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Abstract. We give two types of 3-dimensional CR-submanifolds of the 6-
dimensional sphere. First we study whether there exists a 3-dimensinal CR-
submanifold which is obtained as an orbit of a 3-dimensional simple Lie sub-
group of G2. There exists a unique (up to G2) 3-dimensional CR-submanifold
which is obtained as an orbit of reducible representations of SU(2) on R

7.
As orbits of the subgroup which corresponds to the irreducible representa-
tion of SU(2) on R

7, we obtained 2-parameter family of 3-dimensional CR-
submanifolds. Next we give a generalization of the example which was obtained
by K. Sekigawa.

Introduction

Let (M,J, 〈, 〉) be an almost Hermitian manifold. For a submanifold N

of M , we put Hx = TxN ∩ J(TxN) (x ∈ N) and denote by H⊥
x the or-

thogonal complement of Hx in TxN . If the dimension of Hx is constant and

J(H⊥
x ) ⊂ T⊥

x N for any x ∈ N , the submanifold N is called a CR submani-

fold. Especially if Hx = TxN , the submanifold N is said to be a holomorphic

(or invariant) submanifold and if dim(Hx) = 0 and J(TxN) ⊂ T⊥
x N for any

x ∈ N , the submanifold N is said to be a totally real submanifold.

It is well-known that the 6-dimensional sphere S6 admits an almost

complex structure. On the existence of holomorphic or totally real sub-

manifold of S6, many results are obtained. A. Gray proved that there does

not exist any 4-dimensional holomorphic submanifold ([7]) and R. Bryant

proved that there exist infinitely many 2-dimensional holomorphic subman-

ifolds ([1]). It was proved by Ejiri that any 3-dimensional totally real sub-
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maifold of S6 is a minimal submanifold ([4]). He also proved that some tubes

in the direction of the first and the second normal bundle of holomorphic

curves are totally real submanifolds of S6 ([5]). The second author classified

3-dimensional homogeneous minimal submanifolds of S6 and determined all

3-dimensional homogeneous totally real submanifolds of S6 ([11]).

Though there are many results on the existence of holomorphic sub-

manifolds and totally real submanifolds of S6, only one example is known

about the existence of CR submanifold of S6 ([13]).

The aim of this paper is to give many 3-dimensional CR submanifolds of

S6 with dimR H = 2. Second author proved that a 3-dimensional subspace

V in C3 satisfies dimR(V ∩ J(V )) = 2 if and only if ω(V ) = 0, where J

is the complex structure and ω is the Laglangean 3-form. The fact is also

used in this paper.

§1. Preliminaries

1.1. Cayley algebra

Let H be the skew field of all quaternions. The Cayley algebra C over

R is C = H ⊕ H with the following multiplication;

(q, r) · (s, t) = (qs− tr, tq + rs), q, r, s, t ∈ H

where “ ” means the conjugation in H. We define a conjugation in C by

(q, r) = (q,−r), q, r ∈ H, and an inner product 〈, 〉 by

〈x, y〉 = (x · y + y · x)/2, x, y ∈ C.

We put

C0 = {x ∈ C|x+ x = 0}.
The Cayley algebra C is neither commutative nor associative. But we have

the following

(1) If x, y ∈ C0, then x · y = −y · x.

(2) For any x, y, z ∈ C,

x · (x · y) = (x · x) · y, 〈x · y, x · z〉 = 〈x, x〉 〈y, z〉 .

(3) If x, y, z ∈ C are mutually orthogonal unit vectors,

x · (y · z) = y · (z · x) = z · (x · y).
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The unit sphere S6 ⊂ C0 centered at the origin has an almost complex

structure J defined by

Jp(X) = p ·X p ∈ S6, X ∈ TpS
6.

