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Abstract. We give two types of 3-dimensional CR-submanifolds of the 6-
dimensional sphere. First we study whether there exists a 3-dimensinal CR-
submanifold which is obtained as an orbit of a 3-dimensional simple Lie sub-
group of G2. There exists a unique (up to G2) 3-dimensional CR-submanifold
which is obtained as an orbit of reducible representations of SU(2) on R’.
As orbits of the subgroup which corresponds to the irreducible representa-
tion of SU(2) on R”, we obtained 2-parameter family of 3-dimensional CR-
submanifolds. Next we give a generalization of the example which was obtained
by K. Sekigawa.

Introduction

Let (M, J,(,)) be an almost Hermitian manifold. For a submanifold N
of M, we put H, = T,N N J(T,N) (z € N) and denote by H;: the or-
thogonal complement of H, in T, N. If the dimension of H, is constant and
J(HL) € TLN for any x € N, the submanifold N is called a CR submani-
fold. Especially if H, = T, N, the submanifold NV is said to be a holomorphic
(or invariant) submanifold and if dim(H,) = 0 and J(T,N) C T;- N for any
x € N, the submanifold N is said to be a totally real submanifold.

It is well-known that the 6-dimensional sphere S® admits an almost
complex structure. On the existence of holomorphic or totally real sub-
manifold of S®, many results are obtained. A. Gray proved that there does
not exist any 4-dimensional holomorphic submanifold ([7]) and R. Bryant
proved that there exist infinitely many 2-dimensional holomorphic subman-
ifolds ([1]). It was proved by Ejiri that any 3-dimensional totally real sub-
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maifold of S is a minimal submanifold ([4]). He also proved that some tubes
in the direction of the first and the second normal bundle of holomorphic
curves are totally real submanifolds of S% ([5]). The second author classified
3-dimensional homogeneous minimal submanifolds of S and determined all
3-dimensional homogeneous totally real submanifolds of S% ([11]).

Though there are many results on the existence of holomorphic sub-
manifolds and totally real submanifolds of S%, only one example is known
about the existence of CR submanifold of S¢ ([13]).

The aim of this paper is to give many 3-dimensional CR submanifolds of
S6 with dimg H = 2. Second author proved that a 3-dimensional subspace
V in C3 satisfies dimg(V N J(V)) = 2 if and only if w(V) = 0, where J
is the complex structure and w is the Laglangean 3-form. The fact is also
used in this paper.

§1. Preliminaries

1.1. Cayley algebra
Let H be the skew field of all quaternions. The Cayley algebra € over
R is € = H® H with the following multiplication;

(q,r)-(s,t) = (¢s —tr,tq+7135), gq,rs,teH

[{abb)

where means the conjugation in H. We define a conjugation in € by

(g,r) = (q,—7),q,7 € H, and an inner product (,) by

We put
¢y ={z € €|z +7T = 0}.

The Cayley algebra € is neither commutative nor associative. But we have
the following

(1) Ifz,ye &y thenz -y=—y-x.
(2) For any z,y,z € €,

T-(r-y) =@ x)y, (v yz 2=@1){Ys2.
(3) If z,y,z € € are mutually orthogonal unit vectors,

- (y-2)=y (zr2)=2(x-y)
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The unit sphere S® C € centered at the origin has an almost complex
structure J defined by

J(X)=p-X peS® XeT,s.

We use the canonical orthonormal basis eg = (1,0), e; = (4,0), e2 =
(7,0), es = (k,0), eqg = (0,1), es5 = (0,4), eg = (0,7), e = (0,k) of the
Cayely algebra, where 1,1, j, k is the standard orthonormal basis of H. The
vector eg is the unit element of € and the product e; - e; is given in the
following table;

i\Jj 1 2 3 4 ) 6 7
1 —€0 €3 —€9 €5 —€4 | —€7 €6
2 —e3 | —egp el e e7 | —eq | —es
3 es | —e1 | —egp er | —eg es | —eq
4 —es5 | —eg | —e7r | —eg el ) es
5! eqs | —er eg | —e1 | —eg | —es )
6 er eq | —es | —eo es | —eg | —e1
7 —€g €5 €4 —€3 —€9 €1 —€0

1.2. Exceptional simple Lie group G,

It is well-known that the group of all automorphisms of € is a compact
connected simple Lie group of type go ([6]), which we denote by Ga. The
group G leaves the vector eg and the subspace €y = > ., Re; invariant.
Furthermore G leaves the inner product (,) invariant. If we identify &g
with the set of all 7-dimensional column vectors in a natural manner, then

G is a subgroup of SO(7).

