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A DETERMINANT FORMULA FOR A CLASS OF

RATIONAL SOLUTIONS OF PAINLEVÉ V EQUATION

TETSU MASUDA, YASUHIRO OHTA and KENJI KAJIWARA

Abstract. We give an explicit determinant formula for a class of rational
solutions of the Painlevé V equation in terms of the universal characters.

§1. Introduction and main result

It is known that six Painlevé equations are in general irreducible, name-

ly, their solutions cannot be expressed by “classical functions” in the sense

of Umemura [18]. However, it is also known that they admit classical so-

lutions for special values of parameters except for PI. Much effort have

been made for the investigation of classical solutions. As a result, it has

been recognized that there are two classes of classical solutions. One is

transcendental classical solutions expressible in terms of functions of hy-

pergeometric type. Another one is algebraic or rational solutions. It is also

known that the Painlevé equations (except for PI) admit action of the affine

Weyl groups as groups of the Bäcklund transformations. It is remarkable

that such classical solutions are located on special places from a point of

view of symmetry in the parameter spaces [12], [13], [14], [15]. For example,

PII, PIII and PIV, whose symmetry is described by the affine Weyl group

of type A
(1)
1 , A

(1)
1 ⊕ A

(1)
1 and A

(1)
2 , respectively, admit transcendental clas-

sical solutions on the reflection hyperplanes, and rational solutions on the

barycenters of Weyl chambers of the corresponding affine Weyl group.

Umemura et al have investigated the class of solutions on the barycen-

ters of Weyl chambers and found that (1) these solutions are expressed

by some characteristic polynomials generated by the Toda type bilinear

equations, (2) the coefficients of such polynomials admit mysterious combi-

natorial properties [17], [7], [16]. These special polynomials are sometimes

referred as Yablonskii-Vorob’ev polynomials for PII [19], Okamoto polyno-

mials for PIV [14], Umemura polynomials for PIII, PV and PVI.
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One important aspect among such polynomials is that they are ex-

pressed as special cases of the Schur functions. As is well known, the Schur

functions are characters of the irreducible polynomial representations of

GL(n) and arise as τ -functions of the KP hierarchy [1]. For example, it is

known that the special polynomials for PII and PIII are expressible by 2-

reduced Schur functions, and those for PIV by 3-reduced Schur functions [2],

[3], [4], [8].

In this paper, we consider PV,

d2y

dt2
=

( 1

2y
+

1

y − 1

)( dy

dt

)2
− 1

t

dy

dt
(1.1)

+
(y − 1)2

2t2

(
κ2
∞y − κ2

0

y

)
− (θ + 1)

y

t
− y(y + 1)

2(y − 1)
,

with parameters κ∞, κ0 and θ, whose symmetry is described by the affine

Weyl group W (A
(1)
3 ). The aim of this paper is to investigate a class of

rational solutions on the barycenters of Weyl chambers and to present an

explicit formula for them.

By the analogy from the known cases, it is naively expected that they

are expressed in terms of 4-reduced Schur functions. However, our for-

mula is expressed by a generalization of Schur functions, which is called the

universal characters and defined as follows [6].

Definition 1. Let pk = pk(t
(1)) and qk = qk(t

(2)), k ∈ Z, be two
families of polynomials defined by

∞∑

k=0

pkη
k = exp

( ∞∑

j=1

t
(1)
j ηj

)
, pk = 0 for k < 0,

∞∑

k=0

qkη
k = exp

( ∞∑

j=1

t
(2)
j ηj

)
, qk = 0 for k < 0,

(1.2)

where t(1) = (t
(1)
1 , t

(1)
2 , . . . ) and t(2) = (t

(2)
1 , t

(2)
2 , . . . ) are the sets of infi-

nite numbers of variables. For any partitions λ(1) = (λ
(1)
1 , λ

(1)
2 , . . . , λ

(1)
n )

and λ(2) = (λ
(2)
1 , λ

(2)
2 , . . . , λ

(2)
m ), the universal character Sλ(1),λ(2)(t(1), t(2)) is

defined as

(1.3) Sλ(1),λ(2)(t(1), t(2)) = det t
(
q−
λ
(2)
m

, q−
λ
(2)
m−1+1

, . . . , q−
λ
(2)
1 +m−1

,

p+

λ
(1)
1 −m

, p+

λ
(1)
2 −m−1

, . . . , p+

λ
(1)
n −m−n+1

)
,
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where

(1.4) p+
j = t(pj, pj+1, . . . , pj+m+n−1), q−j = t(qj, qj−1, . . . , qj−m−n+1).

Our main result is stated as follows.

Theorem 1.1. For m,n ∈ Z≥0, we define a family of polynomials

Sm,n = Sm,n(t, s) by specializing Sλ(1),λ(2)(t(1), t(2)) as

λ(1) = (n, n − 1, . . . , 2, 1), λ(2) = (m,m − 1, . . . , 2, 1),(1.5)

t
(1)
j = − t

2
+

2s − m + n

j
, t

(2)
j =

t

2
+

2s − m + n

j
,(1.6)

where s is a parameter. For m,n ∈ Z<0, we define Sm,n through

Sm,n(t, s) = (−1)m(m+1)/2S−m−1,n(t, s − m − 1/2),

Sm,n(t, s) = (−1)n(n+1)/2Sm,−n−1(t, s − n − 1/2).
(1.7)

Then,

(1.8) y = − Sm,n−1(t, s)Sm−1,n(t, s)

Sm−1,n(t, s − 1)Sm,n−1(t, s + 1)
,

gives the rational solutions of PV (1.1) with the parameters

(1.9) κ∞ = s, κ0 = s − m + n, θ = m + n − 1,

and

(1.10) κ∞ = −s, κ0 = s − m + n, θ = m + n − 1.

Similarly,

(1.11) y =
2n + 1

2m + 1

Sm,n−1(t, s + 1/2)Sm,n+1(t, s − 1/2)

Sm−1,n(t, s − 1/2)Sm+1,n(t, s + 1/2)
,

gives the rational solutions of PV (1.1) with the parameters

(1.12) κ∞ = m + 1/2, κ0 = n + 1/2, θ = 2s − m − n − 1.

This result covers all the rational solutions obtained by applying the

Bäcklund transformations on the particular solution of PV (1.1),

(1.13) y = −1, κ∞ = s, κ0 = s, θ = −1.
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Remark. In ref. [5], Kitaev et al gave a complete classification of ra-
tional solutions for PV. Our result covers all the rational solutions of the
cases (III) and (IV) in their classification. The first half corresponds to the
case (III) and the other does to (IV). Also, Noumi and Yamada presented
a determinant formula for a class of rational solutions of PV in terms of
2-reduced Schur functions [9]. Our result includes their formula as a special
case, which is explained in Appendix A.

