G. Hu

Nagoya Math. J.
Vol. 163 (2001), 55-70

$L^{2}\left(\mathbb{R}^{n}\right)$ BOUNDEDNESS FOR THE COMMUTATORS OF CONVOLUTION OPERATORS

GUOEN HU ${ }^{1}$

Abstract

The commutators of convolution operators are considered. By localization and Fourier transform estimates, a sufficient condition such that these commutators are bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ is given. As applications, some new results about the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness for the commutators of homogeneous singular integral operators are established.

§1. Introduction

We will work on \mathbb{R}^{n}, $n \geq 1$. Let k be a positive integer and $b \in$ $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$. For T a linear operator from $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ to $\mathcal{M}\left(\mathbb{R}^{n}\right)$, the set of measurable functions on \mathbb{R}^{n}, define the k-th order commutator of T and b by

$$
\begin{equation*}
T_{b, k} f(x)=T\left((b(x)-b(\cdot))^{k} f\right)(x), f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

A celebrated result of Coifman and Meyer [3] states that if T is a standard Calderón-Zygmund singular integral operator, then for $1<p<\infty$, the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for $T_{b, 1}$ could be obtained from the weighted L^{p} estimate with A_{p} weights for the operator T, where A_{p} denotes the weight function class of Muckenhoupt (see [9, Chapter 5] for definition and properties of A_{p}). Alvarez, Bagby, Kurtz and Pérez [1] developed the idea of Coifman and Meyer, and established a generalized boundedness criterion for the commutators of linear operators. Let E be a Banach space with norm $\|\cdot\|_{E}$, denote by $\mathcal{M}(E)$ the set of E-valued measurable functions on \mathbb{R}^{n}. Let u be a weight function on \mathbb{R}^{n}, that is, u is real-valued, non-negative and locally integrable. For $1 \leq p<\infty$, define the Banach space $L_{u}^{p}(E)$ by

$$
L_{u}^{p}(E)=\left\{f: f \in \mathcal{M}(E),\|f\|_{L_{u}^{p}(E)}=\left(\int_{\mathbb{R}^{n}}\|f(x)\|_{E}^{p} u(x) d x\right)^{1 / p}<\infty\right\}
$$

Received September 16, 1999.
Revised May 9, 2000.
1991 Mathematics Subject Classification: Primary 42B20.
${ }^{1}$ The research was supported by the NSF of China (19701039) and the NSF of Henan Province.

The result of Alvarez, Bagby, Kurtz and Pérez (see [1, Theorem 2.13]) can be stated as follows.

Theorem ABKP. Let E be a Banach space, $1<p, q<\infty$. Suppose that the linear operator $T: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{M}(E)$ satisfies the weighted estimate

$$
\|T f\|_{L_{w}^{p}(E)} \leq \bar{C}\|f\|_{p, w}
$$

for all $w \in A_{q}$, and \bar{C} depends only on n, p and $\widetilde{C}_{q}(w)$ (the A_{q} constant of w), but not on the weight w. Then for any positive integer k and $b \in$ $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and any weight function $u \in A_{q}$, the operator $T_{b, k}$, the k-th order commutator of T defined by (1), is bounded from $L_{u}^{p}\left(\mathbb{R}^{n}\right)$ to $L_{u}^{p}(E)$ with bound $C\left(n, p, k, \widetilde{C}_{q}(u)\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.

This result is of great interest and is suitable for many classical operators in harmonic analysis, such as the Calderón-Zygmund singular integral operators, the Bochner-Riesz operators at critical index, the oscillatory singular integral operator of Ricci and Stein, etc.. But for many important operators, Theorem ABKP does not applies. A typical example is the following homogeneous singular integral operator.

Let Ω be homogeneous of degree zero, have mean value zero on the unit sphere $S^{n-1}(n \geq 2)$. Define the homogeneous singular integral operator \widetilde{T} by

$$
\widetilde{T} f(x)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{\mathbb{R}^{n}} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

For positive integer k and $b \in \mathrm{BMO}\left(\mathbb{R}^{n}\right)$, define the k-th order commutator of \widetilde{T} by

$$
\begin{equation*}
\widetilde{T}_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y \tag{2}
\end{equation*}
$$

The well-known result of Coifman, Rochberg and Weiss [2] tells us that if $\Omega \in \operatorname{Lip}_{\alpha}\left(S^{n-1}\right)(0<\alpha \leq 1)$, then the commutator $\widetilde{T}_{b, k}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$. By the result of Duoandikoetxea [4], we see that if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q>1$, then for $p>q^{\prime}\left(q^{\prime}=q /(q-1)\right)$ and $w \in A_{p / q^{\prime}}$, the operator \widetilde{T} is bounded on $L_{w}^{p}\left(\mathbb{R}^{n}\right)$ with bound depending only on n, p and the $A_{p / q^{\prime}}$ constant of w. This together with Theorem ABKP shows that if $\Omega \in L^{q}\left(S^{n-1}\right)$ for some $q>1$, then for positive integer k and $b \in \mathrm{BMO}\left(\mathbb{R}^{n}\right)$, the commutator $\widetilde{T}_{b, k}$ is a bounded operator on $L^{p}\left(\mathbb{R}^{n}\right)$ for $q^{\prime}<p<\infty$, and then by the standard duality and interpolation argument,
is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$. But if $\Omega \notin \bigcup_{q>1} L^{q}\left(S^{n-1}\right)$, we do not know \widetilde{T} satisfies weighted $L^{p}\left(\mathbb{R}^{n}\right)$ estimate with general A_{q} weights for any fixed $1<p, q<\infty$. In this case, the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the corresponding commutator has not been known.