LEMMA 1. For a pair of mutually orthogonal unit vectors a4, ay in €y
put a5 = a1 -aq. Take a unit vector as, which is perpendicular to a4, a1 and
as. If we put ag = a1 - az, ag = as - a4 and a7 = as - a4 then the matrix

g = (0,1,@2,@3,@4,0/5,0/6,0/7) € 50(7)
is an element of Go with g-e4 = a4.

For the proof of Lemma 1, we refer to [§].



174 H. HASHIMOTO AND K. MASHIMO

Let Gy (1 < i # j < 7) be the skew symmetric transformation on &
defined by
€, if k= j,
Gij(ek) = —ej, if k= i,
0, otherwise.
The Lie algebra go of G is spanned by the following vectors in the Lie
algebra so(7) of SO(7);

aGaz + bGy5 + cGrg,
aGs1 + bGyg + cGs7,
aG1a + bG 47 + cGgs,
aGs1 + bG73 + cGgo,
aG14 + bG7o + cGsg,
aG17 + bGoy + cGsg,
aGeg1 + bG34 + cGos,

where a, b, ¢ are real numbers with a + b+ ¢ = 0.

1.3. A criterion for a CR subspace

Let J be the standard complex structure on C? with the standard
Hermitian metric. Take an orthonormal basis ey, ez, e3, e4 = J(e1), e5 =
J(ea), eg = J(e3) of C3. We denote by wi, - - -,ws the orthonormal coframe
on C3 dual to ey, -- -, eq. Put

w = (w1 +V—1wy) A (w2 +V—1ws) A (w3 + v—1ws).

Remember that w depends on the choise of the basis e, --,es. For an
element g € U(3) we have

g w = det(g)w.

PROPOSITION 2. A 3-dimensional real subspace V of C3 satisfies
dimg (VN J(V)) =2 if and only if w(V) = 0.

If a 3-dimensional real subspace V of C? satisfies dimg(V N J(V)) = 2
then it also satisfies J ((V N JV)tNV) C V4. For a 3-dimensional CR
submanifold of a 6-dimensional almost complex manifold which is not a
totally real submanifold we have dimg (7, N N J(T,N)) = 2. Thus we have
the following

COROLLARY 3. Let M be a 6-dimensional almost complex manifold. A
3-dimensional submanifold N of M is a CR submanifold with dimH = 2 if
and only if w(T,N) =0 for any z € N.
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§2. Orbits of TDS in G,

In this section, we study 3-dimensional CR submanifolds which are
orbits of some 3-dimensional simple subgroup (abbreviated as TDS) of G,.

2.1. Classification of TDS in Gy
Let g be a compact simple Lie algebra and t be a maximal abelian

subalgebra of g. Let u be a simple 3-dimensional subalgebra of g. Take a
basis X7, Xs, X3 of u with

(1) (X1, Xo] = 2X3, [Xo, X3] = 2X1, [X3,X1] =2X,

and put
P H = \/__1X17
Xy = (1/V2)(Xe+V-1X3),
X_ = (I/V)(—Xa + V-1X3).

The bracket products of the basis H, X, X_ of u€ are
(2) [Hv XJr] = 2X+7 [H) X*] = _2X*7 [XJHX*] = H.

We may assume that H is contained in \/—1t. Hence a(H) is a real
number for every root a of g€ with respect to t€. Furthermore a(H) = 0, 1
or 2 if a is a simple root ([3, p.166]). The weighted Dynkin diagram with
weight a(H) added to each vertex a of the Dynkin diagram of g€ is called
the characteristic diagram of u. Let u and u’ be 3-dimensional simple Lie
subalgebras of g. Then u and v’ are mutually conjugate in g if and only if
uC€ and w'C have the same characteristic diagram.