This paper is organized as follows. In Section 2, we give a brief review

for the theory of symmetric form of PV [8], [10], [11], which provides us

with a clear description of symmetry structure and τ -functions for PV. In

Section 3, we construct the rational solutions of PV by using the theory of

symmetric form. Proof of our result is given in Section 4. We mention the

relationship between our result and Yamada’s general determinant formula

[21] of Jacobi-Trudi type in Section 5.

§2. Symmetric form of Painlevé V equation

By using the theory of symmetric form for PV, it is possible to describe

the structure of Bäcklund transformations in a unified manner and to con-

struct particular solutions systematically. In this section, we summarize the

symmetric form of PV following refs. [10], [11], and derive bilinear equations

satisfied by τ -functions.

2.1. Symmetric form of PV

PV (1.1) is equivalent to the Hamilton system [20]

(2.1) q′ =
∂H

∂p
, p′ = − ∂H

∂q
, ′ = t

d

dt
,

with the Hamiltonian

(2.2) H = p(p + t)q(q − 1) + α2qt − α3pq − α1p(q − 1).

In fact, putting

(2.3) κ∞ = α1, κ0 = α3, θ = α2 − α0 − 1,

with

(2.4) α0 = 1 − α1 − α2 − α3,
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we see that equation for y = 1 − 1/q is nothing but PV (1.1). Setting

(2.5) f0 =
1√
t
(t + p), f1 =

√
tq, f2 = − 1√

t
p, f3 =

√
t(1 − q),

we obtain the symmetric form of PV

f ′
0 = f0f2(f1 − f3) +

( 1

2
− α2

)
f0 + α0f2,

f ′
1 = f1f3(f2 − f0) +

( 1

2
− α3

)
f1 + α1f3,

f ′
2 = f2f0(f3 − f1) +

( 1

2
− α0

)
f2 + α2f0,

f ′
3 = f3f1(f0 − f2) +

( 1

2
− α1

)
f3 + α3f1.

(2.6)

We note that the original dependent variable y of PV is expressed as

(2.7) y = − f3

f1
.

In terms of variables fi and αi, the Bäcklund transformations of PV are

described by a simple form,

(2.8)
si(αi) = −αi, si(αj) = αj + αi (j = i ± 1), si(αj) = αj (j 6= i, i ± 1),

si(fi) = fi, si(fj) = fj ±
αi

fi
(j = i ± 1), si(fj) = fj (j 6= i, i ± 1),

π(αj) = αj+1, π(fj) = fj+1,

where the subscripts i = 0, 1, 2, 3 are understood as elements of Z/4Z. These

transformations commute with derivation ′ and satisfy the fundamental

relations

(2.9)
s2
i = 1, sisj = sjsi (j 6= i, i ± 1), sisjsi = sjsisj (j = i ± 1),

π4 = 1, πsj = sj+1π,

which means that transformations si (i = 0, 1, 2, 3) generate the affine Weyl

group W (A
(1)
3 ), and si and π generate its extension including the Dynkin

diagram automorphisms.

2.2. τ-functions and bilinear equations

In order to obtain simpler transformation properties, we add a correc-

tion term which depends only on t to the Hamiltonian (2.2). The corrected
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Hamiltonian h0 is introduced as

(2.10)

h0 = f0f1f2f3 +
α1 + 2α2 − α3

4
f0f1 +

α1 + 2α2 + 3α3

4
f1f2

− 3α1 + 2α2 + α3

4
f2f3 +

α1 − 2α2 − α3

4
f3f0 +

(α1 + α3)
2

4
,

and we put hj = πj(h0). Then, we have

(2.11) si(hj) = hj (i 6= j), si(hi) = hi +
√

t
αi

fi
, π(hi) = hi+1.

We also introduce τ -functions τi (i = 0, 1, 2, 3) by

(2.12) hi =
τ ′
i

τi
.

Then, defining the action of si (i = 0, 1, 2, 3) and π on the τ -functions by

(2.13) si(τj) = τj (i 6= j), si(τi) = fi
τi−1τi+1

τi
, π(τi) = τi+1,

we see that the fundamental relations (2.9) are preserved, which implies

that the Bäcklund transformations can be lifted to the level of τ -functions.

It should be remarked that we have from (2.7) and (2.13)

(2.14) y = − τ3s3(τ3)

τ1s1(τ1)
.

By (2.13), the Bäcklund transformations (2.8) lead to a set of bilinear

equations for τ -functions,

τ0s0s1(τ1) = s0(τ0)s1(τ1) + α0τ2τ3,

τ1s1s0(τ0) = s0(τ0)s1(τ1) − α1τ2τ3,

τ1s1s2(τ2) = s1(τ1)s2(τ2) + α1τ3τ0,

τ2s2s1(τ1) = s1(τ1)s2(τ2) − α2τ3τ0,

τ2s2s3(τ3) = s2(τ2)s3(τ3) + α2τ0τ1,

τ3s3s2(τ2) = s2(τ2)s3(τ3) − α3τ0τ1,

τ3s3s0(τ0) = s3(τ3)s0(τ0) + α3τ1τ2,

τ0s0s3(τ3) = s3(τ3)s0(τ0) − α0τ1τ2.

(2.15)
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Let us define the translation operators Ti (i = 0, 1, 2, 3) by

(2.16) T1 = πs3s2s1, T2 = s1πs3s2, T3 = s2s1πs3, T0 = s3s2s1π,

which commute with each other and satisfy T1T2T3T0 = 1. These operators

act on parameters αi as

(2.17) Ti(αi−1) = αi−1 + 1, Ti(αi) = αi − 1, Ti(αj) = αj (j 6= i− 1, i),

and generate the weight lattice of A
(1)
3 . In terms of Ti, τ -functions in (2.15)

are expressed as

τ1 = T1(τ0), τ2 = T1T2(τ0), τ3 = T−1
0 (τ0),

s0(τ0) = T−1
0 T1(τ0), s1(τ1) = T2(τ0),

s2(τ2) = T1T3(τ0), s3(τ3) = T−1
3 (τ0),

s0s1(τ1) = T1T2T
−1
0 (τ0), s1s0(τ0) = T2T

−1
0 (τ0),(2.18)

s1s2(τ2) = T2T3(τ0), s2s1(τ1) = T3(τ0),

s2s3(τ3) = T−1
2 (τ0), s3s2(τ2) = T1T0(τ0),

s3s0(τ0) = T1T
−1
3 (τ0), s0s3(τ3) = T1T

−1
3 T−1

0 (τ0).

