgroups of orthogonal groups. Moreover, applying the
converse theorem of Weil type, we show that elliptic modular forms of integral
or half integral weight can be obtained from the zeta functions.

§1. Introduction

The theory of prehomogeneous vector spaces provides a variety of
Dirichlet series satisfying functional equations and it is a natural ques-
tion to ask whether zeta functions of prehomogeneous vector spaces are
related to automorphic forms. However we have only few examples of pre-
homogeneous zeta functions whose relation to automorphic forms are fully
understood. In the present paper, generalizing our previous work [14], we
consider zeta functions in two variables associated to certain prehomoge-
neous vector spaces (on which a maximal parabolic subgroup of orthogonal
group acts) and prove that, if one of the complex variables takes an integer
value, the zeta functions coincide essentially with the Mellin transforms of
holomorphic modular forms of one variable.

Our prehomogeneous vector space is the following.

Put V = C™2 and let Q(z) be a non-degenerate integral quadratic
form on V of the form

Q(z) = 2oTmar + > aywix;,
1<i,j<m
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where a;; = aj; € %Z (1 # 7) and a;; € Z. The matrix of @ is given by

0 0 1/2
0 A 0
1/2 0 0

with A = (a;j). We consider the maximal parabolic subgroup of SO(Q) of
the form

a —2a'uAh —aAu]\ |ae€C, a#0
p={lo & u h € SO(A)
0 0 a=! ueCm

Then the triple (P x GL1(C), V) is a prehomogeneous vector space.
For positive integers [, n, we put

r(l,n)=4{oveZ™/(Z)™ | Alv) =n (mod 1)}

and define the Dirichlet series Z(n,w) for n € Z (as follows):

Z(n,w) = Z r(l,n)l~".

=1

The Dirichlet series Z(n,w) converges absolutely in the domain {w € C |
Re(w) > m}. The zeta functions associated with the prehomogeneous
vector space is given by

Ce(w, s) = Z Z(en,w)n™° (e = =%).
n=1

We prove that the zeta functions have analytic continuations to mero-
morphic functions on C? and satisfy functional equations. Let p (resp.
q) be the number of positive (resp. negative) eigenvalues of A and put
c(e, k) =2k +1+€e(p —q)/2 for k € Z. We prove that, if we specialize the
variable w to

w = c(e, k) + m/2 > m,

then the zeta function (.(w,s) is the Mellin transform of a holomorphic
modular form of weight c(e, k) + 1.

Let k and N be positive integers and x a Dirichlet character modulo N.
We denote by &(N, x) the space of holomorphic modular forms of weight
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k and character y with respect to I)(N). When k is odd and N is divisible
by 4, we denote by Gy, /2(N, x) the space of holomorphic modular forms of
weight k/2 and character y with respect to I')(N). Then our main result
is the following.

THEOREM. Put D =det A and
(=DFDIV2T (c(e, k) + DE(cle, k) —m/2+1) (n=0)
n =
acllkin) = (2m) P |
neR) Z (en, c(e, k) + m/2) (n>1).

Then the function
felk; z) = Z ac(k;n)e(nz) (Imz > 0)
n=0
is a holomorphic modular form belonging to
( (_1)m/2+1D
Be(ek)+1 <|D|, (f))’ if m is even and |D| # 2 mod 4

—1)™/2+14D
G (e k)+1 <4|D|, <%>>, if m is even and |D| =2 mod 4

| Ge(ek)+1(2[D],idgp)), if m is odd,
where idy p| is the identity character modulo 2|D|.

The proof of the theorem is based on the functional equations satisfied
by (c(w, s) and the converse theorems of Weil type (Weil [15] and Miyake [3]
for the case of integral weight and Shimura [10] for the case of half integral
weight).

The zeta functions have been studied in some special cases (see Re-
mark 3 in Section 4). We can regard the prehomogeneous vector space
studied in [14] as a special case of the prehomogeneous vector spaces (P x
GL1(C), V), since the group SLy(C) is isomorphic to Spin(1,3) and is lo-
cally isomorphic to SO(1,3). That is the case of m = 2 and A (negative)
definite.

In the course of our investigation, the work [5] of Peter appeared. He
studied essentially the same zeta functions under the assumption that A be
positive definite. He proved the functional equation of the zeta functions
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from a different view point and conjectured that the zeta functions are
related to modular forms. Our theorem give an affirmative answer to his
conjecture without any restriction on the signature of A. Our approach
to the zeta functions is based on the theory of zeta functions in several
variables associated with prehomogeneous vector spaces. The use of the
general theory of the zeta functions associated with prehomogeneous vector
spaces allows us to remove the assumption on the signature and to treat
the zeta functions and the twisted zeta functions in a unified manner. We
refer to [8] and [9] for a general treatment of L-functions of Dirichlet type
associated with prehomogeneous vector space.

Now, we give an outline of this paper. In Section 2, we introduce our
prehomogeneous vector space and describe the functional equation of lo-
cal zeta functions associated with the prehomogeneous vector space. In
Section 3, we recall the definition of the zeta functions and the zeta inte-
grals associated with the prehomogeneous vector space and give a relation
between the zeta functions and the zeta integrals. We also prove the func-
tional equation of zeta integrals and calculate the poles and residues of zeta
integrals explicitly. In Section 4, we describe poles and residues of the zeta
functions given in Section 3 and prove our main result, Theorem 4.5.

Acknowledgement. I would like to thank Professor F. Sato for help-
ful advice.

Notation. For z € C, we use the symbol e(z) as an abbreviation for
exp(2my/—1z) and define /z = z'/2 so that —n/2 < arg(z'/?) < m/2.
Further we put zF/2 = (21/2)F for every k € Z. For u € C™, 'wAu is
abbreviated as Au].

For any finite dimensional real vector space V, S(V) is the space of
rapidly decreasing C°°-functions on V.

§2. Prehomogeneous vector spaces acted on by maximal parabo-
lic subgroups of orthogonal groups

Let Q(x) be a non-degenerate integral quadratic form on V = C™*2,
We assume that Q(z) is of the form

Q(r) = ToTpy1 + Z a;jT;T5,
1<i,j<m
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where a;; = aj; € %Z (1 # 7) and a;; € Z. The matrix of @ is given by

0 0 1/2
0 A 0
1/2 0 0

with A = (a;j). We assume that the matrix A has p positive and ¢ nega-
tive eigenvalues. Let P be the maximal parabolic subgroup of the special
orthogonal group SO(Q) = {9 € GLn+2(C) | Q(gz) = Q(x), detg = 1}
defined by

a —2a'uAh —aAu]\ |ae€C, a#0

pP= 0 h u h € SO(A)
0 0 a~! ueCm
The group P x GL;(C) acts on V' by
p(p,t)ﬂf = tpCC (.%‘ € ‘/7 (pvt) € Px GLl((C)))

P tly=t"""p"y (y eV, (pt) € P x GL(C)).

