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SURJECTIVE ISOMETRIES ON A BANACH SPACE
OF ANALYTIC FUNCTIONS ON THE OPEN UNIT

DISC

TAKESHI MIURA AND NORIO NIWA

Abstract. Let SA be the complex linear space of all analytic functions on the

open unit disc D, whose derivative can be extended to the closed unit disc D̄.
We give the characterization of surjective, not necessarily linear, isometries on SA

with respect to the norm ∥f∥σ = |f(0)|+ sup{|f ′(z)| : z ∈ D} for f ∈ SA.

1. Introduction and main result

A mapping T : M → N between two normed linear spaces (M, ∥·∥M) and (N, ∥·∥N)
is an isometry if and only if it preserves the distance of two points in M , that is,

∥T (a)− T (b)∥N = ∥a− b∥M (a, b ∈M).

The Mazur-Ulam theorem [16] states that every surjective isometry T between two

normed linear spaces is real linear provided T (0) = 0.

We mention the characterization of isometries on several normed linear spaces.

Isometries were studied on various spaces by many researchers, as for example in

[3, 12, 13, 20, 21]. In 1932, isometries are studied by Banach [1, Theorem 3 in

Chapter XI] (see also [23, Theorem 83]). There have been numerous papers on

isometries defined on Banach spaces of analytic functions; see [2, 4, 5, 8, 11, 14].

Among the basic problems in analytic function spaces, Novinger and Oberlin, in

[19], characterized complex linear isometries on a normed space Sp. The underlying

space Sp is a normed space consisting of analytic functions f on the open unit

disc D whose derivative f ′ belongs to the classical Hardy space (Hp(D), ∥·∥p) for

1 ≤ p <∞. They introduced the norm |f(0)|+ ∥f ′∥p on the normed space Sp.

In this paper we study surjective isometries on the Banach space SA of analytic

functions f defined on D whose derivative can be extended to the closed unit disc

D̄, and endowed with the norm ∥f∥σ = |f(0)|+ supz∈D |f ′(z)|. We denote by A(D̄)
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the disc algebra, that is, the algebra of all analytic functions on D which can be

extended to continuous functions on D̄.
In Section 2, we start by defining an embedding of SA into a subspace B consisting

of complex valued continuous functions. Then using the Arens-Kelley theorem (see

[10, Corollary 2.3.6 and Theorem 2.3.8]), we give a characterization of extreme points

of the unit ball B∗
1 of the dual space B∗ of B. Then we construct some maps to

describe extreme points of B∗
1 in Section 3.

We used an idea by Ellis for the characterization of surjective real linear isometries

on uniform algebras (see [9]). An adjoint operator of a surjective real linear isometry

on the dual space B∗ preserves extreme points. The action of such adjoint operator

on the set of extreme points gives a representation for the isometries on B. We show

in Section 4 that the isometries of SA are integral operators of weighted differential

operators. The main result of this paper is as follows.

Theorem 1. If T : SA → SA is a surjective, not necessarily linear, isometry with

respect to the norm ∥f∥σ = |f(0)| + supz∈D |f ′(z)| for f ∈ SA, then there exist

constants c0, c1, λ ∈ T and a ∈ D such that

T (f)(z) = T (0)(z) + c0f(0) +
∫
[0,z]

c1f
′(ρ(ζ)) dζ,

(∀f ∈ SA, ∀z ∈ D), or

T (f)(z) = T (0)(z) + c0f(0) +
∫
[0,z]

c1f
′(ρ(ζ)) dζ,

(∀f ∈ SA, ∀z ∈ D), or

T (f)(z) = T (0)(z) + c0f(0) +
∫
[0,z]

c1f ′(ρ(ζ)) dζ,

(∀f ∈ SA, ∀z ∈ D), or

T (f)(z) = T (0)(z) + c0f(0) +
∫
[0,z]

c1f ′(ρ(ζ)) dζ

(∀f ∈ SA, ∀z ∈ D),

where ρ(z) = λ
z − a

āz − 1
for all z ∈ D̄.

Conversely, each of the above forms is a surjective isometry on SA with the norm

∥·∥σ, where T (0) is an arbitrary element of SA.

2. Preliminaries and extreme points

Let A(D̄) be the Banach space of all analytic functions on the open unit disc D that

can be continuously extended to the closed unit disk D̄ with the supremum norm
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on D. For each v ∈ A(D̄), v′ means the derivative of v on D, that is,

v′(z) = lim
h→0

v(z + h)− v(z)

h
(z ∈ D).

We define SA by the linear space of all analytic functions f on D whose derivative f ′

belongs to A(D̄). By [4, Theorem 3.11], we see that SA ⊂ A(D̄). By the definition of

SA, f
′ is an analytic function on D which can be extended to a continuous function

on D̄. Let v̂ be the unique continuous extension of v ∈ A(D̄) to D̄; in fact, such an

extension is unique since D is dense in D̄. We define the norm ∥f∥σ of f ∈ SA by

∥f∥σ = |f(0)|+ ∥“f ′∥∞ (f ∈ SA), (2.1)

where ∥“f ′∥∞ = sup{|“f ′(z)| : z ∈ D̄} = sup{|f ′(z)| : z ∈ D}. It is routine to check

that (SA, ∥·∥σ) is a complex Banach space. In the rest of this paper, T denotes the

unit circle in the complex number field. We define

f̃(z, w) = f(0) + “f ′(z)w (2.2)

for f ∈ SA and (z, w) ∈ T2. Then the function f̃ is continuous on T2 with the

product topology. Let C(T2) be the Banach space of all continuous complex valued

functions on T2 with respect to the supremum norm ∥ · ∥∞ on T2. We set

B = {f̃ ∈ C(T2) : f ∈ SA}.