Furthermore, we can derive bilinear equations of Toda type.

Proposition 2.1. We have

T1(τ0)T
−1
1 (τ0) =

1√
t

( 1

2
D2

T +
3α1 + 2α2 + α3

4
t
)
τ0 · τ0,

T2(τ0)T
−1
2 (τ0) =

1√
t

( 1

2
D2

T − α1 − 2α2 − α3

4
t
)
τ0 · τ0,

T3(τ0)T
−1
3 (τ0) =

1√
t

( 1

2
D2

T − α1 + 2α2 − α3

4
t
)
τ0 · τ0,

T0(τ0)T
−1
0 (τ0) =

1√
t

( 1

2
D2

T − α1 + 2α2 + 3α3

4
t
)
τ0 · τ0,

(2.19)

where DT is the Hirota’s differential operator defined by

(2.20) Dm
T f · g =

( d

dT
− d

dT ′

)m
f(T )g(T ′)

∣∣∣
T=T ′

,

and d
dT = t d

dt .
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Proof. Using (2.8), (2.13) and (2.16), we have

(2.21) T1(τ0)T
−1
1 (τ0) = [f1f2f3 + (α1 + α2)f1 + α1f3]τ

2
0 .

Noticing that

(2.22) h′
0 =

√
t
(
f1f2f3 +

α1 + 2α2 − α3

4
f1 +

α1 − 2α2 − α1

4
f3

)
,

and f1 + f3 =
√

t, we get the first equation in (2.19). The other equations
are obtained in similar way.

Remark. Bilinear equations (2.15) and (2.19) are overdetermined sys-
tems when they are regarded as equations to determine the τ -functions.
However, by construction, the consistency of these equations is guaranteed.

2.3. τ-cocycles

For simplicity, we introduce a notation,

(2.23) τk,l,m,n = T k
1 T l

2T
m
3 T n

0 (τ0).

For small k, l,m, n, we observe that τk,l,m,n are factorized as

(2.24) τk,l,m,n = φk,l,m,n τ0

( τ1

τ0

)k( τ2

τ1

)l( τ3

τ2

)m( τ0

τ3

)n
,

where φk,l,m,n are some functions of fi and αi. Conversely, if we define

φk,l,m,n by (2.24), it is shown that φk,l,m,n’s are polynomials in fi and αi

for any k, l,m, n ∈ Z [21]. The functions φk,l,m,n are called the τ -cocycles.

It is easy to see from (2.14), (2.18), (2.23) and (2.24) that we have

(2.25) T k
1 T l

2T
m
3 T n

0 (y) = − φk,l,m,n−1φk,l,m−1,n

φk+1,l,m,nφk,l+1,m,n
, for k, l,m, n ∈ Z.

Moreover, it follows from (2.13), (2.16), (2.23) and (2.24) that φk,l,m,n are
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determined by the recurrence relations,

(2.26)

φk+1,l,m,n

= T1(φk,l,m,n)[f2f3f0 − (α3 + α0)f0 − α0f2]
k−l(f3f0 − α0)

l−mfm−n
0 ,

φk,l+1,m,n

= T2(φk,l,m,n)[f3f0f1 − (α0 + α1)f1 − α1f3]
l−m(f0f1 − α1)

m−nf1+n−k
1 ,

φk,l,m+1,n

= T3(φk,l,m,n)[f0f1f2 − (α1 + α2)f2 − α2f0]
m−n(f1f2 − α2)

1+n−kfk−l
2 ,

φk,l,m,n+1

= T0(φk,l,m,n)[f1f2f3 − (α2 + α3)f3 − α3f1]
1+n−k(f2f3 − α3)

k−lf l−m
3 ,

with φ0,0,0,0 = 1.

It is possible to write down the bilinear equations for φk,l,m,n. From

(2.18), (2.23) and (2.24), bilinear Bäcklund transformations (2.15) yield

φk,l,m,nφk+1,l+1,m,n−1

= φk+1,l,m,n−1φk,l+1,m,n + (α0 − n + k)φk+1,l+1,m,nφk,l,m,n−1,

φk+1,l,m,nφk,l+1,m,n−1

= φk+1,l,m,n−1φk,l+1,m,n − (α1 − k + l)φk+1,l+1,m,nφk,l,m,n−1,

φk+1,l,m,nφk,l+1,m+1,n

= φk,l+1,m,nφk+1,l,m+1,n + (α1 − k + l)φk,l,m,n−1φk,l,m,n,

φk+1,l+1,m,nφk,l,m+1,n

= φk,l+1,m,nφk+1,l,m+1,n − (α2 − l + m)φk,l,m,n−1φk,l,m,n,

φk+1,l+1,m,nφk,l−1,m,n

= φk+1,l,m+1,nφk,l,m−1,n + (α2 − l + m)φk,l,m,nφk+1,l,m,n,

φk,l,m,n−1φk+1,l,m,n+1

= φk+1,l,m+1,nφk,l,m−1,n − (α3 − m + n)φk,l,m,nφk+1,l,m,n,

φk,l,m,n−1φk+1,l,m−1,n

= φk,l,m−1,nφk+1,l,m,n−1 + (α3 − m + n)φk+1,l,m,nφk+1,l+1,m,n,

φk,l,m,nφk+1,l,m−1,n−1

= φk,l,m−1,nφk+1,l,m,n−1 − (α0 − n + k)φk+1,l,m,nφk+1,l+1,m,n.

(2.27)
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Similarly, the last two equations in (2.19) are lead to

(2.28)

φk,l,m+1,nφk,l,m−1,n

=
1√
t

(
1
2 D2

T + ωk,l,m,n − α1+2α2−α3−k−l+3m−n
4 t

)
φk,l,m,n · φk,l,m,n,

φk,l,m,n+1φk,l,m,n−1

=
1√
t

(
1
2 D2

T + ωk,l,m,n − α1+2α2+3α3−k−l−m+3n
4 t

)
φk,l,m,n · φk,l,m,n,

with

ωk,l,m,n = (log τ0)
′′ + k

(
log

τ1

τ0

)′′

+ l
(
log

τ2

τ1

)′′

(2.29)

+ m
(
log

τ3

τ2

)′′

+ n
(
log

τ0

τ3

)′′

.

§3. Construction of rational solutions

In this section, we construct the rational solutions of PV by using the

results in the previous section.

It is obvious that the symmetric form of PV (2.6) with (2.4) has a

solution,

(3.1) (α0, α1, α2, α3) =
( 1

2
− s, s,

1

2
− s, s

)
, fi =

√
t

2
for i = 0, 1, 2, 3,

which is on the fixed points with respect to the transformation π2 and is

equivalent to the following solution of PV,

(3.2) y = −1, κ∞ = s, κ0 = s, θ = −1.