We use the canonical orthonormal basis e0 = (1, 0), e1 = (i, 0), e2 =

(j, 0), e3 = (k, 0), e4 = (0, 1), e5 = (0, i), e6 = (0, j), e7 = (0, k) of the

Cayely algebra, where 1, i, j, k is the standard orthonormal basis of H. The

vector e0 is the unit element of C and the product ei · ej is given in the

following table;

i\j 1 2 3 4 5 6 7

1 −e0 e3 −e2 e5 −e4 −e7 e6
2 −e3 −e0 e1 e6 e7 −e4 −e5
3 e2 −e1 −e0 e7 −e6 e5 −e4
4 −e5 −e6 −e7 −e0 e1 e2 e3
5 e4 −e7 e6 −e1 −e0 −e3 e2
6 e7 e4 −e5 −e2 e3 −e0 −e1
7 −e6 e5 e4 −e3 −e2 e1 −e0

1.2. Exceptional simple Lie group G2

It is well-known that the group of all automorphisms of C is a compact

connected simple Lie group of type g2 ([6]), which we denote by G2. The

group G2 leaves the vector e0 and the subspace C0 =
∑7

i=1 Rei invariant.

Furthermore G2 leaves the inner product 〈, 〉 invariant. If we identify C0

with the set of all 7-dimensional column vectors in a natural manner, then

G2 is a subgroup of SO(7).

Lemma 1. For a pair of mutually orthogonal unit vectors a4, a1 in C0

put a5 = a1 ·a4. Take a unit vector a2, which is perpendicular to a4, a1 and

a5. If we put a3 = a1 · a2, a6 = a2 · a4 and a7 = a3 · a4 then the matrix

g = ( a1, a2, a3, a4, a5, a6, a7 ) ∈ SO(7)

is an element of G2 with g · e4 = a4.

For the proof of Lemma 1, we refer to [8].
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Let Gij (1 ≤ i 6= j ≤ 7) be the skew symmetric transformation on C0

defined by

Gij(ek) =





ei, if k = j,

−ej , if k = i,

0, otherwise.

The Lie algebra g2 of G2 is spanned by the following vectors in the Lie

algebra so(7) of SO(7);




aG23 + bG45 + cG76,

aG31 + bG46 + cG57,

aG12 + bG47 + cG65,

aG51 + bG73 + cG62,

aG14 + bG72 + cG36,

aG17 + bG24 + cG53,

aG61 + bG34 + cG25,

where a, b, c are real numbers with a+ b+ c = 0.

1.3. A criterion for a CR subspace

Let J be the standard complex structure on C3 with the standard

Hermitian metric. Take an orthonormal basis e1, e2, e3, e4 = J(e1), e5 =

J(e2), e6 = J(e3) of C3. We denote by ω1, · · · , ω6 the orthonormal coframe

on C3 dual to e1, · · · , e6. Put

ω = (ω1 +
√
−1ω4) ∧ (ω2 +

√
−1ω5) ∧ (ω3 +

√
−1ω6).

Remember that ω depends on the choise of the basis e1, · · · , e6. For an

element g ∈ U(3) we have

g∗ω = det(g)ω.

Proposition 2. A 3-dimensional real subspace V of C3 satisfies

dimR(V ∩ J(V )) = 2 if and only if ω(V ) = 0.

If a 3-dimensional real subspace V of C3 satisfies dimR(V ∩ J(V )) = 2

then it also satisfies J
(
(V ∩ JV )⊥ ∩ V

)
⊂ V ⊥. For a 3-dimensional CR

submanifold of a 6-dimensional almost complex manifold which is not a

totally real submanifold we have dimR(TxN ∩ J(TxN)) = 2. Thus we have

the following

Corollary 3. Let M be a 6-dimensional almost complex manifold. A

3-dimensional submanifold N of M is a CR submanifold with dimH = 2 if

and only if ω(TxN) = 0 for any x ∈ N .
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§2. Orbits of TDS in G2

In this section, we study 3-dimensional CR submanifolds which are

orbits of some 3-dimensional simple subgroup (abbreviated as TDS) of G2.

2.1. Classification of TDS in G2

Let g be a compact simple Lie algebra and t be a maximal abelian

subalgebra of g. Let u be a simple 3-dimensional subalgebra of g. Take a

basis X1, X2, X3 of u with

[X1,X2] = 2X3, [X2,X3] = 2X1, [X3,X1] = 2X2(1)

and put 



H =
√
−1X1,

X+ = (1/
√

2)(X2 +
√
−1X3),

X− = (1/
√

2)(−X2 +
√
−1X3).