Then B is a normed linear subspace of C(T2). Let 1 ∈ SA be the constant function

with 1(z) = 1 for z ∈ D. By (2.2), we see that B has the constant function

1̃. Notice that B separates points of T2 in the following sense: for each pair of

distinct points x1, x2 ∈ T2 there exists f̃ ∈ B such that f̃(x1) ̸= f̃(x2). In fact, let

xj = (zj, wj) ∈ T2 for j = 1, 2 with x1 ̸= x2. Let id be the identity function in SA.

If w1 ̸= w2, then by (2.2), id ∈ SA satisfies ‹id(x1) = w1 ̸= w2 = ‹id(x2). If w1 = w2,

then we have z1 ̸= z2. Let f ∈ SA be such that f(z) = z2 for all z ∈ D. Then

f̃(x1) = 2z1w1 ̸= 2z2w2 = f̃(x2) by the assumption. Consequently, f̃(x1) ̸= f̃(x2)

for some f̃ ∈ B as is claimed.

We denote by B∗ the complex dual space of (B, ∥ · ∥∞). Let δx : B → C be the

point evaluation defined by δx(f̃) = f̃(x) for f̃ ∈ B and x ∈ T2. Now we characterize

extreme points of the unit ball of the dual space of B.

Proposition 2.1. The set of all extreme points ext(B∗
1) of the closed unit ball B∗

1

of the dual space of B is {λδx ∈ B∗
1 : λ ∈ T, x ∈ T2}.

Proof. Let Ch(B) be the Choquet boundary for B ⊂ C(T2), that is, the set of all

x ∈ T2 such that δx is an extreme point of B∗
1 . By the Arens-Kelly theorem (see [10,

Corollary 2.3.6 and Theorem 2.3.8]), ext(B∗
1) = {λδx ∈ B∗

1 : λ ∈ T, x ∈ Ch(B)}.
We need to show that Ch(B) = T2. To this end, we will prove that T2 ⊂ Ch(B). Let

x0 = (z0, w0) ∈ T2, and we set f0(z) = z0w0 z
2 + w0 z + 1 for z ∈ D. Then f0 ∈ SA
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with f̃0(z, w) = 1+ 2z0w0 zw+w0w for (z, w) ∈ T2. We thus obtain |f̃0| ≤ 4 on T2.

By the equality condition for the triangle inequality, we see that |f̃0(z, w)| = 4 if and

only if (z, w) = (z0, w0). Since Ch(B) is a boundary for B, the function f̃0 attains

its maximum modulus on Ch(B) (see [10, Theorem 2.3.8]). Hence (z0, w0) ∈ Ch(B),

and therefore, T2 ⊂ Ch(B). Consequently Ch(B) = T2 has been proven. □

Let T : (SA, ∥·∥σ) → (SA, ∥·∥σ) be a surjective isometry. Define T0 : (SA, ∥·∥σ) →
(SA, ∥·∥σ) by T0 = T − T (0). By the Mazur-Ulam theorem, T0 is a surjective, real

linear isometry from (SA, ∥·∥σ) onto itself.

The mapping U : (SA, ∥·∥σ) → (B, ∥ · ∥∞) defined by U(f) = f̃ for f ∈ SA is a

complex linear isometry. Here, f̃ is defined as in (2.2). In particular, ĩf = if̃ for

f ∈ SA. We define a mapping S : (B, ∥ · ∥∞) → (B, ∥ · ∥∞) by S = UT0U
−1. Since

U is a surjective complex linear isometry from (SA, ∥·∥σ) onto (B, ∥ · ∥∞), it is a

bijection, and thus S is a well-defined, surjective real linear isometry on (B, ∥ · ∥∞).

The equality SU = UT0 is rewritten as follows.

S(f̃) = ‡T0(f) (f ∈ SA). (2.3)

SA
T0−−−→ SA

U

y yU

B −−−→
S

B

Let B∗ be the complex dual space of B with the operator norm. We define a

mapping S∗ : B
∗ → B∗ by

S∗(η)(f̃) = Re η(S(f̃))− iRe η(S(if̃)) (2.4)

for η ∈ B∗ and f̃ ∈ B, where Re z denotes the real part of a complex number z.

Here we notice that the mapping S∗ was used for the characterization of real linear

isometries on uniform algebras by Ellis in [9]. Such techniques are introduced in [22,

Proposition 5.17]. The mapping S∗ is a surjective real linear isometry with respect

to the operator norm on B∗ (cf. [17, Proposition 1]). We observe that S∗ preserves

extreme points of B∗
1 .

