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TWISTOR SPACES AND

THE ADIABATIC LIMITS OF DIRAC OPERATORS

MASAYOSHI NAGASE

Abstract. We show that a (Spinq-style) twistor space admits a canonical Spin
structure. The adiabatic limits of η-invariants of the associated Dirac operator
and of an intrinsically twisted Dirac operator are then investigated.

Introduction

Let (M,gM ) be an n-dimensional oriented Riemannian manifold

equipped with a Spinq structure introduced in [12]: Spinq(n) = Spin(n)×Z2

Sp(1). Namely, the reduced structure bundle PSO(n) is assumed to have prin-

cipal Spinq(n)-, SO(3)-bundles PSpinq(n), PSO(3) together with a Spinq(n)-

equivariant bundle map

ξq = (ξq
0, ξ

q
1) : PSpinq(n) → PSO(n) × PSO(3).(0.1)

The concept came out from the idea of twisting Spin structure with Sp(1)

to fit it with almost quaternionic structure and it exists if and only if the

second Stiefel-Whitney class of PSO(n) is equal to the class of some PSO(3):

compare with the concept of Spinc structure. Using the canonical action of

Spinq(n) on the quotient Spinq(n)/Spinc(n) = Sp(1)/U(1) = CP 1, then we

get a CP 1-fibration

π : Z = PSpinq(n) ×can
Spinq(n)

Spinc(n)
→M,(0.2)

whose total space Z is called a (Spinq-style) twistor space ([14]). Let us

fix a connection αSO(3) on PSO(3) and take the Levi-Civita connection αM

on PSO(n). By pulling back the product connection αM ⊕ αSO(3) by ξq, we

obtain a connection αM,q on PSpinq(n), which induces a splitting of the tan-

gent bundle of Z into horizontal and vertical components, TZ = H ⊕ V.

Received October 29, 1999.
Revised August 17, 2000.
1991 Mathematics Subject Classification: Primary 57R15, 81R25, 53C27.

53



54 M. NAGASE

The standard fibre CP 1 has the Fubini-Study metric ds2 (with holomor-

phic sectional curvature 1) and the canonical complex structure JCP 1
, from

which V inherits a hermitian complex line bundle structure (dsV , JV). Now

we denote by gV the underlying Riemannian metric of dsV and define a

metric gZ on Z by

gZ = π∗gM + gV , π∗gM = gZ |H.(0.3)

The reduced structure bundle PSO(n+2)(Z) of (Z, gZ) admits then a canon-

ical Spinc structure ([14, §1]):

ξc = (ξc
0, ξ

c
1) : PSpinc(n+2)(Z) → PSO(n+2)(Z) × PU(1)(Z),(0.4)

which is constructed as follows: Since the map PSpinq(n) → Z, px 7→ [px, [1]],

obviously has a structure of principal Spinc(n)-bundle, we denote PSpinq(n)

regarded as the total space of the bundle by PSpinc(n)(Z). This gives a Spinc

structure of π∗PSO(n), which is isomorphic by π to the reduced structure

bundle of (H, gZ |H),

ξc : PSpinc(n)(Z) → π∗PSO(n) × PH
U(1)(Z).(0.5)

On the other hand, the reduced structure bundle PV
SO(2)(Z) of (V, gV ) has

a canonical Spinc structure ([11, Example D.6])

ξc : PV
Spinc(2)(Z) → PV

SO(2) × PV
U(1)(Z).(0.6)

Here PV
U(1)(Z) is the set of unitary frames of (V, dsV , JV). We may regard

Spinc(n) and Spinc(2) as subgroups of Spinc(n+ 2) through the inclusions

R
n, R

2 ↪→ R
n+2 and define a group homomorphism mult : Spinc(n) ×

Spinc(2) → Spinc(n+ 2) by multiplication in Spinc(n+ 2). Then we set

PSpinc(n+2)(Z) =
(

PSpinc(n)(Z) × PV
Spinc(2)(Z)

)

×mult Spinc(n+ 2).(0.7)

Hence we have PU(1)(Z) = PH
U(1)(Z) ⊗ PV

U(1)(Z).

Now the first purpose of the paper is to show

Theorem 1. (Z, gZ) has a canonical Spin structure.

Here “ canonical ” means that it is a Spin structure

ξ : PSpin(n+2)(Z) → PSO(n+2)(Z)(0.8)
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which is uniquely determined (if it exists) by the condition that there is an

isomorphism

PSpinc(n+2)(Z) ∼= PSpin(n+2)(Z) ×can Spinc(n+ 2).(0.9)

Note that, in general, (0.5) and (0.6) cannot be reduced to Spin structures,

that is, nontrivial double covering principal bundles PSpin(n)(Z), PV
Spin(2)(Z)

of π∗PSO(n), P
V
SO(2)(Z) exist only locally. We will show, however, that

we can take such locally defined bundles so successfully that the bundle

(PSpin(n)(Z) × PV
Spin(2)(Z)) ×mult Spin(n+ 2) exists globally and gives ex-

actly a canonical Spin structure.

Next, let us take spinor bundles S, Sc associated to (0.8), (0.4). The

connection αZ induces a covariant derivative ∇S on S, which defines a

Dirac operator D on it. Further the product connection made of αZ and a

connection αU(1) on PU(1)(Z) ([14, §2]) induces a covariant derivative ∇Sc

on Sc, which defines a Dirac operatorDc on it. Here αU(1), which may not be

trivial, on PU(1)(Z) which is trivial is a tensor product connection made of

canonical ones αH
U(1) on PH

U(1)(Z) and αV
U(1) on PV

U(1)(Z), which are defined

as follows: First, PH
U(1)(Z) can be regarded as a subbundle of π∗PSO(3)

because of a reduction embedding PSpinc(n)(Z) ≡ PSpinq(n) ↪→ π∗PSpinq(n),

px 7→ ([px, [1]], px), and, moreover, U(1) = SO(2) is naturally reductive in

SO(3), i.e., there is a natural splitting so(3) = u(1)⊕m with Ad(U(1))m ⊂
m. Hence the u(1)-component of π∗αSO(3) restricted to PH

U(1)(Z) gives its

connection αH
U(1): see §3. Second, let us denote the covariant derivative on

TZ associated to αZ by ∇Z , which composed by the orthogonal projection

PV : TZ → V gives a covariant derivative ∇V = PV∇Z on V. The associated

Ehresmann connection αV on PV
SO(2)(Z) is then unitary with respect to

(dsV , JV) ([14, Lemma 2.1(4)]) so that it induces a connection αV
U(1) on

PV
U(1)(Z).