The bracket products of the basis H, X+, X− of uC are

[H,X+] = 2X+, [H,X−] = −2X−, [X+,X−] = H.(2)

We may assume that H is contained in
√
−1t. Hence α(H) is a real

number for every root α of gC with respect to tC. Furthermore α(H) = 0, 1

or 2 if α is a simple root ([3, p.166]). The weighted Dynkin diagram with

weight α(H) added to each vertex α of the Dynkin diagram of gC is called

the characteristic diagram of u. Let u and u′ be 3-dimensional simple Lie

subalgebras of g. Then u and u′ are mutually conjugate in g if and only if

uC and u′C have the same characteristic diagram.

Mal’cev [10] classified the 3-dimensional complex simple subalgebras of

gC
2 . From his classification, g2 has 4 types of 3-dimensional simple subalge-

bras.

Type I d QQ
��

d

1 0
Type II d QQ

��
d

0 1

Type III d QQ
��

d

2 0
Type IV d QQ

��
d

2 2

We shall study 3 dimensional homogeneous CR submanifolds of S6

which are orbits of 3 dimensional simple Lie subgroup of G2. We denote

by ωi the orthogonal coframes on C0 dual to ei. We also denote by ωi the
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restriction of ωi to S6. Since Je4
(e1) = −e5, Je4

(e2) = −e6 and Je4
(e3) =

−e7, we have

ω|e4
= (ω1 −

√
−1ω5) ∧ (ω2 −

√
−1ω6) ∧ (ω3 −

√
−1ω7).

2.2. Orbit of the TDS of type I

A basis of the subalgebra with (1) corresponding to the characteristic

diagram of type I is as follows;




X1 = −G45 +G76,

X2 = −G46 +G57,

X3 = −G47 +G65.

We denote by U1 the Lie subgroup of G2 generated by the subalgebra. The

subgroup U1 is isomorphic to Sp(1) and acts on C0 as follows;

q · (x, y) = (x, yq), q ∈ Sp(1).

In this case, Re1, Re2, Re3 and
∑7

j=4 Rej are invariant irreducible

subspaces so that each orbit is a small sphere or a great sphere.

2.3. Orbit of the TDS of type II

A basis satisfying (1) of the subalgebra corresponding to the character-

istic diagram of type II is as follows;




X1 = −2G23 +G45 +G76,

X2 = −2G31 +G46 +G57,

X3 = −2G12 +G47 +G65.

We denote by U2 the Lie subgroup of G2 generated by the subalgebra. The

subgroup U2 is isomorphic to Sp(1) and acts on C0 as follows;

q · (x, y) = (qxq, yq), q ∈ Sp(1).

Theorem 4. Let N be the orbit of U2 through the point p0 = (1/3)e2+

(2
√

2/3)e4. Any 3 dimensional CR submanifold of S6, which is an orbit of

U2 in S6, is congruent to N under the action of G2 on S6.

Proof. Take a point p on S6 and consider the orbit M = U2 · p of U2

through p. Since the action of Sp(1) on S3 ⊂ H by y → yq (q ∈ Sp(1)) is

transitive, we may assume that p is of the form p =
∑4

i=1 xiei. Put

gt = exp(t(X3 − (G47 −G65))) = exp(−2t(G12 −G65))
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and consider the one parameter subgroup Z = {gt : t ∈ R}. Since G47−G65

commutes with X1, X2 and X3 we have

U2 · gt · p = gt ·M.

Namely the orbit M is congruent to the orbit through p′ =
∑4

i=2 xiei. If

x4 = 0 then we have dim(M) = 2. Thus we assume x4 6= 0.