3. Construction of mappings

In the remainder of this paper, we assume that S : B → B is a surjective real linear

isometry defined by (2.3), and S∗ : B
∗ → B∗ is a surjective real linear isometry given

as in (2.4).

Proposition 3.1. The set of all extreme points ext(B∗
1) of B∗

1 with the relative

weak*-topology is homeomorphic to T3 with the product topology.
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Proof. We define V : T× T2 → ext(B∗
1) by

V (λ, x) = λδx ((λ, x) ∈ T× T2). (3.1)

We see that V is a well-defined surjective map by Proposition 2.1. We show that V

is a homeomorphism.

If V (λ, x) = V (µ, y), then λδx = µδy by the definition of V . By evaluating

this equality at 1̃ ∈ B, we see λ = λδx(1̃) = µδy(1̃) = µ, and hence λ = µ. As

λ ∈ T, we obtain δx = δy. Since B separates points of T2, we have x = y and thus

(λ, x) = (µ, y). Consequently, V is injective.

Let {(λn, xn)}n be a sequence in T×T2 converging to (λ0, x0) ∈ T×T2. For each

f̃ ∈ B, f̃ is continuous on T2, and then

V (λn, xn)(f̃) = λnf̃(xn) → λ0f̃(x0) = V (λ0, x0)(f̃)

as n → ∞. Therefore {V (λn, xn)}n converges to V (λ0, x0) with respect to the

relative weak*-topology on ext(B∗
1). Hence V is continuous.

The weak*-topology of B∗ is a Hausdorff topology, and thus ext(B∗
1) is a Hausdorff

space with the relative weak*-topology. By the compactness of T × T2, we see

that V is a homeomorphism. Consequently, ext(B∗
1) is homeomorphic to T3, as is

claimed. □

Definition 1. Let V be the map defined as in (3.1), and let pj be the projection from

T×T2 onto the j-th coordinate of T×T2 for j = 1, 2. We define maps α : T×T2 → T
and Φ: T× T2 → T2 by α = p1 ◦ V −1 ◦ S∗ ◦ V and Φ = p2 ◦ V −1 ◦ S∗ ◦ V .

T× T2 −−−→ T× T2

V

y yV

ext(B∗
1) −−−→

S∗
ext(B∗

1)

Recall that V is a homeomorphism and S∗ is a surjective real linear isometry, and

thus S∗(ext(B
∗
1)) = ext(B∗

1). Hence α and Φ are both well-defined, surjective con-

tinuous functions.

By the definitions of α and Φ, (V −1 ◦S∗ ◦V )(λ, x) = (α(λ, x),Φ(λ, x)) for (λ, x) ∈
T× T2. Hence (S∗ ◦ V )(λ, x) = V (α(λ, x),Φ(λ, x)), which shows

S∗(λδx) = α(λ, x)δΦ(λ,x) (3.2)

for every λ ∈ T and x ∈ T2. For the sake of simplicity of notation, we denote α(λ, x)

by αλ(x) for λ ∈ T and x ∈ T2.

Lemma 3.2. For each x ∈ T2, αi(x) = iα1(x) or αi(x) = −iα1(x).
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Proof. Let x ∈ T2 and λ0 = (1 + i)/
√
2 ∈ T. By the definitions of α and Φ,

S∗(λ0δx) = αλ0(x)δΦ(λ0,x). Since S∗ is real linear,
√
2αλ0(x)δΦ(λ0,x) = S∗((1 + i)δx) = S∗(δx) + S∗(iδx)

= α1(x)δΦ(1,x) + αi(x)δΦ(i,x),

and hence
√
2αλ0(x)δΦ(λ0,x) = α1(x)δΦ(1,x) + αi(x)δΦ(i,x). By the evaluation of the

last equality at 1̃ ∈ B,
√
2αλ0(x) = α1(x) + αi(x). Since αλ(x) ∈ T for λ ∈ T,

we have
√
2 = |α1(x) + αi(x)| = |1 + αi(x)α1(x)|, and thus αi(x)α1(x) is i or −i.

Consequently αi(x) = iα1(x) or αi(x) = −iα1(x) as is claimed. □

Lemma 3.3. There exists ε0 ∈ {±1} such that S∗(iδx) = iε0α1(x)δΦ(i,x) for every

x ∈ T2.

Proof. We need to prove that αi(x) = iα1(x) for all x ∈ T2, or αi(x) = −iα1(x) for

all x ∈ T2. Define two subsets E+ and E− of T2 by

E+ = {x ∈ T2 : αi(x) = iα1(x)} and E− = {x ∈ T2 : αi(x) = −iα1(x)}.

According to Lemma 3.2, T2 = E+ ∪ E−. As |α1(x)| = 1 for x ∈ T2, E+ ∩ E− = ∅.
As noticed in Definition 1, the function α is continuous on T3. Hence α1 = α(1, ·)
and αi = α(i, ·) are continuous on T2, and thus E+ and E− are closed subsets of

T2. Since T2 is connected, T2 = E+ or T2 = E−. In other words, αi(x) = iα1(x) for

every x ∈ T2, or αi(x) = −iα1(x) for every x ∈ T2 as is claimed. □

Lemma 3.4. For each λ = a+ ib ∈ T, a, b ∈ R, and x ∈ T2,

λε0 f̃(Φ(λ, x)) = af̃(Φ(1, x)) + ibε0f̃(Φ(i, x)) (3.3)

for all f̃ ∈ B.