Mal’cev [10] classified the 3-dimensional complex simple subalgebras of
gQC. From his classification, go has 4 types of 3-dimensional simple subalge-
bras.

1 0 0 1

Type I Qéo Type I Oé@
2 0 2 2
Type Il o=0 Type IV o=0

We shall study 3 dimensional homogeneous CR submanifolds of S°
which are orbits of 3 dimensional simple Lie subgroup of G2. We denote
by w; the orthogonal coframes on € dual to e;. We also denote by w; the
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restriction of w; to S°. Since J.,(e1) = —e5, Je,(e2) = —eg and Jo,(e3) =
—e7, we have

Wie, = (W1 — V—1ws) A (w2 — V—1we) A (w3 — vV—1wr).

2.2. Orbit of the TDS of type I
A basis of the subalgebra with (1) corresponding to the characteristic
diagram of type I is as follows;

X1 = —Gy5 + G,
Xo = —Gy6 + G5,
X3 = —Gu7 + Ges.

We denote by Uy the Lie subgroup of G generated by the subalgebra. The
subgroup Uj is isomorphic to Sp(1) and acts on € as follows;

Q'(:’Uay) :(:’Uayq)a qGSp(l)‘

In this case, Req, Res, Res and 2]7-:4 Re; are invariant irreducible
subspaces so that each orbit is a small sphere or a great sphere.
2.3. Orbit of the TDS of type I1

A basis satisfying (1) of the subalgebra corresponding to the character-
istic diagram of type II is as follows;

X1 = —2G23 + Gy5 + G,
Xo = —2G31 + Gy6 + G5,
X3 = —2G12 + Ga7 + Ges.

We denote by Us the Lie subgroup of G2 generated by the subalgebra. The
subgroup Us is isomorphic to Sp(1) and acts on & as follows;

q-(z,y) = (q2q,yq), q <€ Sp(1).

THEOREM 4. Let N be the orbit of Uy through the point py = (1/3)ea+

(2v/2/3)es. Any 3 dimensional CR submanifold of S, which is an orbit of
U, in S, is congruent to N under the action of Go on SS.

Proof. Take a point p on S® and consider the orbit M = Us - p of Uy
through p. Since the action of Sp(1) on S® C H by y — yg (g € Sp(1)) is
transitive, we may assume that p is of the form p = Z?Zl xz;e;. Put

gt = exp(t(X3 — (G47 — G65))) = eXp(—Qt(Gu — G65))
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and consider the one parameter subgroup Z = {g; : t € R}. Since G47 — Gg5
commutes with X7, X9 and X3 we have

Us-gt-p=gt- M.

Namely the orbit M is congruent to the orbit through p’ = 2?22 xie;. If
x4 = 0 then we have dim(M) = 2. Thus we assume x4 # 0.

Put ay = p/, a1 = eg and a5 = a; - a4. The vector as = c(xge1 + z2€7)
(c = 1/\/x3 + x9) is orthogonal to a4, a; and az. Thus by Lemma 1, the

matrix

0 0 0 0 0 1 0
CT4 0 0 0 0 0 CT2
—cTy 0 0 0 0 0 cxy
g= 0 T T3 T4 0 0 O
0 —X4 0 T —x3 0 O
0 —CT3T4 0 crors 1/c 0 0
0 crors —1/c¢ cxsxy 0 0 O

is an element of Gy with g - p’ = ey.
Substitute

v1 = go(X1(p')) = (3w34)es + caq (323 — 1)eg — 2caqer,
vo = g« (Xo(p')) = —zae1 + (2cx3m4)E0 — (2c073)eE3
v3 = g« (X3(p')) = —3cxamges + c(223 — x3)es,

into w|,,, we have
wl,, (v1,v2,03) = V=1c?2} (823 + a3 (923 — 1)).

Thus the orbit M = Us(p') through the point p’ = z9e5 + z3e3 + 2464 is a
3-dimensional CR submanifold of S% if and only if

T4 7£ 0,
23+ ad 42t =1,
822 + 22(922 — 1) = 0.

The solution of the above equations is as follows;
(3) 22+ 22 =1/9, 23 =8/9.

