THE QUADRATIC QUANTUM f-DIVERGENCE OF CONVEX FUNCTIONS AND MATRICES

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we introduce the concept of quadratic quantum f-divergence measure for a continuos function f defined on the positive semi-axis of real numbers, the invertible matrix T and matrix V by

$$\mathcal{S}_f(V,T) := \operatorname{tr}\left[\left|T^*\right|^2 f\left(\left|VT^{-1}\right|^2\right)\right].$$

Some fundamental inequalities for this quantum f-divergence in the case of convex functions are established. Applications for particular quantum divergence measures of interest are also provided.

1. Introduction

Let \mathcal{M} denote the algebra of all $n \times n$ matrices with complex entries and \mathcal{M}^+ the subclass of all positive matrices.

Consider the complex Hilbert space $(\mathcal{M}, \langle \cdot, \cdot \rangle_2)$, where the *Hilbert-Schmidt inner product* is defined by

$$\langle U, V \rangle_2 := \operatorname{tr}(V^*U), \ U, \ V \in \mathcal{M}.$$

We denote by $S_2(\mathcal{M})$ the set of all matrices $A \in \mathcal{M}$ with $||A||_2 = 1$. In terms of trace, this is equivalent to $\operatorname{tr}(|A|^2) = \operatorname{tr}(|A^*|^2) = 1$.

Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function on $[0,\infty)$. By utilising the *continuous functional calculus for selfadjoint operators* in Hilbert spaces, we can define the following quadratic quantum f-divergence for matrices $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible, by

$$S_{f}(V,T) := \operatorname{tr}\left[T^{*}f\left((T^{*})^{-1}V^{*}VT^{-1}\right)T\right]$$

$$= \operatorname{tr}\left[T^{*}f\left(|VT^{-1}|^{2}\right)T\right] = \operatorname{tr}\left[|T^{*}|^{2}f\left(|VT^{-1}|^{2}\right)\right].$$
(S)

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63, 47A30; Secondary 15A60, 26D15, 26D10.

Key words and phrases. Operator perspective, convex functions, operator inequalities, arithmetic mean-geometric mean operator inequality, relative operator entropy.

If we take $V=Q^{1/2},\,T=P^{1/2}$ with $\mathrm{tr}\,(P)=\mathrm{tr}\,(Q)=1,\,P$ invertible, then we have

$$S_f(V,T) := \operatorname{tr}\left[P^{1/2} f\left(P^{-\frac{1}{2}} Q P^{-\frac{1}{2}}\right) P^{1/2}\right] = \operatorname{tr}\left[P f\left(\left|Q^{1/2} P^{-1/2}\right|^2\right)\right] =: \mathcal{D}_f(Q,P)$$

that shows that the quadratic quantum divergence S_f is an extension of the quantum divergence D_f defined above.

If we take the convex function $f(t) = t^2 - 1$, $t \ge 0$, then we get

$$S_f(V,T) = \operatorname{tr}\left[T^*\left((T^*)^{-1}V^*VT^{-1}\right)^2T - |T^*|^2\right] = \operatorname{tr}\left(|T^*|^2|VT^{-1}|^4\right) - 1$$
$$= \operatorname{tr}\left(|V|^4|T|^{-2}\right) - 1 =: \chi_2^2(V,T),$$

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible, which, we call, the *quadratic* χ^2 -divergence for matrices (V, T).

More general, if we take the convex function $f(t) = t^n - 1$, $t \ge 0$ and n a natural number with $n \ge 2$, then we get

$$S_f(V,T) = \operatorname{tr}\left(|T^*|^2 |VT^{-1}|^{2n}\right) - 1 =: D_{\tilde{\chi}_2^n}(V,T)$$

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible.

If we take the convex function $f(t) = t \ln t$ for t > 0 and f(0) := 0, then we get

$$S_f(V,T) = \text{tr}\left[|T^*|^2 |VT^{-1}|^2 \ln\left(|VT^{-1}|^2 \right) \right] =: D_{KL}(V,T)$$

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible.

If we take the convex function $f(t) = -\ln t$ for t > 0, then we get

$$S_f(V,T) = -\operatorname{tr}\left[|T^*|^2 \ln\left(|VT^{-1}|^2\right)\right] = \operatorname{tr}\left[|T^*|^2 \ln\left(|(V^*)^{-1}T^*|^2\right)\right]$$

=: $\tilde{D}_{KL}(V,T)$

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T, V invertible.

If we take the convex function $f(t) = |t-1|, t \ge 0$, then we get

$$S_f(V, T) = \operatorname{tr}\left(|T^*|^2 \left| |VT^{-1}|^2 - 1_H \right| \right)$$

= $\operatorname{tr}\left[|T^*|^2 \left| (T^*)^{-1} \left(|V|^2 - |T|^2 \right) T^{-1} \right| \right] =: D_V(V, T)$

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible.

If we consider the convex function $f(t) = \frac{1}{t} - 1$, t > 0, then

$$S_f(V,T) = \operatorname{tr}\left(|T^*|^2 |VT^{-1}|^{-2}\right) - 1 = \operatorname{tr}\left(|T|^2 |V|^{-2} |T|^2\right) - 1$$
$$= \operatorname{tr}\left(|T|^4 |V|^{-2}\right) - 1 = \chi_2^2(T,V)$$

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T, V invertible.

If we take the convex function $f\left(t\right)=f_{q}\left(t\right)=\frac{1-t^{q}}{1-q},\,q\in\left(0,1\right),$ then we get

$$S_{f_q}(V,T) = \frac{1}{1-q} \left[1 - \operatorname{tr} \left(|T^*|^2 |VT^{-1}|^{2q} \right) \right]$$
$$= \frac{1}{1-q} \left[1 - \operatorname{tr} \left(T^* |VT^{-1}|^{2q} T \right) \right] = \frac{1}{1-q} \left[1 - \operatorname{tr} \left(T \circledast_q V \right) \right],$$

with

$$T \otimes_q V := T^* \left| V T^{-1} \right|^{2q} T = \left| \left| V T^{-1} \right|^q T \right|^2$$

is the quadratic weighted operator geometric mean of (T, V) introduced in [25], where several properties were established.