This is the unique rational solution in the fundamental region of the affine

Weyl group W (A
(1)
3 ) in the parameter space, except for the special cases of

transcendental classical solutions [20]. Applying Bäcklund transformations

to the seed solution (3.1), we obtain the family of rational solutions of PV.

Note that we have

(3.3) T l
2T

l
0(α0, α1, α2, α3) =

( 1

2
− s̃, s̃,

1

2
− s̃, s̃

)
, s̃ = s + l, l ∈ Z,

under the specialization (3.1). Comparing (3.3) with (3.1), we see that the

effect of T2 is absorbed by that of T−1
0 and shift of the parameter s. Then,
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we do not need to consider the Bäcklund transformation T2 for constructing

the family of rational solutions of PV. Taking the initial condition (3.1)

into account, we consider the bilinear Bäcklund transformations in terms

of the τ -cocycles (2.27). Denoting φ0,l,m,n = φl,m,n in view of the relation

T1T2T3T0 = 1, it is easy to derive the following.

Lemma 3.1. Under the specialization (3.1), bilinear Bäcklund trans-

formations (2.27) are reduced to

φ0,m,nφ0,m−1,n−2

= φ−1,m−1,n−2φ1,m,n + (1/2 − s − n)φ0,m−1,n−1φ0,m,n−1,

φ−1,m−1,n−1φ1,m,n−1

= φ−1,m−1,n−2φ1,m,n − sφ0,m−1,n−1φ0,m,n−1,

φ−1,m−1,n−1φ1,m+1,n

= φ1,m,nφ−1,m,n−1 + sφ0,m,n−1φ0,m,n,

φ0,m−1,n−1φ0,m+1,n

= φ1,m,nφ−1,m,n−1 − (1/2 − s + m)φ0,m,n−1φ0,m,n,

φ0,m−1,n−1φ−1,m,n

= φ−1,m,n−1φ0,m−1,n + (1/2 − s + m)φ0,m,nφ−1,m−1,n−1,

φ0,m,n−1φ−1,m−1,n

= φ−1,m,n−1φ0,m−1,n − (s − m + n)φ0,m,nφ−1,m−1,n−1,

φ0,m,n−1φ−1,m−2,n−1

= φ0,m−1,nφ−1,m−1,n−2 + (s − m + n)φ−1,m−1,n−1φ0,m−1,n−1,

φ0,m,nφ−1,m−2,n−2

= φ0,m−1,nφ−1,m−1,n−2 − (1/2 − s − n)φ−1,m−1,n−1φ0,m−1,n−1.

(3.4)

Moreover, from (2.25), the function

(3.5) y = − φ0,m,n−1φ0,m−1,n

φ−1,m−1,n−1φ1,m,n
,

solves PV (1.1) with parameters

(3.6) κ∞ = s, κ0 = s − m + n, θ = m + n − 1.

From the recurrence relations (2.26), we observe that φl,m,n for small

l,m, n are expressed as

(3.7) φl,m,n =
( √

t

2

)(m−n−l−1)(m−n−l)/2
Ul,m,n,
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where Ul,m,n are some polynomials in t and s. Therefore, we next rewrite

(3.4) in terms of U . The polynomials Ul,m,n have symmetry described by

the following lemma.

Lemma 3.2. The polynomials Ul,m,n defined by (3.7) satisfy

(3.8) U1,m,n(t, s) = U0,m,n−1(t, s + 1), U−1,m,n(t, s) = U0,m,n+1(t, s − 1).

Proof. Lemma 3.2 is proved by considering the Toda type equation
for τ -cocycles. Under the specialization (3.1), the Hamiltonians and τ -
functions are calculated as

(3.9) h0 = h2 =
t2

16
+ s2, h1 = h3 =

t2

16
+

( 1

2
− s

)2
,

and

(3.10) τ0 = τ2 = ts
2
exp

( t2

32

)
, τ1 = τ3 = t(1/2−s)2 exp

( t2

32

)
,

up to the multiplication by some constants, respectively. Then, Toda type
bilinear equations (2.28) yield

φl,m+1,nφl,m−1,n

=
1√
t

( 1

2
D2

T +
t2

8
− −2s + 1 − l + 3m − n

4
t
)
φl,m,n · φl,m,n,

φl,m,n+1φl,m,n−1

=
1√
t

( 1

2
D2

T +
t2

8
− 2s + 1 − l − m + 3n

4
t
)
φl,m,n · φl,m,n.

(3.11)

Substituting (3.7) into (3.11), we obtain Toda type bilinear equations to be
satisfied by Um,n = U0,m,n(t, s)

Um+1,nUm−1,n = 2t

[( d2Um,n

dt2

)
Um,n −

( dUm,n

dt

)2
]

+ 2
dUm,n

dt
Um,n +

( t

4
− −2s + 1 + 3m − n

2

)
U2

m,n,

Um,n+1Um,n−1 = 2t

[( d2Um,n

dt2

)
Um,n −

( dUm,n

dt

)2
]

+ 2
dUm,n

dt
Um,n +

( t

4
− 2s + 1 − m + 3n

2

)
U2

m,n,

(3.12)



RATIONAL SOLUTIONS OF PAINLEVÉ V EQUATION 13

with initial conditions

(3.13) U−1,−1 = U−1,0 = U0,−1 = U0,0 = 1.

The functions Um,n = Um,n(t, s) are uniquely determined by Toda equations
(3.12) from the initial conditions (3.13) for any m,n ∈ Z. Moreover, we
see that U±1,m,n(t, s) satisfy the same Toda equations as U0,m,n∓1(t, s ±
1), respectively, by the similar calculation. Since the initial conditions for
U1,m,n and U−1,m,n are given by

(3.14)
U1,−1,0 = U1,0,0 = U1,−1,1 = U1,0,1 = 1,

U−1,−1,−2 = U−1,−1,−1 = U−1,0,−2 = U−1,0,−1 = 1,

the lemma is proved.

From Lemma 3.2, bilinear Bäcklund transformations (3.4) are rewritten

in terms of U .