Every orbit through a point which satisfies (3) is congruent to N by
exp(t(Gag — G7g)) € Go for some t € R. 0
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2.4. Orbit of the TDS of type III
A basis satisfying (1) of the subalgebra corresponding to the character-
istic diagram of type III is as follows;

X1 = —2G2 — 2G5,
Xo = —2G32 — 2Gs,
X3 = —-2G31 — 2Grs.

We denote by Us the Lie subgroup of G2 generated by the subalgebra. The
subgroup Us is isomorphic to SO(3) and the covering group Sp(1) of Us
acts on €y as follows;

q-(z,y) = (¢29,qyq), q <€ Sp(1).

THEOREM 5. There does not exist any 3 dimensional CR submanifold
of S8 which is an orbit of the subgroup Us.

Proof. Take a point p on S® and consider the orbit M = Us - p of
Us through p. Since the action of Sp(1) on S? by x — qzg (¢ € Sp(1)) is
transitive, we may assume that p is of the form p = z1e1+x4e4+x565+x66€6.
Put a4y = p, a1 = e7 and a5 = a; - ag. If 1 = 0 then we have dim(M) = 2.
Thus we assume x; # 0. The vector as = c(xzge; + zges — xr1eq) (¢ =

z? + 23 + x3) is orthogonal to a4, a1 and as. Thus by Lemma 1, the
matrix

0 0 0 0 0 0 1

Ty 0 cxg —cxq 0 0 0

0 0 T cxg 0 —cxy O

g = T 0 0 T4 T5 Tg 0
T —x5 —xIy 0 0 —x1 0

—cx1zs O 0 —cryxy 1/c —cxsae O

crsreg  1/c  —cxyxs 0 0 —cxizs O

is an element of Go with g - p = e4. Substitute

V1 = g*(Xl(p)) - (2$67 Oa 07 Oa 07 Oa 0))
vy = g« (X2(p)) = (—2x5, —2cx 76, —20.%%,0,2%1%4,0,26331%4565)7
v3 = g«(X3(p)) = (0,0, —2cx475,0, —4x1 25, —2CT6, 2021 (1 — 2x§)),

into w|,,, we have

wl,, (v1,v2,v3) = 16223/ —1(1 — 22).
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If we assume w(vy,ve,v3) = 0, we have 1 = 0, z¢ = 0 or 5 = £1. In any
case, the dimension of the orbit is equal to 2. Thus there does not exist any
3 dimensional orbit which is a CR submanifold of S6. []

2.5. Orbit of the TDS of type IV
A basis satisfying (1) of the subalgebra corresponding to the character-
istic diagram of type IV is as follows;

X1 =4G32 + 2G5 + 6Gr,
Xy =6(G37 + Gog — 2G15) + V10(Ga2 — G33),
X3 = V6(Ge3 + Gar — 2G41) + V10(Gas — G34).

We denote by Uy the Lie subgroup of G2 generated by the subalgebra. The
subgroup Uy is isomorphic to SO(3).

From Lemma 1 in [2], the linear subspace ((RX; + RXs2 + RX3)er)*
meets every orbit of the action of Uy on €j. So the great sphere S® =
{x1e1 + 2404 + T5E5 + T7E7 21,74, 75,77 € R} N SO meets every orbit of
the action of Uy on S°.

THEOREM 6. If the dimension of the orbit N = Uy - p through a point
p of the great sphere

{z1€1 + x4e4 + 565 + T7E7 : T, T4, 75,27 € R} N 6
is 3, then it is a CR-submanifold if and only if f(x1,x4,x5,27) = 0 where

f(z1, 24, 5, 27) = —bxf — 102302 — 523 + 422322 + 722222 + 420242
—92% — 241523 w527 + 8V 1baiay.