For the classical concept of quantum f-divergence and its properties, see the recent papers [24], [27], [28], [36], [37] and the references therein.

For inequalities for classical f-divergence measures, see [5], [12]–[22].

For some classical trace inequalities see [7], [9], [34] and [45], which are continuations of the work of Bellman [3]. For related works the reader can refer to [1], [4], [7], [26], [30], [32], [33], [39] and [42].

In this paper we introduce the concept of quadratic quantum f-divergence measure for a continuous function f defined on the positive semi-axis of real numbers, the invertible matrix T and matrix V on a Hilbert space. Some fundamental inequalities for this quantum f-divergence in the case of convex functions are established. Applications for particular quadratic quantum divergence measures of interest are also provided.

2. Inequalities for quadratic f-divergence measure

Suppose that I is an interval of real numbers with interior I and $f: I \to \mathbb{R}$ is a convex function on I. Then f is continuous on I and has finite left and right derivatives at each point of I. Moreover, if $x, y \in I$ and x < y, then $f'_{-}(x) \leq f'_{+}(x) \leq f'_{-}(y) \leq f'_{+}(y)$ which shows that both f'_{-} and f'_{+} are nondecreasing function on I. It is also known that a convex function must be differentiable except for at most countably many points.

For a convex function $f: I \to \mathbb{R}$, the subdifferential of f denoted by ∂f is the set of all functions $\varphi: I \to [-\infty, \infty]$ such that $\varphi\left(\mathring{I}\right) \subset \mathbb{R}$ and

$$f(x) \ge f(a) + (x - a)\varphi(a)$$
 for any $x, a \in I$. (1)

It is also well known that if f is convex on I, then ∂f is nonempty, $f'_-, f'_+ \in \partial f$ and if $\varphi \in \partial f$, then

$$f'_{-}(x) \le \varphi(x) \le f'_{+}(x)$$
 for any $x \in \mathring{I}$.

In particular, φ is a nondecreasing function.

If f is differentiable and convex on \mathring{I} , then $\partial f = \{f'\}$.

The following fundamental result holds:

Theorem 2.1. Let f be a continuous convex function on $[0, \infty)$ with f(1) = 0. Then we have

$$0 \le \mathcal{S}_f(V, T) \tag{2}$$

for any $T, V \in S_2(\mathcal{M})$ with T invertible.

If, in addition, f is continuously differentiable on $(0, \infty)$, then we also have

$$(0 \le) \mathcal{S}_f(V, T) \le \mathcal{S}_{\ell f'}(V, T) - \mathcal{S}_{f'}(V, T), \tag{3}$$

where ℓ is the identity function.

Proof. For any $x \geq 0$ we have from the gradient inequality (1) that

$$f(x) \ge f(1) + (x - 1) f'_{+}(1)$$

and since f is normalized, then

$$f(x) \ge (x-1) f'_{+}(1)$$
. (4)

Utilising the continuous functional calculus for the positive matrix X we have by (4) that

$$f(X) \ge f'_{+}(1)(X - 1_{H})$$
 (5)

in the operator order of \mathcal{M} .

Let $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible, then by taking $X = |VT^{-1}|^2 \ge 0$ in (5) we have

$$f(|VT^{-1}|^2) \ge f'_{+}(1)(|VT^{-1}|^2 - 1_H).$$
 (6)

So, if we multiply (6) at left with T^* and at right with T, then we get

$$T^* f\left(\left|VT^{-1}\right|^2\right) T \ge f'_+(1) T^* \left(\left|VT^{-1}\right|^2 - 1_H\right) T$$

= $f'_+(1) \left(\left|V\right|^2 - \left|T\right|^2\right)$

and by taking the trace in this inequality, we get

$$\operatorname{tr}\left(T^{*}f\left(\left|VT^{-1}\right|^{2}\right)T\right) \geq f'_{+}(1)\operatorname{tr}\left(\left|V\right|^{2} - \left|T\right|^{2}\right)$$
$$= f'_{+}(1)\left[\operatorname{tr}\left(\left|V\right|^{2}\right) - \operatorname{tr}\left(\left|T\right|^{2}\right)\right] = 0,$$

since $T, V \in \mathcal{S}_2(\mathcal{M})$, namely $\operatorname{tr}(|V|^2) = \operatorname{tr}(|T|^2) = 1$. This proves (2).

From the gradient inequality we also have for any $x \geq 0$ that

$$(x-1) f'(x) + f(1) \ge f(x)$$

and since f is normalized, then

$$(x-1) f'(x) \ge f(x)$$

which, as above, implies that

$$|VT^{-1}|^2 f'(|VT^{-1}|^2) - f'(|VT^{-1}|^2) \ge f(|VT^{-1}|^2)$$
 (7)

for $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible.

If we multiply (7) at left with T^* and at right with T, then we get the desired result (3).

Remark 2.1. If we take $f(t) = -\ln t$, t > 0 in Theorem 2.1 then we get

$$0 \le \tilde{D}_{KL}(V,T) \le \chi_2^2(V,T) \tag{8}$$

for any $T, V \in \mathcal{S}_2(\mathcal{M})$ with T invertible.

The following lemma is of interest in itself since it provides a reverse of Schwarz inequality for trace:

Lemma 2.1. Let S be a selfadjoint operator such that $\gamma 1_H \leq S \leq \Gamma 1_H$ for some real constants $\Gamma \geq \gamma$. Then for any P > 0 and $\operatorname{tr}(P) < \infty$ we have

$$0 \leq \frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}$$

$$\leq \frac{1}{2} \left(\Gamma - \gamma\right) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(P \left| S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)} 1_{H} \right| \right)$$

$$\leq \frac{1}{2} \left(\Gamma - \gamma\right) \left[\frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}\right]^{1/2} \leq \frac{1}{4} \left(\Gamma - \gamma\right)^{2}.$$

$$(9)$$

Proof. For the sake of completeness, we give here a simple proof.