Then the triples (P x GL1(C),p,V) and (P x GL1(C), p*, V') are prehomo-
geneous vector spaces with singular sets

S={z eV |zn1=0U{x eV |Q(z)=0}

S*={yeV]p=0tu{ycV]Q(y) =0}
where Q*(y) is the quadratic form defined by

Q*(Y) = yoyms1 +471 Y ayy; with A7 = (af)).
1<i,j<m

The polynomials x,,+1 and Q(z) (resp. yp and Q*(y)) are the fundamental
relative invariants of (P x GL1(C),p,V) (resp. (P x GLi(C),p*,V)) and
they satisfy

(p(P; D)) mr1 = x1(p, )Zmi1, Qp(p, 1)) = x(p, H)Q(x),

(P* (0, t)y)o = X3 (p, )0, Q" (p*(p,t)y) = X" (P, Q™ (v),
where
a ok a *x *
X1 0 h | =tat, X 0 h = |,t]=4¢,
0 0 at 0 0 at

=
=
Q
o> %
*
\;F
I
—~
~
s
SN—
L
=
*
RS
o O QR
o S ¥
\;F
I
i
[N}
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Hence, we see that xi(p,t) = xix '(p,t) and x*(p,t) = x " (p,t). If we
identify the dual vector space V* with V' by the bilinear form

m+1

=0

for . = Y(wo, 21, ., Tmy1) and y = “(yo,y1,-- -, Ym+1), then the represen-
tation p* coincides with the contragradient representation of p.
Put Vg = R™*2 and let

a —2a'uAh —aAu]\ |a€R, a>0
Pt = 0 h u h € SO(A)
0 0 at u € R™

Then the P+ x GLf' (R)-orbit decomposition of the sets Vg —Sg and Vg — Sk
are given as

VR—S]R—UVEGU VR_SR_ U nm
€,€1 URLE

fore =+, ¢ =+, n ==+ and n; = £, where

(2.1) Vi, ={z € Vr | sgnQ(x) =€, sgn a1 = €1},
(2:2) Vo =1y € Vi | sgnQ*(y) = n, sgnyo = m}.
For later use, we put V., = U61 Vee, and V' = U771 - For fo f* e S(Wr),

we set

Becy (F10,8) = / 1 1Q(@)* £ () d

Veey

B, (Fw05) = [ il 1@ @) F )

M1

Pe(frw,5) Z%l fiw,s)

(55w, s) Z(I)nmf w, s)

The integrals @ (f;w,s) and @y (f*;w,s) converge absolutely for

Re(w) > 0 and Re(s) > 0, so the integrals ®. and @} converge absolutely
in the same domain. The integral ®.(f;w,s) (resp. ®;(f*;w,s)) is called
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the local zeta function associated with the prehomogeneous vector space
(P x GL1(C), p, V) (resp. (P x GL1(C),p*, V)).
For f € §(VRr), the Fourier transform f of f is given by

A~

flx)= [ f(ye(z,y)dy,
Vr

where we denote e({(z,y)) by e(x,y). The local zeta functions ®. and ®;
satisfy the following functional equations, which was proved in [4] with the
method of microlocal calculus and later in [8] with an elementary method.

THEOREM 2.1.  The integrals ®(f;w,s) and ®}(f;w,s) have analytic
continuations to meromorphic functions of (w,s) in C% and satisfy the fol-
lowing functional equation:

(87) = mos =1 =) (2 ) (frw=m 5 —w=s),

where the I'-matriz y(w, s) is given by

Y(w, s) = 21D 72 (2m)" 22D (s)E (w+ s - 2)

<cos 7r(w+22s—p) cos 7r(w2—Q) )
X .

— 25—
COSs —ﬂ(w2 p) coSs 7ﬂ(w+2 =)

For f, f* € S(Vr), we set
—a~1Afu)

. _ s—m/2—2
s = [ [l e
XH(frs) = |a|s~m/2=2 u da du.
/Rm /R —(4a) Ay

The integrals X (f;s) and X*(f*;s) converge absolutely for s € C with
Re(s) > (m +2)/2.

ProposiTION 2.2. (1) If f € C§°(Vr — Sr), we have
X*(fy8) = 2ID[V?(2m)' L (s — 1)

><Zcosﬂ(p_q+6(2_28))<1>6(f;5—m—l,l—s).

4 2
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(2) If f* € Cg°(Vr — Sg), we have

Z((£*)s8) = 21D|7*(2m) ! ~*T(s — 1)

— 2—-2
XZCOSW(q p+477( 8))@;(]0*;8—%—1,1—3).

n

Let us recall the following formulas for the Fourier transforms of |z|*
and e(Afu]) for a symmetric matrix with sgn A = (p, ¢) which are necessary
for the proof of Proposition 2.2:

(2.3) ( fgoo o7 (@) do >
Pl i) d
, e(3) 6(—i)><fo°°|$|_sf(x)d$>
= (27 F ,
e (e<—z> o) J\ P lal (o) ds

(2.4) Flwe(Alu]) du

Rm

— | det 24|72 (1%) e (—lAfl [U]) du.

Proof of Proposition 2.2. We prove only (1), since the second assertion
is proved in the same way. By the principle of analytic continuation, one
may assume Re(s) > (m+2)/2. Then, since f € C§°(Vr — Sr), the integrals
that will appear in the calculation below are absolutely convergent. We have

a

Z*(f;8) /Rm/ms m/2=2 f i uA . da du

:/|a|sm/22da/ du
R R™

f(x)e(azo + tuv — 4 a oy 1 A7 u)) dag dv dap o
Vkr

_ s—m/2—2 _Tm4l 41
/|a| da/ dxo dzm+1 /me( e A [u])du

/ {f(x)e(azo)ye(tuv) dv



MODULAR FORMS ARISING FROM ZETA FUNCTIONS IN TWO VARIABLES 9

for z = Y(xg, ', pm11). Using the formula (2.4), we see that

S(f15) = |D|2 /R a* 2 da / |2 f (2)elaz) Q)

Wr
" 6((q - p) Sg;(a:vmﬂ)) do dv dzyy sy
’D‘I/Z ZZ (677 q— p ) /Sgn(a)e \a!S_Q da

x / ot | ™ A / f(@)e(azs Q) dio do.
sgn(Tm41)=n Rm+1

Put yo = x;;HQ(:E). Then, since sgn(yp) = nsgn(Q(z)) and xg = yo —
erlA[ v], we have

’D|1/QZZ (enq p )/ a2 da

sgn(a)=e
X / |Zma1| ™2 dit / f(z")e(ayo) dyo dv
sgn(Tm+1)=n R+

for 2/ = t(yo — x;llJrlA[v], b, Xma1). By the formula (2.3), we have

2*(fys) = 2|D[V?(2m)' T (s — 1) Z/ [@m1] T A
S,

o Jsan(@ms1)=n

nm(g —p —sgn(Q(z))(2 — 2s))
X /}Rm+1 cos |

1 Yo" 5 £ (2') dyo dv

— 9| D|Y2(2m) T (s — 1) /V o ™2 Q)]
R

m(q —p —sgn(Q(z))(2 — 25))

X f(x)cos 1

dxgdvdzmy1.