Now, let us replace the metric gZ by

gZ
ε = ε−1π∗gM + gV , ε > 0(0.10)

and define Dirac operators Dε, D
c
ε accordingly. We restrict ourselves to

the case n is odd, that is, the case where their indices vanish, and want

to investigate the limiting behavior of the η-invariants η(Dε), η(D
c
ε) when

ε→ 0. The operation of blowing up the metric in the base space direction is

called passing to the adiabatic limit. The idea of extracting some intrinsic
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values by taking the adiabatic limit is originally due to Witten [18], in

which he found that, for a determinant line bundle associated to a family

of certain invertible Dirac operators, the adiabatic limit of its η-invariant

is related to the so-called global anomaly (or the holonomy). His result

was given rigorous treatment in [6, 8] and further extended by Bismut-

Cheeger [5] and Dai [9], on which our investigation here depends. The second

result of the paper is now stated as follows: Let us denote by ΩM , ΩV the

curvature 2-forms of αM , αV and define the Â-genus forms Â(ΩM ), Â(ΩV)

by Â(ΩM ) = det1/2
(

(
√
−1ΩM/4π)/ sinh(

√
−1ΩM/4π)

)

etc. Further, let us

denote the curvature 2-forms of αH
U(1), α

V
U(1) by ΩH, ΩV which takes values

in u(1) in contrast to the above ΩV , and define the first Chern forms c1(Ω
H),

c1(Ω
V) by c1(Ω

H) = tr
(√

−1ΩH/2π
)

=
√
−1ΩH/2π etc. Then we have

Theorem 2. The (adiabatic) limits limε→0 η(Dε) (resp. limε→0 η(D
c
ε))

exist and there are odd degree forms η̃ (resp. η̃c) on M such that

lim
ε→0

η(D(c)
ε ) = 2

∫

M
Â(ΩM ) ∧ η̃(c),(0.11)

dη̃ =

∫

Z/M
Â(ΩV),(0.12)

dη̃c =

∫

Z/M
Â(ΩV) ∧ exp

(

1

2
c1(Ω

V) +
1

2
c1(Ω

H)

)

,(0.13)

where
∫

Z/M is the integral over the fibres.

This is certainly an extension of the comment offered in [14, Remark

5.2(2)], in which the limit of the reduced η-invariant η̄(Dc
ε) (mod Z) was

investigated.

§1. Some intrinsic bundles

First let us briefly recall relevant facts on Spin, Spinc, Spinq. Spin(n)

is a covering group of SO(n) together with a short exact sequence

1 → Z2 → Spin(n)
ξ→ SO(n) → 1.(1.1)

If n ≥ 3 it is the universal one because π1(SO(n)) = Z2. Notice that the

map (0.8) is equivariant to the homomorphism ξ with n replaced by n+ 2.
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Next, by twisting it with U(1), we get Spinc(n) = Spin(n)×Z2U(1), which

has a short exact sequence

1 → Z2 → Spinc(n)
ξc

→ SO(n) × U(1) → 1,(1.2)

where ξc([ϕ, z]) = (ξc
0([ϕ, z]), ξ

c
1([ϕ, z])) = (ξ(ϕ), z2). The maps (0.4)–(0.6)

are equivariant to the homomorphisms ξc with n replaced suitably. Further,

by twisting it with the quaternionic unitary (or symplectic) group Sp(1), we

obtain Spinq(n) = Spin(n)×Z2Sp(1) together with a short exact sequence

1 → Z2 → Spinq(n)
ξq

→ SO(n) × SO(3) → 1,(1.3)

where ξq([ϕ,λ]) = (ξq
0([ϕ,λ]), ξq

1([ϕ,λ])) = (ξ(ϕ),Ad(λ)). Here R
3 and the

Lie algebra sp(1) = Im H = {a1i + a2j + a3k | a` ∈ R} (i2 = j2 = k2 = −1,

ij = −ji = k), are naturally identified and the homomorphism Ad is defined

by SO(3) = SO(sp(1)) 3 Ad(λ) : a 7→ λaλ−1.

Now, let us take the standard representation of Sp(1)

rH : Sp(1) → (GLH(H) ↪→)GLC(C2) ≡ GLC(H),

rH(ξ + jη) =

(

ξ −η̄
η ξ̄

)

(1.4)

and define a locally defined vector bundle

H = PSpinq(n) ×rH
H →M.(1.5)

To explain it more explicitly, we will fix local trivializations PSpinq(n)|Ua
∼=

Ua × Spinq(n), px ↔ (x, f̃a(px)), over an open covering {Ua} of M and set

f̃ba(x) = f̃b(px)f̃a(px)−1, which form a family of transition functions. Take

a family {f̃1ba : Ua ∩ Ub → Sp(1)} (f̃1aa ≡ 1) with f̃ba = [f̃0ba, f̃1ba]. On

Ua ∩ Ub ∩ Uc(6= ∅), f̃1cbf̃1ba may differ in sign from f̃1ca. Note that such

ambiguity cannot be removed in general. (1.5) is now a “ vector bundle ”

associated to the family of, to say, pseudo-transition functions {f̃1ba}. It will

be obvious then that the associated projective bundle is globally defined and

coincides with (0.2),

π : Z = P (H) ≡ PSpinq(n) ×rH
P (H) →M.(1.6)

Let us consider next a locally defined tautological (or universal) line

bundle

UZ = {([f ], cf) ∈ π∗H} → P (H) = Z.(1.7)
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We will show that the tensor bundle UZ ⊗UZ is canonically isomorphic to

the relative canonical line bundle (or the family of canonical line bundles

along the fibres)

KZ → Z.(1.8)