Put a4 = p′, a1 = e6 and a5 = a1 · a4. The vector a2 = c(x4e1 + x2e7)

(c = 1/
√
x2

2 + x2
4) is orthogonal to a4, a1 and a5. Thus by Lemma 1, the

matrix

g =




0 0 0 0 0 1 0

cx4 0 0 0 0 0 cx2

−cx2 0 0 0 0 0 cx4

0 x2 x3 x4 0 0 0

0 −x4 0 x2 −x3 0 0

0 −cx3x4 0 cx2x3 1/c 0 0

0 cx2x3 −1/c cx3x4 0 0 0




is an element of G2 with g · p′ = e4.

Substitute

v1 = g∗(X1(p
′)) = (3x3x4)e5 + cx4(3x

2
3 − 1)e6 − 2cx2e7,

v2 = g∗(X2(p
′)) = −x4e1 + (2cx3x4)e2 − (2cx2x3)e3

v3 = g∗(X3(p
′)) = −3cx2x4e2 + c(2x2

2 − x2
4)e3,

into ω|e4
, we have

ω|e4
(v1, v2, v3) =

√
−1c2x2

4(8x
2
2 + x2

4(9x
2
3 − 1)).

Thus the orbit M = U2(p
′) through the point p′ = x2e2 + x3e3 + x4e4 is a

3-dimensional CR submanifold of S6 if and only if




x4 6= 0,

x2
2 + x2

3 + x2
4 = 1,

8x2
2 + x2

4(9x
2
3 − 1) = 0.

The solution of the above equations is as follows;

x2
2 + x2

3 = 1/9, x2
4 = 8/9.(3)

Every orbit through a point which satisfies (3) is congruent to N by

exp(t(G23 −G76)) ∈ G2 for some t ∈ R.
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2.4. Orbit of the TDS of type III

A basis satisfying (1) of the subalgebra corresponding to the character-

istic diagram of type III is as follows;




X1 = −2G21 − 2G65,

X2 = −2G32 − 2G76,

X3 = −2G31 − 2G75.

We denote by U3 the Lie subgroup of G2 generated by the subalgebra. The

subgroup U3 is isomorphic to SO(3) and the covering group Sp(1) of U3

acts on C0 as follows;

q · (x, y) = (qxq, qyq), q ∈ Sp(1).

Theorem 5. There does not exist any 3 dimensional CR submanifold

of S6 which is an orbit of the subgroup U3.

Proof. Take a point p on S6 and consider the orbit M = U3 · p of

U3 through p. Since the action of Sp(1) on S2 by x → qxq (q ∈ Sp(1)) is

transitive, we may assume that p is of the form p = x1e1+x4e4+x5e5+x6e6.

Put a4 = p, a1 = e7 and a5 = a1 · a4. If x1 = 0 then we have dim(M) = 2.

Thus we assume x1 6= 0. The vector a2 = c(x4e1 + x6e3 − x1e4) (c =

1/
√
x2

1 + x2
4 + x2

6) is orthogonal to a4, a1 and a5. Thus by Lemma 1, the

matrix

g =




0 0 0 0 0 0 1

cx4 0 cx6 −cx1 0 0 0

0 0 cx1 cx6 0 −cx4 0

x1 0 0 x4 x5 x6 0

x6 −x5 −x4 0 0 −x1 0

−cx1x5 0 0 −cx4x5 1/c −cx5x6 0

cx5x6 1/c −cx4x5 0 0 −cx1x5 0




is an element of G2 with g · p = e4. Substitute

v1 = g∗(X1(p)) = (2x6, 0, 0, 0, 0, 0, 0),

v2 = g∗(X2(p)) = (−2x5,−2cx1x6,−2cx2
1, 0, 2x1x4, 0, 2cx1x4x5),

v3 = g∗(X3(p)) = (0, 0,−2cx4x5, 0,−4x1x5,−2cx6, 2cx1(1 − 2x2
5)),

into ω|e4
, we have

ω|e4
(v1, v2, v3) = 16c2x2

1x
2
6

√
−1(1 − x2

5).
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If we assume ω(v1, v2, v3) = 0, we have x1 = 0, x6 = 0 or x5 = ±1. In any

case, the dimension of the orbit is equal to 2. Thus there does not exist any

3 dimensional orbit which is a CR submanifold of S6.