Therefore we obtain

*(fis —1) = 2|D[Y2(27)' 75T (s — 1)

-p—2+4+2
><<cos7r(q p4 + S)q)+(f;s—m/2—1,1—s)

+Cosw(q_p12_2s)@_(f;s—m/2—1,1—3)). 0
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83. Zeta functions associated with the prehomogeneous vector
space

In this section, we define the zeta functions and the zeta integrals as-
sociated with the prehomogeneous vector space (P x GL1(C),p,V) and
describe a relation between the zeta functions and the zeta integrals. More-
over, we prove the functional equation of zeta integrals. For later use, we
also consider the zeta functions twisted by Dirichlet characters with prime
conductors.

In the following, we consider the group

a —2a'uA —aAlu]
G= 0 I,
0 0 a”!

a€eC,a#0

uweCm X GLl(C)

instead of P x GL;. Then the triple (G, p, V) remains a prehomogeneous
vector space and the relative invariants are the same as in Section 2. More-
over, it turns out that the zeta functions are essentially the same and it
is easier to treat the zeta functions if we regard them as zeta functions
associated to (G, p, V).

We put

a —2a'uA —aAlu

at={l0o 1. u ¢ EuR;’ Hgnf O arrm),
0 0 a=!
1 —2'wA —Alu

I = 0 1 U weZm

0 0 1

Vo=Qm"2, Vp=2""

Let r be an odd prime number and v a Dirichlet character modulo
r. We understand that ¢(n) = 0 if (r,n) # 1. We define the following
functions on Vg:

¢1(z) =

1 if x € Vg, Y(Q(z)) if x € Vg,
0 Py(x) = .
if x & Vyg, 0 if x & V.

Since the polynomial Q(z) is I-invariant, the functions ¢; and ¢, are I'-
invariant.
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For a function ¢ = ¢ (or ¢y) and each y € Vg, we take a positive
integer M, which may depend on y, such that

z =2’ (mod MVz) = ¢(z)e(—a,y) = ¢(z")e(—2',y).
Define qg as follows:

dy) =M% > pla)e(-z,y), (y€ Vi)

z€Vp/MVy,

This definition does not depend on the choice of M. We call the function
qg the Fourier transform of ¢. These functions appear in the functional
equation of the zeta functions.

In the following, the “quadratic residue symbol” (%) has the same
meaning as in [10].

For an odd positive integer r, we put €, = 1 or /—1 according as r = 1
or 3 (mod 4). For a Dirichlet character 1) modulo N, we denote by ()
and 1Y) respectively, (%)1/) and (%)1& For a primitive Dirichlet character
1 modulo N, the Gauss sum 7(1)) is given by

N
() ==Y _W(i)e(i/N).

j=1

The following proposition gives the Fourier transform of ¢.

ProPOSITION 3.1. (1) We have

N B 1 if yeVy,
¢1(y)—{0 if v Vi

(2) Let r be a prime number not dividing 2|D|, ¥ a primitive Dirichlet

character modulo r and put C,. ., = r*m/%le;””.
(i) If m is even, then we have
D =17 * . -1
) Crom | — JY(=D)T(V)T(¥) " D(DQ"(ry)) if yer Vz,
Dy(y) = r

0 if y&r vy,
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(i) If m is odd and ¢ # (%), then we have

D _
C’r,m (27>¢(r)(_D)T(w(r))T(w)_l
Puly) = % By (DQ (1) if yer ',
0 if yd r~ V.

(iii) If m is odd and ¢ = (%), then we have

qg (4) = Cnma(%) if y € T_IVZ,
o if y Ve,

where

(r— 1) x (g)mﬁ (2)etr i vl Qo)

r r

i _ <g)m+2 (2)6;17"_1/2 if v fQ(ry).

r r

3%

Remark 1. (1) If m is odd, then |D| is even and 2|D|Q* has integral
coefficients. If m is even, then |D|Q* has integral coefficients (Remark 4
and Lemma 4 in [13]).

(2) The character (£) is a character of modulo 4|D| if m is even and
|D| =2 mod 4.

For the proof of the above proposition, we need the following lemma.
The first assertion of the lemma is due to Stark [13, Theorem 1] and the
second assertion can be proved easily by using the identity (36) in [13].

LEMMA 3.2. Let q(z) be an n-variable non-degenerate quadratic form
with integral coefficients, F' the symmetric matriz with Flx] = 2q(x), d =
det F' and q(y) = 27YdF~[y]. Let r be an odd prime number not dividing
d and v a primitive Dirichlet character modulo .

(1) If n is even or ¢ # (%), then we have

Yo wla@)e(r zy)) = ayr () aly)),

ze(Z/rZ)™
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av=((2)) (4)w-arwn, v =vi(2)

(2) If n is odd, then we have

5 (E2)etr )

z€(Z/rZ)

where

(2002 gt
e (2 )

r

13

Proof of Proposition 3.1. We only prove the second assertion, since the
first assertion can be proved in the same way. For y = (yo,v1,---,Ym+1) €
Vip, we can take a positive integer ¢ such that qy; € Z for 0 <i < m + 1.

By the definition of the function q;w, we have

~

Sp(y) =(gr)™™% Y byla)e(—z,y)

zeVy/qrVy,
=) Y $(Qa)ela,y) D elrdy).
a mod rVyz b mod ¢V7

Since

Z e(rb,y) =

{qm+2 if y € r_IVZ,
b mod ¢qVz

0 if yr 'y,

we see that the function g?)w(y) becomes

p—m=2 Z W(Q(a))e(a,y) if yer Vg,
Py (y) = ool
’ if y ¢ T_IVZ.

Hence our assertion follows from Proposition 3.2.

O

Now we introduce the zeta integrals and the (twisted) zeta functions

associated with the prehomogeneous vector space (G, p, V).
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For f, f* € S(Vr) and ¢ = ¢ or ¢y, the zeta integrals Z(f, ¢;w, s)
and Z*(f*, ¢;w, s) (w, s € C) are given by

28, 61ws) = | X ST ol ) deg

:EGVQ So

2t b= [ 0000 S G e on b

xEVQ S*

where d,.g is the right-invariant measure on G normalized by

a —2a'uA —aAlu
drg=2t"ra™ tdtdadu for g= 0 1 u St
0 0 a=!

