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THE QUADRATIC QUANTUM f-DIVERGENCE OF
CONVEX FUNCTIONS AND MATRICES

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we introduce the concept of quadratic quantum f-
divergence measure for a continuos function f defined on the positive semi-axis of
real numbers, the invertible matrix 7' and matrix V by

Sy (V,T) :=tr {lT*\Qf (|VT‘1|2)] .

Some fundamental inequalities for this quantum f-divergence in the case of con-
vex functions are established. Applications for particular quantum divergence
measures of interest are also provided.

1. Introduction

Let M denote the algebra of all n x n matrices with complex entries and M™ the
subclass of all positive matrices.

Consider the complex Hilbert space (M, (-, -),) , where the Hilbert-Schmidt inner
product is defined by

(U, V), =tr (VU), U, VeM.

We denote by Sy (M) the set of all matrices A € M with ||A]|, = 1. In terms of
trace, this is equivalent to tr (\A|2) = tr (|A*|2) =1

Let f :[0,00) — R be a continuous function on [0,00). By utilising the contin-
uous functional calculus for selfadjoint operators in Hilbert spaces, we can define
the following quadratic quantum f-divergence for matrices T, V' € Sy (M) with T
invertible, by

Sy (V,T) =tx [T*f ((T*) ' V*'VT ) T] (S)
=t | (v ) 1) = e [JP s ()]
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If we take V = Q'2, T = P'/? with tr (P) = tr (Q) = 1, P invertible, then we have

S;(V.1) =t [P (PiQPt) P2 = [Py (1P 2" )| = Dy (@, P)

that shows that the quadratic quantum divergence Sy is an extension of the quantum
divergence Dy defined above.
If we take the convex function f (¢t) =* — 1, t > 0, then we get

081 = [ () VT T ] < (V) -
=tr ([V['|T]7?) = 1=} (V,T),

for T, V € Sy (M) with T invertible, which, we call, the quadratic x*-divergence for
matrices (V,T).

More general, if we take the convex function f (t) =¢" —1, ¢t > 0 and n a natural
number with n > 2, then we get

Sp(V.T) =t (JT [VT ™) =1 = Dgy (V)

for T, V € Sy (M) with T invertible.
If we take the convex function f (t) =tlnt for t > 0 and f (0) := 0, then we get

S (V,T) = tr [|T*|2 VT’ In (\VT—1|2)] —: Dyr (V, T)

for T, V € Sy (M) with T invertible.
If we take the convex function f (t) = —Int for ¢t > 0, then we get

Sy 1) == [ (Jv2 )| = e[| i (o) )
=: Dk, (V,T)

for T, V € S (M) with T, V invertible.
If we take the convex function f (t) = [t — 1], ¢ > 0, then we get

S;(V,T) = tr (|T*|2 “VT‘l\z . 1HD
= tr (|7 () (V1P = |TP") T[] = Dy (V. T)

for T, V € Sy (M) with T invertible.

If we consider the convex function f (t) =1 — 1, ¢ > 0, then
S (V,T) = tr <|T*|2 |VT—1\*2) 1=t (TP V[T -1
=tr (|71'|V]7*) = 1=x3(T.V)

for T, V € S (M) with T, V invertible.



If we take the convex function f (t) = f, (t) = %, q € (0,1), then we get
1
85, (V,T) = —— |1 = (|7 [yT'[*)]
- q
1
(e

- = v T)] - i-u@e,V).

1—g¢q

with
TO,V =T VT[T = ||vT|"T|"

is the quadratic weighted operator geometric mean of (T, V') introduced in [25], where

several properties were established.

For the classical concept of quantum f-divergence and its properties, see the recent
papers [24], [27], [28], [36], [37] and the references therein.

For inequalities for classical f-divergence measures, see [5], [12]-[22].

For some classical trace inequalities see [7], [9], [34] and [45], which are continu-
ations of the work of Bellman [3]. For related works the reader can refer to [1], [4],
[7], [26], [30], [32], [33], [39] and [42].

In this paper we introduce the concept of quadratic quantum f-divergence mea-
sure for a continuos function f defined on the positive semi-axis of real numbers, the
invertible matrix 7" and matrix V' on a Hilbert space. Some fundamental inequali-
ties for this quantum f-divergence in the case of convex functions are established.
Applications for particular quadratic quantum divergence measures of interest are
also provided.