Proof. Put ay = x1€1 + x4e4 + x5€5 + T7€7, 01 = €2 and ag = c(r5e4 —
zae5 —x7e6) (¢ = 1/+y/22 + 23 + 22). From Lemma 1, we obtain an element

0 0 0 T 0 1/e 0

1 0 0 0 0 0 0

0 0 0 0 —x 0 1/c
g=10 cx5 cTy X4 0 —CT1T4 0

0 —cxy 0 s —IT7 CT1X5  —CT1T7

0 —cxy cxs 0 Ty 0 CT1x4

0 0 —Ccr4y X7 Ty —CT1TT  CT1T5
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of Gy with g - e4 = a4. The vectors v; = g; ' (X;(p)) are given as follows;

vy = (0,2¢(—25 — x2 + 322), —8cxsx7,0, —82427,0, —8cx 1 T47),

vy = (—\/Ex4, —2v6cx124,0,0, V102125 — 3V 63127,
—2V6cxs, —2vV6caiar + (1/¢)(—vV10z5 + V67)),

v3 = (V10x5 + V67, —2V608 125, —2V 602127, 0, V102 24,
26exy, —V10(1/¢)xy).

Using the Mathematica we obtained the following

w(v1,v2,v3)
= 24\/Ex1xix7 — 24\/1—562x1:cix7 + 24\/1—502x:{’xix7 — 40\/ﬁx1x4x§x7
+40\/1—502x1x4x§x7 — 40\/1—562x§x4x§x7 + 96x1x4x5x% — 9662.’E1$C4CC5.’E%
+9602x?x4x5x$ + 24\/1—5$1$4$?7) — 24\/ECQx1x4x§ + 24\/1—56296?:1:496%
+ V=1 (—20z] — 40x322 — 2022 — 64V 1503 w507 — 32V153 0 w527
+32\/1—502$%$i$5$7 + 32\/1—562x§$7 — 32\/ﬁ62x%xgx7 + 1689&:1:%
+288c?wixie? 4+ 722222 + 962 xia? + 192w wa? — 3623 + 288c2xiad).
By a tedious calculation, we verified that the real part of the above vanishes
and the imaginary part of the above reduces to f(z1, 24,5, 27). 0

Remark 7. Put g(x1,24,75,27) = o3 + 25 + 22 + 22 — 1. Tt is eas-
ily verified that f(x1,z4,25,27) = g(x1,24,25,27) = 0 hold at the point
(w1, 24, 5,07) = (£1/3,0,0,42v/2/3) and the dimension of the orbit
through p = x1e1 + z4eq4 + 2565 + x7er is 3. Furthermore, since the
Jacobian J(f, g)/0(x1,x7) is regular at the point (21, x4, x5, 27), there exist
a 2-parameter family of 3-dimensional CR submanifolds.

§3. Generalization of Sekigawa’s example

3.1. Sekigawa’s example and its generalization
In [13], Sekigawa obtained an example of 3-dimensional CR submanifold

of S%. His example was given as the image of the mapping of S? x S! into
S6;

U(y,t) = U((y2,ya,96),€¥ 1)
= (yg cost)es — (y2sint)es + (y4 cos2t)eq + (y4sin2t)es
+(ye cost)eg + (ys sint)er.
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where (y2,94,76) € S? and eVt ¢ 61,

For a real triple p = (p1,p2, p3) with p1 +p2 +p3 = 0 and py p2 p3 # 0,
define a mapping v, of S? x R to S® C S° as follows;

VYp(z1, 72, 23,1)

= exp(t(p1Gs1 + p2Gez + p3Grs))(z1€1 + T2e2 + T3€3)

= x1(cos(tp1)er + sin(tp1)es) + x2(cos(tpz)es + sin(tp2)es)
+x3(cos(tps)es + sin(tps)er),

where (71)? + (22)? + (23)2 = 1 and t € R. We use another expression;

(
Vp(@1, 22, 23, 1) = (21, 22, 73) Rp(t),
where R, (t) is the €-valued (3, 1)-matrix

cos(tp1)er + sin(tpy)es

R,(t) = | cos(tpz)ea + sin(tp2)es

cos(tps)es + sin(tpz)er

It is easily seen that there exists an element g € Go with ¥ = got _1 _1).
The tangent space di(py, p, ps) (T, 5% ® T;R) is generated by

dwp((vv 0)) = (vlvv?vv3)Rp(t)v
dipp((0, Dy)) = (@1p1, Top2, 23p3) Ry (L),
where v = (v1,v2,v3) is a tangent vector of S, D; = 0/0t is a tangent
vector of R and
— sin(tpy)e1 + cos(tp1)es
R, (t) = | —sin(tpz)ez + cos(tpz)es
— sin(tps)es + cos(tps)er
We can easily verify that