The zeta functions (e, (¢; w, s) and ¢, (qg, w, s) are defined for €, €1, n, M =
+ by

Cear(Brw,8) == Y B(@) s |VIQ) 7,

IGF\‘/eel mVQ

G (Brwys) = > d(y)lyol ™ 1Q* (w)|

yEF\ nm ﬂV@

where Ve, and V,;, are given by (2.1) and (2.2), respectively. It is obvious

that (et = Ce— and (5, = ¢y, so we put

C6(¢a w, S) = CG+(¢; w, S)
G(dw,8) = (i (d3w, 5).
It is easy to see that our prehomogeneous vector space satisfies the condition
of Theorem 1 in [7] and the zeta functions converge absolutely in Re(w) >
m, Re(s) > 1.
Next we define the Dirichlet series Z(n,w) and Z*(n,w) for n € Z,
which are related to the zeta functions above:

Z(n,w) = Z (gn)’ Z*nwzzr*

=1 =1

where

r(l,n) =4{veZ™/(IZ)™ | Alv] =n (mod )},
r*(l,n) =4 {v* € Z™/2AAZ™ | 27" - |D|A"[v*] = n (mod 2|DIl) }
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if m is odd,
r*(l,n) =4 {v* € Z™/AAZ™ | 47" - |D|A"'[v*] = n (mod |D[l)}

if m is even.

Then we see that the Dirichlet series Z(n,w) and Z*(n,w) converge
absolutely for Re(w) > 0 from simple estimates of r(I,n) and r*(l,n).
Moreover, from Lemmas 3.3, 3.4 and the convergence of the zeta functions,
we can show that Z(n,w) and Z*(n,w) converge absolutely in the domain
{w € C | Re(w) > m}. The Dirichlet series Z(n,w) coincides with the series
L(w,n;1, A) studied in [5], where the following lemma is proved.

LEmMA 3.3. (1) ([5, Lemma 3.8]) For n € Z\{0} define

Z(n,w)L (w = 41, (ELADY)
((w—m+1)

F(n,w) :=

if m is even and

(w = (m + 1)/2)Z(n, w)¢ (2w —m + 1)

F = 1 _m w
pl2D

if m is odd. Then F'(n,w) can be extended to an entire function. For o1 € R
there exist constants ¢y, co > 0 such that

|F'(n,w)| < c1|n]?(| Im(w)| + 1) (Jw| +1) for Re(w) > o7.
(2) ([5, Lemma 3.9]) Define

2(0,w)L (w — 1 +1, (F240))

*

Foer= C(w—m+ 1)L(w -3 (7(*1)7“/2“4[))) pg?(l Y

*

if m is even and

Z(0,w)¢(2w —m +1) —1-2
FO,w) := 1—-p™m w
0w) = tow—mcw—m+p L7 )
p|2D
if m is odd. Then F(0,w) can be extended to an entire function. For
—00 < 01 < 09 < 00 there exists a constant ¢ > 0 such that |F(0,w)| < ¢
for o1 < Re(w) < o3.
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The functions Z(n,w), Z*(n,w), ((¢;w,s) and C;(é;w,s) satisfy the
following relation.

LEMMA 3.4. (1) If m is even, then we have
Ce(Pr5w,8) = Z Z(en,w)n™*°,
n=1
IDI*> " Z* (g, wyn™* if |D|# 2 (mod 4),

C:;(él;wvs) = 00
WD S Z*(m,w)(dn) ™ if D] =2 (mod 4),

ot
Ce(@y; w, 5) Z¢ (en, w)n=",
G (dyiw, 5) —c(¢,D,n) w—m/2-1
ey iw m)Z*(m.wn ™ if [D| #2 (mod 4)
| 1= e,
where 7
cw.D.y) = T EIED)T(W)

7(¥)
y {¢(n sgn(D)) if |D]# 2 (mod 4),
P47 sgn(D)) if |D| =2 (mod 4).

(2) If m is odd, then we have

Gr(d1;w,8) = (2ID])° ZZ*(nn,w)n_s,

n=1
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(el w, s) = Z¢ Z(en, wyn”*,
iy w, s) =c<w,D n) w=m/2=1(2|Dlr?)*

Zwm “(nn, wyn” ifzb#(;),
(ZrZ*m‘nw rn)”° ZZ*nnw s) if@[)z(;),

X

where

(¢, D,n)
G (D) (22 ) (~2D)r 0 (0) wa#( )

() - ()
T

Remark 2. (1) Lemma 3.4 shows that the zeta functions for ¢; and ¢
coincide up to an elementary factor with the Dirichlet series 7 studied in
[5], where A is assumed to be positive definite.

(2) Since €2 = (=1), we obtain

T R

(), D,n)
_ _1\ym/2+1
s (2

_ _1\ym/2+1
s (27

>¢(—\DDT(¢)/T(15) if D] %2 (mod 4),
)w<—4rD|>T<¢>/T<&> if D] = 2 (mod 4),

in the above lemma (1). In the above lemma (2), since sgn(D) = (—1)971,
we obtain

(¥, D,n)
¢<n><§ @02 ( 22 )un 20 (22 ) rwo)srd) it v (

el ( D) —1/2 if ¢ = (
T

)
)

I
S ¥ 3| %
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PROPOSITION 3.5.  The integrals Z(f, d;w,s), Z*(f*,é;w,s) and the
Dirichlet series ((¢;w, s), (i (¢;w, s) are absolutely convergent for Re(w) >
m, Re(s) > 1. Moreover, the following equalities hold:

Z(f, 3w, 5) = Zceqb,ws (fw—m,s 1),
Z( qb,ws ZC qb,ws ([ w—m,s—1).

Proof. For any zg € Vi, G is trivial and

(3.1) F(p(g)xo)dyg = /v F(z)w(z) for F € LY(Ve,w),

G+ e€q

where w(x) = |rpm11|7™|Q(z)| 7! dz, which is a GT-relative invariant mea-
sure on Vg and the space L!(V,,,w) is the vector space of absolutely w-
integrable functions. Using the formula (3.1), we can show that

Z(f,¢;w, ) = Z@ (f;w—m,s = 1)¢(¢5w, 5).

Since the series (.(¢;w, s) converges for Re(w) > m, Re(s) > 1, our asser-
tion is proved. 0

We define the integrals Z,(f, ¢;w,s) and Z7 (f*, ¢;w, s) by putting

Zi(f, rw, s) =/ X1(p,t)“’x(p, t)*
Gr/T, x(p,t)>

Z ¢ ) )drga

zeVp—Sg

25 (f* drw, s) = / )X (0, 8)°
Gr/T, x*(p,t)>1

x Y pt)z) drg.

zeVo— S*

Proposition 3.5 implies that the integrals Z, (f, ¢;w,s) and Z} (f*, ¢;w, s)
are holomorphic functions in the domain {(w,s) € C? | Re(w) > m}.