2. Inequalities for quadratic f-divergence measure

Suppose that I is an interval of real numbers with interior I and f:I =R
is a convex function on I. Then f is continuous on I and has finite left and
right derivatives at each point of I. Moreover, if z, y € [ and z < y, then
fr(z) < fi(z) < f2 (y) < fi (y) which shows that both f” and f) are nondecreas-
ing function on I. Tt is also known that a convex function must be differentiable
except for at most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Jf is the set
of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

f(x)> f(a)+ (x —a)p(a) for any z,a € I. (1)

It is also well known that if f is convex on I, then Of is nonempty, f’, fi € 0f
and if ¢ € f, then

fL(z) <p(z) < fl(x) for any x € 1.

In particular, ¢ is a nondecreasing function.



If f is differentiable and convex on I, then Of = {f'}.
The following fundamental result holds:

Theorem 2.1. Let f be a continuous convex function on [0,00) with f (1) = 0.
Then we have

0<8(V.T) (2)
for any T,V € Sy (M) with T invertible.
If, in addition, f is continuously differentiable on (0,00), then we also have

08, (V,T) < Sy (V,T) = Spr (V. T), (3)
where € is the identity function.

Proof. For any x > 0 we have from the gradient inequality (1) that
fla) = f)+(@—1) 1)

and since f is normalized, then

f@)z (=11 1), (4)

Utilising the continuous functional calculus for the positive matrix X we have by
(4) that
f(X) = fi(1) (X —1n) (5)
in the operator order of M.
Let T, V € S (M) with T invertible, then by taking X = [VT!|> > 0 in (5) we
have

F(vr ) = o (v =) (6)
So, if we multiply (6) at left with 7™ and at right with 7', then we get
rf (v )Tz T (V- 1y) T
=L (VI =ITP)
and by taking the trace in this inequality, we get
tr (T*f (\VT—1|2) T) > L) (V=T
= A (VP) - e (TP)] =0,

since T, V € Sy (M), namely tr (|V\2) =tr (\T\2) = 1. This proves (2).
From the gradient inequality we also have for any = > 0 that

(x—=1) f' () + f(1) 2 f (z)

and since f is normalized, then

(x—1) f'(z) = [ (x)



which, as above, implies that
vty (e ) = g (v f) = 7 (v ) (7)
for T, V € S (M) with T invertible.

If we multiply (7) at left with 7* and at right with 7', then we get the desired
result (3). O

Remark 2.1. 1If we take f (t) = —1Int, t > 0 in Theorem 2.1 then we get
0 < Dir (V.T) < x5 (V. T) (8)
for any T', V' € Sy (M) with T invertible.

The following lemma is of interest in itself since it provides a reverse of Schwarz
inequality for trace:

(9)

(AN
DN | —

1
tr (P)

tr (PS?)  [tr(PS)\”
tr (P) _(tr(P)>

_tr(PS?) (tr (PS)>2
1/2)

Lemma 2.1. Let S be a selfadjoint operator such that y1g < S < I'ly for some
real constants I' > ~. Then for any P > 0 and tr (P) < oo we have
~ tr(P) tr (P)
tr (PS)
r— tr{ P|S — 1
= rgpy e (]S - S
1
< —
4

(T —9)*.

é%(F—v)

Proof. For the sake of completeness, we give here a simple proof.

Observe that
() ()
S (PS (S -5 “’))
(e (o)

2 tr(P) tr (P)
_tr(PS?) [t (PS))’
-t (P) _(tr(P))

since, obviously

tr (PS)
P — 1 = 0.
(P (s Sm ) ) =0
Now, since 1y < § < TI'ly then

r 1
i <5 @T=7)1n

S —

1u




Taking the modulus ( 0) and using the properties of trace, we have

()

il (o) (- 5500)
(o5 (-0
‘ t(PS)

tr (P)
- <p g (P
r(P) r(P)

which proves the first part of

(11)

(12)

From (11) and (12) we g_et
tr (PS?)  [tr(PS)\’
tr(P) ( tr (P) )

tr (PS?)  [tr(PS)\?
tr (P) _(tr(P)>

g%(F—v)

which implies that

By (12) we then obtain

that proves the last part of (9). O



We denote by M~! the class of all invertible matrices n x n with complex entries.
The following simple fact also holds, see [25]:

Lemma 2.2. Let T,V € M~ and 0 < m < M < oo. Then the following statements
are equivalent:
(i) The inequality

m [Tzl < [Va| < M ||Tx] (13)

holds for any x € C";
(i) We have the operator inequality

mly < |VT' < Mly. (14)

Corollary 2.2. Let T,V € M™1N&y (M) and 0 < m <1 < M < oo such that either
(13), or, equivalently (14) is valid. Then

0<x3(V,T) (15)
1
<5 (M?* —=m®) Dy (V,T)
<5 (W —m?) x, (V,7)
1 2
< (M2 —m)’

Proof. We write the inequality (9) for P = |T*|*, 8 = [VTY*, v = m? and I = M2
to get

o<t (1 Vr) = (e (1 VT ) 1o
<5 (2 =)o (1R P o (1R v ) 1)
57 1/2
< g 0rt =) [ () = (e (P )
<5 O =)’

Since

w (I VT ) = o (TVVT) = e (V') = 1,



hence (16) can be written as

o<t (TP v ) — 1

IN

M2 — m?) tr (\T*\Q

VT~ 14))

1

5 (

2
<50 —m?) i (i p ) -]
<4

which is equivalent to the desired result (15). O

The following result provides a simple upper bound for the quantum f-divergence
Sp(V.T).

Theorem 2.3. Let f be a continuous convex function on [0, 00) with f (1) = 0. If T,
VeMINS (M) and0<m <1< M < oo such that either (13), or, equivalently
(14) is valid, then we have

0< Sy (V,T)
< 2 [ (M)~ £} (m?)] Dy (V.7) a7)
<0 0P = 1, (02)] v ()
1

< 7 (M2 —m?) [f2 (M) = f1 (m)].

Proof. Without loosing the generality, we prove the inequality in the case when f is
continuously differentiable on (0, c0) .
We have

w ([P (VT = 1) [/ (VT ) = A (18)
=t (| (VT = 1) £ (v )]

for any A € R and for any T, V € M1 NS, (M).
Since f’ is monotonic nondecreasing on [m?, M?], then

fi(m?) < f () < f2(M?) for any x € [m*, M?].

This implies that

AR AT

' (a) y S 1 () = 71 ()]



for any x € [m?, M?|, therefore by using the continuous functional calculus for the
selfadjoint matrix [VT!° with m21y < |VT~!]> < M21y, we have

<[P ) - @)L (19

1y

7 <|VT_1‘2> B fr (MZ);fjr (m?)

DN | —

From (3), (18), (19) and properties of trace, we have

o<t [’T*Ff(“/Tq‘z)] o [‘T* <‘VT 12 _1H> ’<|VT71‘2>}
. {,T* (|VT 12 ) {f’<|VT—1‘2) LM+ (m2)1HH

2
el (v =) [ (rrep) - EEE S|
< {IT* (\VT P ) [f’(\VT‘lf) L (Mz);fi (m2)1H] }
< 517 0r2) = £ ) o [l VT - 1
= 2 [ (M?) = £ ()] Dy (V,T),
which proves the first inequality in (17).
The rest follows by (15). -

Example 1. Let T,V € M1 NSy (M) and 0 < m < 1 < M < oo such that either
(13), or, equivalently (14) is valid.
1) If we take f (t) = —Int, ¢ > 0 in Theorem 2.3, then we get

M? —m?
0< Dy (V,T) < 52Dy (V,T) (20)
M? —m? (M2 — m?)?
< — "m<-—_—27
S S eV = =

2) If we take f(t) =tlnt, ¢t > 0 in Theorem 2.3, then we get

0 < Dy (V,T) < In (%) Dy (V,T) (21)
M

<In (M) Yo (V,T) < ; (M? —m®) In <E) :



3) If we take in (17) f(t) = f, (1) = %, then we get

0< Dy, (V,T) <

q M2(=a) _ j2(1—q)
2(1—-q) < M?2(1=a)m2(1-a)
q M2(=a) _ y2(1—q)

= 2(1—q) ( M2(1—q) y2(1—q) X2 (V,T)
q M2(=a) _ y2(1—q) ) ,
- 4(1 — q) ( M2(1=q)y2(1—q) > (M —m ) .