(XRy(£),Y Ry(1)) = (XRy(1), Y R)()) = (X.Y),
@) {(XR YR’(t)> 0.

hold for any X, Y € R3. By a direct calculation, we have the following

LEMMA 8. The induced metric § on S?> xR is a warped product metric.
Precisely

3
g=m"go+ <Z($ipi)2> mo*dt?
=1
where w1 : S x R — S? and m : S? x R — R are natural projections and

go 1s the canonical Riemannian metric on S2.
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From (4), we have the following orthogonal direct sum decomposition
C=VaV ®Re
where we put
V={XR,(t): X eR’}, V' ={XR)(t): X € R*}.

THEOREM 9. Let p = (p1,p2,p3) be a real triple with p; + p2 + p3 =0
and p1 p2 ps # 0. The image of the mapping

Yp(z1, 22, 3,1) : S2xR—S°c st
is a 3-dimensional CR-submanifolds of S°.

Proof. Let x = (21,2, 23) be an element of S? and v = (vy,va,v3) be
a tangent vector of S? at x. By direct calculation, we have

T (diy((v, 0))

(vsze — vox3) cos(pit)e; + (—v3zy + v1x3) cos(pat)es
+(vom1 — v122) cos(pst)es — (—v3xa + voxs) sin(pit)es

—(vsx1 — v1x3) sin(pat)eg — (—vaw1 + v1x2) sin(pst)er
= (x x V)Ry(t).

C
C

Thus we have di,(T,S* & {0}) is a J-invariant subspace. Since the image
of the mapping v, is 3-dimensional, we obtain the theorem. b

For a non zero constant k£ we can easily see

¢(kpl,kp2,kp3)(x’ t) = ¢(p1 ,P27P3)(”T’ kt).

Thus we may assume that p3 = 1.

Remark 10. (1) If p1/p2 is a rational number, then 9, ., ) is an
immersion but not injective, and its image is a compact manifold.
(2) If p1/po is an irrational number, then ¥, p, »,) is an injective immer-
sion but not an embedding.
(3) Let 7 be a permutation of 3 characters and put p’ = 7p. There exists
an element g € G such that 1,y = g o,.

Next we shall calculate the second fundamental form of the immersion

w(pl ,p2,p3) "
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LEMMA 11. For any v,w € T,5%, D, € T;R we have
(1)  o(v,w)=0,

(2)  o(D, D) =0,

(3)

7 (—sin(tp1)ex + cos(tpr)es)
Pp1{—sm(tpy)€1 -+ COS(Ip1)és
= # (v — %v(log(f(x)) . :c> pa(— sin(tps)es + cos(tps)eg)
f(z) ps3(—sin(tps)es + cos(tps)er)

3

where f(z) = (zip;)* and £ = (1/y/f(z))Dy.
i=1

Proof. (1) is trivial, since the restriction of v, to S? x {t} is a totally
geodesic immersion for any t € R.
Let D be the canonical connection of R”. From

DDt (dw(pl,pg,pg)(oaDt)) = —(3312?127$2p227$3p32)Rp(t) ev,

and V = Ra)(p, t) ® dip,(T:S? ® {0}) we have (2).
For any tangent vector v of S?, we have

~ p1(—sin(tp1)er + cos(tp1)es)
D, (dw(pl,pg,pg)(O’Dt)) = v | p2(—sin(tps)es + cos(tpa)es)
p3(—sin(tps)es + cos(tps)er)

Taking the normal component, we get

o(v,§)

= ( ;(@) {Dv (d¥pr po.ps) (0, Dt)) — <’U2(§E§;)>dw(p1,p27p3)(0,Dt)}'

O

From this proposition, we can calculate the trace and the square of the
length of the second fundamental form.
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(1) Each immersion v

(2)

H. HASHIMOTO AND K. MASHIMO

PROPOSITION 12.

D1,P2,03) s @ minimal immersion.

T e ) ()~ (o))

Since the scalar curvature 7 (= 6 — |o|?) is not constant, we have the

following

COROLLARY 13. The induced metric is neither homogeneous nor cyclic

parallel.
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