PROPOSITION 3.6. Assume that Re(w) > m, Re(s) > 1 and f €
S(Vr).
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(1) We have

Z(f; é13w, 5) :Z+(f7¢1swv8)+Zi(f,</31;w,%+1—w—s)

DL 0w g,y

wts—F -1
+C(ws—m+z<1> (f;w—m,0)
¢ + «
%Z@nﬂw m,0),

n

Z*(f, 61w, 5) :Zi(f’ﬁf;l;was)‘FZJr(fa@bl;w,E+1—w—s>

Z(O,w) ;. m
st (fu-5+1)
_|_C(w—m+z(1>;; (f;w —m,0)

s
7

E*(f;w—%—l—l)

Z‘P f,w m, 0).

|D|'Z*(0,w)
_ f
((w—m+1
C wts— T

(2) Let v be a Dirichlet character whose conductor r is an odd prime
not dividing 2|D|. Then we have

Z(f?¢¢5wvs):Z+(f7¢w§w73)+Zi<f,$¢;w,%—l—l—w—s>
ou(0)[DI71Z*0,w) (s m
wts— 21 E(f’w_§+1)
n Gy (0)r"™ " ¢(w — m + 1)

s—1
Z*(fqu'z/);w,rs):Zi(f,éw,w,8)+2+<f’¢w’w’%_|_]__w_8>

u(OIDI 2 Ow) oy, m

w+s——

Z(I)E(f7w - m,O),
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Proof. From the Poisson summation formula, it follows that

Y d@)f() =) d(@)f(x)

ZEGVQ IEVQ

Hence we have
(2 m
(32) Z(f,qb;w,s) :Z+(f’¢;w78)+Z+<f’¢;wa§+1_w_s> +X

where

Y= x1(p,t)“x(p,t)*
GR/va(pvt)Sl

(x(p, )L ST b)) — Y. bl )> 9.

yeSH ﬂVQ x€SgNVp

Since the functions ¢ and qg are I'-invariants, we see that

(33) oo sty = Y., ) > flp

yESHNVY yEF\S* NVo ~ED/Ty
(34) Yo o@flplg)r) = D @) Y flplgr)x)
x€SeNVy zel'\SgNVy ~eL /Ty

where I, denotes the stabilizer of x in I.

We consider the case ¢ = ¢1. We call two points z, y of Vg p(I)-
equivalent (resp. p*(I")-equivalent) if they lie in the same p(I")-orbit (resp.
p*(I")-orbit) in Vz. Then it is easy to see that a complete set of represen-
tatives of p(I")-equivalence classes in Sg N Vz is given by the union of the
following subsets of Vz:

T Z

L= v eVz | Tmy1 #0, vmod 2,1 Z™, Q v =0,
Tm+1 Tm+1

Zo

Ly = v | €Vz|v#0, xg mod 2ay

0

Zo

Ly = 0 0 €Ly,

0
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where a, is a positive integer such that v’ := a1 Av is a primitive vector.
Recall that an integral vector v = (vg,v1,...,Ums1) is said to primitive if
the greatest common divisor (v, v1,...,Um+1) equals 1. It is easy to see
that I, = {1} for x € Ly, I, = I for x € L3 and

1 —2'wA —Alu xo
Ir,= 0 1 u we (@ ENz™y forx= [ v | €Ly,
0 0 1 0

where

()4 = {ueR™| fudv =0} .

Similarly, the union of the following subsets forms a complete set of repre-
sentatives of p*(I")-equivalence classes in S N Vz:

Yo Yo
L = v* e Vz | yo #0, v* mod yoZ™, Q*| v* =0,,

Ym+1 Ym+1

L= v* eVz | v"#0, yme1 mod qpx

L; = 0 Ym41 € Z )
Ym+1

where a,+ is a positive integer such that (v*)" := oz;*lv* is a primitive vector.
We also see that Iy = {1} for y € L], I}, = I" for y € Lj and

1 —2WwA —Alu] 0
r,= 0 1 u we (HtNZ™ S fory=| o € L3,
o 0 1 Y1

where

(Wt ={ueR™ | fuv* =0} .

Using the identities (3.3), (3.4) and the calculation of I, and I, we see
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that the third term X on the right hand side of (3.2) is equal to
(3.5)
00 1
2 [ [Can e B (1)) ()~ D) ~ R} deda
o Jo

&) 1
=2 X /0 /0 amfwflthrZsfl{Iik((ft)/\) . Il(ft)}dt da
e8] 1
+ 2 x /0 /0 am*wflthrZsfl{I;((ft)/\) ~ L(f,)) dt da,

where

axg — 2a ' uAv — a1 Alu]

Z / V4 1 du,

x€ly a_lxm+1

azxg — 2a 'uAv axg
-y / v au+ Y rf o),
r€ELo Rﬁﬁ( ﬂZm 0 xr€L3 O

a”yo
Z / 2y0Au + v* du,
yeL} —ayoAlu] — a*uv* + aymi1

0 0

- [ vt du+ 35[0
yeLy Y R™/({v7) lmzm) —a'uwv* + aymi1 yeL; aYm+1

and fi(x) = f(t ) We can easily calculate the first integral on the right
hand side of (3.5

2 % / / mew L2 (I (f)N) — I () dadt
=101 (w5 == 1) (3 )2 (o 1)

yeL]

_sl(z |xm+1|w>2(f;w— % +1).

el

Next we consider the second integral involving I35 (f)—1Ia2(f). Put Av = a0/,
where the vector v/ is a primitive vector, then we choose a set of vectors
{v1,...,vm—1} such that U = (V',v1,...,um—1) € GL(m,Z). We take a
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basis of Vi of the form {f1, fa,..., fm} for U™t = (f1, f2, ..., fm). Denote
a vector u of Vg by u = c1f1 +cafo+ -+ cmfm, then ‘uv’ = 0 if and only
if ¢; = 0. Hence we see that the subspace (v')* is spanned by the vectors
{f2y..., fm}. Since du = dc; - - - dc,,, we see that

0

B -nn=at Y [F v*m+zj 0
v*eZm—{0} YEZL ay

ax

—a ! Z / v dc—Zf 0

veZm—{0} x€Z 0

We can see easily that

(
§:{/ do— | f O)dc
(

/ 0
v*ezZm—{0} v*E€ZM c
x
Z / dc—/ fl u |dxdu.
(YA L 0
From the Poisson summation formula, we have
Z /f v* dc = Z /f v |dc
v*ezZm vEZL™
c c
—Z/fvdc—i-/f()dc
veZm—{0} 0 R\o
c R 0
= Z /f v dc+/ fl v |dxdu,
veZm—{0} 0 Rt
[0
Zf 0| = 12/ f u dx du,
yeZ \ ay lez YR
ax 1l
0 a? dz du.
Zf Z/m+1 U x du

TEZ leZ



24 T. UENO

Hence we obtain that

L(f)—L(f)=a Z /}Rm+1 u |dxdu
a

1€Z—{0}
1l
Z / u dz du.
Rm+1 T

1€Z—{0}

Thus we have

2 / / mow=2ut 2L (12 £)) — L(f,)) db da
(s — 1) ¢(w—m+1)(®y(f;w —m,0) + D_(f;w—m,0))

— (w—|—5— %)71C(w—m+1)(@i(f;w—m,0) +®* (f;w —m,0)).