The purpose of this paper is to give a sufficient condition such that the commutators of convolution operators are bounded on $L^{2}\left(\mathbb{R}^{n}\right)$, and this sufficient condition is based on Fourier transform estimate of the kernel of the convolution operator. As applications, we will establish the $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness for the commutator $\widetilde{T}_{b, k}$ when $\Omega \notin \bigcup_{q>1} L^{q}\left(S^{n-1}\right)$. We remark that in this paper, we are very much motivated by the work of Pérez [8], some ideas are from the paper of Hu, Lu and Ma [7]. For function f on \mathbb{R}^{n}, denote by \widehat{f} the Fourier transform of f. Our first result in this paper is

Theorem 1. Let $K(x)$ be a function on $\mathbb{R}^{n} \backslash\{0\}$ and $K(x)$ $=\sum_{j \in \mathbb{Z}} K_{j}(x)$. Let k be a positive integer. Suppose that there are some constants $C>0,0<A \leq 1 / 2$ and $\alpha>k+1$ such that for each $j \in \mathbb{Z}$

$$
\begin{align*}
& \left\|K_{j}\right\|_{1} \leq C, \quad\left\|\nabla \widehat{K_{j}}\right\|_{\infty} \leq C 2^{j} \tag{3}\\
& \left|\widehat{K_{j}}(\xi)\right| \leq C \min \left\{A\left|2^{j} \xi\right|, \log ^{-\alpha}\left(2+\left|2^{j} \xi\right|\right)\right\} \tag{4}
\end{align*}
$$

Then for $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and $0<\nu<1$ such that $\alpha \nu>k+1$, the commutator

$$
T_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} K(x-y) f(y) d y, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, \alpha, \nu) \log ^{-\alpha \nu+k+1}\left(\frac{1}{A}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.
Remark 1. In our applications, we only use the case $A=1 / 2$. Theorem 1 for the case $A<1 / 2$ seems useful in the study of the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the commutators of convolution operators.

As applications of Theorem 1, we will have
Theorem 2. Let k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, Ω be homogeneous of degree zero and have mean value zero. Suppose that for some $\alpha>k+1$,

$$
\begin{equation*}
\sup _{\zeta \in S^{n-1}} \int_{S^{n-1}}|\Omega(\theta)|\left(\log \frac{1}{|\theta \cdot \zeta|}\right)^{\alpha} d \theta<\infty \tag{5}
\end{equation*}
$$

Then the commutator $\widetilde{T}_{b, k}$ defined by (2) is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, \alpha)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.

Remark 2. The size condition (5) for $\alpha \geq 1$ was introduced by Grafakos and Stefanov [6] in order to study the $L^{p}\left(\mathbb{R}^{n}\right)$ boundedness for the operator \widetilde{T}. It has been proved in [6] that there exist integrable functions on S^{n-1} which are not in $H^{1}\left(S^{n-1}\right)$ (the Hardy space on S^{n-1}), but satisfy (5) for all $\alpha>0$.

Theorem 3. Let k be a positive integer and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, Ω be homogeneous of degree zero and have mean value zero, $h(r)$ be a function on $(0, \infty)$ which satisfies

$$
\sup _{R>0} \int_{R}^{2 R}|h(r)|^{s} \frac{d r}{r}<\infty \text { for some } s>1
$$

Suppose that for some $\alpha>k+1, \Omega$ satisfies the size condition

$$
\int_{S^{n-1}}\left|\Omega\left(x^{\prime}\right)\right| \log ^{\alpha}\left(2+\left|\Omega\left(x^{\prime}\right)\right|\right) d x^{\prime}<\infty
$$

Then the commutator defined by

$$
\bar{T}_{b, k} f(x)=\int_{\mathbb{R}^{n}}(b(x)-b(y))^{k} h(|x-y|) \frac{\Omega(x-y)}{|x-y|^{n}} f(y) d y
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with bound $C(n, k, \alpha)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}$.
Throughout this paper, C denotes the constants that are independent of the main parameters involved but whose value may differ from line to line. For a locally integrable function f, a positive integer m and a cube I, define

$$
\|f\|_{L(\log L)^{m}, I}=\inf \left\{\lambda>0: \frac{1}{|I|} \int_{I} \frac{|f(y)|}{\lambda} \log ^{m}\left(2+\frac{|f(y)|}{\lambda}\right) d y \leq 1\right\}
$$

and

$$
\|f\|_{\exp (L)^{1 / m}, I}=\inf \left\{\lambda>0: \frac{1}{|I|} \int_{I} \exp \left(\frac{|f(y)|}{\lambda}\right)^{1 / m} d y \leq 2\right\}
$$

Since that $\Phi(t)=t \log ^{m}(2+t)$ is a Young function on $[0, \infty)$ and its complementary Young function is $\Psi(t) \approx \exp t^{1 / m}$, the generalized Hölder inequality

$$
\frac{1}{|I|} \int_{I}|f(y) h(y)| d y \leq C\|f\|_{L(\log L)^{m}, I}\|h\|_{\exp (L)^{1 / m}, I}
$$

holds for locally integrable functions f and h, see [8, page 168] for details.

§2. Proof of Theorems

We begin with some lemmas.
Lemma 1. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be a radial function such that $\operatorname{supp} \phi \subset$ $\{\xi: 1 / 4 \leq|\xi| \leq 4\}$ and

$$
\sum_{l \in \mathbb{Z}} \phi^{3}\left(2^{-l} \xi\right)=1,|\xi| \neq 0 .
$$

Denote by S_{l} the multiplier operator $\widehat{S_{l} f}(\xi)=\phi\left(2^{-l} \xi\right) \widehat{f}(\xi)$. For any positive integer k and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, denote by $S_{l ; b, k}$ the k-th order commutator of S_{l} defined as in (1). Then for $1<p<\infty$, the inequality

$$
\left\|\left(\sum_{l \in \mathbb{Z}}\left|S_{l ; b, k} f\right|^{2}\right)^{1 / 2}\right\|_{p} \leq C(n, k, p)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{p}
$$

holds.
By the weighted Littlewood-Paley theory, it is easy to see that for $1<p<\infty$ and $w \in A_{p}$,

$$
\left\|\left(\sum_{l \in \mathbb{Z}}\left|S_{l} f\right|^{2}\right)^{1 / 2}\right\|_{p, w} \leq C\left(n, p, \widetilde{C}_{p}(w)\right)\|f\|_{p, w} .
$$