Note that we have KZ |π−1(x) = ∧1,0((V, JV )∗|π−1(x)) ∼= ∧1,0(T ∗
C
CP 1)

naturally. Let us denote canonical local coordinates of P (H) = CP 1 on

W` = {[z0, z1] | z` 6= 0} by w` (= z1/z0 (` = 0), z0/z1 (` = 1)) and take

local cross-sections of UZ |π−1(x),

u` : W` →W` ×H(1.9)

defined by u`(w`) = (w0, (1, w0)) (` = 0), (w1, (w1, 1)) (` = 1). The following

short sequence is exact on each fibre π−1(x) ([16, (2.7)]):

0 → UZ → π∗H → UZ ⊗K∗
Z → 0,(1.10)

where the map π∗H → UZ ⊗K∗
Z is given by (w0, (α, β)) 7→ (w0, (−αw0 +

β)u0 ⊗ ∂/∂w0), (w1, (α, β)) 7→ (w1, (α − βw1)u1 ⊗ ∂/∂w1). Accordingly we

can identify π∗H ∼= UZ ⊕U⊥
Z
∼= UZ ⊕(UZ ⊗K∗

Z) on each fiber, which yields

global identifications UZ⊗UZ⊗K∗
Z
∼= ∧π∗H ∼= π∗∧H ∼= CZ (trivial). Hence

we have

Lemma 1.1. We have

KZ
∼= UZ ⊗ UZ ,(1.11)

whose isomorphism is given by dw0 ↔ u0⊗u0, dw1 ↔ −u1⊗u1.

§2. Proof of Theorem 1

First, let us show that the line bundle

LH = PH
U(1)(Z) ×can C = PSpinc(n)(Z) ×ξc

1
C(2.1)

is canonically isomorphic to KZ .

We begin with recalling transition functions of PSpinc(n)(Z)([14, (1.19)]).

The bundle Spinq(n) → Spinq(n)/Spinc(n) = CP 1 has a local cross-section

f0 = [1, ρ0] over W0 with

ρ0(w0) = ρ0([1 + jw0]) = (1 + jw0)/|1 + jw0|(2.2)
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and f1 = [1, ρ1] over W1 = jW0 with ρ1(w1) = ρ1([w1 + j]) = jρ0(j
−1[w1 +

j]) = (w1+j)/|w1+j|. Consider the local trivializations π−1(Ua) ∼= Ua×CP 1

of the bundle (0.2) which are induced from those of PSpinq(n) given in §1.

Denote by Ua` the open sets of Z corresponding to Ua ×W`(⊂ Ua × CP 1).

Then we obtain local trivializations PSpinc(n)(Z)|Ua`
∼= Ua ×W` × Spinc(n),

px ↔ (x,w`, f`(w`)
−1f̃a(px)) (PSpinc(n)(Z) ≡ PSpinq(n) 3 px over x ∈ M ,

w` = [f̃a(px)] ∈ W` ⊂ CP 1), and the associated transition functions over

Ua` ∩ Ub`′(3 zx = (x,w`) ∈ Ua ×W`) are

ψ(b`′)(a`)(x,w`) = f`′(f̃ba(x)f`(w`))
−1f̃ba(x)f`(w`).(2.3)

This implies that (2.1) has a family of transition functions

ξc
1(ψ(b`′)(a`)(x,w`)) = (ρ`′(f̃1ba(x)ρ`(w`))

−1f̃1ba(x)ρ`(w`))
2(2.4)

over Ua` ∩ Ub`′ .

On the other hand, if we trivialize UZ |Ua` using u`/|u`|, the associated

pseudo-transition functions over Ua` ∩ Ub`′ are certainly given by

ψ1(b`′)(a`)(x,w`) = ρ`′(f̃1ba(x)ρ`(w`))
−1f̃1ba(x)ρ`(w`).(2.5)

Actually, we have u`(w`)/|u`(w`)| = ρ`(w`) ∈ H = H and the two

cross-sections ρ`(zx)t, ρ`′(zx)t′ of UZ over Ua`, Ub`′ are equivalent to each

other if f̃1ba(x)ρ`(zx)t = ρ`′(zx)t′ holds on Ua` ∩ Ub`′ . Thus we have t′ =

ρ`′(zx)−1f̃1ba(x)ρ`(zx)t = ψ1(b`′)(a`)(x,w`)t.

Now (2.4), (2.5) and Lemma 1.1 imply

Lemma 2.1. We have

LH ∼= UZ ⊗ UZ
∼= KZ ,(2.6)

whose isomorphisms are given by

[px, t] = [(x,w`, 1), t] ↔ t

1 + |w`|2
u`⊗u` ↔

±t
1 + |w`|2

dw`(2.7)

over Ua`.

On the other hand, the line bundle

LV = PV
U(1)(Z) ×can C(2.8)
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is obviously equal to K∗
Z so that

L = PU(1)(Z) ×can C = LH⊗ LV(2.9)

is certainly trivial. Thus we have w2(PSO(n+2)(Z)) ≡ c1(L) = 0, which im-

plies that (Z, gZ) admits a Spin structure. In the following, let us construct

a canonical one concretely.

Recall that we have fixed a family of pseudo-transition functions f̃1ba of

(1.5), which defines the locally defined bundles UZ , U∗
Z and further defines

the reduced structure bundles PU(1)(UZ), PU(1)(U
∗
Z): see (2.5). Here we

will consider a family of their counterparts f̃0ba, i.e., f̃ba = [f̃0ba, f̃1ba]. It

forms a family of pseudo-transition functions, which defines a locally defined

Spin(n)-bundle PSpin(n) over M . By pulling it back, we obtain a locally

defined Spin(n)-bundle PSpin(n) over Z

PSpin(n)(Z) = π∗PSpin(n).(2.10)

It will be clear now that we can identify

PSpinc(n)(Z) = PSpin(n)(Z) ×Z2PU(1)(UZ).(2.11)

Refer to (2.3) and (2.5).