This proves the assertion for ¢1. We note that ¢y (z) =0 if Q(x) = 0. Our
assertion for ¢, can be proved in the same way as in the case of ¢;. H

COROLLARY 3.7. For ¢ = ¢1 or ¢y, Z(f,p;w,s) and Z*(f, qg;w,s)
have analytic continuations to meromorphic functions in the domain
{(w, 5) € C? | Re(w) > m}. Moreover they satisfy the functional equation:

Z(f’¢;w78) Z*<f ¢a w, +]-_ _S>-
Using Proposition 2.2, we obtain the following corollary.
COROLLARY 3.8. If f € C3°(Ve), then the following identities hold:

(1) Z(f, ¢1:w,s) = Z4(f, p15w, S)+Z (f le, w, _|_1_ —S)
20D 2)7°(0,u)

w+s—5—1
xcosw(p_q+z( _2w))¢€<f;w—m,%—w)
Cw=mFD g - m,0).

s—1
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(2) Z(f, dpiw,s) = Zy(f, byiw, s) + Z} (f, buy; w, % +1—w— s)

| SuOIDI @m0 — 3) 2°(0,w)
wts—g3 -1

><Cosﬂ(p_q+Z(m_2w))@e<f;w—m,% —w)
g QO D g (.0,

Proof. 1t is sufficient to prove only }, @;(f;w —m,0) = 0. If the
support of f is contained in V., the function ®_(f;w, s) vanishes identically.
From Theorem 2.1, we have

(3.6) coswfb’jr(f;w—m,% —w—s)
26 — R
+coswqf‘<ﬁw—m,%—w—s> =0.

In the same manner, we have

26 — R
(3.7 coswfbi(ﬁw—m,%—w—s)
+00sw@*(ﬁw—m,%—w—s> =0,

if the support of f is contained in V_. When s tends to m/2 — w in (3.6)
and (3.7), we have

> or(fiw-m,00=0. [
n

84. Main results

First, we give the functional equation satisfied by (.(¢;w,s) and
Gy (d;w,s) for the cases ¢ = ¢1 and ¢y and calculate their poles and
residues.

THEOREM 4.1. The zeta functions (c(¢;w,s) and C:;(QZA);U),S) (¢ = &1
or ¢y) have analytic continuations to meromorphic functions in the domain

D = {(w,s) € C* | Re(w) > m}

with the following properties.
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(1) They satisfy the following functional equations for ¢ = ¢1 or ¢y:

(&) #1-w-0) = rtm (£ Jorm

where

y(w,8) = 2|D\_1/2(QW)W/Q_W_QSF(S)F(w s %)

(cos ﬂ(w+2257p) cos 7T(w;q) >
X .

2 —
cos 7ﬁ(w+28 9)

(2) Fiz a complex number w with Re(w) > m.

(i) The function (s —1)(s +w—m/2—1)((¢p1;w,s) is an entire function
of s. The residues of ((¢1;w,s) are given by

fsi:efée(qbl;w,s) =((w—m+1),

. o0(w-2)Z*0,w)
s:ml;geflfw <€(¢17 “ S) B ‘D’1/2(27T)w_m/2
w(p — g+ e(m — 2w))
T .

X COS

(ii) The function (s —1)(s+w—m/2— 1)(,’;(&1;11), s) is an entire function

of s. The residues of C;;(qgl;w,s) are given by

Res G (d15w,5) = C(w —m + 1),

2l (w — 2)Z(0,w)

’D‘1/2(2ﬂ-)wfm/2
m(g —p +n(m - 2w))
1 )

L Gl =

X COS

(i) If m is even or ¢ # (;), then the functions ((pyp;w,s) and

C;(gigw;w,s) are entire functions of s.

(iv) If m is odd and ¢ = (%), then the functions (s — 1)(s + w —m/2 —
l)Ce(qb(i);w,s) and C;;(qg(i);w,s) are entire functions of s. The resi-
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dues of Ce(qﬁ(i) ;w, 8) are given by
s

R:els €e(¢(i);w7 S) = rm/waflag(w —m+ 1)a

oy 20T (w—5)Z(0,w)
s:mI/{Qe—fl—w Ce(qb(%),w,s) - |D|1/2(2;—)w7m/2

(g — p+n(m — 2w))
4 9

X COS

where a = (r — 1) x 617314-1(%)7”—1/2'

Proof. Our assertions for the analytic continuations and functional
equations follow immediately from Proposition 2.1, Proposition 3.5 and
Corollary 3.7. Now we compute the residues. We have the following identity
for any f € C§°(Ve) from Corollary 3.8 (1):

O (f;w —m, s — 1)¢c(d1;w,5)
= Z4(f, 15w, 5) +Zi<f,¢31;w,% Flow-— s)

MmN\ T p2 gy m2—wp (- ™
+ (w +s-% 1) 2|D|~2(2rr) r<w 2)
X COS mp—q +Z(m — 2w))Z*(O; w)P, (f;w —m, % — w)

+ (s = 1) (w—m+1)®(f;w —m,0).

Since there exists an f € C§°(V;) such that ®(f;w—m,0) # 0, we see that
the function (.(¢1;w, s) has a pole at s = 1 and the residue is ((w —m+1).
In the same manner as above, we obtain the assertion for the residue of
Ce(p1;w,8) at s =m/24+1—w. Our assertion for C;(gigl; w, s) can be proved
in the same way as in the case of ((¢1;w,s). Using Corollary 3.8 (2), we
can prove our assertion for ((¢y; w, s) and ¢ (¢y; w, s) in the same way. []

Moreover using Lemma 3.3, we can extend ((¢;w, s) in C2.

COROLLARY 4.2. For ¢ = ¢1 or ¢y, ((p;w,s) has an analytic con-
tinuation to a meromorphic function in C2.