Thus Lemma 1 follows from Theorem ABKP directly. See also [7, page 361].
Lemma 2. Let $m_{\delta} \in C^{1}\left(\mathbb{R}^{n}\right)(0<\delta<\infty)$ be a family of multipliers such that supp $m_{\delta} \subset\{\xi:|\xi| \leq \delta\}$ and for some constants $C, 0<A \leq 1 / 2$ and $\alpha>1$,

$$
\left\|m_{\delta}\right\|_{\infty} \leq C \min \left\{A \delta, \log ^{-\alpha}(2+\delta)\right\},\left\|\nabla m_{\delta}\right\|_{\infty} \leq C .
$$

Let T_{δ} be the multiplier operator defined by $\widehat{T_{\delta} f}(\xi)=m_{\delta}(\xi) \widehat{f}(\xi)$. For positive intger k and $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, denote by $T_{\delta ; b, k}$ the k-th order commutator of T_{δ}. Then for any $0<\varepsilon<1$, there exists a positive constant $C=C(n, k, \varepsilon)$ such that

$$
\begin{aligned}
& \left\|T_{\delta ; b, k} f\right\|_{2} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}(A \delta)^{1-\varepsilon} \log ^{k}\left(\frac{1}{A}\right)\|f\|_{2}, \text { if } \delta<10 / \sqrt{A} ; \\
& \left\|T_{\delta ; b, k} f\right\|_{2} \leq C\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k} \log ^{-\alpha(1-\varepsilon)+k}(2+\delta)\|f\|_{2}, \text { if } \delta>1 / \sqrt{A} .
\end{aligned}
$$

Proof. Without loss of generality, we may assume that $\|b\|_{\operatorname{BMO}\left(\mathbb{R}^{n}\right)}=1$. Let ψ be a radial function such that $\operatorname{supp} \psi \subset\{x: 1 / 4 \leq|x| \leq 4\}$, and

$$
\sum_{l \in \mathbb{Z}} \psi\left(2^{-l} x\right)=1,|x|>0
$$

Set $\psi_{0}(x)=\sum_{l=-\infty}^{0} \psi\left(2^{-l} x\right)$ and $\psi_{l}(x)=\psi\left(2^{-l} x\right)$ for positive integer l. Let $K_{\delta}(x)=m_{\delta}^{\vee}(x)$, the inverse Fourier transform of m_{δ}. Splite K_{δ} as

$$
K_{\delta}(x)=K_{\delta}(x) \psi_{0}(x)+\sum_{l=1}^{\infty} K_{\delta}(x) \psi_{l}(x)=\sum_{l=0}^{\infty} K_{\delta, l}(x)
$$

Let $T_{\delta, l}$ be the convolution operator whose kernel is $K_{\delta, l}$. Recall that $m_{\delta} \subset\{\xi:|\xi| \leq \delta\}$. Trivial computation shows that $\left\|K_{\delta, l}\right\|_{\infty} \leq\left\|K_{\delta}\right\|_{\infty} \leq$ $\left\|m_{\delta}\right\|_{1} \leq C \delta^{n}$. This via the Young inequality says that

$$
\begin{equation*}
\left\|T_{\delta, l} f\right\|_{\infty} \leq C \delta^{n}\|f\|_{1} \tag{6}
\end{equation*}
$$

Note that $\int \widehat{\psi}(\eta) d \eta=0$. Thus

$$
\begin{aligned}
\left\|\widehat{K_{\delta, l}}\right\|_{\infty} & =\left\|\int_{\mathbb{R}^{n}}\left(m_{\delta}\left(\xi-2^{-l} \eta\right)-m_{\delta}(\xi)\right) \widehat{\psi}(\eta) d \eta\right\|_{\infty} \\
& \leq C 2^{-l}\left\|\nabla m_{\delta}\right\|_{\infty} \int_{\mathbb{R}^{n}}|\eta \| \widehat{\psi}(\eta)| d \eta \leq C 2^{-l}
\end{aligned}
$$

On the other hand, by the Young inequality,

$$
\left\|\widehat{K_{\delta, l}}\right\|_{\infty} \leq\left\|\widehat{K}_{\delta}\right\|_{\infty}\left\|\widehat{\psi}_{l}\right\|_{1} \leq C \min \left\{A \delta, \log ^{-\alpha}(2+\delta)\right\}
$$

For each fixed $0<\varepsilon<1$, let $t_{0}=\varepsilon / 3\left(0<t_{0}<1 / 3\right)$, we then have

$$
\left\|\widehat{K_{\delta, l}}\right\|_{\infty} \leq C 2^{-t_{0} l}\left(\min \left\{A \delta, \log ^{-\alpha}(2+\delta)\right)^{1-t_{0}}\right.
$$

which together with the Plancherel theorem tells us that

$$
\begin{equation*}
\left\|T_{\delta, l} f\right\|_{2} \leq C 2^{-t_{0} l}\left(\min \left\{A \delta, \log ^{-\alpha}(2+\delta)\right\}\right)^{1-t_{0}}\|f\|_{2} \tag{7}
\end{equation*}
$$

Let $T_{\delta, l ; b, k}$ be the k-th order commutator of $T_{\delta, l}$. We want to show the following refined estimates

$$
\begin{equation*}
\left\|T_{\delta, l ; b, k} f\right\|_{2} \leq C(A \delta)^{1-3 t_{0}} 2^{-t_{0} l / 4} \log ^{k}\left(\frac{1}{A}\right)\|f\|_{2}, \text { if } \delta<10 / \sqrt{A} \tag{8}
\end{equation*}
$$

and
(9) $\left\|T_{\delta, l ; b, k} f\right\|_{2} \leq C 2^{-t_{0} l / 4} \log ^{-\alpha\left(1-3 t_{0}\right)+k}(2+\delta)\|f\|_{2}$, if $\delta>1 / \sqrt{A}$.

If we can do this, summing over these inequalities respectively for all nonnegative integer l completes the proof of Lemma 2.