Next, let us consider pseudo-transition functions ψ̄1(b`′)(a`), the conju-

gates of ψ1(b`′)(a`) given in (2.5). These give a family of pseudo-transition

functions

ψ̄R

1(b`′)(a`) = Re ψ̄1(b`′)(a`) + Im ψ̄1(b`′)(a`) ·e′′1◦e′′2
: Ua` ∩ Ub`′ → Spin(2),

(2.12)

where {e′′1 , e′′2} are the standard basis of R
2. It defines now a locally defined

Spin(2)-bundle PV
Spin(2)(Z). Recall that we have

PV
Spinc(2)(Z) = PU(1)(K

∗
Z) ×Ξc Spinc(2).(2.13)

Here Ξc is a homomorphism U(1) → Spinc(2) given by e
√
−1θ 7→ [cos(θ/2)

+ sin(θ/2)e′′1◦e
′′
2 , e

√
−1θ/2] ([11, Example D.6] or [14, (1.13)-(1.14)]) and

PU(1)(K
∗
Z) is the reduced structure bundle of K∗

Z . It will be thus appar-

ent that we can identify as follows:

PV
Spinc(2)(Z) = PV

Spin(2)(Z) ×Z2 PU(1)(U
∗
Z).(2.14)
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Now we set

PSpin(n+2)(Z) =
(

PSpin(n)(Z) × PV
Spin(2)(Z)

)

×mult Spin(n+ 2),(2.15)

which is globally defined. Actually, the pseudo-transition functions π∗f̃0ba

of PSpin(n)(Z) and ψ̄R

1(b`′)(a`) (made from f̃1ba) of PV
Spin(2)(Z) have ambiguity,

which, however, is removed fortunately by taking their multiplication. The

splitting TZ = H⊕ V implies then

PSO(n+2)(Z) =
(

π∗PSO(n) × PV
SO(2)(Z)

)

×mult SO(n+ 2)(2.16)

= PSpin(n+2)(Z) ×ξ SO(n+ 2).

Thus we obtain a Spin structure of (Z, gZ). Further (2.11) and (2.14) imply

canonically

PSpinc(n+2)(Z) = PSpin(n+2)(Z) ×Z2 PU(1)(UZ) ⊗ PU(1)(U
∗
Z)(2.17)

= PSpin(n+2)(Z) ×Z2 U(1)Z ,

where U(1)Z is the trivial U(1)-bundle over Z. Thus we can regard

PSpin(n+2)(Z) naturally as a subbundle of PSpinc(n+2)(Z) so that we get

an identification (0.9).

Finally, since the set of Spin structures of PSO(n+2)(Z) naturally cor-

responds bijectively to the set of Spinc structures of PSO(n+2)(Z) × U(1)Z
(through H1(Z,Z2)), a Spin structure (0.8) with (0.9) exists uniquely.

§3. The covariant derivative ∇LH on LH associated to αH
U(1)

Let us denote by αa
SO(3) the connection forms of αSO(3) associated to

local trivializations PSO(3)|Ua = (PSpinq(n) ×ξq

1
SO(3))|Ua

∼= Ua × SO(3),

[px, 1] ↔ ϕa([px, 1]) = (x, ξq
1(f̃a(px))). Namely, we take a cross-section σa :

Ua → PSO(3)|Ua with σa(x) = ϕ−1
a (x, 1) and put αa

SO(3) = σ∗aαSO(3). Take

the standard basis {v1, v2, v3} = {i, j,k} of R
3 = sp(1) and set (vi∧vj)(v) =

〈vi, v〉vj − 〈vj , v〉vi, where 〈 , 〉 is the standard inner product of R
3. Then

{vi ∧ vj}i<j is a basis of so(3). Accordingly we may put

αa
SO(3) =

∑

i<j

[αa
SO(3)]ji vi ∧ vj(3.1)

= αa
32 v2 ∧ v3 + αa

13 v3 ∧ v1 + αa
21 v1 ∧ v2.
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Next, let us take local trivializations π∗PSpinq(n)|Ua`
∼= Ua × W` ×

Spinq(n), (zx, qx) ↔ (x,w`, f`(w`)
−1f̃a(qx)), where zx = [px, [1]] belongs

to Z|π−1(x), qx is a point on the fibre of PSpinq(n) over x and we set

w` = [f̃a(px)] ∈ W` ⊂ CP 1. Then π∗PSO(3) = π∗PSpinq(n) ×ξq

1
SO(3)

has local trivializations (π∗PSO(3))|Ua`
∼= Ua × W` × SO(3), [(zx, qx), 1]

↔ (x,w`, ξ
q
1(f`(w`)

−1f̃a(qx))). As for the associated connection forms

(π∗αSO(3))
a` of the connection π∗αSO(3), we have

Lemma 3.1. Take X ∈ TxUa and V ∈ Tw`
W`, which we regard as

elements of TxUa × Tw`
W` = T(x,w`)Ua`. Then we have

(π∗αSO(3))
a`(X)=Ad(ξq

1(f`(w`))
−1)αa

SO(3)(X),(3.2)

(π∗αSO(3))
a`(V )=ξq

1(f`(w`))
−1d(ξq

1◦f`)(V ).(3.3)

Proof. Set X = (d/dt)t=0(xt, w`) with x0 = x. Then we have

(π∗αSO(3))
a`(X) = αSO(3)((d/dt)t=0ϕ

−1
a (xt, ξ

q
1(f`(w`))))

= αSO(3)(Rξq

1(f`(w`))∗σa∗X) = Ad(ξq
1(f`(w`))

−1)αa
SO(3)(X).

Further, set V = (d/dt)t=0(x,w`t) with w`0 = w`. Then we have

(π∗αSO(3))
a`(V ) = αSO(3)((d/dt)t=0ϕ

−1
a (x, ξq

1(f`(w`t))))

= αSO(3)((d/dt)t=0[ϕ
−1
a (x, ξq

1(f`(w`))) · ξq
1(f`(w`))

−1ξq
1(f`(w`t))])

= ξq
1(f`(w`))

−1d(ξq
1◦f`)(V ).

Observing the local trivializations of PSpinc(n)(Z) given in §2 and those

of π∗PSpinq(n) given above, we know that we have a reduction embedding

PSpinc(n)(Z) ≡ PSpinq(n) ↪→ π∗PSpinq(n), px 7→ ([px, [1]], px) ([14, Lemma

1.3]), which, combined with the canonical embedding U(1) = SO(2) ↪→
SO(3), induces a reduction embedding

PH
U(1)(Z) = PSpinc(n)(Z) ×ξc

1
U(1) ↪→ π∗PSO(3).(3.4)

The Lie algebra u(1) = so(2) has v2 ∧ v3 as a basis. Hence, if we define m

to be the subspace of so(3) spanned by {v3 ∧ v1, v1 ∧ v2}, we have a decom-

position so(3) = u(1) ⊕ m with Ad(U(1))m ⊂ m. Now we can rigorously

say that the connection αH
U(1) on PH

U(1)(Z) is just the u(1)-component of
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π∗αSO(3) restricted to it. Let us denote by (αH
U(1))

a` its connection forms

associated to the local trivializations PH
U(1)(Z)|Ua`

∼= Ua × W` × U(1),

[px, 1](↔ [[px, [1]], px]) ↔ (x,w`, f`(w`)
−1f̃a(px)).