Proof. Define

gl = clow—mot )L (w1, (w))

*
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if m is even and

g(w) :== (w — mTH>((w —m+ 1)71C(2w —m+1) H(l _pm7172w)

p|D

if m is odd and put

G(w,s) :=(s—1) (s +w— %)g(w)g}(@; w, s).

From Lemma 3.3 and Lemma 3.4, we have

G(w,s) =(s—1) (s +w— %) iF(en,w)n*S.

n=1

From Theorem 4.1 and the estimate of F'(en,w) in Lemma 3.3, there exists
a positive number ¢ for any o1 € R such that G(w, s) is holomorphic in the
domain

{(w,s) € C? | Re(w) > m} U {(w,s) € C? | Re(w) > o1, Re(s) > 1+c}.

Since the convex hull of this domain coincides with {(w,s) € C? | Re(w) >
01} and o1 is arbitrary, the assertion for ¢ = ¢1 follows from Theorem 2.5.10
in [2]. The proof for ¢ = ¢y, is similar to the case for ¢ = ¢. 0

Let k be a positive integer greater than (m + €(¢ — p) — 2)/4 and put
w = c(e, k) + m/2 in the above proposition with the constant c(e, k) =
2k + 1+ €e(p—q)/2, (c(e,k) + m/2 > m by the assumption for k). Then
the y-matrix y(w, s) in Theorem 4.1 becomes an upper or lower triangular
matrix. Hence we have the functional equations below:

(4.1) D[22~ CRHID(e(e, k) + 1= )G (diele k) + 51— s)

= (—1)k+1(27r)*81“(5)§“6 (gf); cle k) + 5 s — c(e, k‘))

This functional equation suggests that (. and ( are related to modular
forms.
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Now we introduce Dirichlet series L¢(k;s) and L (k; s), which will turn
out to be the Mellin transforms of modular forms, as follows:

Le(k:s) = C. (¢1; cle, k) + % s — cle, k)) =3 adkin)n,
n=1

Li(k;s) :=

where
|D| if mis even and |D| # 2 (mod 4),

D =< 4|D| if m is even and |D| = 2 (mod 4),
2|D| if m is odd.

From Lemma 3.4, we see that
ac(k;n) = nc(e’k)Z(en, cle, k) + %),
be(k; n) _ (_1)k+1ﬁ1—c(e,k)/2nc(e,k)

d(n)Z*(en/4,c(e, k) +m/2) if mis even and |D| =2 (mod 4),
Z*(en,c(e, k) +m/2) otherwise.

For a positive integer N, we set

Atz = (Z5) TOLE )
vt 1) = (%) Tz

PROPOSITION 4.3. The functions Ap(s;k,Le) and Ap(s;k,LY) are
meromorphic in the complex plane and satisfy the functional equation

Ap(1+cle, k) — sk, LY) = Ap(s; k, Le)

and the function

(k;0 be(k; 0
L aclli0) | b(s0)

4.2 Ax(s;k, Le
(42) plsik; Le) s cle,k)+1—s



30 T. UENO

is holomorphic on the whole s-plane, where

(=DMYD[V2T(e(e, k) +1)¢ (cle k) — B +1)
(27T)c(e,k)+1 ’

DYAARTID (e, k) + 1)¢(c(e. k) — % +1)
(27r)c(e,k)+1 ’

ae(k;0) =

be(k; 0) =

Proof. The identity (4.1) implies the above functional equations. Since
I'(s) has poles at s = 0,—1,..., it follows from Theorem 4.1 that the
possible poles of A 5(s; k, L¢) are at s = c(e,k)+1and s = 0,—1,.... On the
other hand, from the expression on the left hand side of (4.3), we see that the
possible poles of Ay (s;k, L) are at s = 0 and s = c(e, k) +1,c(e, k) +2,....
Therefore we deduce that the function A (s;k, L) has poles only at s = 0
and s = c(e, k) + 1 and the residues are

(=) Y DV2T (c(e, k) + 1)¢(cle, k) — 2 +1)

(2r)elek) 1 (s =0),
DVAACRFIT (c(e, k) + 1)¢ (ele, k) — B +1)
) : (s=cleh)+1). [0

Let 7 be a prime number not dividing 2|D|. For a primitive Dirichlet
character ¥ modulo r, we define Dirichlet series L (k;s,) and L’ (k; s, )
as follows:

kS’(ﬁ Z¢ aekn )

L (ks s, w>
*
E be (k; g be (k; ¥ ifmisoddand ¥ = | -
rn)(rn) n) if m is odd and ¥ (r)’
E Y(n)be(k;n)n~*° otherwise.

Then, by Lemma 3.4 and the definition of a.(k;n) and b.(k,n), we have

Le(lks 5,9) = 0 (dvicle. k) + 55— ele,k) ).
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We also have
L (k; s,9) = (_1)k-+1|D|1/2(rDl/Q)c(e,k)H—zSCq;l
% G (buiele k) + s — (e, k)
1 ifmisodd and ¢ = (;)

Y(e) otherwise

where
s
(@)m—wm(w)ﬁw) if m is even,
|D| # 2 (mod 4),
(S ety it ms even,
Cy = |D| =2 (mod 4),
2
6;2.;(6,;@)—2(@) D=2\ D)r () /(@) if m s odd, § # (;)
6;2C(€vk)_1 (M)r_lﬂ if m is odd, ¥ = (i>
\ r r

For a positive integer N, we set

An(sik, Lost) — (j—%) D(s)Le (ks 5, ),

21 _

Atk 20) = (22) Tz s, D)

The proof of the following proposition is similar to the proof of Proposi-
tion 4.3.

PROPOSITION 4.4. Let r be a prime number not dividing 2|D| and 1 a
primitive Dirichlet character modulo . Then the functions Ap »(s;k, Le, )
and Ap, (83 k, LY %) have analytic continuations to meromorphic function
of s in C and satisfy the following functional equation:

Ap2(81k, Le, ) = CyAp o (cle, k) +1 —s; L),
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The function

be(k; 0)r—1/2(r — 1)e; 1260k (2121
cle,k) +1—s

1 if m is odd and i = (;)

0 otherwise

(4.3) Ap,2(8k, Le, ) +
X

is holomorphic on the whole s-plane.

Let $) be the upper half complex plane, & (N, x) the space of holo-
morphic modular forms on $ of the integral weight k and character y with
respect to I'g(NN) and Gy(N,x) the space of holomorphic modular forms
on $ of the half integral weight k and character x with respect to I'g(V),
for the definition, see [3] for integral k& and [10] for half integral k. The
following is our main theorem.

THEOREM 4.5. Let k be a positive integer with c(e,k) > m/2. Let
{ac(k;n)}tn>1 and {be(k;n)}n>1 be as above and put

(=) Y DIV2T (c(e, k) + 1)¢(cle, k) — 2 +1)
(27r)c(e,k)+1 ’

DYAERTIT (e(e k) + 1)¢(ele k) — 5 +1)
(27r)c(e,k)+1 ’

ac(k;0) =

be(k;0) =
(1) If m is even, set

z) = Z ac(k;n)e(nz),

ge(k; z) = C(ek Zb (k;n)e(nz)

(z€9).