Observe that

$$\frac{1}{\operatorname{tr}(P)}\operatorname{tr}\left(P\left(S - \frac{\Gamma + \gamma}{2}1_{H}\right)\left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_{H}\right)\right)
= \frac{1}{\operatorname{tr}(P)}\operatorname{tr}\left(PS\left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_{H}\right)\right)
- \frac{\Gamma + \gamma}{2}\frac{1}{\operatorname{tr}(P)}\operatorname{tr}\left(P\left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_{H}\right)\right)
= \frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}$$
(10)

since, obviously

$$\operatorname{tr}\left(P\left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_H\right)\right) = 0.$$

Now, since $\gamma 1_H \leq S \leq \Gamma 1_H$ then

$$\left| S - \frac{\Gamma + \gamma}{2} 1_H \right| \le \frac{1}{2} \left(\Gamma - \gamma \right) 1_H.$$

Taking the modulus in (10) and using the properties of trace, we have

$$\frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2} \qquad (11)$$

$$= \frac{1}{\operatorname{tr}(P)} \left| \operatorname{tr}\left(P\left(S - \frac{\Gamma + \gamma}{2} 1_{H}\right) \left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)} 1_{H}\right)\right) \right|$$

$$\leq \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(P \left| \left(S - \frac{\Gamma + \gamma}{2} 1_{H}\right) \left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)} 1_{H}\right) \right| \right)$$

$$\leq \frac{1}{2} (\Gamma - \gamma) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(P \left| S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)} 1_{H}\right| \right),$$

which proves the first part of (9).

By Schwarz inequality for trace we also have

$$\frac{1}{\operatorname{tr}(P)}\operatorname{tr}\left(P\left|S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_{H}\right|\right)$$

$$\leq \left[\frac{1}{\operatorname{tr}(P)}\operatorname{tr}\left(P\left(S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_{H}\right)^{2}\right)\right]^{1/2}$$

$$= \left[\frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}\right]^{1/2} .$$
(12)

From (11) and (12) we get

$$\frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}$$

$$\leq \frac{1}{2} (\Gamma - \gamma) \left[\frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}\right]^{1/2},$$

which implies that

$$\left[\frac{\operatorname{tr}(PS^2)}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^2\right]^{1/2} \le \frac{1}{2} (\Gamma - \gamma).$$

By (12) we then obtain

$$\frac{1}{\operatorname{tr}(P)}\operatorname{tr}\left(P\left|S - \frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}1_{H}\right|\right)$$

$$\leq \left[\frac{\operatorname{tr}(PS^{2})}{\operatorname{tr}(P)} - \left(\frac{\operatorname{tr}(PS)}{\operatorname{tr}(P)}\right)^{2}\right]^{1/2}$$

$$\leq \frac{1}{2}\left(\Gamma - \gamma\right)$$

that proves the last part of (9).

We denote by \mathcal{M}^{-1} the class of all invertible matrices $n \times n$ with complex entries. The following simple fact also holds, see [25]:

Lemma 2.2. Let $T, V \in \mathcal{M}^{-1}$ and $0 < m < M < \infty$. Then the following statements are equivalent:

(i) The inequality

$$m \|Tx\| \le \|Vx\| \le M \|Tx\|$$
 (13)

holds for any $x \in \mathbb{C}^n$;

(ii) We have the operator inequality

$$m1_H \le \left| VT^{-1} \right| \le M1_H. \tag{14}$$

Corollary 2.2. Let $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid. Then

$$0 \leq \chi_{2}^{2}(V,T)$$

$$\leq \frac{1}{2} (M^{2} - m^{2}) D_{V}(V,T)$$

$$\leq \frac{1}{2} (M^{2} - m^{2}) \chi_{2}(V,T)$$

$$\leq \frac{1}{4} (M^{2} - m^{2})^{2} .$$

$$(15)$$

Proof. We write the inequality (9) for $P=\left|T^*\right|^2$, $S=\left|VT^{-1}\right|^2$, $\gamma=m^2$ and $\Gamma=M^2$ to get

$$0 \leq \operatorname{tr} \left(|T^*|^2 |VT^{-1}|^4 \right) - \left(\operatorname{tr} \left(|T^*|^2 |VT^{-1}|^2 \right) \right)^2$$

$$\leq \frac{1}{2} \left(M^2 - m^2 \right) \operatorname{tr} \left(|T^*|^2 |VT^{-1}|^2 - \operatorname{tr} \left(|T^*|^2 |VT^{-1}|^2 \right) 1_H \right)$$

$$\leq \frac{1}{2} \left(M^2 - m^2 \right) \left[\operatorname{tr} \left(|T^*|^2 |VT^{-1}|^4 \right) - \left(\operatorname{tr} \left(|T^*|^2 |VT^{-1}|^2 \right) \right)^2 \right]^{1/2}$$

$$\leq \frac{1}{4} \left(M^2 - m^2 \right)^2 .$$

$$(16)$$

Since

$$\operatorname{tr}\left(|T^*|^2 |VT^{-1}|^2\right) = \operatorname{tr}\left(TV^*VT^{-1}\right) = \operatorname{tr}\left(V^*V\right) = 1,$$

hence (16) can be written as

$$0 \le \operatorname{tr} \left(|T^*|^2 |VT^{-1}|^4 \right) - 1$$

$$\le \frac{1}{2} \left(M^2 - m^2 \right) \operatorname{tr} \left(|T^*|^2 |VT^{-1}|^2 - 1_H \right)$$

$$\le \frac{1}{2} \left(M^2 - m^2 \right) \left[\operatorname{tr} \left(|T^*|^2 |VT^{-1}|^4 \right) - 1 \right]^{1/2}$$

$$\le \frac{1}{4} \left(M^2 - m^2 \right)^2,$$

which is equivalent to the desired result (15).

The following result provides a simple upper bound for the quantum f-divergence $\mathcal{S}_f(V,T)$.