2.5. Orbit of the TDS of type IV

A basis satisfying (1) of the subalgebra corresponding to the character-

istic diagram of type IV is as follows;





X1 = 4G32 + 2G54 + 6G76,

X2 =
√

6(G37 +G26 − 2G15) +
√

10(G42 −G35),

X3 =
√

6(G63 +G27 − 2G41) +
√

10(G25 −G34).

We denote by U4 the Lie subgroup of G2 generated by the subalgebra. The

subgroup U4 is isomorphic to SO(3).

From Lemma 1 in [2], the linear subspace ((RX1 + RX2 + RX3)e7)
⊥

meets every orbit of the action of U4 on C0. So the great sphere S3 =

{x1e1 + x4e4 + x5e5 + x7e7 : x1, x4, x5, x7 ∈ R} ∩ S6 meets every orbit of

the action of U4 on S6.

Theorem 6. If the dimension of the orbit N = U4 · p through a point

p of the great sphere

{x1e1 + x4e4 + x5e5 + x7e7 : x1, x4, x5, x7 ∈ R} ∩ S6

is 3, then it is a CR-submanifold if and only if f(x1, x4, x5, x7) = 0 where

f(x1, x4, x5, x7) = −5x4
4 − 10x2

4x
2
5 − 5x4

5 + 42x2
4x

2
7 + 72x2

1x
2
7 + 42x2

5x
2
7

−9x4
7 − 24

√
15x2

4x5x7 + 8
√

15x3
5x7.

Proof. Put a4 = x1e1 + x4e4 + x5e5 + x7e7, a1 = e2 and a2 = c(x5e4 −
x4e5 −x7e6) (c = 1/

√
x2

5 + x2
4 + x2

7). From Lemma 1, we obtain an element

g =




0 0 0 x1 0 1/c 0

1 0 0 0 0 0 0

0 0 0 0 −x1 0 1/c

0 cx5 cx7 x4 0 −cx1x4 0

0 −cx4 0 x5 −x7 cx1x5 −cx1x7

0 −cx7 cx5 0 x4 0 cx1x4

0 0 −cx4 x7 x5 −cx1x7 cx1x5



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of G2 with g · e4 = a4. The vectors vi = g−1
∗ (Xi(p)) are given as follows;

v1 = (0, 2c(−x2
4 − x2

5 + 3x2
7),−8cx5x7, 0,−8x4x7, 0,−8cx1x4x7),

v2 = (−
√

10x4,−2
√

6cx1x4, 0, 0,
√

10x1x5 − 3
√

6x1x7,

−2
√

6cx5,−2
√

6cx2
1x7 + (1/c)(−

√
10x5 +

√
6x7)),

v3 = (
√

10x5 +
√

6x7,−2
√

6cx1x5,−2
√

6cx1x7, 0,
√

10x1x4,

2
√

6cx4,−
√

10(1/c)x4).

Using the Mathematica we obtained the following

ω(v1, v2, v3)

= 24
√

15x1x
3
4x7 − 24

√
15c2x1x

3
4x7 + 24

√
15c2x3

1x
3
4x7 − 40

√
15x1x4x

2
5x7

+40
√

15c2x1x4x
2
5x7 − 40

√
15c2x3

1x4x
2
5x7 + 96x1x4x5x

2
7 − 96c2x1x4x5x

2
7

+96c2x3
1x4x5x

2
7 + 24

√
15x1x4x

3
7 − 24

√
15c2x1x4x

3
7 + 24

√
15c2x3

1x4x
3
7

+
√
−1 (−20x4

4 − 40x2
4x

2
5 − 20x4

5 − 64
√

15x2
4x5x7 − 32

√
15c2x2

4x5x7

+32
√

15c2x2
1x

2
4x5x7 + 32

√
15c2x3

5x7 − 32
√

15c2x2
1x

3
5x7 + 168x2

4x
2
7

+288c2x2
1x

2
4x

2
7 + 72x2

5x
2
7 + 96c2x2

5x
2
7 + 192c2x2

1x
2
5x

2
7 − 36x4

7 + 288c2x2
1x

4
7).

