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THE CHERN CHARACTER IN THE SIMPLICIAL
DE RHAM COMPLEX

NAOYA SUZUKI

Abstract. On the basis of Dupont’s work, we exhibit a cocycle in the simplicial

de Rham complex which represents the Chern character. We also prove the related

conjecture due to Brylinski. This gives a way to construct a cocycle in a local

truncated complex.

1. Introduction

It is well-known that there is one-to-one correspondence between the characteristic

classes of G-bundles and the elements in the cohomology ring of the classifying space

BG. So it is important to investigate H∗(BG) in research on the characteristic

classes. However, in general BG is not a manifold so we can not adapt the usual de

Rham theory on it. To overcome this problem, a total complex of a double complex

Ω∗(NG(∗)) which is associated to a simplicial manifold {NG(∗)} is often used. In

brief, {NG(∗)} is a sequence of manifolds {NG(p) = Gp}p=0,1,··· together with face

operators εi : NG(p) → NG(p− 1) for i = 0, · · · , p satisfying relations εiεj = εj−1εi
for i < j (The standard definition also involves degeneracy operators but we do not

need them here). The cohomology ring of Ω∗(NG(∗)) is isomorphic to H∗(BG) so

we can use this complex as a candidate of the de Rham complex on BG.

In [5], Dupont introduced another double complex A∗,∗(NG) on NG and showed

the cohomology ring of its total complex A∗(NG) is also isomorphic to H∗(BG).

Then he used it to construct a homomorphism from I∗(G), the G-invariant polyno-

mial ring over Lie algebra G, to H∗(BG) for a classical Lie group G.

The images of this homomorphism in Ω∗(NG(∗)) are called the Bott-Shulman-

Stasheff forms. The main purpose of this paper is to exhibit these cocycles precisely

when they represent the Chern characters.

In addition, we also show that the conjecture due to Brylinski in [3] is true.

This gives a way to construct a cocycle in a local truncated complex [σ<pΩ
∗
loc(NG)]
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whose cohomology class is mapped to the cohomology class of the Bott-Shulman-

Stasheff form in a local double complex by a boundary map. His original motivation

to introduce these complexes and the conjecture is to study the local cohomology

group of the gauge group Map(X,G) and the Lie algebra cohomology of its Lie

algebra. Actually, as a special case X = S1, he constructed the standard Kac-

Moody 2-cocycle for a loop Lie algebra by using the cocycle in the local truncated

complex [σ<2Ω
3
loc(NG)].

The outline of this paper is as follows. In section 2, we briefly recall the univer-

sal Chern-Weil theory due to Dupont. In section 3, we obtain the Bott-Shulman-

Stasheff form in Ω∗(NG(∗)) which represents the Chern character chp. In section

4, we introduce some result about the Chern-Simons forms. In section 5, we prove

Brylinski’s conjecture.

2. Review of the universal Chern-Weil Theory

In this section we recall the universal Chern-Weil theory following [6]. For any Lie

group G, we have simplicial manifolds NG, NḠ and simplicial G-bundle γ : NḠ→
NG as follows:

NG(q) =

q−times︷ ︸︸ ︷
G× · · · ×G ∋ (h1, · · · , hq) :

face operators εi : NG(q) → NG(q − 1)

εi(h1, · · · , hq) =


(h2, · · · , hq) i = 0

(h1, · · · , hihi+1, · · · , hq) i = 1, · · · , q − 1

(h1, · · · , hq−1) i = q.

NḠ(q) =

q+1−times︷ ︸︸ ︷
G× · · · ×G ∋ (g1, · · · , gq+1) :

face operators ε̄i : NḠ(q) → NḠ(q − 1)

ε̄i(g0, · · · , gq) = (g0, · · · , gi−1, gi+1, · · · , gq) i = 0, 1, · · · , q.

We define γ : NḠ→ NG as γ(g0, · · · , gq) = (g0g1
−1, · · · , gq−1gq

−1).

For any simplicial manifold X = {X∗}, we can associate a topological space ∥ X ∥
called the fat realization. Since any G-bundle π : E →M can be realized as a pull-

back of the fat realization of γ, ∥ γ ∥ is the universal bundle EG→ BG [8].

Now we construct a double complex associated to a simplicial manifold.
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Definition 2.1. For any simplicial manifold {X∗} with face operators {ε∗}, we

define a double complex as follows:

Ωp,q(X) := Ωq(Xp)

Derivatives are:

d′ :=

p+1∑
i=0

(−1)iε∗i , d′′ := (−1)p × the exterior differential on Ω∗(Xp).