Proposition 3.3. Let Um,n = Um,n(t, s) (m,n ∈ Z) be polynomials

which satisfy the bilinear equations,

4Um,n+1Um−1,n−1 = tU−
m−1,nU+

m,n − 2(2s + 2n + 1)Um−1,nUm,n,

4U−
m−1,n+1U

+
m,n−1 = tU−

m−1,nU+
m,n − 4sUm−1,nUm,n,

4U−
m−1,nU+

m+1,n−1 = tU+
m,n−1U

−
m,n + 4sUm,n−1Um,n,

4Um−1,n−1Um+1,n = tU+
m,n−1U

−
m,n + 2(2s − 2m − 1)Um,n−1Um,n,

4Um−1,n−1U
−
m,n+1 = tU−

m,nUm−1,n − 2(2s − 2m − 1)Um,nU−
m−1,n,

4Um,n−1U
−
m−1,n+1 = tU−

m,nUm−1,n − 4(s − m + n)Um,nU−
m−1,n,

4Um+1,n−1U
−
m−1,n = tUm,nU−

m,n−1 + 4(s − m + n − 1)U−
m,nUm,n−1,

4Um+1,nU−
m−1,n−1 = tUm,nU−

m,n−1 + 2(2s + 2n − 1)U−
m,nUm,n−1,

(3.15)

with

(3.16) U−1,−1 = U−1,0 = U0,−1 = U0,0 = 1,

where we denote U±
m,n = Um,n(t, s ± 1). Then,

(3.17) y = − Um,n−1(t, s)Um−1,n(t, s)

Um−1,n(t, s − 1)Um,n−1(t, s + 1)
,

gives the rational solutions of PV (1.1) with parameters

(3.18) κ∞ = s, κ0 = s − m + n, θ = m + n − 1.
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§4. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.

Definition 2. Let p
(r)
k = p

(r)
k (x) and q

(r)
k = q

(r)
k (x) be polynomials

defined by

∞∑

k=0

p
(r)
k ηk = (1 − η)−r exp

(
− xη

1 − η

)
, p

(r)
k = 0 for k < 0,(4.1)

q
(r)
k (x) = p

(r)
k (−x),(4.2)

respectively. For m,n ∈ Z≥0, we define a family of polynomials R
(r)
m,n =

R
(r)
m,n(x) by

R(r)
m,n(x) =(4.3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q
(r)
1 q

(r)
0 · · · q

(r)
−m+2 q

(r)
−m+1 · · · q

(r)
−m−n+3 q

(r)
−m−n+2

q
(r)
3 q

(r)
2 · · · q

(r)
−m+4 q

(r)
−m+3 · · · q

(r)
−m−n+5 q

(r)
−m−n+4

...
...

. . .
...

...
. . .

...
...

q
(r)
2m−1 q

(r)
2m−2 · · · q

(r)
m q

(r)
m−1 · · · q

(r)
m−n+1 q

(r)
m−n

p
(r)
n−m p

(r)
n−m+1 · · · p

(r)
n−1 p

(r)
n · · · p

(r)
2n−2 p

(r)
2n−1

...
...

. . .
...

...
. . .

...
...

p
(r)
−n−m+4 p

(r)
−n−m+5 · · · p

(r)
−n+3 p

(r)
−n+4 · · · p

(r)
2 p

(r)
3

p
(r)
−n−m+2 p

(r)
−n−m+3 · · · p

(r)
−n+1 p

(r)
−n+2 · · · p

(r)
0 p

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For m,n ∈ Z<0, we define R
(r)
m,n through

(4.4) R(r)
m,n = (−1)m(m+1)/2R

(r)
−m−1,n, R(r)

m,n = (−1)n(n+1)/2R
(r)
m,−n−1.

Remark. The polynomials pk and qk (k ≥ 0) are essentially the La-

guerre polynomials, namely, p
(r)
k (x) = L

(r−1)
k (x). Moreover, R

(r)
m,n is related

to Sm,n in Theorem 1.1 as

(4.5) R(r)
m,n(x) = Sm,n(t, s), x =

t

2
, r = 2s − m + n.
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Proposition 4.1. For m,n ∈ Z, R
(r)
m,n satisfy the following bilinear

equations.

−(2n + 1)R
(r+1)
m,n+1R

(r)
m−1,n−1

= xR
(r−1)
m−1,nR(r+2)

m,n − (r + m + n + 1)R
(r+1)
m−1,nR(r)

m,n,

−(2n + 1)R
(r)
m−1,n+1R

(r+1)
m,n−1

= xR
(r−1)
m−1,nR(r+2)

m,n − (r + m − n)R
(r+1)
m−1,nR(r)

m,n,

(2m + 1)R
(r−1)
m−1,nR

(r)
m+1,n−1

= xR
(r+1)
m,n−1R

(r−2)
m,n + (r + m − n)R

(r−1)
m,n−1R

(r)
m,n,

(2m + 1)R
(r)
m−1,n−1R

(r−1)
m+1,n

= xR
(r+1)
m,n−1R

(r−2)
m,n + (r − m − n − 1)R

(r−1)
m,n−1R

(r)
m,n,

−(2n + 1)R
(r)
m−1,n−1R

(r−1)
m,n+1

= xR(r−2)
m,n R

(r+1)
m−1,n − (r − m − n − 1)R(r)

m,nR
(r−1)
m−1,n,

−(2n + 1)R
(r−1)
m,n−1R

(r)
m−1,n+1

= xR(r−2)
m,n R

(r+1)
m−1,n − (r − m + n)R(r)

m,nR
(r−1)
m−1,n,

(2m + 1)R
(r−2)
m+1,n−1R

(r−1)
m−1,n

= xR(r)
m,nR

(r−3)
m,n−1 + (r − m + n − 2)R(r−2)

m,n R
(r−1)
m,n−1,

(2m + 1)R
(r−1)
m+1,nR

(r−2)
m−1,n−1

= xR(r)
m,nR

(r−3)
m,n−1 + (r + m + n − 1)R(r−2)

m,n R
(r−1)
m,n−1.

(4.6)

Comparing (4.6) with (3.15), we obtain an explicit formula for Um,n =

Um,n(t, s) in Proposition 3.3.

Proposition 4.2. We have

(4.7) Um,n(t, s) = cmdnSm,n(t, s), m, n ∈ Z,

where cm and dn are constants determined by

cm+1cm−1 =
(
m +

1

2

)
c2
m, c−1 = c0 = 1,

dn+1dn−1 = −
(
n +

1

2

)
d2

n, d−1 = d0 = 1.
(4.8)
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Proof. Putting

(4.9) Um,n(t, s) = cmdnR(r)
m,n(x),

with

(4.10) x =
t

2
, r = 2s − m + n,

we find that the bilinear relations (4.6) become (3.15). Taking (4.5) into
account, we obtain Proposition 4.2.

Applying s1 to the solutions (1.8) with (1.9), we get the solutions (1.8)

with (1.10). Then, the first half of Theorem 1.1 is a direct consequence of

Propositions 3.3 and 4.2. It is easy to find that the latter half of Theorem 1.1

is obtained by applying πs1 to the solutions (1.8) with (1.9). Therefore, now

the proof of Theorem 1.1 is reduced to that of Proposition 4.1.