Let $T_{\delta, l}^{*}$ be the dual operator of $T_{\delta, l}$, that is,

$$
T_{\delta, l}^{*} f(x)=\int_{\mathbb{R}^{n}} K_{\delta, l}(y-x) f(y) d y
$$

To prove the inequality (8) and (9), we will use some basic estimates for $T_{\delta, l}^{*}$. Let I be a cube with side length 2^{l}. We claim that if $\operatorname{supp} f \subset I$, then for nonnegative integer m,

$$
\begin{align*}
& \left\|\left(T_{\delta, l}^{*} f\right)^{2}\right\|_{L(\log L)^{2 m}, I} \tag{10}\\
& \quad \leq C(A \delta)^{2\left(1-2 t_{0}\right)} 2^{-n l} 2^{-t_{0} l} \log ^{2 m}\left(\frac{1}{A}\right)\|f\|_{2}^{2}, \quad \text { if } \delta<10 / \sqrt{A}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|\left(T_{\delta, l}^{*} f\right)^{2}\right\|_{L(\log L)^{2 m}, I} \tag{11}\\
& \quad \leq C 2^{-n l} 2^{-t_{0} l} \log ^{-2 \alpha\left(1-2 t_{0}\right)+2 m}(2+\delta)\|f\|_{2}^{2}, \quad \text { if } \delta \geq 1 / \sqrt{A}
\end{align*}
$$

(for $\left.m=0,\left\|\left(T_{\delta, l}^{*} f\right)^{2}\right\|_{L(\log L)^{2 m}, I}=|I|^{-1}\left\|T_{\delta, l}^{*} f\right\|_{2}^{2}\right)$. In fact, without loss of generality, we may assume that $\|f\|_{2}=1$. By the Schwarz inequality and the fact that $\left\|K_{\delta, l}\right\|_{\infty} \leq C \delta^{n}$, it follows that

$$
\begin{equation*}
\left\|T_{\delta, l}^{*} f\right\|_{\infty} \leq C \delta^{n}\|f\|_{1} \leq C \delta^{n} 2^{n l / 2} \tag{12}
\end{equation*}
$$

We consider the following two cases.
Case I. $\quad \delta<10 / \sqrt{A}$. Take

$$
\lambda_{1}=(A \delta)^{2\left(1-2 t_{0}\right)} 2^{-n l} 2^{-t_{0} l} \log ^{2 m}\left(\frac{1}{A}\right)
$$

By the estimate (7) and (12), we have

$$
\begin{aligned}
& \int_{I}\left|T_{\delta, l}^{*} f(x)\right|^{2} \log ^{2 m}\left(2+\frac{\left|T_{\delta, l}^{*} f(x)\right|^{2}}{\lambda_{1}}\right) d x \\
\leq & C 2^{-2 t_{0} l}(A \delta)^{2\left(1-t_{0}\right)} \log ^{2 m}\left(\frac{2^{(2 n+1) l}}{A^{n}(A \delta)^{2\left(1-2 t_{0}\right)}}\right) \\
\leq & C 2^{-t_{0} l}(A \delta)^{2\left(1-2 t_{0}\right)} \log ^{2 m}\left(\frac{1}{A}\right)
\end{aligned}
$$

Therefore,

$$
\left\|\left(T_{\delta, l}^{*} f\right)^{2}\right\|_{L(\log L)^{2 m}, I} \leq C \lambda_{1}
$$

Case II. $\quad \delta>1 / \sqrt{A}$. We choose

$$
\lambda_{2}=\log ^{-2 \alpha\left(1-2 t_{0}\right)+2 m}(2+\delta) 2^{-n l} 2^{-t_{0} l} .
$$

Again by the estimate (7) and (12), we have

$$
\begin{aligned}
& \quad \frac{1}{\lambda_{2}} \frac{1}{|I|} \int_{I}\left|T_{\delta, l}^{*} f(x)\right|^{2} \log ^{2 m}\left(2+\frac{\left|T_{\delta, l}^{*} f(x)\right|^{2}}{\lambda_{2}}\right) d x \\
& \leq \frac{C}{\lambda_{2}} 2^{-n l} 2^{-2 t_{0} l} \log ^{-2 \alpha\left(1-t_{0}\right)}(2+\delta) \log ^{2 m}\left(2+\frac{2^{n l} \delta^{2 n}}{\lambda_{2}}\right) \\
& \leq C 2^{-t_{0} l} \log ^{-2 m-2 \alpha t_{0}}(2+\delta) \log ^{2 m}\left(2+\frac{2^{n l} \delta^{2 n}}{\lambda_{2}}\right) \leq C .
\end{aligned}
$$

The desired estimate (11) follows directly.
Now we turn our attention to the $L^{2}\left(\mathbb{R}^{n}\right)$ estimate for $T_{\delta, l ; b, k}$. Write $\mathbb{R}^{n}=\bigcup_{j \in \mathbb{Z}} I_{j}$, where each I_{j} is a cube with side length 2^{l}, and these cubes have disjoint interiors. Let f_{j} be the restriction of f on I_{j}. Then

$$
f(x)=\sum_{j \in \mathbb{Z}} f_{j}(x), \text { a.e. } x \in \mathbb{R}^{n}
$$

Observe that $\operatorname{supp} K_{\delta, l} \subset\left\{|x| \leq 2^{l+2}\right\}$, it is obvious that the support of $T_{\delta, l ; b, k}$ is contained in a fixed multiple of I_{j}, and that the supports of various terms $T_{\delta, l ; b, k} f_{j}$ have bounded overlaps. So we have

$$
\left\|T_{\delta, l ; b, k} f\right\|_{2}^{2} \leq \sum_{j \in \mathbb{Z}} \sum_{j^{\prime}=-M}^{M}\left\|T_{\delta, l ; b, k} f_{j+j^{\prime}}\right\|_{2}^{2}=C \sum_{j \in \mathbb{Z}}\left\|T_{\delta, l ; b, k} f_{j}\right\|_{2}^{2}
$$

where M is a positive integer which is independent of j. Thus we may assume that $\operatorname{supp} f \subset I$ for a cube I with side length 2^{l}. We also assume $\|f\|_{2}=1$. Set $I^{*}=10 n I, I^{* *}=20 n I$. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), 0 \leq \varphi \leq 1$, φ is identically one on I^{*} and vanishes outside $I^{* *}$. Let $\bar{b}(x)=(b(x)-$ $\left.m_{I^{*}}(b)\right) \varphi(x)$, where $m_{I^{*}}(b)$ denotes the mean value of b on I^{*}. Obviously,

$$
\left|T_{\delta, l ; b, k} f(x)\right| \leq \sum_{m=0}^{k} C_{k}^{m}\left|\bar{b}^{m}(x) T_{\delta, l}\left(\bar{b}^{k-m} f\right)(x)\right|
$$