Proof. Let λ = a + ib ∈ T and x ∈ T2. Recall that S∗(δx) = α1(x)δΦ(1,x), and

S∗(iδx) = iε0α1(x)δΦ(i,x) for some ε0 ∈ {±1} by Lemma 3.3. Since S∗ is real linear,

αλ(x)δΦ(λ,x) = S∗(λδx) = aS∗(δx) + bS∗(iδx)

= aα1(x)δΦ(1,x) + ibε0α1(x)δΦ(i,x),

and therefore,

αλ(x)δΦ(λ,x) = α1(x)(aδΦ(1,x) + ibε0δΦ(i,x)). (3.4)

Evaluating the above equality at 1̃ ∈ B, αλ(x) = (a+ ibε0)α1(x). As λ = a+ ib ∈ T
and ε0 = 1 or −1, we can write a + ibε0 = (a + ib)ε0 = λε0 , and hence αλ(x) =

λε0α1(x). Note that α1(x) ∈ T, and we thus obtain, by (3.4), λε0 f̃(Φ(λ, x)) =

af̃(Φ(1, x)) + ibε0f̃(Φ(i, x)) for all f̃ ∈ B. □
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Definition 2. We define ϕ, ψ : T2 → T by ϕ = π1 ◦ Φ and ψ = π2 ◦ Φ, where

πj : T2 → T is the projection to the j-th coordinate of T2 for j = 1, 2. Then

Φ(λ, x) = (ϕ(λ, x), ψ(λ, x)) for every λ ∈ T and x ∈ T2. For each λ ∈ T, we also

denote ϕλ(x) = ϕ(λ, x) and ψλ(x) = ψ(λ, x) for all x ∈ T2. Since Φ is surjective and

continuous, we see that both ϕ and ψ are surjective and continuous functions.

Lemma 3.5. For each λ ∈ T and x ∈ T2, ϕλ(x) = ϕ1(x).

Proof. Let x ∈ T2. First, we show that ϕλ(x) ∈ {ϕ1(x), ϕi(x)} for all λ ∈ T \ {1, i}.
Suppose, on the contrary, that ϕλ(x) ̸∈ {ϕ1(x), ϕi(x)} for some λ ∈ T \ {1, i}. Then
there exists a polynomial f ∈ SA such that

f(0) = 0 and “f ′(ϕλ(x)) = 1, “f ′(ϕ1(x)) = 0 = “f ′(ϕi(x));

for example, let zµ = ϕµ(x) for each µ ∈ T and k = (zλ − z1)(zλ − zi). Then k ̸= 0

by our hypothesis. If we define g(z) = k−1(z − z1)(z − zi), then g(zλ) = 1 and

g(z1) = 0 = g(zi). Choose a polynomial f so that f ′ = g and f(0) = 0, and then

f ∈ SA is a desired function. By Definition 2 with (2.2),

f̃(Φ(µ, x)) = f(0) + “f ′(ϕµ(x))ψµ(x)

for µ ∈ T. Thus f̃(Φ(λ, x)) = ψλ(x) and f̃(Φ(1, x)) = 0 = f̃(Φ(i, x)), which

implies λε0ψλ(x) = 0 by (3.3). This leads to a contradiction since λ, ψλ(x) ∈ T.
Consequently, ϕλ(x) ∈ {ϕ1(x), ϕi(x)} for all λ ∈ T \ {1, i}, as is claimed. By

the liberty of the choice of x ∈ T2, we have proven ϕλ(x) ∈ {ϕ1(x), ϕi(x)} for all

λ ∈ T \ {1, i} and x ∈ T2.

We next prove that ϕ1(x) = ϕi(x) for all x ∈ T2. Let λ ∈ T \ {1, i}. The

mapping ϕλ : T2 → T is continuous as remarked in Definition 2, and thus ϕλ(T2)

is a connected subset of T. Since ϕλ(x) ∈ {ϕ1(x), ϕi(x)} for all x ∈ T2, we have

ϕ1(x) = ϕi(x) for all x ∈ T2, as is claimed. Consequently, we obtain ϕλ(x) = ϕ1(x)

for all λ ∈ T and x ∈ T2. □

Lemma 3.6. Let ψ1 and ψi be functions from Definition 2. There exists ε1 ∈ {±1}
such that ψi(x) = ε1ψ1(x) for all x ∈ T2.

Proof. Let x ∈ T2 and λ0 = (1 + i)/
√
2 ∈ T. According to (3.3)

√
2λε00 f̃(Φ(λ0, x)) = f̃(Φ(1, x)) + iε0f̃(Φ(i, x)) (3.5)

for all f ∈ SA. By Lemma 3.5, Φ(λ, x) = (ϕ1(x), ψλ(x)) for every λ ∈ T. Therefore,
equality (2.2) becomes

f̃(Φ(λ, x)) = f(0) + “f ′(ϕ1(x))ψλ(x) (3.6)
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for all f ∈ SA and λ ∈ T. Substitute f = id ∈ SA into (3.6) to get ‹id(Φ(λ, x)) =
ψλ(x) for all λ ∈ T. For f = id, the equality (3.5) reduces to

√
2λε00 ψλ0(x) = ψ1(x) + iε0ψi(x).