Theorem 2.3. Let f be a continuous convex function on $[0, \infty)$ with f(1) = 0. If T, $V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid, then we have

$$0 \leq \mathcal{S}_{f}(V,T)$$

$$\leq \frac{1}{2} \left[f'_{-}(M^{2}) - f'_{+}(m^{2}) \right] D_{V}(V,T)$$

$$\leq \frac{1}{2} \left[f'_{-}(M^{2}) - f'_{+}(m^{2}) \right] \chi_{2}(V,T)$$

$$\leq \frac{1}{4} \left(M^{2} - m^{2} \right) \left[f'_{-}(M^{2}) - f'_{+}(m^{2}) \right].$$
(17)

Proof. Without loosing the generality, we prove the inequality in the case when f is continuously differentiable on $(0, \infty)$.

We have

$$\operatorname{tr}\left[\left|T^{*}\right|^{2}\left(\left|VT^{-1}\right|^{2}-1_{H}\right)\left[f'\left(\left|VT^{-1}\right|^{2}\right)-\lambda 1_{H}\right]\right]$$

$$=\operatorname{tr}\left[\left|T^{*}\right|^{2}\left(\left|VT^{-1}\right|^{2}-1_{H}\right)f'\left(\left|VT^{-1}\right|^{2}\right)\right]$$
(18)

for any $\lambda \in \mathbb{R}$ and for any $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$.

Since f' is monotonic nondecreasing on $[m^2, M^2]$, then

$$f_{+}'\left(m^{2}\right)\leq f'\left(x\right)\leq f_{-}'\left(M^{2}\right) \text{ for any } x\in\left[m^{2},M^{2}\right].$$

This implies that

$$\left| f'(x) - \frac{f'_{-}(M^2) + f'_{+}(m^2)}{2} \right| \le \frac{1}{2} \left[f'_{-}(M^2) - f'_{+}(m^2) \right]$$

for any $x \in [m^2, M^2]$, therefore by using the continuous functional calculus for the selfadjoint matrix $|VT^{-1}|^2$ with $m^21_H \leq |VT^{-1}|^2 \leq M^21_H$, we have

$$\left| f' \left(\left| V T^{-1} \right|^2 \right) - \frac{f'_{-}(M^2) + f'_{+}(m^2)}{2} 1_H \right| \le \frac{1}{2} \left[f'_{-}(M^2) - f'_{+}(m^2) \right] 1_H. \tag{19}$$

From (3), (18), (19) and properties of trace, we have

$$0 \leq \operatorname{tr}\left[\left|T^{*}\right|^{2} f\left(\left|VT^{-1}\right|^{2}\right)\right] \leq \operatorname{tr}\left[\left|T^{*}\right|^{2} \left(\left|VT^{-1}\right|^{2} - 1_{H}\right) f'\left(\left|VT^{-1}\right|^{2}\right)\right]$$

$$= \operatorname{tr}\left[\left|T^{*}\right|^{2} \left(\left|VT^{-1}\right|^{2} - 1_{H}\right) \left[f'\left(\left|VT^{-1}\right|^{2}\right) - \frac{f'_{-}\left(M^{2}\right) + f'_{+}\left(m^{2}\right)}{2} 1_{H}\right]\right]$$

$$= \left|\operatorname{tr}\left[\left|T^{*}\right|^{2} \left(\left|VT^{-1}\right|^{2} - 1_{H}\right) \left[f'\left(\left|VT^{-1}\right|^{2}\right) - \frac{f'_{-}\left(M^{2}\right) + f'_{+}\left(m^{2}\right)}{2} 1_{H}\right]\right]\right|$$

$$\leq \operatorname{tr}\left[\left|T^{*}\right|^{2} \left|\left(\left|VT^{-1}\right|^{2} - 1_{H}\right) \left[f'\left(\left|VT^{-1}\right|^{2}\right) - \frac{f'_{-}\left(M^{2}\right) + f'_{+}\left(m^{2}\right)}{2} 1_{H}\right]\right]\right|$$

$$\leq \frac{1}{2} \left[f'_{-}\left(M^{2}\right) - f'_{+}\left(m^{2}\right)\right] \operatorname{tr}\left[\left|T^{*}\right|^{2} \left|\left|VT^{-1}\right|^{2} - 1_{H}\right|\right]$$

$$= \frac{1}{2} \left[f'_{-}\left(M^{2}\right) - f'_{+}\left(m^{2}\right)\right] D_{V}\left(V, T\right),$$

which proves the first inequality in (17).

The rest follows by
$$(15)$$
.

Example 1. Let $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid.

1) If we take $f(t) = -\ln t$, t > 0 in Theorem 2.3, then we get

$$0 \le \tilde{D}_{KL}(V,T) \le \frac{M^2 - m^2}{2m^2 M^2} D_V(V,T)$$

$$\le \frac{M^2 - m^2}{2m^2 M^2} \chi_2(V,T) \le \frac{(M^2 - m^2)^2}{4m^2 M^2}.$$
(20)

2) If we take $f(t) = t \ln t$, t > 0 in Theorem 2.3, then we get

$$0 \le D_{KL}(V,T) \le \ln\left(\frac{M}{m}\right) D_V(V,T)$$

$$\le \ln\left(\frac{M}{m}\right) \chi_2(V,T) \le \frac{1}{2} \left(M^2 - m^2\right) \ln\left(\frac{M}{m}\right).$$
(21)

3) If we take in (17) $f(t) = f_q(t) = \frac{1-t^q}{1-q}$, then we get

$$0 \leq D_{f_q}(V,T) \leq \frac{q}{2(1-q)} \left(\frac{M^{2(1-q)} - m^{2(1-q)}}{M^{2(1-q)} m^{2(1-q)}} \right) D_V(V,T)$$

$$\leq \frac{q}{2(1-q)} \left(\frac{M^{2(1-q)} - m^{2(1-q)}}{M^{2(1-q)} m^{2(1-q)}} \right) \chi_2(V,T)$$

$$\leq \frac{q}{4(1-q)} \left(\frac{M^{2(1-q)} - m^{2(1-q)}}{M^{2(1-q)} m^{2(1-q)}} \right) \left(M^2 - m^2 \right).$$

$$(22)$$

3. Some related inequalities

We have the following upper bound as well:

Theorem 3.1. Let f be a continuous convex function on $[0, \infty)$ with f(1) = 0. If T, $V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid, then we have

$$0 \le \mathcal{S}_f(V, T) \le \frac{(M^2 - 1) f(m^2) + (1 - m^2) f(M^2)}{M^2 - m^2}.$$
 (1)

Proof. By the convexity of f we have

$$f(t) = f\left(\frac{(M^2 - t) m^2 + (t - m^2) M^2}{M^2 - m^2}\right)$$

$$\leq \frac{(M^2 - t) f(m^2) + (t - m^2) f(M^2)}{M^2 - m^2}$$

for any $t \in [m^2, M^2]$.