Note that $\operatorname{supp} T_{\delta, l}\left(\bar{b}^{k-m} f\right) \subset I^{*}$. Recall that $\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}=1$. For each fixed integer $m, 0 \leq m \leq k$, by the generalized Hölder inequality,

$$
\begin{aligned}
\left\|\bar{b}^{m} T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right\|_{2}^{2} & \leq\left|I^{*}\right|\left\|\bar{b}^{2 m}\right\|_{\exp (L)^{1 /(2 m)}, I^{*}}\left\|\left(T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right)^{2}\right\|_{L(\log L)^{2 m}, I^{*}} \\
& \leq C|I|\left\|\left(T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right)^{2}\right\|_{L(\log L)^{2 m}, I^{*}}
\end{aligned}
$$

The last inequality follows from the well-known John-Nirenberg inequality which states that for positive constants C_{1}, C_{2} depending only on n,

$$
\frac{1}{\left|I^{*}\right|} \int_{I^{*}} \exp \left(\frac{\left|b(x)-m_{I^{*}}(b)\right|}{C_{1}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}}\right) d x \leq C_{2}
$$

To computate $\left\|\left(T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right)^{2}\right\|_{L(\log L)^{2 m}, I^{*}}$, we first observe that by (6),

$$
\begin{equation*}
\left\|T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right\|_{\infty} \leq C \delta^{n}\left\|\bar{b}^{k-m} f\right\|_{1} \leq C \delta^{n} 2^{n l / 2} \tag{13}
\end{equation*}
$$

where we have invoked the corollary of the John-Nirenberg inequality (see $[9$, page 144$]$) and the fact that $\left|m_{I^{*}}(b)-m_{I}(b)\right| \leq C\|b\|_{\operatorname{BMO}\left(\mathbb{R}^{n}\right)}$. A standard duality argument gives us that

$$
\begin{align*}
&\left\|T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right\|_{2}=\sup _{\operatorname{supp} h \subset I^{*},\|h\|_{2} \leq 1}\left|\int_{I^{*}} T_{\delta, l}\left(\bar{b}^{k-m} f\right)(x) h(x) d x\right| \tag{14}\\
&=\sup _{\operatorname{supp}}^{h \subset I^{*},\|h\|_{2} \leq 1}\left|\int_{I^{*}} T_{\delta, l}^{*} h(x) \bar{b}^{k-m}(x) f(x) d x\right| \\
& \leq \sup _{\operatorname{supp} h \subset I^{*},\|h\|_{2} \leq 1}\left(\int_{I^{*}}\left|T_{\delta, l}^{*} h(x)\right|^{2}\left|\bar{b}^{2(k-m)}(x)\right| d x\right)^{1 / 2} \\
& \leq \sup ^{\operatorname{supp} h \subset I^{*},\|h\|_{2} \leq 1}\left\|\bar{b}^{2(k-m)}\right\|_{\exp (L)^{1 / 2(k-m)}, I^{*}}^{1 / 2} \\
& \times\left\|\left(T_{\delta, l}^{*} h\right)^{2}\right\|_{L(\log L)^{2(k-m)}, I^{*}}^{1 / 2} \\
& \leq C 2^{n l / 2} \sup ^{\operatorname{supp} h \subset I^{*},\|h\|_{2} \leq 1}
\end{align*}\left\|\left(T_{\delta, l}^{*} h\right)^{2}\right\|_{L(\log L)^{2(k-m)}, I^{*}}^{1 / 2} .
$$

If $\delta<10 / \sqrt{A}$, it follows from the inequality (10) that

$$
\left\|T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right\|_{2}^{2} \leq C(A \delta)^{2\left(1-2 t_{0}\right)} 2^{-t_{0} l} \log ^{2(k-m)}\left(\frac{1}{A}\right)
$$

Set $\lambda_{3}=(A \delta)^{2\left(1-3 t_{0}\right)} 2^{-n l} 2^{-t_{0} l / 2} \log ^{2 k}\left(\frac{1}{A}\right)$. The last inequality together with the estimate (13) shows that

$$
\int_{I^{*}}\left|T_{\delta, l}\left(\bar{b}^{k-m} f\right)(x)\right|^{2} \log ^{2 m}\left(2+\frac{\left|T_{\delta, l}\left(\bar{b}^{k-m} f\right)(x)\right|^{2}}{\lambda_{3}}\right) d x
$$

$$
\begin{aligned}
& \leq C(A \delta)^{2\left(1-2 t_{0}\right)} 2^{-t_{0} l} \log ^{2(k-m)}\left(\frac{1}{A}\right) \log ^{2 m}\left(\frac{2^{(2 n+1) l}}{A^{n}(A \delta)^{2\left(1-3 t_{0}\right)}}\right) \\
& \leq C(A \delta)^{2\left(1-3 t_{0}\right)} 2^{-t_{0} l / 2} \log ^{2 k}\left(\frac{1}{A}\right), \text { if } \delta<10 / \sqrt{A}
\end{aligned}
$$