Lemma 3.2. (αH
U(1))

a` =
√
−1
[

(π∗αSO(3))
a`
]

32

Proof. Take the cross-section σa` : Ua ×W` → PH
U(1)(Z)|Ua`, σa`(x,w`)

= (x,w`, 1) ∈ Ua ×W` × U(1) ∼= PH
U(1)(Z)|Ua`. Then we have

(αH
U(1))

a` = σ∗a`α
H
U(1) =

√
−1
[

(π∗αSO(3))
a`
]

32
.

Now, let ∇LH be the covariant derivative on LH associated to αH
U(1).

Proposition 3.3. The connection forms of ∇LH associated to the

local cross-sections Ua ×W` → LH, (x,w`) 7→ [(x,w`), 1] (see (2.7)), are

− (−1)`
√
−1

1 + |w`|2
{

(|w`|2 − 1)αa
32 + 2 Imw` α

a
13 + (−1)`2Rew` α

a
21

}

(3.5)

−w`dw̄` − w̄`dw`

1 + |w`|2
.

Proof. Through the isomorphism ad = Ad∗ : sp(1) ∼= so(3) we may

change αSO(3), α
a
SO(3) into αSp(1), α

a
Sp(1) which take values in sp(1). We

have certainly

αa
Sp(1) = αa

32

i

2
+ αa

13

j

2
+ αa

21

k

2
.(3.6)

Lemma 3.2 says

(αH
U(1))

a` =
√
−1
[

(π∗αSp(1))
a`
]

i/2
(3.7)

and Lemma 3.1 asserts

(π∗αSp(1))
a`(X) = ρ`(w`)

−1
∗ αa

Sp(1)(X),

(π∗αSp(1))
a`(V ) = ρ`(w`)

−1
∗ dρ`(V ).

(3.8)

These induce the first and second terms of (3.5) respectively. Let us show

it in the case ` = 0. Set w0 = z. Then we have

ρ0(w0)
−1
∗ αa

Sp(1) =
1 − jz

√

1 + |z|2
αa

Sp(1)

1 + jz
√

1 + |z|2



64 M. NAGASE

=
1

1 + |z|2
{

αa
32

2
(−(|z|2 − 1)i + 2z̄k)

+
αa

13

2
(−(z − z̄) + (1 + z̄2)j)

+
αa

21

2
(−(z + z̄)i + (1 − z̄2)k)

}

.

Hence
√
−1[ρ0(w0)

−1
∗ αa

Sp(1)]i/2 induces the first term in (3.5) with ` = 0.

Moreover, we have

ρ0(w0)
−1
∗ dρ0 =

1 − jz
√

1 + |z|2
d

(

1 + jz
√

1 + |z|2

)

= − zdz̄ − z̄dz − 2jdz

2(1 + |z|2) .

Hence
√
−1
[

ρ0(w0)
−1
∗ dρ0

]

i/2
induces the second term in (3.5) with ` = 0.

Thus we get the proposition.

§4. Spinor bundles and Dirac operators

Let n be odd from now on throughout the paper. We take the complex

spinor representation ∆ : Spin(n+ 2) → GLC(S) (dimS = 2(n+1)/2) and

the standard one rC : U(1) → GLC(C) ≡ GLC(C), which induce spinor

bundles

S = PSpin(n+2)(Z) ×∆S,

Sc = PSpinc(n+2)(Z) ×∆⊗rC
S⊗C (∼= S⊗UZ⊗U∗

Z
∼= S).

(4.1)

Here the isomorphisms in the parenthesis are due to (2.11) and (2.14). The

Ehresmann connections αS = ξ∗αZ , αS
c

= ξc∗(αZ ⊕ (αH
U(1) ⊗1+1⊗αV

U(1)))

induce covariant derivatives ∇S, ∇Sc

on (4.1), which define Dirac operators

D =
∑

ea◦∇S

ea
, Dc =

∑

ea◦∇S
c

ea
,(4.2)

where {ea} are local orthonormal basis of TZ and ea◦ means the Clifford

action of ea.

Let us replace αZ by a separated connection αZ,⊕ = π∗αM ⊕αV , which

defines other covariant derivatives ∇S,⊕, ∇Sc,⊕ on (4.1). First we will in-

vestigate the separated covariant derivatives, which are surely simpler in

construction than ∇S, ∇Sc

which we really want to understand. Denote

by S
(c)
H , S

(c)
V = S

(c)+
V ⊕ S

(c)−
V the (locally defined) spinor bundles associ-

ated to PSpin(c)(n)(Z), PV
Spin(c)(2)

(Z). Here the splitting of S
(c)
V is given by
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the usual splitting of spinor representation ∆2 = ∆+
2 ⊕ ∆−

2 : Spin(2) →
GLC(S2) = GLC(S+

2 ⊕S−
2 ). Let us attach to them the covariant derivatives

∇S
(c)
H , ∇S

(c)
V associated to the Ehresmann connections αSH = ξ∗(π∗αM ),

αSc
H = ξc∗(π∗αM ⊕ αH

U(1)), α
SV = ξ∗αV , αSc

V = ξc∗(αV ⊕ αV
U(1)). On

the other hand, we may attach to UZ two kinds of covariant derivatives

∇U,V , ∇U,H which are associated to αV
U(1), α

H
U(1) through the identifica-

tions LV ∼= K∗
Z

∼= U∗
Z ⊗ U∗

Z and LH ∼= KZ
∼= UZ ⊗ UZ given in §3. In

the case we need to specify which one is attached, we use the expressions

UZ(∇U,V) etc. Now it will be obvious that (2.11) and (2.14) induce the

identifications including covariant derivatives

S(∇S,⊕) = SH ⊗ SV = SH ⊗ (Sc
V ⊗ UZ(∇U,V)),

Sc(∇Sc,⊕) = Sc
H ⊗ Sc

V = SH ⊗ (Sc
V ⊗ UZ(∇U,H)).