This inequality implies the following inequality in the operator order of $\mathcal{B}(H)$

$$f(|VT^{-1}|^2) \le \frac{\left(M^2 - |VT^{-1}|^2\right)f(m^2) + \left(|VT^{-1}|^2 - m^2\right)f(M^2)}{M^2 - m^2},$$
 (2)

for any $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that the condition (13) is satisfied.

Utilising the property of trace we get from (2) that

$$\operatorname{tr}\left[\left|T^{*}\right|^{2} f\left(\left|VT^{-1}\right|^{2}\right)\right] \leq \frac{f\left(m^{2}\right)}{M^{2} - m^{2}} \operatorname{tr}\left[\left|T^{*}\right|^{2} \left(M^{2} 1_{H} - \left|VT^{-1}\right|^{2}\right)\right]$$

$$+ \frac{f\left(M^{2}\right)}{M^{2} - m^{2}} \operatorname{tr}\left[\left|T^{*}\right|^{2} \left(\left|VT^{-1}\right|^{2} - m^{2} 1_{H}\right)\right]$$

$$= \frac{f\left(m^{2}\right)}{M^{2} - m^{2}} \left(M^{2} \operatorname{tr}\left(\left|T^{*}\right|^{2}\right) - \operatorname{tr}\left(\left|T^{*}\right|^{2}\left|VT^{-1}\right|^{2}\right)\right)$$

$$+ \frac{f\left(M^{2}\right)}{M^{2} - m^{2}} \left(\operatorname{tr}\left(\left|T^{*}\right|^{2}\left|VT^{-1}\right|^{2}\right) - m^{2} \operatorname{tr}\left(\left|T^{*}\right|^{2}\right)\right)$$

$$= \frac{\left(M^{2} - 1\right) f\left(m^{2}\right) + \left(1 - m^{2}\right) f\left(M^{2}\right)}{M^{2} - m^{2}},$$

$$(3)$$

and the inequality (1) is thus proved.

Example 2. Let $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid.

1) If we take in (1) $f(t) = t^2 - 1$, then we get

$$0 \le \chi_2^2(V, T) \le (M^2 - 1) (1 - m^2) \frac{M^2 + m^2 + 2}{M^2 - m^2}.$$
 (4)

2) If we take in (1) $f(t) = t \ln t$, then we get the inequality

$$0 \le D_{KL}(V,T) \le 2 \ln \left[m^{\frac{\left(M^2 - 1\right)m^2}{M^2 - m^2}} M^{\frac{M^2\left(1 - m^2\right)}{M^2 - m^2}} \right].$$
 (5)

3) If we take in (1) $f(t) = -\ln t$, then we get the inequality

$$0 \le \tilde{D}_{KL}(V,T) \le 2 \ln \left[m^{\frac{1-M^2}{M^2-m^2}} M^{\frac{m^2-1}{M^2-m^2}} \right]. \tag{6}$$

We have the following upper bounds as well:

Theorem 3.2. With the assumptions of Theorem 3.1, the following inequalities hold:

$$(0 \le) S_{f}(V,T) \le \frac{(M^{2}-1)(1-m^{2})}{M^{2}-m^{2}} \Psi_{f}(1;m^{2},M^{2})$$

$$\le \frac{(M^{2}-1)(1-m^{2})}{M^{2}-m^{2}} \sup_{t \in (m^{2},M^{2})} \Psi_{f}(t;m^{2},M^{2})$$

$$\le (M^{2}-1)(1-m^{2}) \frac{f'_{-}(M^{2})-f'_{+}(m^{2})}{M^{2}-m^{2}}$$

$$\le \frac{1}{4}(M^{2}-m^{2}) \left[f'_{-}(M^{2})-f'_{+}(m^{2})\right],$$

$$(7)$$

where $\Psi_f(\cdot; m^2, M^2): (m^2, M^2) \to \mathbb{R}$ is defined by

$$\Psi_f(t; m^2, M^2) = \frac{f(M^2) - f(t)}{M^2 - t} - \frac{f(t) - f(m^2)}{t - m^2}.$$
 (8)

We also have

$$(0 \le) S_{f}(V,T) \le \frac{(M^{2}-1)(1-m^{2})}{M^{2}-m^{2}} \Psi_{f}(1;m^{2},M^{2})$$

$$\le \frac{1}{4} (M^{2}-m^{2}) \Psi_{f}(1;m^{2},M^{2})$$

$$\le \frac{1}{4} (M^{2}-m^{2}) \sup_{t \in (m^{2},M^{2})} \Psi_{f}(t;m^{2},M^{2})$$

$$\le \frac{1}{4} (M^{2}-m^{2}) \left[f'_{-}(M^{2}) - f'_{+}(m^{2}) \right] .$$

$$(9)$$

Proof. By denoting

$$\Delta_{f}\left(t;m^{2},M^{2}\right):=\frac{\left(t-m^{2}\right)f\left(M^{2}\right)+\left(M^{2}-t\right)f\left(m^{2}\right)}{M^{2}-m^{2}}-f\left(t\right),\quad t\in\left[m^{2},M^{2}\right]$$

we have

$$\Delta_{f}\left(t; m^{2}, M^{2}\right) = \frac{\left(t - m^{2}\right) f\left(M^{2}\right) + \left(M^{2} - t\right) f\left(m^{2}\right) - \left(M^{2} - m^{2}\right) f\left(t\right)}{M^{2} - m^{2}} \\
= \frac{\left(t - m^{2}\right) \left[f\left(M^{2}\right) - f\left(t\right)\right] - \left(M^{2} - t\right) \left[f\left(t\right) - f\left(m^{2}\right)\right]}{M^{2} - m^{2}} \\
= \frac{\left(M^{2} - t\right) \left(t - m^{2}\right)}{M^{2} - m^{2}} \Psi_{f}\left(t; m^{2}, M^{2}\right)$$
(10)

for any $t \in (m^2, M^2)$.