This in turn implies that

$$
\begin{aligned}
& \left\|\bar{b}^{m} T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right\|_{2}^{2} \\
\leq & C 2^{n l}\left\|\left(T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right)^{2}\right\|_{L(\log L)^{2 m}, I^{*}} \\
\leq & C 2^{n l} \lambda_{3}=C(A \delta)^{2\left(1-3 t_{0}\right)} 2^{-t_{0} l / 2} \log ^{2 k}\left(\frac{1}{A}\right), \text { if } \delta<10 / \sqrt{A}
\end{aligned}
$$

and the estimate (8) follows. On the other hand, if $\delta>1 / \sqrt{A}$, set $\lambda_{4}=$ $2^{-n l} 2^{-t_{0} l / 2} \log ^{-2 \alpha\left(1-3 t_{0}\right)+2 k}(2+\delta)$. The same argument involving the inequalities (13) and (14) as above yields that

$$
\left\|\bar{b}^{m} T_{\delta, l}\left(\bar{b}^{k-m} f\right)\right\|_{2}^{2} \leq C 2^{n l} \lambda_{4}=2^{-t_{0} l / 2} \log ^{-2 \alpha\left(1-3 t_{0}\right)+2 k}(2+\delta)
$$

This leads to the inequality (9).
Proof of Theorem 1. Choose radial function $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $0 \leq$ $\phi \leq 1, \operatorname{supp} \phi \subset\{1 / 4 \leq|\xi| \leq 4\}$ and

$$
\sum_{l \in \mathbb{Z}} \phi^{3}\left(2^{-l} \xi\right)=1,|\xi| \neq 0
$$

Define the multiplier operator S_{l} by

$$
\widehat{S_{l} f}(\xi)=\phi\left(2^{-l} \xi\right) \widehat{f}(\xi)
$$

Set $m_{j}(\xi)=\widehat{K_{j}}(\xi), m_{j}^{l}(\xi)=m_{j}(\xi) \phi\left(2^{j-l} \xi\right)$ and

$$
\widehat{T_{j}^{l}} f(\xi)=m_{j}^{l}(\xi) \widehat{f}(\xi)
$$

Obviously, $\operatorname{supp} m_{j}^{l}\left(2^{-j} \xi\right) \subset\left\{|\xi| \leq 2^{l+2}\right\}$ and

$$
\begin{equation*}
\left\|m_{j}^{l}\left(2^{-j} \cdot\right)\right\|_{\infty} \leq C \min \left\{A 2^{l}, \log ^{-\alpha}\left(2+2^{l}\right)\right\},\left\|\nabla m_{j}^{l}\left(2^{-j}\right)\right\|_{\infty} \leq C \tag{15}
\end{equation*}
$$

Let

$$
U_{l} f(x)=\sum_{j \in \mathbb{Z}}\left(\left(S_{l-j} T_{j}^{l} S_{l-j}\right)_{b, k} f\right)(x)
$$

We claim that for $f, h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} h(x) T_{b, k} f(x) d x=\int_{\mathbb{R}^{n}} h(x) \sum_{l \in \mathbb{Z}} U_{l} f(x) d x \tag{16}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left\|U_{l} f\right\|_{2} \leq C \sum_{m=0}^{k}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k-m}\left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j}^{l} S_{l-j}\right)_{b, m} f\right|^{2}\right)^{1 / 2}\right\|_{2} \tag{17}
\end{equation*}
$$

Both of these had been proved in [7, page 365], but for the reader's convenience and for the sake of self-containment, we give their proof here. To prove (16), let $B=B(O, R)$ be the ball centered at the origin and large enough radius R such that supp f, supp $h \subset B(O, R)$. Denote by b_{B} the mean value of b on B. Define the operator T by

$$
T \widetilde{f}(x)=\sum_{j \in \mathbb{Z}} K_{j} * \widetilde{f}(x)
$$

Write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} h(x) & T_{b, k} f(x) d x \\
& =\sum_{i=0}^{k} C_{k}^{i} \int_{\mathbb{R}^{n}}\left(b(x)-b_{B}\right)^{i} h(x) T\left(\left(b_{B}-b(\cdot)\right)^{k-i} f\right)(x) d x
\end{aligned}
$$

Note that $\left(b(x)-b_{B}\right)^{i} h(x)$ and $\left(b_{B}-b(x)\right)^{k-i} f(x)$ belong to the space $L^{2}\left(\mathbb{R}^{n}\right)$. Thus, as in [5, page 545], it follows that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} h(x) T_{b, k} f(x) d x \\
= & \sum_{i=0}^{k} C_{k}^{i} \int_{\mathbb{R}^{n}}\left(b(x)-b_{B}\right)^{i} h(x) \sum_{j \in \mathbb{Z}} K_{j} *\left(\sum_{l \in \mathbb{Z}} S_{l-j}^{3}\left(\left(b_{B}-b(\cdot)\right)^{k-i} f\right)\right)(x) d x \\
= & \sum_{i=0}^{k} C_{k}^{i} \int_{\mathbb{R}^{n}}\left(b(x)-b_{B}\right)^{i} h(x) \sum_{l \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left(\left(S_{l-j} T_{j}^{l} S_{l-j}\left(\left(b_{B}-b(\cdot)\right)^{k-i} f\right)\right)(x) d x\right. \\
= & \int_{\mathbb{R}^{n}} h(x) \sum_{l \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left(\left(S_{l-j} T_{j}^{l} S_{l-j}\right)_{b, k} f\right)(x) d x .
\end{aligned}
$$

This establishes (16). With the aid of the formula

$$
(b(x)-b(y))^{k}=\sum_{i=0}^{k} C_{k}^{i}(b(x)-b(z))^{i}(b(z)-b(y))^{k-i}, x, y, z \in \mathbb{R}^{n}
$$

the Fubini theorem and trivial computation leads to that for $f, h \subset C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} h(x) & \left(S_{l-j} T_{j}^{l} S_{l-j}\right)_{b, k} f(x) d x \\
& =\sum_{i=0}^{k} C_{k}^{i} \int_{\mathbb{R}^{n}} h(x) S_{l-j ; b, k-i}\left(\left(T_{j}^{l} S_{l-j}\right)_{b, i} f\right)(x) d x
\end{aligned}
$$

which via Lemma 1 yields the estimate (17).
We first consider $\sum_{l \leq\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1}\left\|U_{l} f\right\|_{2}$, where we use $[a]$ to denote the integral part of the real number a. Let $\widetilde{T_{j}^{l}}$ be the operator defined by

$$
\widehat{T_{j}^{l}} f(\xi)=m_{j}^{l}\left(2^{-j} \xi\right) \widehat{f}(\xi)
$$