It is possible to reduce the number of bilinear equations to be proved

in (4.6) by the following symmetry of R
(r)
m,n(x).

Lemma 4.3. We have the relations for m,n ∈ Z≥0

R(r)
n,m(−x) = R(r)

m,n(x),(4.11)

R(−r)
n,m (x) = (−1)m(m+1)/2+n(n+1)/2R(r)

m,n(x).(4.12)

Proof. The first relation (4.11) is easily obtained from (4.3). To verify

the second relation (4.12), we introduce polynomials q̄
(r)
k = q̄

(r)
k (x) by

(4.13)
∞∑

k=0

q̄
(r)
k ηk = (1 + η)r exp

( xη

1 + η

)
, q̄

(r)
k = 0 for k < 0.

Comparing the generating function for qk with that for q̄k, we see that each

q̄
(r)
k (x) is a linear combination of q

(r)
j (x), j = k, k − 2, k − 4, . . . . Therefore
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we can express R
(r)
m,n for m,n ∈ Z≥0 in terms of pk and q̄k as

R(r)
m,n(x) =(4.14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̄
(r)
1 q̄

(r)
0 · · · q̄

(r)
−m+2 q̄

(r)
−m+1 · · · q̄

(r)
−m−n+3 q̄

(r)
−m−n+2

q̄
(r)
3 q̄

(r)
2 · · · q̄

(r)
−m+4 q̄

(r)
−m+3 · · · q̄

(r)
−m−n+5 q̄

(r)
−m−n+4

...
...

. . .
...

...
. . .

...
...

q̄
(r)
2m−1 q̄

(r)
2m−2 · · · q̄

(r)
m q̄

(r)
m−1 · · · q̄

(r)
m−n+1 q̄

(r)
m−n

p
(r)
n−m p

(r)
n−m+1 · · · p

(r)
n−1 p

(r)
n · · · p

(r)
2n−2 p

(r)
2n−1

...
...

. . .
...

...
. . .

...
...

p
(r)
−n−m+4 p

(r)
−n−m+5 · · · p

(r)
−n+3 p

(r)
−n+4 · · · p

(r)
2 p

(r)
3

p
(r)
−n−m+2 p

(r)
−n−m+3 · · · p

(r)
−n+1 p

(r)
−n+2 · · · p

(r)
0 p

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Noticing that q̄k and pk are related as

(4.15) q̄
(r)
k (x) = (−1)kp

(−r)
k (x),

we obtain the relation (4.12).

From the symmetries of R
(r)
m,n(x) described by (4.4) and Lemma 4.3, it

is sufficient to prove the first two equations in (4.6) for m,n ∈ Z≥0, which

are equivalent to

R
(r)
m−1,n+1R

(r+1)
m,n−1 − R

(r+1)
m,n+1R

(r)
m−1,n−1 − R

(r+1)
m−1,nR(r)

m,n = 0,(4.16)

−(2n + 1)R
(r)
m−1,n+1R

(r+1)
m,n−1

= xR
(r−1)
m−1,nR(r+2)

m,n − (r + m − n)R
(r+1)
m−1,nR(r)

m,n.
(4.17)

In the following, we show that these bilinear equations are reduced to Ja-

cobi’s identity of determinants. Let D be an (m + n + 1) × (m + n + 1)

determinant and D
[ i1 i2 · · · ik
j1 j2 · · · jk

]
the minor which are obtained by delet-

ing the rows with indices i1, . . . , ik and the columns with indices j1, . . . , jk.

Then we have Jacobi’s identity

D · D
[m m + 1

1 m + n + 1

]
(4.18)

= D
[m

1

]
D

[ m + 1
m + n + 1

]
− D

[m + 1
1

]
D

[ m
m + n + 1

]
.
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We first choose proper determinants as D (D itself should be expressed in

terms of R
(r)
m,n). Secondly, we construct such formulas that express the minor

determinants by R
(r)
m,n. Then, Jacobi’s identity yields bilinear equations for

R
(r)
m,n which are nothing but (4.16) and (4.17).

We have the following lemmas.

Lemma 4.4. We set

(4.19) D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−q
(r+1)
1 q

(r)
1 · · · q

(r)
−m−n+3 q

(r)
−m−n+2

−q
(r+1)
3 q

(r)
3 · · · q

(r)
−m−n+5 q

(r)
−m−n+4

...
...

. . .
...

...

−q
(r+1)
2m−1 q

(r)
2m−1 · · · q

(r)
m−n+1 q

(r)
m−n

p
(r+1)
n−m+1 p

(r)
n−m+2 · · · p

(r)
2n p

(r)
2n+1

...
...

. . .
...

...

p
(r+1)
−n−m+3 p

(r)
−n−m+4 · · · p

(r)
2 p

(r)
3

p
(r+1)
−n−m+1 p

(r)
−n−m+2 · · · p

(r)
0 p

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then, we have

D = (−1)mR
(r+1)
m,n+1, D

[m
1

]
= R

(r)
m−1,n+1,

D
[m + 1

1

]
= R(r)

m,n, D
[ m
m + n + 1

]
= (−1)m−1R

(r+1)
m−1,n,

D
[ m + 1
m + n + 1

]
= (−1)mR

(r+1)
m,n−1,

D
[m m + 1

1 m + n + 1

]
= R

(r)
m−1,n−1.

(4.20)

Lemma 4.5. We set

(4.21)

D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃
(r−m−n+2)
1 q

(r−m−n+1)
1 q

(r−m−n+2)
0 ··· q

(r)
−m−n+2

q̃
(r−m−n+2)
3 q

(r−m−n+1)
3 q

(r−m−n+2)
2 ··· q

(r)
−m−n+4

...
...

...
...

...

q̃
(r−m−n+2)
2m−1 q

(r−m−n+1)
2m−1 q

(r−m−n+2)
2m−2 ··· q

(r)
m−n

(−1)m+np̂
(r−m−n+2)
2n (−1)m+np

(r−m−n+1)
2n+1 (−1)m+n−1p

(r−m−n+2)
2n+1 ··· (−1)1p

(r)
2n+1

...
...

...
...

...

(−1)m+np̂
(r−m−n+2)
2 (−1)m+np

(r−m−n+1)
3 (−1)m+n−1p

(r−m−n+2)
3 ··· (−1)1p

(r)
3

(−1)m+np̂
(r−m−n+2)
0 (−1)m+np

(r−m−n+1)
1 (−1)m+n−1p

(r−m−n+2)
1 ··· (−1)1p

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where p̂
(r)
2k and q̃

(r)
2k−1 are defined by

(4.22) p̂
(r)
2k =

p
(r)
2k

2k + 1
, q̃

(r)
2k−1 =

q
(r)
2k−1

r + 2k − 2
.