From the proof of Theorem 3.1 and since f(1) = 0, we have

$$\operatorname{tr}\left[\left|T^{*}\right|^{2} f\left(\left|VT^{-1}\right|^{2}\right)\right] \leq \frac{\left(M^{2}-1\right) f\left(m^{2}\right)+\left(1-m^{2}\right) f\left(M^{2}\right)}{M^{2}-m^{2}}-f\left(1\right)$$
$$=\frac{\left(M^{2}-1\right) \left(1-m^{2}\right)}{M^{2}-m^{2}} \Psi_{f}\left(1; m^{2}, M^{2}\right)$$

for any $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$, such that (13) is valid.

Since

$$\Psi_{f}\left(1; m^{2}, M^{2}\right) \leq \sup_{t \in (m^{2}, M^{2})} \Psi_{f}\left(t; m^{2}, M^{2}\right) \\
= \sup_{t \in (m^{2}, M^{2})} \left[\frac{f\left(M^{2}\right) - f\left(t\right)}{M^{2} - t} - \frac{f\left(t\right) - f\left(m^{2}\right)}{t - m^{2}} \right] \\
\leq \sup_{t \in (m^{2}, M^{2})} \left[\frac{f\left(M^{2}\right) - f\left(t\right)}{M^{2} - t} \right] + \sup_{t \in (m^{2}, M^{2})} \left[-\frac{f\left(t\right) - f\left(m^{2}\right)}{t - m^{2}} \right] \\
= \sup_{t \in (m^{2}, M^{2})} \left[\frac{f\left(M^{2}\right) - f\left(t\right)}{M^{2} - t} \right] - \inf_{t \in (m^{2}, M^{2})} \left[\frac{f\left(t\right) - f\left(m^{2}\right)}{t - m^{2}} \right] \\
= f'_{-}\left(M^{2}\right) - f'_{+}\left(m^{2}\right),$$

and, obviously

$$\frac{1}{M^2 - m^2} \left(M^2 - 1 \right) \left(1 - m^2 \right) \le \frac{1}{4} \left(M^2 - m^2 \right), \tag{12}$$

then by (10)–(12) we have the desired result (7).

The rest is obvious.
$$\Box$$

Example 3. Let $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid.

1) If we consider the convex normalized function $f(t) = t^2 - 1$, then

$$\Psi_f\left(t; m^2, M^2\right) = \frac{M^4 - t^2}{M^2 - t} - \frac{t^2 - m^4}{t - m^2} = M^2 - m^2, \ t \in \left(m^2, M^2\right)$$

and we get from (7) the simple inequality

$$0 \le \chi_2^2(V, T) \le (M^2 - 1)(1 - m^2). \tag{13}$$

This inequality is better than (4).

2) If we take the convex normalized function $f\left(t\right)=t^{-1}-1,$ then we have

$$\Psi_f\left(t;m^2,M^2\right) = \frac{M^{-2}-t^{-1}}{M^2-t} - \frac{t^{-1}-m^{-2}}{t-m^2} = \frac{M^2-m^2}{m^2M^2t}, \ t \in \left[m^2,M^2\right].$$

Also

$$S_f(V,T) = \chi_2^2(T,V).$$

Using (7) we get

$$(0 \le) \chi_2^2(T, V) \le \frac{(M^2 - 1)(1 - m^2)}{M^2 m^2}.$$
 (14)

3) If we consider the convex function $f(t) = -\ln t$ defined on $[m^2, M^2] \subset (0, \infty)$, then

$$\begin{split} \Psi_f\left(t;m^2,M^2\right) &= \frac{-\ln M^2 + \ln t}{M^2 - t} - \frac{-\ln t + \ln m^2}{t - m^2} \\ &= \ln \left(\frac{t^{M^2 - m^2}}{m^{2(M^2 - t)}M^{2(t - m^2)}}\right)^{\frac{1}{(M^2 - t)(t - m^2)}}, \ t \in \left(m^2,M^2\right). \end{split}$$

Then by (7) we have

$$(0 \le) \tilde{D}_{KL}(V,T) \le 2 \ln \left[m^{\frac{1-M^2}{M^2-m^2}} M^{\frac{m^2-1}{M^2-m^2}} \right] \le \frac{(M^2-1)(1-m^2)}{m^2 M^2}.$$
 (15)

4) If we consider the convex function $f(t) = t \ln t$ defined on $[m^2, M^2] \subset (0, \infty)$, then

$$\Psi_f\left(t; m^2, M^2\right) = \frac{M^2 \ln M^2 - t \ln t}{M^2 - t} - \frac{t \ln t - m^2 \ln m^2}{t - m^2}, \ t \in \left(m^2, M^2\right),$$

which gives that

$$\Psi_f\left(1; m^2, M^2\right) = \frac{\ln\left[\left(M^2\right)^{M^2\left(1-m^2\right)} \left(m^2\right)^{m^2\left(M^2-1\right)}\right]}{\left(M^2-1\right)\left(1-m^2\right)}.$$

Using (7) we get

$$(0 \le) D_{KL}(V,T) \le \frac{\ln\left[\left(M^2\right)^{M^2(1-m^2)} \left(m^2\right)^{m^2(M^2-1)}\right]}{M^2 - m^2}$$

$$\le 2\left(M^2 - 1\right)\left(1 - m^2\right)\ln\left[\left(\frac{M}{m}\right)^{\frac{1}{M^2 - m^2}}\right].$$

$$(16)$$

Finally, we have:

Theorem 3.3. Let f be a continuous convex function on $[0, \infty)$ with f(1) = 0. If T, $V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid, then we have

$$0 \leq \mathcal{S}_{f}(V,T)$$

$$\leq 2 \max \left\{ \frac{M^{2}-1}{M^{2}-m^{2}}, \frac{1-m^{2}}{M^{2}-m^{2}} \right\} \left[\frac{f(m^{2})+f(M^{2})}{2} - f\left(\frac{m^{2}+M^{2}}{2}\right) \right]$$

$$\leq 2 \left[\frac{f(m^{2})+f(M^{2})}{2} - f\left(\frac{m^{2}+M^{2}}{2}\right) \right] .$$

$$(17)$$

Proof. We recall the following result (see for instance [11]) that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$n \min_{i \in \{1, \dots, n\}} \{p_i\} \left[\frac{1}{n} \sum_{i=1}^n f(x_i) - f\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \right]$$

$$\leq \frac{1}{P_n} \sum_{i=1}^n p_i f(x_i) - f\left(\frac{1}{P_n} \sum_{i=1}^n p_i x_i\right)$$

$$\leq n \max_{i \in \{1, \dots, n\}} \{p_i\} \left[\frac{1}{n} \sum_{i=1}^n f(x_i) - f\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \right],$$
(18)

where $f: C \to \mathbb{R}$ is a convex function defined on the convex subset C of the linear space X, $\{x_i\}_{i\in\{1,\dots,n\}} \subset C$ are vectors and $\{p_i\}_{i\in\{1,\dots,n\}}$ are nonnegative numbers with $P_n := \sum_{i=1}^n p_i > 0$.

For n = 2 we deduce from (18) that

$$2\min\{s, 1 - s\} \left[\frac{f(x) + f(y)}{2} - f\left(\frac{x + y}{2}\right) \right]$$

$$\leq sf(x) + (1 - s)f(y) - f(sx + (1 - s)y)$$

$$\leq 2\max\{s, 1 - s\} \left[\frac{f(x) + f(y)}{2} - f\left(\frac{x + y}{2}\right) \right]$$
(19)

for any $x, y \in C$ and $s \in [0, 1]$.

Now, if we use the second inequality in (19) for $x = m^2$, $y = M^2$, $s = \frac{M^2 - t}{M^2 - m^2}$ with $t \in [m^2, M^2]$, then we have

$$\frac{(M^{2}-t) f(m^{2}) + (t-m^{2}) f(M^{2})}{M^{2}-m^{2}} - f(t)
\leq 2 \max \left\{ \frac{M^{2}-t}{M^{2}-m^{2}}, \frac{t-m^{2}}{M^{2}-m^{2}} \right\}
\times \left[\frac{f(m^{2}) + f(M^{2})}{2} - f\left(\frac{m^{2}+M^{2}}{2}\right) \right]
\leq 2 \left[\frac{f(m^{2}) + f(M^{2})}{2} - f\left(\frac{m^{2}+M^{2}}{2}\right) \right]$$
(20)

for any $t \in [m^2, M^2]$.

This implies that

$$\begin{split} & \operatorname{tr}\left[\left|T^{*}\right|^{2} f\left(\left|VT^{-1}\right|^{2}\right)\right] \\ & \leq \frac{\left(M^{2}-1\right) f\left(m^{2}\right) + \left(1-m^{2}\right) f\left(M^{2}\right)}{M^{2}-m^{2}} \\ & \leq 2 \max\left\{\frac{M^{2}-1}{M^{2}-m^{2}}, \frac{1-m^{2}}{M^{2}-m^{2}}\right\} \left[\frac{f\left(m^{2}\right) + f\left(M^{2}\right)}{2} - f\left(\frac{m^{2}+M^{2}}{2}\right)\right] \\ & \leq 2 \left[\frac{f\left(m^{2}\right) + f\left(M^{2}\right)}{2} - f\left(\frac{m^{2}+M^{2}}{2}\right)\right] \end{split}$$

and the proof is completed.

Example 4. Let $T, V \in \mathcal{M}^{-1} \cap \mathcal{S}_2(\mathcal{M})$ and $0 < m \le 1 \le M < \infty$ such that either (13), or, equivalently (14) is valid.

1) If we take in (17) $f(t) = t^{-1} - 1$, then we have

$$0 \le \chi_2^2(T, V) \le \max\left\{M^2 - 1, 1 - m^2\right\} \frac{M^2 - m^2}{m^2 M^2 (m^2 + M^2)}.$$
 (21)

2) If we take in (17) $f(t) = -\ln t$, then we have

$$0 \le \tilde{D}_{KL}(V,T) \le \max\left\{\frac{M^2 - 1}{M^2 - m^2}, \frac{1 - m^2}{M^2 - m^2}\right\} \ln\left(\frac{(M^2 + m^2)^2}{4m^2M^2}\right)$$

$$\le \ln\left(\frac{(M^2 + m^2)^2}{4m^2M^2}\right).$$
(22)

3) From (20) we have the following upper bound

$$0 \le \tilde{D}_{KL}(V,T) \le \frac{(M^2 - m^2)^2}{4m^2M^2}.$$
 (23)

Utilising the elementary inequality $\ln x \le x - 1$, x > 0, we have that

$$\ln\left(\frac{(M^2+m^2)^2}{4m^2M^2}\right) \le \frac{(M^2-m^2)^2}{4m^2M^2},$$

which shows that (22) is better than (23).

Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

References

- [1] T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 33–38.
- [2] G. de Barra, Measure Theory and Integration, Ellis Horwood Ltd., 1981.