The inequality (15) via Lemma 2 (with $\varepsilon=1-\nu$) says that for positive integer i,

$$
\left\|\widetilde{T}_{j ; b, i}^{l} f\right\|_{2} \leq C \log ^{i}\left(\frac{1}{A}\right)\left(A 2^{l}\right)^{\nu}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{i}\|f\|_{2}, l \leq\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1
$$

Note that if $b \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$, then for any $t>0, b_{t}(x)=b(t x) \in \operatorname{BMO}\left(\mathbb{R}^{n}\right)$ and $\left\|b_{t}\right\|_{\operatorname{BMO}\left(\mathbb{R}^{n}\right)}=\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}$. By dilation-invariance,

$$
\begin{equation*}
\left\|T_{j ; b, i}^{l} f\right\|_{2} \leq C \log ^{i}\left(\frac{1}{A}\right)\left(A 2^{l}\right)^{\nu}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{i}\|f\|_{2}, l \leq\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1 \tag{18}
\end{equation*}
$$

On the other hand, since $\left|m_{j}^{l}(\xi)\right| \leq C \min \left\{A 2^{l}, 1\right\} \leq C\left(A 2^{l}\right)^{\nu}$, the Plancherel theorem states that the estimate (18) is also true for $i=0$, that is,

$$
\begin{equation*}
\left\|T_{j}^{l} f\right\|_{2} \leq C\left(A 2^{l}\right)^{\nu}\|f\|_{2} . \tag{19}
\end{equation*}
$$

Observe that for $f, h \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} h(x)\left(T_{j}^{l} S_{l-j}\right)_{b, m} f(x) d x=\sum_{i=0}^{m} C_{m}^{i} \int_{\mathbb{R}^{n}} h(x) T_{j ; b, i}^{l}\left(S_{l-j ; b, m-i} f\right)(x) d x
$$

It follows from the estimates (18), (19) and Lemma 1 that

$$
\begin{aligned}
& \left\|\left(\sum_{j \in \mathbb{Z}}\left|\left(T_{j}^{l} S_{l-j}\right)_{b, m} f\right|^{2}\right)^{1 / 2}\right\|_{2}^{2} \\
\leq & C\left(A 2^{l}\right)^{2 \nu} \log ^{2 k}\left(\frac{1}{A}\right) \sum_{i=0}^{m}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{2 i} \sum_{j \in \mathbb{Z}}\left\|S_{l-j ; b, m-i} f\right\|_{2}^{2} \\
\leq & C\left(A 2^{l}\right)^{2 \nu} \log ^{2 k}\left(\frac{1}{A}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{2 m}\|f\|_{2}^{2}, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

This via the estimate (17) in turn implies

$$
\left\|U_{l} f\right\|_{2} \leq C\left(A 2^{l}\right)^{\nu} \log ^{k}\left(\frac{1}{A}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}, \quad l \leq\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1
$$

and

$$
\begin{aligned}
\sum_{l \leq\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1}\left\|U_{l} f\right\|_{2} & \leq C \log ^{k}\left(\frac{1}{A}\right) A^{(1-\log 2 / 2) \nu}\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2} \\
& \leq C \log ^{-\alpha \nu+k+1}\left(\frac{1}{A}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}
\end{aligned}
$$

Now we consider $\sum_{l>\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1}\left\|U_{l} f\right\|_{2}$. Again by Lemma 2 and (15), we have

$$
\left\|U_{l} f\right\|_{2} \leq C \log ^{-\alpha \nu+k}\left(2+2^{l}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}, l>\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1
$$

Recall that $\alpha \nu>k+1$. Therefore,

$$
\sum_{l>\left[\log \left(\frac{1}{\sqrt{A}}\right)\right]+1}\left\|U_{l} f\right\|_{2} \leq C \log ^{-\alpha \nu+k+1}\left(\frac{1}{A}\right)\|b\|_{\mathrm{BMO}\left(\mathbb{R}^{n}\right)}^{k}\|f\|_{2}
$$

This completes the proof of Theorem 1.

Proof of Theorem 2. Set

$$
K_{j}(x)=\frac{\Omega(x)}{|x|^{n}} \chi_{\left\{2^{j} \leq|x|<2^{j+1}\right\}}(x)
$$

By the integrablity of Ω, it is easy to verify that K_{j} satisfies the estimate (3). On the other hand, Grafakos and Stefanov [6] proved that if Ω satisfies (5), then K_{j} satisfies the estimate (4) for $A=1 / 2$. Theorem 2 follows easily from Theorem 1.

Proof of Theorem 3. At first, we claim that if $\int_{S^{n-1}}\left|\Omega\left(x^{\prime}\right)\right| \log ^{\alpha}(2+$ $\left.\left|\Omega\left(x^{\prime}\right)\right|\right) d x^{\prime}<\infty$, then for each positive integer l, there exists Ω_{l} on S^{n-1} such that $\Omega_{l} \in L^{\infty}\left(S^{n-1}\right)$, and

$$
\left\|\Omega_{l}\right\|_{L^{\infty}\left(S^{n-1}\right)} \leq C 2^{l},\left\|\Omega-\Omega_{l}\right\|_{L^{1}\left(S^{n-1}\right)} \leq C l^{-\alpha}
$$

In fact, for given Ω as above, set $E_{0}=\left\{x^{\prime} \in S^{n-1}:\left|\Omega\left(x^{\prime}\right)\right| \leq 2\right\}$, and $E_{d}=\left\{x^{\prime} \in S^{n-1}: 2^{d}<\left|\Omega\left(x^{\prime}\right)\right| \leq 2^{d+1}\right\}$ for $d \geq 1$. Denote by Ω_{d} the restriction of Ω on $E_{d}(d \geq 0)$. For positive integer l, let

$$
\Omega_{l}\left(x^{\prime}\right)=\sum_{d=0}^{l-1} \Omega_{d}\left(x^{\prime}\right)
$$