(4.3)

Namely, the difference between ∇S,⊕ and ∇Sc,⊕ lies only in covariant deriva-

tives on SV = Sc
V ⊗ UZ ,

∇S,V = ∇S
c
V⊗ 1 + 1 ⊗∇U,V , ∇S

c,V = ∇S
c
V⊗ 1 + 1 ⊗∇U,H.(4.4)

Next, let us investigate the difference between ∇S
(c)

and ∇S
(c),⊕. It

will be clear that the difference comes from the difference between the

covariant derivatives ∇Z and ∇Z,⊕ = π∗∇M ⊕∇V on TZ. Eventually, if we

set Q = ∇Z −∇Z,⊕, we have

∇S(c)

ea
= ∇S(c),⊕

ea
+

1

4

∑

b,c

gZ(Q(ea)eb, ec)eb◦ec◦ .(4.5)

Refer to [5, (4.24)]. Let us denote by T the torsion tensor of ∇Z,⊕, which

is compatible with the metric gZ . Then [14, Lemma 2.1(3)] says that, for

horizontal vectors X, Y and a vertical vector U , we have

gZ(Q(X)U, Y ) = −gZ(Q(X)Y,U)

= gZ(Q(U)X,Y ) =
1

2
gZ(T (X,Y ), U),

(4.6)

and gZ(Q(·)·, ·) vanishes for all other combinations of horizontal and vertical

vectors. We take now a local orthonormal frame (e1, · · · , en) = (e′1, · · · , e′n)

of TM and lift it to Z dented by the same symbol, and, moreover, take

such a frame (en+1, en+2) = (e′′1 , e
′′
2) of V. Accordingly we have

∑

a,b,c

gZ(Q(ea)eb, ec)ea◦eb◦ec◦ = −1

2

∑

i,j,k

gZ(T (e′i, e
′
j), e

′′
k)e′′k◦e

′
i◦e

′
j◦ .(4.7)
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Finally let us express Dirac operators D(c) in terms of ∇S
(c),⊕ etc. De-

note by SM the locally defined spinor bundle over M associated to PSpin(n).

Then SH may be naturally identified with π∗SM because of (2.10). Thus

we obtain the tensor product expression

Γ(S(c)) = π∗Γ(SM ) ⊗ Γ(Sc
V ⊗ UZ).(4.8)

Consider the operators acting on the right side, ∇S(c),⊕ and

DS(c),V = 1 ⊗DS(c),V = 1 ⊗
∑

e′′k◦∇S(c),V
e′′
k

,

c(T ) =
∑

i≤j

e′i◦e
′
j◦c(T )(e′i, e

′
j) =

∑

i≤j

e′i◦e
′
j◦
∑

k

gZ(T (e′i, e
′
j), e

′′
k)e

′′
k◦.

(4.9)

Lemma 4.1. D(c) =
∑

e′i◦∇S(c),⊕
e′
i

+DS(c),V − 1

4
c(T )

Proof. (4.5) and (4.7) imply

D(c) =
∑

ea◦∇S
(c),⊕

ea
− 1

4
c(T ).(4.10)

Hence, using the fact ∇S(c),⊕
e′′
k

= 1 ⊗∇S(c),V
e′′
k

, we obtain the lemma.

§5. Proof of Theorem 2

First of all, let us recall the so-called η-invariant. The η-function of a

Dirac operator D is defined by

η(D)(s) =
1

Γ((s+ 1)/2)

∫ ∞

0
t(s−1)/2 Tr

(

De−tD2
)

dt, Re s >> 0.(5.1)

By analytic continuation to the whole complex plane we obtain a meromor-

phic function, which is regular at s = 0 ([1]). The η-invariant of D is the

value at s = 0, i.e.,

η(D) = η(D)(0) =
1√
π

∫ ∞

0
t−1/2 Tr

(

De−tD2
)

dt.(5.2)

Note that Tr(De−tD2
) = O(t1/2) as t → 0 ([6, (2.13)]) so that the above

integral expression for η(D) is well-defined.

We will investigate the limiting behavior of η(Dε) in the following. It

is easy to modify it for η(Dc
ε).
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We begin with finding out an expression for Dε similar to Lemma

4.1. Rigorously to say, the adiabatic version Dε is constructed as follows:

The reduced structure bundle PSO(n)(M,ε−1gM ) of (M,ε−1gM ) is canon-

ically isomorphic to the original one PSO(n) (associated to gM ) by the

identification (ε1/2e1, · · · , ε1/2en) ↔ (e1, · · · , en), and hence has a canoni-

cal Spinq(n)-bundle PSpinq(n)(Z, g
Z
ε ), which defines naturally a Spin(n+ 2)-

bundle PSpin(n+2)(Z, g
Z
ε ) in the similar way as in §2. Note that the metric

gV is not changed. We have then the associated spinor bundle

S(gZ
ε ) = PSpin(n+2)(Z, g

Z
ε ) ×∆S.(5.3)

The Levi-Civita connection αZ
ε associated to gZ

ε induces its covariant deriva-

tive ∇S(gZ
ε ), which defines the desired Dirac operator Dε. Thus (5.3) with

Clifford multiplication ◦ε, on the cross-sections of which Dε acts, varies

according to ε unfortunately. This is quite troublesome. Through the fol-

lowing identifications, however, we may regard Dε as acting on Γ(S) which

does not vary. Let us naturally identify PSO(n+2)(Z) and PSO(n+2)(Z, g
Z
ε )

((e1, · · · , en+2) ↔ (ε1/2e1, · · · , ε1/2en, en+1, en+2)). Accordingly the Clifford

bundles Cl(TM) and Cl(TM, gZ
ε ) are identified and, finally, the spinor bun-

dles S and S(gZ
ε ) are canonically identified. Simply to say, we have only to

identify (gZ , e′i◦, e
′′
j ◦) and (gZ

ε , ε
1/2e′i◦ε, e

′′
j ◦ε). Now it will be clear that Dε

regarded as acting on Γ(S) has a following expression using operators acting

on the right side of (4.8):