For NG and NḠ the following holds [2] [6] [7].

Theorem 2.1. There exist ring isomorphisms

H(Ω∗(NG)) ∼= H∗(BG), H(Ω∗(NḠ)) ∼= H∗(EG).

Here Ω∗(NG) and Ω∗(NḠ) mean the total complexes.

For example, the derivative d′ + d′′ : Ωp(NG) → Ωp+1(NG) is given as follows:

Ωp(G)x−d

Ωp−1(G)
ε∗0−ε∗1+ε∗2−−−−−→ Ωp−1(NG(2))xd

Ωp−2(NG(2))

. . .

Ω1(NG(p))x(−1)pd

Ω0(NG(p))
∑p+1

i=0 (−1)iε∗i−−−−−−−→ Ω0(NG(p+ 1))

Remark 2.1. Let π : P → M be a principal G-bundle and {gαβ : Uαβ → G} be

the transition functions of it. Then we can pull-back the cocycle in Ω∗(NG) to the

Čech-de Rham complex of M by {gαβ}. When κ is the characteristic class which

corresponds to the cocycle in Ω∗(NG), the image of g∗αβ in H∗
Čech−deRham

(M) is the

characteristic class κ(P ) of π : P →M . For more details, see for instance [7].

There is another double complex associated to a simplicial manifold.
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Definition 2.2 ([5]). A simplicial n-form on a simplicial manifold {Xp} is a sequence
{ϕ(p)} of n-forms ϕ(p) on ∆p ×Xp such that

(εi × id)
∗
ϕ(p) = (id× εi)

∗ϕ(p−1).

Here εi is the canonical i-th face operator of ∆p.

Let Ak,l(X) be the set of all simplicial (k+l)-forms on ∆p×Xp which are expressed

locally of the form∑
ai1···ikj1···jl(dti1 ∧ · · · ∧ dtik ∧ dxj1 ∧ · · · ∧ dxjl)

where (t0, t1, · · · , tp) are the barycentric coordinates in ∆p and xj are the local

coordinates in Xp. We call these forms (k, l)-form on ∆p×Xp and define derivatives

as:

d′ := the exterior differential on ∆p

d′′ := (−1)k × the exterior differential on Xp.

Then (Ak,l(X), d′, d′′) is a double complex.

Let A∗(X) denote the total complex of A∗,∗(X). We define a map I∆ : A∗(X) →
Ω∗(X) as follows:

I∆(α) :=

∫
∆p

(α|∆p×Xp).

Then the following theorem holds [5].

Theorem 2.2. I∆ induces a natural ring isomorphism

I∗∆ : H(A∗(X)) ∼= H(Ω∗(X)).

Let G denote the Lie algebra of G. A connection on a simplicial G-bundle π :

{Ep} → {Mp} is a sequence of 1-forms {θ} on {Ep} with coefficients G such that θ

restricted to ∆p×Ep is a usual connection form on a principal G-bundle ∆p×Ep →
∆p ×Mp.

Dupont constructed a canonical connection θ ∈ A1(NḠ) on γ : NḠ→ NG in the

following way:

θ|∆p×NḠ(p) := t0θ0 + · · ·+ tpθp.

Here θi is defined by θi = pr∗i θ̄ where pri : ∆
p ×NḠ(p) → G is the projection into

the i-th factor of NḠ(p) and θ̄ is the Maurer-Cartan form of G. We also obtain its

curvature Ω ∈ A2(NḠ) on γ as:

Ω|∆p×NḠ(p) = dθ|∆p×NḠ(p) +
1

2
[θ|∆p×NḠ(p), θ|∆p×NḠ(p)].

— 4 —



Let I∗(G) denote the ring of G-invariant polynomials on G. For P ∈ I∗(G), we

restrict P (Ω) ∈ A∗(NḠ) to each ∆p × NḠ(p) → ∆p ×NG(p) and apply the usual

Chern-Weil theory then we have a simplicial 2k-form P (Ω) on NG.

Now we have a canonical homomorphism

w : I∗(G) → H(Ω∗(NG))

which maps P ∈ I∗(G) to w(P ) = [I∆(P (Ω))].

3. The Chern character in the double complex

In this section we exhibit a cocycle in Ω∗,∗(NG) which represents the Chern char-

acter. Throughout this section, G = GL(n;C) and chp means the p-th Chern

character.

Note that the diagram below is commutative, since I∆ acts only on the differential

forms on ∆∗, and so does γ∗ on differential forms on each NG(∗).