It is easy to show that

$$
\begin{aligned}
\left\|\Omega_{l}-\Omega\right\|_{L^{1}\left(S^{n-1}\right)} & \leq \sum_{d \geq l}\left\|\Omega_{d}\right\|_{L^{1}\left(S^{n-1}\right)} \\
& \leq C \sum_{d \geq l} 2^{d}\left|E_{d}\right| \leq C l^{-\alpha} \sum_{d \geq l} d^{\alpha} 2^{d}\left|E_{d}\right| \leq C l^{-\alpha}
\end{aligned}
$$

Let l be a positive integer which will be chosen later. For each fixed $j \in \mathbb{Z}$, set

$$
K_{j}^{l}(x)=h(x) \frac{\Omega_{l}(x)}{|x|^{n}} \chi_{\left\{2^{j} \leq|x|<2^{j+1}\right\}}(x)
$$

where Ω_{l} be the function on S^{n-1} such that $\left\|\Omega_{l}\right\|_{L^{\infty}\left(S^{n-1}\right)} \leq 2^{l}$ and $\| \Omega_{l}-$ $\Omega \|_{L^{1}\left(S^{n-1}\right)} \leq l^{-\alpha}$. Let $\widetilde{s}=\max \left\{2, s^{\prime}\right\}$. We will use a preliminary Fourier transform estimate for K_{j}^{l}, that is, for for each $0<\gamma<1$, there exists a positive constant $C=C(n, \gamma)$ such that

$$
\begin{equation*}
\left|\widehat{K_{j}^{l}}(\xi)\right| \leq C\left\|\Omega_{l}\right\|_{\infty}\left|2^{j} \xi\right|^{-\gamma / \tilde{s}} \tag{20}
\end{equation*}
$$

In fact, if $s>2$, then

$$
\sup _{R>0} \int_{R}^{2 R}|h(r)|^{2} \frac{d r}{r}<\infty
$$

and the estimate (20) is an easy corollary of the familiar Fourier transform estimate due to Duoandikoetxea and Rubio de Francia (see [5, page 551]). On the other hand, if $s<2$, set

$$
I_{r}^{l}(\xi)=\int_{S^{n-1}} e^{-2 \pi i r \xi \theta} \Omega_{l}(\theta) d \theta
$$

Invoking the Hölder inequality and the fact that $\left\|I_{r}^{l}\right\|_{\infty} \leq C\left\|\Omega_{l}\right\|_{\infty}$, we get that

$$
\begin{aligned}
\left|\widehat{K_{j}^{l}}(\xi)\right| & \leq\left(\int_{2^{j}}^{2^{j+1}}|h(r)|^{s} \frac{d r}{r}\right)^{1 / s}\left(\int_{2^{j}}^{2^{j+1}}\left|I_{r}^{l}(\xi)\right|^{\prime^{\prime}} \frac{d r}{r}\right)^{1 / s^{\prime}} \\
& \leq C\left\|\Omega_{l}\right\|_{\infty}^{1-2 / s^{\prime}}\left(\int_{2^{j}}^{2^{j+1}}\left|I_{r}^{l}(\xi)\right|^{2} \frac{d r}{r}\right)^{1 / s^{\prime}} \\
& \leq C\left\|\Omega_{l}\right\|_{\infty}\left|2^{j} \xi\right|^{-\gamma / s^{\prime}}
\end{aligned}
$$

where in the last inequality, we again employed the Fourier transform estimate due to Duoandikoetxea and Rubio de Francia.

We can now conclude the proof of Theorem 3. Let

$$
K_{j}(x)=h(x) \frac{\Omega(x)}{|x|^{n}} \chi_{\left\{2^{j} \leq|x|<2^{j+1}\right\}}(x)
$$

Obviously, K_{j} satisfies (3), and by the vanishing moment of Ω,

$$
\left|\widehat{K_{j}}(\xi)\right| \leq C\left|2^{j} \xi\right| .
$$

For each $\xi \in \mathbb{R}^{n}$ such that $\left|2^{j} \xi\right|>2$, let l be the positive integer such that $2^{l}<\left|2^{j} \xi\right|^{\gamma /(2 \tilde{s})} \leq 2^{l+1}$. We finally obtain

$$
\begin{aligned}
\left|\widehat{K_{j}}(\xi)\right| & \leq\left|\widehat{K_{j}^{l}}(\xi)\right|+\left\|\Omega-\Omega_{l}\right\|_{L^{1}\left(S^{n-1}\right)} \\
& \leq\left|2^{j} \xi\right|^{-\gamma / \tilde{s}}\left\|\Omega_{l}\right\|_{L^{\infty}\left(S^{n-1}\right)}+\left\|\Omega-\Omega_{l}\right\|_{L^{1}\left(S^{n-1}\right)} \\
& \leq C\left|2^{j} \xi\right|^{-\gamma /(2 \tilde{s})}+C \log ^{-\alpha}\left(\left|2^{j} \xi\right|\right) \leq C \log ^{-\alpha}\left(\left|2^{j} \xi\right|\right),\left|2^{j} \xi\right|>2 .
\end{aligned}
$$

Combining the estimates above, we see that K_{j} satisfies (4) for $A=1 / 2$. This via Theorem 1 establishes Theorem 3.

Acknowledgements. The author would like to thank the referee for some valuable suggestions and corrections.

References

[1] J. Alvarez, R. Bagby, D. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195-209.
[2] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variable, Ann. of Math., 103 (1976), 2611-635.
[3] R. Coifman and Y. Meyer, Au déla des opérateurs pseudo-différentiles, Astérisque, 57 (1978), 1-185.
[4] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc., 336 (1993), 869-880.
[5] J. Duoandikoetxea and J. L. Rubio de Rrancia, Maximal and singular integrals via Fourier transform estimates, Invent. Math., 84 (1986), 541-561.
[6] L. Grafakos and A. Stefanov, L^{p} bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J., 47 (1998), 455-469.
[7] G. Hu, S. Lu and B. Ma, The commutators of convolution operators (in Chinese), Acta Math. Sinica, 42 (1999), 359-368.
[8] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163-185.
[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, New Jersey, 1993.

Department of Applied Mathematics University of Information Engineering
P. O. Box 1001-747, Zhengzhou 450002

People's Republic of China
huguoen@371.net