Then both fc(k;z) and ge(k;z) belong to G p) +1<|D| (ﬁ)) or
Be(e,k) +1<4\D[ ( ) according as |D| # 2 mod 4 or |D| =
mod 4 respectively. They satisfy the following relation:

ge(kS Z) _ (DI/ZZ)—c(e,k)—le (k‘, Z;_l>

m/2+14D
*

z
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(2) If m is odd, set

felks2) =) ac(k;n)e(nz),

n=0

- (z €9).
ge(k;2) = Z be(k;n)e(nz),
n=0

Then fe(k;z) belongs to Ge(er)+1 <2|D|, (M» and ge(k; z) belongs to

*

Ge(e,i)+1(2|D|,idgyp|). Moreover they satisfy the following relation:

ge(k;z) = (—\/—_1]_7)1/22)70(6’16)71]06 (k; ;1)
Dz

To prove this theorem, we apply the converse theorem to the functions

Ap(sik, L) and Ap 2(s;k, Le,vp). The converse theorem is proved in [15]

for the case of integral weight (see Theorem 4.3.15 in [3]). For the case

of half integral weight, Shimura [10, pp. 479-481] described the functional

equations of the Dirichlet series given by the Mellin transform of half inte-

gral weight modular forms and he pointed out that the functional equations

characterize modular forms of half integral weight. The proof of the char-

acterization of modular forms is omitted in [10], since it is almost the same
as that in [15].

Proof of Theorem 4.5. Propositions 4.3 and 4.4 show that the functions
A and A* satisfy the conditions of the converse theorem, except the bound-
edness of the functions given by (4.2), (4.3). Therefore it suffices to prove
the boundedness of the functions (4.2), (4.3) on any vertical strip. To show
this, we consider a function ¢(t) € C*°(R), satisfying the following two con-
ditions. The existence of such a function ¢(t) is known (see Lemma 1.4 in

[11]):
(1) If t < 1, then ¢(t) = 0, and all the derivatives of ¢(t) are bounded
functions on R.

(2) Set
A(s) :/ tq(t)dt (Re(s) < 0).
0
Then the function A(s) is a holomorphic function in the domain
{s € C| Re(s) < 0} and for every pair of positive numbers (v1,13),

there exists a constant ¢ > 0 such that [A(s)| > cexp(—+/|Im(s)|) on
—v1 < Re(s) < —vs.
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Set
Ke={z € Ve | |zmi1] > 1, |Q(z)] = 1}
and take a function he € C§°(K,) such that he > 0 and

IRZCECE

€

with dx = d@Q A w. For a positive integer L, let

(21| "R Q(@) (| Q(@) Dhe (2/1Q ()] ?) @ €V,
ferlz) = 0 x & V..

The function fc 1 belongs to C*°(Vg). Then, by Lemma 4.5 in [14], Theo-
rem 2.1 and the Poisson summation formula hold for f. ; for L sufficiently
large. Hence the following identity, which is derived from Propositions 3.5
and 3.6, still remains true for f,  for L sufficiently large.

= ae(k;o) ( )
Ap(s;k,Le) + . +( A g

DI (s)B(s)

N (271')5(1)6(']067]4;0(6,]{3) —%,5—c(e, k) — 1)
1 (Ds/2r(s)C(c(e, k) — 24 1)®r fer;cle k) — n.0) ~ack: 0)>
s (2m) @ (fericle k) — B, s —c(e, k) — 1) o
1
Cclek)+1—s
DD (cles )~ 5 + )8 (ariclek) = 2.0) )
( G >s¢>e(feL, FrS o y )

where

B(s) = Z (fer drsele k) + 5 s = (e )

s m

+ Zi (fe,La ¢1; C(‘E? k) + 57 1- S)'
For v > 0 the above function is bounded on any vertical strip with | Im(s)| <
v, since the left hand side of the above function is holomorphic. Therefore
it is sufficient to prove that the above function is bounded on any verti-
cal strip with |Im(s)| > v. Then Z (fe r,1;c(e, k) +m/2,5 — c(e, k)) +
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Zy (ﬂ,L, b1 cle,k)+m/2,1— s) are bounded on any vertical strip and from
Stirling’s estimate, we have

F(s) —_ O(’ Im(s)’Re(s)fl/QefﬂIm(s)|/2)

on any vertical strip. Therefore we need an estimate of ®. from below. By
the definition of f. 1, we obtain

m —-m s—
(I)e (fe,L;c(ﬁak) - 378 - 1) = /V ‘xm+1‘0(67k) /QIQ(I'” lfe,L(x) dx

_ /0 ) ( /K he(:):/tl/Q)w(x)) dt

where
Koy ={z €V ||zms| >t'/2,1Q(z)| = t}.

Hence we obtain ®(fe.r;cle, k) —m/2,s—1) > Ce VIO (Im(s) — +00)
and

ac(k; 0) be(k:0)
Ax(s;k, L
plsiks Lo+ s cle,k)+1—s

= O(| Im(s)[Re(s)=1/2¢ =l Im(s)|/2+/Tim(s)]

In particular, the function on the left hand side is bounded on any vertical
strip. Our assertion for Ap »(s;k, Le, %) can be proved in the same way
as in the case of Aj(s;k,Le). Therefore the functions Ap(s;k,Le) and
Ap, 2(s:k, Le, ) satisfy all the conditions in the converse theorem. 0

Remark 3. Theorems 4.1 and 4.5 include several earlier results as spe-
cial cases.

(1) In the case m = 1 and A = (1), the zeta functions were studied in
[11] and the corresponding modular forms are the Cohen Eisenstein series.
In the case m =2, (p,q) = (0,2) and

A_<_01 d£/4> . A_<—_1}2 <dK_i/12)/4>
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according as 4 | dx or 4 [ dk, where dk is the discriminant of imaginary
quadratic field K. Theorems 4.1 and 4.5 have been obtained in [14].

(2) In the case m = 2, (p,q) = (1,1) and

0 1/2
A= <1 /20 )
then —det 24 = 1 and the theorems give classical examples. In fact, our

zeta function coincides with ¢ (w—1)¢(s)¢(s+w—1)¢(w) ™! up to a constant
and the corresponding modular forms is the holomorphic Eisenstein series.

(3) The functional equation of Theorem 4.1 was obtained in [5] under
the assumption that A be positive definite. Moreover he posed a conjecture
that the zeta functions are related to modular forms. Theorem 4.5 gives an
affirmative answer to this conjecture.
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