Then, we have

D =
xm+n

n∏
j=0

(2j + 1)
m∏

k=1

(r − m − n + 2k)

R(r+2)
m,n ,

D
[m

1

]
= (−1)n+1R

(r)
m−1,n+1, D

[m + 1
1

]
= (−1)nR(r)

m,n,

D
[ m
m + n + 1

]
=

(−1)n+1xm+n−1

n∏
j=0

(2j + 1)
m−1∏
k=1

(r − m − n + 2k)

R
(r+1)
m−1,n,

D
[ m + 1
m + n + 1

]
=

(−1)nxm+n−1

n−1∏
j=0

(2j + 1)
m∏

k=1

(r − m − n + 2k)

R
(r+1)
m,n−1,

D
[m m + 1

1 m + n + 1

]
= R

(r−1)
m−1,n.

(4.23)

It is easy to see that the bilinear relations (4.16) and (4.17) follow

immediately from Jacobi’s identity (4.18) by using Lemmas 4.4 and 4.5,

respectively. We give the proof of Lemmas 4.4 and 4.5 in Appendix B.

This completes the proof of Proposition 4.1 and thus our main result The-

orem 1.1.

§5. Discussion

As we mentioned in Section 2.3, the τ -cocycles φk,l,m,n are polynomials

in αi and fi and admit a determinant expression in terms of a generalized

Jacobi-Trudi formula [21]. When specialized to the seed solution (3.1), we

obtain a determinant formula for φ0,0,m,n = φm,n, which are given as follows.

Proposition 5.1. Let g
(l)
k (k, l ∈ Z) be functions defined by

g
(2l)
2k =

(−1)k

ξk
L

(2s−1)
k (t/2), g

(2l)
2k+1 =

√
t

2

(−1)k

ξ†k+1

L
(2s†)
k (t/2),

g
(2l+1)
2k =

(−1)k

ξ†k
L

(2s†−1)
k (t/2), g

(2l+1)
2k+1 =

√
t

2

(−1)k

ξk+1
L

(2s)
k (t/2),

(5.1)
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with

(5.2) ξk = ξk(s) =

k∏

j=1

(
s +

j − 1

2

)
, ξ†k = ξk(s

†),

where L
(r)
k (x) are the Laguerre polynomials and s† = 1/2 − s. Then, φm,n

under the specialization (3.1) are given by

(5.3) φm,n = Nm,n det
(
g
(m+n+1−i)
λj−j+i

)m+n

i,j=1
,

where the partition λ and the normalization factor Nm,n are given by

(5.4)

λ =





(3m − n − 1, 3m − n − 4, . . . , 2n + 5, 2n + 2, 2n, 2n, . . . , 4, 4, 2, 2),

(m > n),

(3n − m, 3n − m − 3, . . . , 2m + 3, 2m, 2m, . . . , 4, 4, 2, 2),

(m ≤ n),

and

(5.5) Nm,n =





(−1)n(n+1)/2cmdn

n∏

k=1

ζ̂k

m∏

k=1

ζ†k

m−n−1∏

k=1

ζ̂†k, (m > n),

(−1)n(n+1)/2cmdn

n∏

k=1

ζ̂k

m∏

k=1

ζ†k

n−m∏

k=1

ζk, (m ≤ n),

with

(5.6) ζk =

k∏

j=1

(s + j − 1), ζ̂k =

k∏

j=1

(
s +

2j − 1

2

)
,

respectively.

This gives a different expression for the rational solutions discussed in

this paper. Studying the relationship between this formula and our result

might be an interesting problem.

Acknowledgements. The authors would like to thank Prof. S. Oka-
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Prof. M. Noumi, Prof. Y. Yamada and Prof. H. Watanabe for useful sug-
gestions and discussions.
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Appendix A. Determinant formula for the Umemura polynomi-

als

In [9], Noumi and Yamada gave a determinant formula of Jacobi-Trudi

type for the Umemura polynomials in terms of 2-reduced Schur functions.

In this appendix, we give a brief review on this determinant formula, and

show that it is recovered as a special case of our formula.

We normalize the polynomials Um,n in Section 3 as

(A.1) Um,n = 2m(m+1)/2+n(n+1)/2Tm,n.

Then we find that the functions Tn = T0,n(t, s) are monic polynomials

generated by the Toda equation

(A.2)

Tn+1Tn−1 = t

[( d2Tn

dt2

)
Tn −

( dTn

dt

)2
]

+
dTn

dt
Tn +

( t

8
− 2s + 1 + 3n

4

)
T 2

n ,

with initial conditions T−1 = T0 = 1. The polynomials Tn are called

Umemura polynomials. It is easy to see that we have

(A.3) T−1,n(t, s) = T0,n(t, s + 1/2).

Introducing T̂n(t, s) by T̂n(t, s) = T−n(t, s), we have the following proposi-

tion.

Proposition A.1. Let T̂n = T̂n(t, s) be a sequence of polynomials in

t and s defined through the Toda equation

T̂n+1T̂n−1 = t

[( d2T̂n

dt2

)
T̂n −

( dT̂n

dt

)2
]

+
dT̂n

dt
T̂n(A.4)

+

[
t

8
− 1

2

(
s +

1

2

)
+

3

4
n

]
T̂ 2

n ,

with initial conditions T̂0 = T̂1 = 1. Then, the rational function

(A.5) y = − T̂n+1(t, s)T̂n(t, s + 1/2)

T̂n+1(t, s + 1)T̂n(t, s − 1/2)
,

solves PV with the parameters

(A.6) κ∞ = s, κ0 = s − n, θ = −n − 1.
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The explicit formula for T̂n was given by Noumi and Yamada, which is

expressed in terms of the 2-reduced Schur functions.

Proposition A.2. Let Sn = Sn(t1, t2, . . . ) for n ≥ 0 be the Schur

function associated with a partition λ = (n, n − 1, . . . , 2, 1). Then, we have

(A.7) T̂n+1(t, s) = NnSn

with

(A.8)
Nn = 2−n(n+1)(2n − 1)!!(2n − 3)!! · · · 3!!1!!,

tj =
t

2
+

−2s + n + 1

j
.

It is easy to verify that Proposition A.2 is recovered by putting m = 0

for the solutions (1.8) with (1.9) in Theorem 1.1.