As ψλ(x) ∈ T for λ ∈ T,
√
2 = |ψ1(x) + iε0ψi(x)| = |1 + iε0ψi(x)ψ1(x)|. Then

we have that iε0ψi(x)ψ1(x) is i or −i. Thus, for each x ∈ T2, ψi(x) = ε0ψ1(x) or

ψi(x) = −ε0ψ1(x). As we remarked in Definition 2, ψ1 and ψi are continuous on the

connected set T2. Hence ψi(x) = ε0ψ1(x) for all x ∈ T2, or ψi(x) = −ε0ψ1(x) for all

x ∈ T2. □

In the rest of this paper, we denote a+ ibε by [a+ ib]ε for a, b ∈ R and ε ∈ {±1}.
Thus, for each λ ∈ C, [λ]ε = λ if ε = 1 and [λ]ε = λ if ε = −1. Therefore,

[λµ]ε = [λ]ε[µ]ε for all λ, µ ∈ C. If, in addition, λ ∈ T, then [λ]ε = λε.

Lemma 3.7. For each f ∈ SA and x ∈ T2,

S(f̃)(x) = [α1(x)f(0)]
ε0 + [α1(x)“f ′(ϕ1(x))ψ1(x)]

ε0ε1 . (3.7)

Proof. Let f ∈ SA and x ∈ T2. On one hand, by the definition (2.4) of S∗,

ReS∗(η)(f̃) = Re η(S(f̃)) for every η ∈ B∗. Taking η = δx and η = iδx into

the last equality, we have

ReS∗(δx)(f̃) = ReS(f̃)(x) and ReS∗(iδx)(f̃) = −ImS(f̃)(x),

respectively, and therefore,

S(f̃)(x) = ReS∗(δx)(f̃)− iReS∗(iδx)(f̃). (3.8)

On the other hand, S∗(δx) = α1(x)δΦ(1,x) and S∗(iδx) = iε0α1(x)δΦ(i,x) by (3.2) and

Lemma 3.3. Substitute these two equalities into (3.8) to obtain

S(f̃)(x) = Re [α1(x)f̃(Φ(1, x))] + i Im [ε0α1(x)f̃(Φ(i, x))].

Lemmas 3.5 and 3.6 imply that Φ(1, x)=(ϕ1(x), ψ1(x)) and Φ(i, x)=(ϕ1(x), ε1ψ1(x)).

It follows from (2.2) that

S(f̃)(x) = Re [α1(x)f̃(ϕ1(x), ψ1(x))] + iIm [ε0α1(x)f̃(ϕ1(x), ε1ψ1(x))]

= Re [α1(x){f(0) + “f ′(ϕ1(x))ψ1(x)}]

+ iε0Im [α1(x){f(0) + “f ′(ϕ1(x))ε1ψ1(x)}]

= [α1(x)f(0)]
ε0 + [α1(x)“f ′(ϕ1(x))ψ1(x)]

ε0ε1 .

Hence (3.7) holds for all f ∈ SA and x ∈ T2. □
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4. Characterization of the surjective isometries on SA

Lemma 4.1. For each z, w ∈ T, ϕ1(z, w) = ϕ1(z, 1).

Proof. To show that ϕ1(z, w) = ϕ1(z, 1) for all z, w ∈ T, suppose not, and then there

exist z0, w0 ∈ T such that ϕ1(z0, w0) ̸= ϕ1(z0, 1). We set w1 = 1 and xj = (z0, wj)

for j = 0, 1, and then ϕ1(x0) ̸= ϕ1(x1). Since the function ϕ1(z0, ·) : T → T, which
maps w ∈ T to ϕ1(z0, w), is continuous, the image ϕ1(z0,T) is a connected subset of

T. Thus, ϕ1(z0,T) \ {ϕ1(x0), ϕ1(x1)} is a non-empty set. Then there exists w2 ∈ T
such that ϕ1(z0, w2) ̸∈ {ϕ1(x0), ϕ1(x1)}. We see that w0, w1 and w2 are mutually

distinct. Set x2 = (z0, w2), and then ϕ1(x0), ϕ1(x1) and ϕ1(x2) are mutually distinct.

Then we can choose f0 ∈ SA such that

f0(0) = 0 and f̂ ′
0(ϕ1(x0)) = 1, f̂ ′

0(ϕ1(x1)) = 0 = f̂ ′
0(ϕ1(x2)).

Recall S(f̃) = ‡T0(f) by (2.3), and then equality (3.7) implies

T0(f0)(0) +
◊�T0(f0)′(z0)wj = [α1(xj)f0(0)]

ε0 + [α1(xj)f̂ ′
0(ϕ1(xj))ψ1(xj)]

ε0ε1

for j = 0, 1, 2. By the choice of f0, we get

T0(f0)(0) +
◊�T0(f0)′(z0)w0 = [α1(x0)ψ1(x0)]

ε0ε1 ,

T0(f0)(0) +
◊�T0(f0)′(z0)w1 = 0 = T0(f0)(0) +

◊�T0(f0)′(z0)w2.