By a tedious calculation, we verified that the real part of the above vanishes

and the imaginary part of the above reduces to f(x1, x4, x5, x7).

Remark 7. Put g(x1, x4, x5, x7) = x2
1 + x2

4 + x2
5 + x2

7 − 1. It is eas-

ily verified that f(x1, x4, x5, x7) = g(x1, x4, x5, x7) = 0 hold at the point

(x1, x4, x5, x7) = (±1/3,0, 0,±2
√

2/3) and the dimension of the orbit

through p = x1e1 + x4e4 + x5e5 + x7e7 is 3. Furthermore, since the

Jacobian ∂(f, g)/∂(x1, x7) is regular at the point (x1, x4, x5, x7), there exist

a 2-parameter family of 3-dimensional CR submanifolds.

§3. Generalization of Sekigawa’s example

3.1. Sekigawa’s example and its generalization

In [13], Sekigawa obtained an example of 3-dimensional CR submanifold

of S6. His example was given as the image of the mapping of S2 × S1 into

S6;

Ψ(y, t) = Ψ((y2, y4, y6), e
√
−1t)

= (y2 cos t)e2 − (y2 sin t)e3 + (y4 cos 2t)e4 + (y4 sin 2t)e5
+(y6 cos t)e6 + (y6 sin t)e7.



CR SUBMANIFOLDS IN S
6 181

where (y2, y4, y6) ∈ S2 and e
√
−1t ∈ S1.

For a real triple p = (p1, p2, p3) with p1 + p2 + p3 = 0 and p1 p2 p3 6= 0,

define a mapping ψp of S2 ×R to S5 ⊂ S6 as follows;

ψp(x1, x2, x3, t)

= exp(t(p1G51 + p2G62 + p3G73))(x1e1 + x2e2 + x3e3)

= x1(cos(tp1)e1 + sin(tp1)e5) + x2(cos(tp2)e2 + sin(tp2)e6)

+x3(cos(tp3)e3 + sin(tp3)e7),

where (x1)
2 + (x2)

2 + (x3)
2 = 1 and t ∈ R. We use another expression;

ψp(x1, x2, x3, t) = (x1, x2, x3)Rp(t),

where Rp(t) is the C-valued (3, 1)-matrix

Rp(t) =




cos(tp1)e1 + sin(tp1)e5
cos(tp2)e2 + sin(tp2)e6
cos(tp3)e3 + sin(tp3)e7


 .

It is easily seen that there exists an element g ∈ G2 with Ψ = g ◦ψ(2,−1,−1).

The tangent space dψ(p1,p2,p3)(TxS
2 ⊕ TtR) is generated by

dψp((v, 0)) = (v1, v2, v3)Rp(t),

dψp((0,Dt)) = (x1p1, x2p2, x3p3)R
′
p(t),

where v = (v1, v2, v3) is a tangent vector of S2, Dt = ∂/∂t is a tangent

vector of R and

R′
p(t) =




− sin(tp1)e1 + cos(tp1)e5
− sin(tp2)e2 + cos(tp2)e6
− sin(tp3)e3 + cos(tp3)e7


 .

We can easily verify that
{

〈XRp(t), Y Rp(t)〉 =
〈
XR′

p(t), Y R
′
p(t)
〉

= 〈X,Y 〉 ,〈
XRp(t), Y R

′
p(t)
〉

= 0.
(4)

hold for any X, Y ∈ R3. By a direct calculation, we have the following

Lemma 8. The induced metric g̃ on S2×R is a warped product metric.

Precisely

g̃ = π1
∗g0 +

(
3∑

i=1

(xipi)
2

)
π2

∗dt2

where π1 : S2 × R → S2 and π2 : S2 × R → R are natural projections and

g0 is the canonical Riemannian metric on S2.
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From (4), we have the following orthogonal direct sum decomposition

C0 = V ⊕ V ′ ⊕ Re4

where we put

V = {XRp(t) : X ∈ R3}, V ′ = {XR′
p(t) : X ∈ R3}.