Dε = ε1/2
∑

e′i◦∇S,⊕
e′
i

+DS,V − ε

4
c(T ).(5.4)

Next, let us define a locally defined infinite dimensional vector bundle

H∞ = H+
∞ ⊕H−

∞ over M by setting at x ∈M

H±
∞,(x) = Γ(Sc±

V ,(x) ⊗ UZ,(x)),(5.5)

where Sc±
V ,(x) etc.are the restrictions of Sc±

V etc.to the fibre π−1(x). We have

an obvious functorial isomorphism

Γ(Sc
V ⊗ UZ) ∼= Γ(H∞), ψ ↔ ψ̃, ψ̃(x) = (π−1(x) 3 z 7→ ψ(z)),(5.6)

which induces a hermitian fibre metric (ψ̃1, ψ̃2)x =
∫

π−1(x)(ψ1(z), ψ2(z)) ·
volVx(z) on H∞. Here (ψ1(z), ψ2(z)) is the pointwise hermitian inner prod-

uct at z ∈ π−1(x) and volVx is the volume element of π−1(x). We take now
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a superconnection on H∞

Bt = ∇̃S,V + t1/2DS,V − 1

4t1/2
ĉ(T ), t > 0,(5.7)

where we set ∇̃S,V
e′
i

ψ̃ = (∇S,V
e′
i

ψ)̃ and ĉ(T ) =
∑

i≤j e
′∗
i ∧ e′∗j ∧⊗c(T )(e′i, e

′
j) (a

Cl(V)-valued 2-form on M). Note that this is unitary with respect to the

hermitian fibre metric.

Let us consider an obvious functorial isomorphism

π∗Γ(SM ) ⊗ Γ(Sc
V ⊗ UZ) ∼= Γ(SM ⊗H∞), π∗φ⊗ ψ ↔ φ⊗ ψ̃(5.8)

and let ∇SM be the covariant derivative on SM associated to ξ∗αM . We

may take then a superconnection

Bt = ∇SM ⊗ 1 + 1 ⊗Bt(5.9)

on SM ⊗H∞. It is easily shown that the “ Dirac operator ” (for SM ⊗H∞)

associated to ε1/2B1/ε, i.e., its quantization (replacing e′∗i ∧, e′∗i ∧ e′∗j by e′i◦,

e′i◦e
′
j◦), may be identified with our Dirac operator Dε through (4.8) and

(5.8). The superconnection (5.7) was taken so that it fits such a framework

([5, 6]).

H∞ is obtained by “ pasting ” {Ua × Γ(Sc
CP 1 ⊗ UCP 1)}a together us-

ing the pseudo-transition functions {f̃0ba}, where Sc
CP 1 is a spinor bundle

associated to the canonical Spinc structure of CP 1 and UCP 1 is the uni-

versal line bundle over CP 1, so that it has ambiguity in the sense that the

“ pasting ” using f̃0ba may differ in sign from the roundabout “ pasting ” us-

ing f̃0bcf̃0ca. But such ambiguity does not appear in the “ connection forms ”

(∈ Γ(End(Sc
CP 1 ⊗ UCP 1) ⊗ ∧1T ∗Ua)) of the locally defined ∇̃S,V . In the

sense, we may think of ∇̃S,V as being globally defined. As for the remained

terms B[0] = DS,V and B[2] = −4−1ĉ(T ) in (5.7), certainly they exist glob-

ally. Namely, the bundle End (H∞) exists globally so that B[i] is a global

cross-section of the globally defined vector bundle ∧iT ∗M ⊗End (H∞) ([3,

Proposition 1.39]),

B[i] ∈ Γ(M,∧iT ∗M ⊗ End (H∞)).(5.10)

Further, we may think of the curvature B2
t as being (the operator given by)

an element of Γ(M,∧T ∗M ⊗End (H∞)) so that the heat operator e−B2
t can

be regarded also as (the operator given by) an element of it ([3, Proposition

1.38]),

e−B2
t ∈ Γ(M,∧T ∗M ⊗ End (H∞)).(5.11)
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Lemma 5.1. The fibrewise supertrace str (e−B2
t ) = tr (e−B2

t |H+
∞) −

tr (e−B2
t |H−

∞), called the (renormalized) Chern character form of Bt in [3],

is a globally defined even degree form on M . Further we have

lim
t→∞

str (e−B2
t ) = 0,(5.12)

lim
t→0

str (e−B2
t ) = (2π

√
−1)−1

∫

Z/M
Â(2π

√
−1ΩV).(5.13)

Proof. We set Endj(H∞) = Hom (H±
∞,H

±
∞) (if j = 0), Hom (H±

∞,H
∓
∞)

(if j = 1), and say that the elements of Γ(M,∧iT ∗M ⊗ Endj(H∞)) are of

total degree i+j. Then B2
t is of even total degree and so is the heat operator

e−B2
t . Hence str (e−B2

t ) is an even degree form. In order to prove (5.12), let

us regard DS,V as a family of Dirac operators along the fibres

DS,V =
(

DS,V
(x) | x ∈M

)

,

DS,V
(x) =

∑

e′′k◦∇
S,V
e′′
k

: Γ(H
(±)
∞,(x)) → Γ(H

(∓)
∞,(x)).

(5.14)

We want to show that the index bundle IndDS,V =
∐

x∈M KerDS,V
(x) , which

is naturally Z2-graded, is just a 0-bundle

IndDS,V = 0.(5.15)

It is well-known that we can identify:

Sc
V ,(x)⊗ UZ,(x) =(Sc+

V ,(x)⊗ UZ,(x)) ⊕ (Sc−
V ,(x)⊗ UZ,(x))(5.16)

=∧0,∗(T ∗
CCP 1) ⊗ UCP 1

=(∧0,0(T ∗
CCP 1) ⊗ UCP 1) ⊕ (∧0,1(T ∗

CCP 1) ⊗ UCP 1)

DS,V=

(

0 DS,V ,−

DS,V ,+ 0

)

= 2(∂̄ + ∂̄∗) =

(

0 2∂̄∗

2∂̄ 0

)

(5.17)