Since w1 ̸= w2, we deduce ◊�T0(f0)′(z0) = 0, and thus T0(f0)(0) = 0. It follows that

[α1(x0)ψ1(x0)]
ε0ε1 = 0, which contradicts α1(x0), ψ1(x0) ∈ T. We thus conclude that

ϕ1(z, w) = ϕ1(z, 1) for all z, w ∈ T. □

Lemma 4.2. There exists a surjective continuous function φ : T → T such that

T0(f)(0) +
◊�T0(f)′(z)w = [α1(x)f(0)]

ε0 + [α1(x)“f ′(φ(z))ψ1(x)]
ε0ε1 (4.1)

for all f ∈ SA and x = (z, w) ∈ T2.

Proof. We define the mapping φ : T → T by

φ(z) = ϕ1(z, 1) (∀z ∈ T).

Since ϕ is continuous, φ is continuous on T. Equality (3.7) yields (4.1) for all f ∈ SA

and x = (z, w) ∈ T2. We prove that φ : T → T is surjective. Recall, by Definition 2,

that ϕ is surjective. Thus, for each ζ ∈ T there exist λ1 ∈ T and x1 = (z1, w1) ∈
T2 such that ζ = ϕ(λ1, x1) = ϕλ1(z1, w1). Note that ϕλ1(z1, w1) = ϕ1(z1, w1) by

Lemma 3.5. In addition, Lemma 4.1 shows that ϕ1(z1, w1) = ϕ1(z1, 1) = φ(z1), and

thus ζ = φ(z1). This yields that φ is surjective as is claimed. □

Proposition 4.3. Let p, q ∈ C. If |p + λq| = 1 for all λ ∈ T, then pq = 0 and

|p|+ |q| = 1.
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Proof. We show pq = 0. Suppose, on the contrary, p ̸= 0 and q ̸= 0. Choose λ1 ∈ T
so that λ1q = p|q||p|−1, and set λ2 = −λ1. By hypothesis, |p+ λ1q| = 1 = |p+ λ2q|,
that is, ∣∣∣∣∣p+ p|q|

|p|

∣∣∣∣∣ = 1 =

∣∣∣∣∣p− p|q|
|p|

∣∣∣∣∣ .
These equalities yield |p| + |q| = 1 =

∣∣∣|p| − |q|
∣∣∣. We may assume |p| > |q|, and

then we have |q| = 0, a contradiction. This implies pq = 0, as is claimed. Then

|p|+ |q| = 1 by the initial assumption. □

Lemma 4.4. There exists c0 ∈ T such that [÷T0(1)(z)]ε0 = α1(x) = c0 for all x =

(z, w) ∈ T2.

Proof. Apply f = 1, id to (4.1) to get

T0(1)(0) +
◊�T0(1)′(z)w = [α1(x)]

ε0 , (4.2)

T0(id)(0) +
◊�T0(id)′(z)w = [α1(x)ψ1(x)]

ε0ε1 (4.3)

for every x = (z, w) ∈ T2. We show that T0(1)(0) ̸= 0. Assume that T0(1)(0) = 0,

and then ◊�T0(1)′(z)w = [α1(x)]
ε0 . Substitute this equality and (4.3) into (4.1) to

have

T0(f)(0) +
◊�T0(f)′(z)w

= ◊�T0(1)′(z)w[f(0)]ε0 + {T0(id)(0) + ◊�T0(id)′(z)w}[“f ′(φ(z))]ε0ε1 ,

where we have used [λµ]ε = [λ]ε[µ]ε for λ, µ ∈ C and ε = 1 or −1. Since the above

equality holds for all w ∈ T, we obtain

T0(f)(0) = T0(id)(0)[“f ′(φ(z))]ε0ε1 (4.4)

for all f ∈ SA and z ∈ T. Taking f = id2 ∈ SA in (4.4), we get T0(id
2)(0) =

2T0(id)(0)[φ(z)]
ε0ε1 for all z ∈ T. By Lemma 4.2, φ : T → T is surjective, and then

we deduce T0(id)(0) = 0. Equality (4.4) implies T0(f)(0) = 0 for all f ∈ SA. This is

impossible since T0 is surjective, which shows T0(1)(0) ̸= 0, as is claimed.

By equality (4.2) with Proposition 4.3, we see that ◊�T0(1)′(z) = 0 for all z ∈ T.
Since T is a boundary for A(D̄), we have ◊�T0(1)′ = 0 on D̄. Then there exists a

constant c ∈ C such that ÷T0(1) = c on D̄. Substitute ◊�T0(1)′(z) = 0 into (4.2) to

obtain c = [α1(x)]
ε0 for all x ∈ T2. Thus c ∈ T, and α1(x) = [c]ε0 = [÷T0(1)(z)]ε0 for

all x = (z, w) ∈ T2. □

By Lemma 4.4, equality (4.1) reduces to

T0(f)(0) +
◊�T0(f)′(z)w = [c0f(0)]

ε0 + [c0“f ′(φ(z))ψ1(z, w)]
ε0ε1 (4.5)

for every f ∈ SA and (z, w) ∈ T2.
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Lemma 4.5. Let c0 ∈ T be the constant from Lemma 4.4. Then ◊�T0(id)′(z) =

[c0ψ1(z, 1)]
ε0ε1 and ψ1(z, w) = ψ1(z, 1)w

ε0ε1 for all z, w ∈ T.