- [3] R. Bellman, Some inequalities for positive definite matrices, in: E.F. Beckenbach (Ed.), General Inequalities 2, Proceedings of the 2nd International Conference on General Inequalities, Birkhäuser, Basel, 1980, pp. 89–90.
- [4] E. V. Belmega, M. Jungers and S. Lasaulce, A generalization of a trace inequality for positive definite matrices. Aust. J. Math. Anal. Appl. 7 (2010), Art. 26, 5 pp.
- [5] P. Cerone and S. S. Dragomir, Approximation of the integral mean divergence and f-divergence via mean results, Math. Comput. Modelling 42 (2005), 207–219.
- [6] P. Cerone, S. S. Dragomir and F. Österreicher, Bounds on extended fdivergences for a variety of classes. Kybernetika (Prague) 40 (2004), 745–756.
- [7] D. Chang, A matrix trace inequality for products of Hermitian matrices, J. Math. Anal. Appl. 237 (1999), 721–725.
- [8] L. Chen and C. Wong, *Inequalities for singular values and traces*, Linear Algebra Appl. **171** (1992), 109–120.
- [9] I. D. Coope, On matrix trace inequalities and related topics for products of Hermitian matrix, J. Math. Anal. Appl. 188 (1994), 999–1001.
- [10] I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 85–108.
- [11] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. **74** (2006), 471–478.
- [12] S. S. Dragomir, Some inequalities for (m, M)-convex mappings and applications for the Csiszár Φ-divergence in information theory, Math. J. Ibaraki Univ. 33 (2001), 35–50.
- [13] S. S. Dragomir, Some inequalities for two Csiszár divergences and applications, Mat. Bilten **25** (2001), 73–90.
- [14] S. S. Dragomir, An upper bound for the Csiszár f-divergence in terms of the variational distance and applications, Panamer. Math. J. 12 (2002), 43–54.
- [15] S. S. Dragomir, Upper and lower bounds for Csiszár f-divergence in terms of Hellinger discrimination and applications, Nonlinear Anal. Forum 7 (2002), 1–13.
- [16] S. S. Dragomir, Bounds for f-divergences under likelihood ratio constraints, Appl. Math. 48 (2003), 205–223.
- [17] S. S. Dragomir, New inequalities for Csiszár divergence and applications, Acta Math. Vietnam. **28** (2003), 123–134.
- [18] S. S. Dragomir, A generalized f-divergence for probability vectors and applications, Panamer. Math. J. 13 (2003), 61–69.

- [19] S. S. Dragomir, Some inequalities for the Csiszár φ -divergence when φ is an L-Lipschitzian function and applications, Ital. J. Pure Appl. Math. **15** (2004), 57–76.
- [20] S. S. Dragomir, A converse inequality for the Csiszár Φ-divergence, Tamsui Oxf. J. Math. Sci. **20** (2004), 35–53.
- [21] S. S. Dragomir, Some general divergence measures for probability distributions, Acta Math. Hungar. 109 (2005), 331–345.
- [22] S. S. Dragomir, A refinement of Jensen's inequality with applications for fdivergence measures, Taiwanese J. Math. 14 (2010), 153–164.
- [23] S. S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces, Commun. Math. Anal. 15 (2013), 1–14.
- [24] S. S. Dragomir, Inequalities for quantum f-divergence of trace class operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 123. [Online http://rgmia.org/papers/v17/v17a123.pdf].
- [25] S. S. Dragomir, The quadratic weighted geometric mean for bounded linear operators in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll. 19 (2016), Art. 145. [Online http://rgmia.org/papers/v19/v19a145.pdf].
- [26] S. Furuichi and M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and Debbah, Aust. J. Math. Anal. Appl. 7 (2010), Art. 23, 4 pp.
- [27] F. Hiai, Fumio and D. Petz, From quasi-entropy to various quantum information quantities, Publ. Res. Inst. Math. Sci. 48 (2012), 525–542.
- [28] F. Hiai, M. Mosonyi, D. Petz and C. Bény, Quantum f-divergences and error correction, Rev. Math. Phys. 23 (2011), 691–747.
- [29] P. Kafka, F. Österreicher and I. Vincze, On powers of f-divergence defining a distance, Studia Sci. Math. Hungar. 26 (1991), 415–422.
- [30] H. D. Lee, On some matrix inequalities, Korean J. Math. 16 (2008), 565–571.
- [31] F. Liese and I. Vajda, *Convex Statistical Distances*, Teubuer Texte zur Mathematik, Band **95**, Leipzig, 1987.
- [32] L. Liu, A trace class operator inequality, J. Math. Anal. Appl. 328 (2007), 1484–1486.
- [33] S. Manjegani, Hölder and Young inequalities for the trace of operators, Positivity 11 (2007), 239–250.
- [34] H. Neudecker, *A matrix trace inequality*, J. Math. Anal. Appl. **166** (1992), 302–303.
- [35] F. Osterreicher and I. Vajda, A new class of metric divergences on probability spaces and its applicability in statistics, Ann. Inst. Statist. Math. **55** (2003), 639–653.
- [36] D. Petz, From quasi-entropy, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 55 (2012), 81–92.

- [37] D. Petz, From f-divergence to quantum quasi-entropies and their use, Entropy 12 (2010), 304–325.
- [38] M. B. Ruskai, *Inequalities for traces on von Neumann algebras*, Commun. Math. Phys. **26** (1972), 280–289.
- [39] K. Shebrawi and H. Albadawi, Operator norm inequalities of Minkowski type, J. Inequal. Pure Appl. Math. 9 (2008), 1–10.
- [40] K. Shebrawi and H. Albadawi, *Trace inequalities for matrices*, Bull. Aust. Math. Soc. 87 (2013), 139–148.
- [41] B. Simon, *Trace ideals and their applications*, Cambridge University Press, Cambridge, 1979.
- [42] Z. Ulukök and R. Türkmen, On some matrix trace inequalities, J. Inequal. Appl. **2010**, Art. ID 201486, 8 pp.
- [43] X. Yang, A matrix trace inequality, J. Math. Anal. Appl. **250** (2000), 372–374.
- [44] X. M. Yang, X. Q. Yang and K. L. Teo, A matrix trace inequality, J. Math. Anal. Appl. 263 (2001), 327–331.
- [45] Y. Yang, A matrix trace inequality, J. Math. Anal. Appl. 133 (1988), 573–574.

(Silvestru Sever Dragomir^{1,2}) ¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia., ²DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences,, School of Computer Science & Applied Mathematics,, University of the Witwatersrand, Private Bag 3,, Johannesburg 2050, South Africa

E-mail address: sever.dragomir@vu.edu.au

Received October 13, 2016 Revised February 15, 2018