Here we attach to Sc
V ,(x)⊗UZ,(x) the covariant derivative ∇S,V |π−1(x) and

attach also to ∧0,∗(T ∗
C
CP 1) ⊗ UCP 1 the usual hermitian covariant deriva-

tive associated to ds2. It is important that ∇U,V restricted to the fibre

π−1(x) coincides with the covariant derivative (associated to ds2) of UCP 1

so that we may think of (5.16) as an identification including such covariant

derivatives (and metrics). Further ∂̄ is the ∂̄-operator acting on (0, ∗)-forms
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with coefficients in the holomorphic bundle UCP 1 and ∂̄∗ is its dual. On

Γ(∧0,q(T ∗
C
CP 1) ⊗ UCP 1), we have Ker ∂̄(∗) = Ker ∂̄ ∩ Ker ∂̄∗, which is iso-

morphic further to the q-th Čech cohomology group Hq(CP 1,O(UCP 1)))

with coefficients in the sheaf of holomorphic cross-sections of UCP 1 . Thus

we have

KerDS,V
(x)

∼= H∗(CP 1,O(UCP 1)).(5.18)

As is well-known, the Kodaira vanishing and the Serrè duality theorems im-

ply that this equals {0}. Thus we obtain (5.15). Now (5.15) and [3, Corollary

9.22] imply (5.12). Next, since we can identify

Sc
V ⊗ UZ(∇U,V) ∼= SV ⊗ U∗

Z(∇U,V) ⊗ UZ(∇U,V) ∼= SV(5.19)

including covariant derivatives (see (4.3)), [3, Theorem 10.23] implies (5.13).

Making some more preparations we may prove Theorem 2. Set

η̂(t) = str

[(

DS,V +
ĉ(T )

4t

)

e−B2
t

]

=
∑

[η̂(t)]2j−1 ,

η̃(t) =
∑ 1

(2π
√
−1)j

[η̂(t)]2j−1 ,

(5.20)

where [η̂(t)]2j−1 is the η̂(t)’s homogeneous component of degree 2j − 1.

Notice that (DS,V + ĉ(T )/(4t)) exp(−B2
t ) is of odd total degree so that η̂(t)

is an odd degree form. It follows from [3, Theorems 9.23 and 10.32(1)] that

we have uniform convergence

η̂(t) =

{

O(t−1), t→ ∞,

O(1), t→ 0.
(5.21)

Moreover, in the same way as the proof of [5, (4.40)] it is easily proved that

we have uniform convergence as ε→ 0

Tr (Dεe
−tD2

ε ) =
√
π

∫

M
Â(ΩM ) ∧ η̃(t) + O(ε1/2(1 + tN ))(5.22)

for some N > 0.

Now let us prove Theorem 2.
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Proof of Theorem 2 for Dε. First, (5.15) and [5, Proposition 4.41] im-

ply that the spectrum ofD2
ε is bounded from below by some constant λ0 > 0

for all sufficiently small ε > 0. Hence limε→0 η(Dε) exists. Moreover, (5.22)

implies (0.11). Namely, the following formal computation (see (5.2)) is cer-

tified correct:

lim
ε→0

η(Dε) =
1√
π

∫ ∞

0
t−1/2 lim

ε→0
Tr(Dεe

−tD2
ε )dt(5.23)

= 2

∫

M
Â(ΩM ) ∧

∫ ∞

0
η̃(t)

dt

2t1/2
.

Here

η̃ =

∫ ∞

0
η̃(t)

dt

2t1/2
(5.24)

is convergent because of (5.21). Next, the transgression formula ([3]) for Bt

says
d

dt
str (e−B2

t ) = −d η̂(t)
2t1/2

.(5.25)

Hence, if we set η̂ =
∫∞
0 η̂(t)/(2t1/2)dt, then (5.25) and Lemma 5.1 imply

dη̂ = d

∫ ∞

0
η̂(t)

dt

2t1/2
= lim

t→0
str (e−B2

t ) − lim
t→∞

str (e−B2
t )(5.26)

= (2π
√
−1)−1

∫

Z/M
Â(2π

√
−1ΩV).

We get thus (0.12).

Proof of Theorem 2 for Dc
ε. Since the proof is quite similar to that of

Dε, it will suffice to explain the outline with emphasizing some points of

difference. (5.4) is changed into

Dc
ε = ε1/2

∑

e′i◦∇S
c,⊕

e′
i

+DSc,V − ε

4
c(T ).(5.27)

The operators on the right side act on the right side of (4.8). It is important

that here the covariant derivative ∇U,H is attached to UZ in (4.8): see (4.3).

We take a superconnection

Bc
t = ∇̃Sc,V + t1/2DSc,V − 1

4t1/2
ĉ(T ), t > 0(5.28)
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on Hc
∞ = H∞. Then we have

lim
t→∞

str (e−(Bc
t )2) = 0,(5.29)

lim
t→0

str (e−(Bc
t )2) = (2π

√
−1)−1

∫

Z/M
Â(2π

√
−1ΩV)(5.30)

× exp

(

1

2
c1(2π

√
−1(ΩV + ΩH))

)

.

As for (5.29): Notice that the covariant derivative ∇Sc,V |π−1(x) = (∇Sc
V ⊗

1 + 1 ⊗ ∇U,H)|π−1(x) is attached to Sc
V ,(x)⊗ UZ,(x). The two covariant

derivatives ∇U,H and ∇U,V on UZ do not coincide with each other certainly,

but these restricted to the fibres fortunately coincide because of Proposition

3.3 and Lemma 2.1, i.e.,

∇U,H|π−1(x) = ∇U,V |π−1(x)(5.31)

so that the proof of (5.12) can be seen as a proof of (5.29) with no change.

As for (5.31): We have

Sc
V ⊗ UZ(∇U,H) ∼= SV ⊗ U∗

Z(∇U,V) ⊗ UZ(∇U,H),(5.32)

which corresponds to (5.19). Hence again [3, Theorem 10.23] implies (5.31).

Notice that the curvature of the induced covariant derivative on U∗
Z differs

in sign from that of ∇U,H on UZ . Now (5.29) guarantees that the limit

limε→0 η(D
c
ε) exists. Define η̃c(t) in the same way as (5.20) and put

η̃c =

∫ ∞

0
η̃c(t)

dt

2t1/2
.(5.33)

Then we get (0.11) in the same way as in (5.23). Finally, the transgression

formula for Bc
t , (5.29) and (5.31) imply (0.13).
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