) Dy (V,T) (22)

3. Some related inequalities

We have the following upper bound as well:

Theorem 3.1. Let f be a continuous convex function on [0, 00) with f (1) = 0. If T,
VeMINS (M) and)<m <1< M < oo such that either (13), or, equivalently
(14) is valid, then we have

(M2 = 1) f (m?) + (1 = m?) (M%)

0<8(V,T) < YR

Proof. By the convexity of f we have

) = f<(M ”A’Z{Z;mw)
M=) F )+ (t—m) £ (M)
— MQ_mQ

for any t € [m?, M?].
This inequality implies the following inequality in the operator order of B (H)

(22 = VT 1) £ () + (VT = m2) £ (ar2)
M2 —m?2 ’ (2)

f (\VT*1|2> <

for any T, V € M1 NSy (M) and 0 < m <1 < M < oo such that the condition
(13) is satisfied.



Utilising the property of trace we get from (2) that

tr [\T*Ff (]VT”V)} < Aé%mi)ﬂtr [\T*\Z’ (M2 — v )] (3)
+—]\§2(M2) [|T* (yVT 2k m21H>}

M tr (IT7?) = tr (|T*|2 \VT—1|2)>

i (
( <|T* VT ) —mQtr(]T*]2)>
f(m?) + (1 —m?) f (M?)

M2 — m?2

(M2— )

and the inequality (1) is thus proved. O

Example 2. Let T,V € M 1 NSy (M) and 0 < m < 1 < M < oo such that either
(13), or, equivalently (14) is valid.
1) If we take in (1) f (¢) = t* — 1, then we get

M? +m? + 2
2 2
2) If we take in (1) f (¢) = tlnt, then we get the inequality

(M271)m2 M?(km2)
0 < Dgy, (V, T) <2In |m MZ-mZ N[ MZ-m2 . (5)

3) If we take in (1) f (t) = —1Int, then we get the inequality

1-M2 m2—1

0< DKL (V T) <2In {mM?—mQMMQ—m :| . (6)

We have the following upper bounds as well:

Theorem 3.2. With the assumptions of Theorem 3.1, the following inequalities
hold:

(M? —1)(1 —m?

0<)S8;(V,T) < )xpf (1;m*, M?) (7)

M? —m?
(M —1) (1 —m?) 2 372
< U (¢ M
ST O, Y (A
/ M2 i 2
S(MQ—l)(l—mz)f_( ) — [y (m?)

M? —m?
L =) [17 () - £, ()]

IN



where Wy (+;m?, M?) : (m?, M?) — R is defined by

\I]f(t;m2’M2):f(]\]{43:f(t)_f(ti:ilgm)' (8)

We also have
(M? —1) (1 —m?)
M2 — m2
(M2 — m?) W, (1;m2, M?)

IA

(0<)S;(V,T) Uy (1;m?, M) (9)

IA

—mz) sup WYy (t;m2,M2)
te(m?2,M?)

(M? = m?) [f2 (M) = fi (m?)]

IN IN
e B e N e
S

Proof. By denoting

Ay (t;mZ,MZ) =

A
we have
As (t;m?, M?) (10)
) O O ) () = (O~ ) ()
) - g fj} —_<A7%2 )10~ f (m)]

O = 1) (t =)
- M2 — 2 Uy (tym?, M)

for any t € (m?, M?).
From the proof of Theorem 3.1 and since f (1) = 0, we have

(M?—1) f(m?) + (1 —m?) f (M?)
M2 _ m2
Oy, 1

w [P (v )] < - f()

for any T, V € M~ NSy (M), such that (13) is valid.



Since

Uy (1;m?, M?) (11)

< sup \I/f(t;m2,M2)
te(m?2,M?)

= su —
tE(m28\/[2) L M2 —t t —m?

< sup 1 +
te(m2,M2?) | M? —t te(m?2,M?)

= sup
tE(mQ,MQ) L M2 - t

= L (M%) = i (m*),

and, obviously

1

1
0Py () < o), 1)
then by (10)—(12) we have the desired result (7).
The rest is obvious. O

Example 3. Let T,V € M1 NSy (M) and 0 < m < 1 < M < oo such that either
(13), or, equivalently (14) is valid.
1) If we consider the convex normalized function f () = ¢* — 1, then

M= 2 _mt
M2 —t t—m2

Uy (t;m?, M?) = =M?—m®, te (m? M?)

and we get from (7) the simple inequality
0<x3(V.T) < (M?—1) (1—m?). (13)

This inequality is better than (4).
2) If we take the convex normalized function f (¢t) = ¢~! — 1, then we have
M=2—tt 7 t—m™2 M?*-—m?