Theorem 9. Let p = (p1, p2, p3) be a real triple with p1 + p2 + p3 = 0

and p1 p2 p3 6= 0. The image of the mapping

ψp(x1, x2, x3, t) : S2 × R → S5 ⊂ S6

is a 3-dimensional CR-submanifolds of S6.

Proof. Let x = (x1, x2, x3) be an element of S2 and v = (v1, v2, v3) be

a tangent vector of S2 at x. By direct calculation, we have

J (dψp((v, 0)))

= (v3x2 − v2x3) cos(p1t)e1 + (−v3x1 + v1x3) cos(p2t)e2
+(v2x1 − v1x2) cos(p3t)e3 − (−v3x2 + v2x3) sin(p1t)e5
−(v3x1 − v1x3) sin(p2t)e6 − (−v2x1 + v1x2) sin(p3t)e7

= (x× v)Rp(t).

Thus we have dψp(TxS
2 ⊕ {0}) is a J-invariant subspace. Since the image

of the mapping ψp is 3-dimensional, we obtain the theorem.

For a non zero constant k we can easily see

ψ(kp1,kp2,kp3)(x, t) = ψ(p1,p2,p3)(x, kt).

Thus we may assume that p3 = 1.

Remark 10. (1) If p1/p2 is a rational number, then ψ(p1,p2,p3) is an

immersion but not injective, and its image is a compact manifold.

(2) If p1/p2 is an irrational number, then ψ(p1,p2,p3) is an injective immer-

sion but not an embedding.

(3) Let τ be a permutation of 3 characters and put p′ = τp. There exists

an element g ∈ G2 such that ψp′ = g ◦ ψp.

Next we shall calculate the second fundamental form of the immersion

ψ(p1,p2,p3).
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Lemma 11. For any v,w ∈ TxS
2, Dt ∈ TtR we have

(1) σ(v,w) = 0,

(2) σ(Dt,Dt) = 0,

(3)

σ(v, ξ)

=
1√
f(x)

(
v − 1

2
v(log(f(x)) · x

)

p1(− sin(tp1)e1 + cos(tp1)e5)

p2(− sin(tp2)e2 + cos(tp2)e6)

p3(− sin(tp3)e3 + cos(tp3)e7)




where f(x) =

3∑

i=1

(xipi)
2 and ξ = (1/

√
f(x))Dt.

Proof. (1) is trivial, since the restriction of ψp to S2 × {t} is a totally

geodesic immersion for any t ∈ R.

Let D̃ be the canonical connection of R7. From

D̃Dt

(
dψ(p1,p2,p3)(0,Dt)

)
= −(x1p1

2, x2p2
2, x3p3

2)Rp(t) ∈ V,

and V = Rψ(p, t) ⊕ dψp(TxS
2 ⊕ {0}) we have (2).

For any tangent vector v of S2, we have

D̃v

(
dψ(p1,p2,p3)(0,Dt)

)
= v



p1(− sin(tp1)e1 + cos(tp1)e5)

p2(− sin(tp2)e2 + cos(tp2)e6)

p3(− sin(tp3)e3 + cos(tp3)e7)


 .

Taking the normal component, we get

σ(v, ξ)

=

(
1√
f(x)

){
D̃v

(
dψ(p1,p2,p3)(0,Dt)

)
−
(
v(f(x))

2f(x)

)
dψ(p1,p2,p3)(0,Dt)

}
.

From this proposition, we can calculate the trace and the square of the

length of the second fundamental form.
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Proposition 12.

(1) Each immersion ψ(p1,p2,p3) is a minimal immersion.

(2)

|σ|2 =
2

(∑3
i=1(xipi)2

)2

{( 3∑

i=1

(pi)
2
)
·
( 3∑

i=1

((xipi)
2
)
−
( 3∑

i=1

(xi)
2(pi)

4
)}

Since the scalar curvature τ (= 6 − |σ|2) is not constant, we have the

following

Corollary 13. The induced metric is neither homogeneous nor cyclic

parallel.
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