Appendix B. Proof of Lemmas 4.4 and 4.5

We first note that the following contiguity relations hold by definition,

(B.1) p
(r)
k − p

(r)
k−1 = p

(r−1)
k , q

(r)
k − q

(r)
k−1 = q

(r−1)
k ,

and

(B.2) (k + 1)p
(r)
k+1 = rp

(r+1)
k − xp

(r+2)
k , (k + 1)q

(r)
k+1 = rq

(r+1)
k + xq

(r+2)
k .

Let us prove Lemma 4.4. Noticing that p
(r)
1 = 1 and p

(r)
k = 0 for k < 0,

we see that R
(r)
m,n can be rewritten as

(B.3) R(r)
m,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q
(r)
1 q

(r)
0 · · · q

(r)
−m−n+3 q

(r)
−m−n+2 q

(r)
−m−n+1

q
(r)
3 q

(r)
2 · · · q

(r)
−m−n+5 q

(r)
−m−n+4 q

(r)
−m−n+3

...
...

. . .
...

...
...

q
(r)
2m−1 q

(r)
2m−2 · · · q

(r)
m−n+1 q

(r)
m−n q

(r)
m−n−1

p
(r)
n−m p

(r)
n−m+1 · · · p

(r)
2n−2 p

(r)
2n−1 p

(r)
2n

...
...

. . .
...

...
...

p
(r)
−n−m+4 p

(r)
−n−m+5 · · · p

(r)
2 p

(r)
3 p

(r)
4

p
(r)
−n−m+2 p

(r)
−n−m+3 · · · p

(r)
0 p

(r)
1 p

(r)
2

p
(r)
−n−m p

(r)
−n−m+1 · · · p

(r)
−2 p

(r)
−1 p

(r)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Subtracting the (j − 1)-th column from the j-th column of R
(r+1)
m,n for (j =

m + n,m + n − 1, . . . , 2) and using (B.1), we get

(B.4) R(r+1)
m,n = (−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−q
(r+1)
1 q

(r)
1 · · · q

(r)
−m−n+4 q

(r)
−m−n+3

−q
(r+1)
3 q

(r)
3 · · · q

(r)
−m−n+6 q

(r)
−m−n+5

...
...

. . .
...

...

−q
(r+1)
2m−1 q

(r)
2m−1 · · · q

(r)
m−n+2 q

(r)
m−n+1

p
(r+1)
n−m p

(r)
n−m+1 · · · p

(r)
2n−2 p

(r)
2n−1

...
...

. . .
...

...

p
(r+1)
−n−m+4 p

(r)
−n−m+5 · · · p

(r)
2 p

(r)
3

p
(r+1)
−n−m+2 p

(r)
−n−m+3 · · · p

(r)
0 p

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From (B.3) and (B.4), we obtain Lemma 4.4.

We next prove Lemma 4.5. Subtracting the (i +1)-th column from the

i-th column of R
(r)
m,n for (i = 1, 2, . . . , j, j = m + n − 1,m + n − 2, . . . , 1)

and using (B.1), we get

(B.5)

R(r)
m,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q
(r−m−n+1)
1 q

(r−m−n+2)
0 ··· q

(r−1)
−m−n+3 q

(r)
−m−n+2

q
(r−m−n+1)
3 q

(r−m−n+2)
2 ··· q

(r−1)
−m−n+5 q

(r)
−m−n+4

...
...

...
...

...

q
(r−m−n+1)
2m−1 q

(r−m−n+2)
2m−2 ··· q

(r−1)
m−n+1 q

(r)
m−n

(−1)m+n−1p
(r−m−n+1)
2n−1 (−1)m+n−2p

(r−m−n+2)
2n−1 ··· (−1)1p

(r−1)
2n−1 (−1)0p

(r)
2n−1

...
...

...
...

...

(−1)m+n−1p
(r−m−n+1)
3 (−1)m+n−2p

(r−m−n+2)
3 ··· (−1)1p

(r−1)
3 (−1)0p

(r)
3

(−1)m+n−1p
(r−m−n+1)
1 (−1)m+n−2p

(r−m−n+2)
1 ··· (−1)1p

(r−1)
1 (−1)0p

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Noticing that p
(r)
0 = 1 and p

(r)
k = 0 for k < 0, we see that R

(r)
m,n can be

rewritten as

(B.6) R(r)
m,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q
(r−m−n)
1 q

(r−m−n+1)
0 ··· q

(r−1)
−m−n+2 q

(r)
−m−n+1

q
(r−m−n)
3 q

(r−m−n+1)
2 ··· q

(r−1)
−m−n+4 q

(r)
−m−n+3

...
...

...
...

...

q
(r−m−n)
2m−1 q

(r−m−n+1)
2m−2 ··· q

(r−1)
m−n q

(r)
m−n−1

(−1)m+np
(r−m−n)
2n (−1)m+n−1p

(r−m−n+1)
2n ··· (−1)1p

(r−1)
2n (−1)0p

(r)
2n

...
...

...
...

...

(−1)m+np
(r−m−n)
2 (−1)m+n−1p

(r−m−n+1)
2 ··· (−1)1p

(r−1)
2 (−1)0p

(r)
2

(−1)m+np
(r−m−n)
0 (−1)m+n−1p

(r−m−n+1)
0 ··· (−1)1p

(r−1)
0 (−1)0p

(r)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We add the j-th column multiplied by (r−2+m+n−j)/x to the (j+1)-th

column of (B.6) for (j = m + n,m + n − 1, . . . , 1). Then using (B.1) and
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(B.2), we obtain

R(r)
m,n =

n∏

j=0

(2j + 1)

m∏

k=1

(r − m − n + 2k − 2)x−(m+n)(B.7)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃
(r−m−n)
1 q

(r−m−n−1)
1 ··· q

(r−3)
−m−n+3 q

(r−2)
−m−n+2

q̃
(r−m−n)
3 q

(r−m−n−1)
3 ··· q

(r−3)
−m−n+5 q

(r−2)
−m−n+4

...
...

...
...

...

q̃
(r−m−n)
2m−1 q

(r−m−n−1)
2m−1 ··· q

(r−3)
m−n+1 q

(r−2)
m−n

(−1)m+n p̂
(r−m−n)
2n (−1)m+np

(r−m−n−1)
2n+1 ··· (−1)2p

(r−3)
2n+1 (−1)1p

(r−2)
2n+1

...
...

...
...

...

(−1)m+n p̂
(r−m−n)
2 (−1)m+np

(r−m−n−1)
3 ··· (−1)2p

(r−3)
3 (−1)1p

(r−2)
3

(−1)m+n p̂
(r−m−n)
0 (−1)m+np

(r−m−n−1)
1 ··· (−1)2p

(r−3)
1 (−1)1p

(r−2)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Lemma 4.5 follows from (B.5), (B.6) and (B.7).
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