\ij (t;mQ’M2> - M2 —¢ o t — m?2 - m2M?2t "’ te [mz’Mﬂ :

Also
Sp(V,T)=x5(T,V).
Using (7) we get

(O —1) (1 —m?)

0<)G(TV) < 5




3) If we consider the convex function f (t) = —Int defined on [m?, M?] C (0,0),
then

—InM?+1Int —Int+ Inm?
M2 —¢ t—m?2

tM2—m2 (M2—t)1(t—m2)
= In ) , t€(m2,M2).

s (t;mQ,MQ) =

22 —t) | p2(t—m?

Then by (7) we have

i ] <AE-DAZm) gy

(0 <) Dgr (V,T) < 2In [mM2m2 M 2=m? I

4) If we consider the convex function f (t) = tInt defined on [m?, M?] C (0,0),
then
M?InM? —tlnt  tlnt—m?Inm?
M?—t t —m?

U (t;m? M?) = , t e (m?* M?),

which gives that

ey ) gy (]
\Ilf(l;m’M): (M2 —1) (1 —m?) )

Using (7) we get

In [(a22) M0 2y ()]
M2 — m2

<2(M*-1)(1-m*)In [(M)MM] :

(0 <) Dgr (V,T) <

(16)

m
Finally, we have:

Theorem 3.3. Let f be a continuous convex function on [0, 00) with f (1) = 0. If T,
VeMINS (M) and0<m <1< M < oo such that either (13), or, equivalently
(14) is valid, then we have

0<Sp(V,T) "
M2—1 1—m? \ [f(m?)+ f(M?) m* + M
§2H13X{M2_m27M2_m2}[ 2 _f<T>:|

L) £ SO8) _ (mi 2y

|



Proof. We recall the following result (see for instance [11]) that provides a refinement
and a reverse for the weighted Jensen’s discrete inequality:

,,,,,

%&“M@*E§:“%*4<%ZFJ] (15)

..... n

Sn%gwﬁﬂwl% f@»—f(%}jm>r

,,,,,

with P, == 3" p; > 0.
For n = 2 we deduce from (18) that

2min{s,1 — s} lM—f (x+y)] (19)
<sf(@)+ (1 =s)f(y)—flsz+(1-s)y

< 2max{s,1 — s} [

for any z,y € C and s € [0,1].
Now, if we use the second inequality in (19) for z = m? y = M?, s = % with
t € [m? M?], then we have

(M? —1t) f(m?) + (t —m?) f (M?)
M2_m2

M? —t t—m?
M2—m2’M2—m2}

y [f(m2)+f(M2) iy <M)]

— [ (1) (20)

< Qmax{

2 2

f(mQ)J;f(MQ) _ (M)}

|

for any t € [m?, M?].



This implies that

tr [|T*|2f <|VT‘1\2>}
L= 1) f )+ (1= m) f (M)
— M2 _ m2

SQM{W—l 1= m? Hf(mQHf(W)_f(M)}

M? —m?2’ M2 — m?2 2 2
f(m?) + f(M?) _ (m2+M2>}

<2
—{ 2 2

and the proof is completed. U

Example 4. Let T,V € M1 NSy (M) and 0 < m < 1 < M < oo such that either
(13), or, equivalently (14) is valid.
1) If we take in (17) f (t) =t~' — 1, then we have

M? —m?

2 2 2
0< 3 (TV) <max{M*—11-m }szg(m2+M2)'

2) If we take in (17) f () = —Int, then we have

- M?—1 1-m? (M2 +m?)?
OSDKL(MT)SmaX{MQ_m2,M2_m2}ln<W (22)

(M2 + m?2)?
= (W |

3) From (20) we have the following upper bound

(M? —m?)*
Am2M?

Utilising the elementary inequality Inx < x — 1, > 0, we have that

. ((M2 + m2)2> L O — )’

0< Dgr, (V.T) < (23)

4m?2M? 4m2M?
which shows that (22) is better than (23).
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