Proof. Let z0 ∈ T. It follows from (4.5) that

T0(id)(0) +
◊�T0(id)′(z0)w = [c0ψ1(z0, w)]

ε0ε1 (4.6)

for every w ∈ T. Taking the modulus in (4.6), we have |T0(id)(0) + ◊�T0(id)′(z0)w| =
1 for all w ∈ T. Proposition 4.3 asserts that T0(id)(0) = 0 or ◊�T0(id)′(z0) = 0.

Suppose, on the contrary, that ◊�T0(id)′(z0) = 0. Equality (4.6) shows T0(id)(0) =

[c0ψ1(z0, w)]
ε0ε1 for all w ∈ T. Since T0 is surjective, there exists g ∈ SA such that

T0(g)(0) = 0 and ÷T0(g)′(z0) = 1. Substitute these two equalities and T0(id)(0) =

[c0ψ1(z0, w)]
ε0ε1 into (4.5) to obtain

w = T0(g)(0) +
÷T0(g)′(z0)w = [c0g(0)]

ε0 + T0(id)(0) [“g′(φ(z0))]ε0ε1
for every w ∈ T. This is impossible since the rightmost hand side of the above

equalities is independent of w ∈ T. Consequently, we have ◊�T0(id)′(z0) ̸= 0, and

hence T0(id)(0) = 0. By equality (4.6), ◊�T0(id)′(z0)w = [c0ψ1(z0, w)]
ε0ε1 for all w ∈ T.

By the liberty of the choice of z0 ∈ T, we get ◊�T0(id)′(z)w = [c0ψ1(z, w)]
ε0ε1 for all

z, w ∈ T. Taking w = 1 in this equality, we obtain ◊�T0(id)′(z) = [c0ψ1(z, 1)]
ε0ε1 for

z ∈ T. It follows that

w =
◊�T0(id)′(z)w◊�T0(id)′(z) =

[c0ψ1(z, w)]
ε0ε1

[c0ψ1(z, 1)]ε0ε1
=

[ψ1(z, w)]
ε0ε1

[ψ1(z, 1)]ε0ε1
,

and consequently, ψ1(z, w) = ψ1(z, 1)w
ε0ε1 for all z, w ∈ T. □

Proof of Theorem 1. Let f ∈ SA and z0 ∈ T. By Lemma 4.5, ψ1(z0, w) =

ψ1(z0, 1)w
ε0ε1 for all w ∈ T. Substitute this equality into (4.5) to have

T0(f)(0) +
◊�T0(f)′(z0)w = [c0f(0)]

ε0 + [c0“f ′(φ(z0))ψ1(z0, 1)]
ε0ε1w

for all w ∈ T. The above equality holds for every w ∈ T, and then

T0(f)(0) = [c0f(0)]
ε0 (4.7)

and ◊�T0(f)′(z0) = [c0“f ′(φ(z0))ψ1(z0, 1)]
ε0ε1 . By the liberty of the choice of f ∈ SA

and z0 ∈ T, we deduce ◊�T0(f)′(z) = [c0“f ′(φ(z))ψ1(z, 1)]
ε0ε1 (4.8)

for all f ∈ SA and z ∈ T.
For each v ∈ A(D̄), we define I(v) by

I(v)(z) =
∫
[0,z]

v(ζ) dζ (z ∈ D),
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where [0, z] denotes the straight line interval from 0 to z in D. Then I(v) ∈ A(D̄)
satisfying

I(v)′ = v on D, (4.9)

and hence I(v) ∈ SA. We set “A(D̄) = {v̂ : v ∈ A(D̄)} and define W : “A(D̄) → “A(D̄)
by

W (v̂)(z) = [⁄�T0(I(v))′([z]
ε0ε1)]ε0ε1 (v ∈ A(D̄), z ∈ D̄); (4.10)

More precisely

W (v̂)(z) =


⁄�T0(I(v))′(z) if ε0ε1 = 1,⁄�T0(I(v))′(z̄) if ε0ε1 = −1

for v̂ ∈ “A(D̄) and z ∈ D̄. We see that the mapping W is well-defined. Equality (4.8)

with I(v)′ = v shows that

W (v̂)(z) = c0
’I(v)′(φ([z]ε0ε1))ψ1([z]

ε0ε1 , 1) = c0v̂(φ([z]
ε0ε1))ψ1([z]

ε0ε1 , 1)

for v̂ ∈ “A(D̄) and z ∈ T. Since T is a boundary for “A(D̄) and φ(T) = T, we have

∥W (v̂)∥∞ = ∥v̂∥∞, where ∥ · ∥∞ denotes the supremum norm on D̄. Thus W is a

complex linear isometry on (“A(D̄), ∥ · ∥∞).

We show that W is surjective. By the surjectivity of T0 : SA → SA, for each

v0 ∈ A(D̄) there exists g ∈ SA such that T0(g)(z) = [I(v0)([z]
ε0ε1)]ε0ε1 for all z ∈ D,

and hence

T0(g)
′(z) = [I(v0)

′([z]ε0ε1)]ε0ε1 = [v0([z]
ε0ε1)]ε0ε1 (4.11)

for every z ∈ D. Since I(g′)′ = g′ on D by (4.9), we see that I(g′) − g is constant

on D, say d ∈ C. Equality (4.8) shows ÷T0(d)′ = 0 on T. Since T is a boundary

for “A(D̄), we see that ÷T0(d)′ = 0 on D̄, and hence T0(d)
′ = 0 on D. Therefore,

T0(I(g
′) − g)′ = T0(d)

′ = 0 on D. By the real linearity of T0, T0(I(g
′))′ = T0(g)

′

on D. Substitute this equality into (4.11) to get T0(I(g)
′)′(z) = [v0([z]

ε0ε1)]ε0ε1 for

all z ∈ D. Thus ⁄�T0(I(g′))′(z) = [v̂0([z]
ε0ε1)]ε0ε1 for all z ∈ D̄. Therefore, (4.10)

shows that W (“g′)(z) = [⁄�T0(I(g′))′([z]
ε0ε1)]ε0ε1 = v̂0(z) for all z ∈ D̄, which yields the

surjectivity of W : “A(D̄) → “A(D̄). Hence W is a surjective complex linear isometry

on the uniform algebra (“A(D̄), ∥·∥∞). By a theorem of deLeeuw, Rudin and Wermer

[5, Theorem 3] (see also Nagasawa [18]), there exist an invertible element u of “A(D̄)
and an algebra automorphism W1 : “A(D̄) → “A(D̄) such that |u| = 1 on the maximal

ideal space D̄ of “A(D̄) and that W (v̂) = u ·W1(v̂) for all v ∈ A(D̄). The maximum

modulus principle asserts that u is a constant function c1 of modulus 1. It is well-

known that every automorphism on “A(D̄) is represented by a composition operator;

more explicitly, there exists a homeomorphism ρ : D̄ → D̄ such that W1(v̂) = v̂ ◦ ρ
for all v ∈ A(D̄). Letting v = id in the last equality, we have ρ =W1(“id), and hence
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ρ is analytic on D. Since ρ is a homeomorphism on D̄, which is also analytic on D,
there exist λ ∈ T and a ∈ D such that

ρ(z) = λ
z − a

āz − 1
(z ∈ D̄)

(see. [22, Theorem 12.6]). We obtain

W (v̂)(z) = c1v̂(ρ(z)) (v ∈ A(D̄), z ∈ D̄). (4.12)

For each f ∈ SA, I(f
′)′ = f ′ on D by (4.9), and thus I(f ′)− f is constant on D.

By the definition of I, I(f ′)(0) = 0, and we obtain

I(f ′) = f − f(0) on D (4.13)

for all f ∈ SA. Applying T0 to (4.13), we have T0(I(f
′)) = T0(f) − T0(f(0)) on D,

where we have used the real linearity of T0. Therefore,
¤�T0(I(f ′))′ = ◊�T0(f)′−⁄�T0(f(0))′

on D̄. Equality (4.8) shows ⁄�T0(f(0))′ = 0 on T, and thus ⁄�T0(f(0))′ = 0 on D̄ since T
is a boundary for A(D̄). We deduce ¤�T0(I(f ′))′ = ◊�T0(f)′ on D̄. By using (4.10) and

(4.12), we have ◊�T0(f)′(z) =¤�T0(I(f ′))′(z) = [W (“f ′)([z]ε0ε1)]ε0ε1

= [c1“f ′(ρ([z]ε0ε1))]ε0ε1

for every z ∈ D̄. In particular,

T0(f)
′(z) = [c1f

′(ρ([z]ε0ε1))]ε0ε1 (z ∈ D).

Equality (4.13), applied to T0(f) instead of f , shows that I(T0(f)
′) = T0(f) −

T0(f)(0) on D. Recall that T0(f)(0) = [c0f(0)]
ε0 by (4.7), and consequently

T0(f)(z) = T0(f)(0) + I(T0(f)
′)(z)

= [c0f(0)]
ε0 +

∫
[0,z]

[c1f
′(ρ([ζ]ε0ε1))]ε0ε1 dζ

for all f ∈ SA and z ∈ D.
Conversely, let T (0) ∈ SA, and suppose that

T (f)(z)− T (0)(z) = [c0f(0)]
ε0 +

∫
[0,z]

[c1f
′(ρ([ζ]ε0ε1))]ε0ε1 dζ

for all f ∈ SA and z ∈ D, where c0, c1 ∈ T, ε0, ε1 ∈ {±1} and ρ ∈ “A(D̄) is a

homeomorphism with the above properties. Then we observe that the map T −T (0)
is a surjective real linear isometry on (SA, ∥·∥σ). This completes the proof. □
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