A∗,∗(NḠ)
I∆−−−→ Ω∗,∗(NḠ)

γ∗
x xγ∗

A∗,∗(NG)
I∆−−−→ Ω∗,∗(NG)

We first give the cocycle in Ωp+q(NḠ(p − q))(0 ≤ q ≤ p − 1) which corre-

sponds to the p-th Chern character by restricting (1/p!) tr ((−Ω/2πi)p) ∈ A2p(NḠ)

to Ap−q,p+q(∆p−q × NḠ(p − q)) and integrating it along ∆p−q. Then we give the

cocycle in Ωp+q(NG(p− q)) which hits to it by γ∗.

Since [θi, θj] = θi ∧ θj + θj ∧ θi for any i, j,

Ω|∆p−q×NḠ(p−q) = −
p−q∑
i=1

dti ∧ (θ0 − θi)−
∑

0≤i<j≤p−q

titj(θi − θj)
2.

Now

dti ∧ (θ0 − θi) = dti ∧ {(θ0 − θ1) + (θ1 − θ2) + · · ·+ (θi−1 − θi)}

and for any G-valued differential forms α, β, γ and any integer 0 ≤ ∀x ≤ p− q − 1,

the equation α∧ (dti ∧ (θx − θx+1))∧ β ∧ (dtj ∧ (θx − θx+1))∧ γ = −α∧ (dtj ∧ (θx −
θx+1))∧β ∧ (dti∧ (θx− θx+1))∧γ holds, so the terms of the forms above cancel with

each other in
(
−Ω|∆p−q×NḠ(p−q)

)p
. Then we see:

(
−Ω|∆p−q×NḠ(p−q)

)p
=

(
p−q∑
i=1

dti ∧ (θi−1 − θi) +
∑

0≤i<j≤p−q

titj(θi − θj)
2

)p

.

Now we obtain the following theorem.
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Theorem 3.1. We set:

S̄p−q =
∑

σ∈Sp−q−1

(sgn(σ))(θσ(1) − θσ(1)+1) · · · (θσ(p−q−1) − θσ(p−q−1)+1)

Then the cocycle in Ωp+q(NḠ(p − q)) (0 ≤ q ≤ p − 1) which corresponds to the

p-th Chern character chp is

1

p!

(
1

2πi

)p

(−1)(p−q)(p−q−1)/2×

tr
∑(

(p(θ0 − θ1)) ∧ H̄q(S̄p−q)×
∫
∆p−q

∏
i<j

(titj)
aij(H̄q(S̄p−q))dt1 ∧ · · · ∧ dtp−q

)
.

Here H̄q(S̄p−q) means the terms that (θi − θj)
2 (1 ≤ i < j ≤ p − q + 1) are put q

-times between (θk−1−θk) and (θl−θl+1) in S̄p−q permitting overlaps; aij(H̄q(S̄p−q))

means the number of (θi − θj)
2 in it.

∑
means the sum of all such terms.

Proof. The cocycle in Ωp+q(NḠ(p− q)) which corresponds to chp is given by∫
∆p−q

1

p!
tr

((−Ω|∆p−q×NḠ(p−q)

2πi

)p)

=
1

p!

(
1

2πi

)p ∫
∆p−q

tr

((
p−q∑
i=1

dti ∧ (θi−1 − θi) +
∑

0≤i<j≤p−q

titj(θi − θj)
2

)p)
.

By calculating this equation, we can check that the statement of Theorem 3.1 is

true. □

For the purpose of getting the differential forms in Ω∗,∗(NG) which hit the cocycles

in Theorem 3.1 by γ∗, we set

φs := h1 · · ·hs−1dhsh
−1
s · · ·h−1

1 .

Here hi is the i-th factor of NG(∗).
A straightforward calculation shows that

γ∗tr(φi1φi2 · · ·φip−1φip) = tr(θi1−1 − θi1)(θi2−1 − θi2) · · · (θip−1 − θip).

From the above, we conclude:

Theorem 3.2. We set:

Rij = (φi + φi+1 + · · ·+ φj−1)
2 (1 ≤ i < j ≤ p− q + 1)

Sp−q =
∑

σ∈Sp−q−1

sgn(σ)φσ(1)+1 · · ·φσ(p−q−1)+1.
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Then the cocycle in Ωp+q(NG(p − q)) (0 ≤ q ≤ p − 1) which represents the p-th

Chern character chp is

1

(p− 1)!

(
1

2πi

)p

(−1)(p−q)(p−q−1)/2×

tr
∑(

φ1 ∧Hq(Sp−q)×
∫
∆p−q

∏
i<j

(ti−1tj−1)
aij(Hq(S))dt1 ∧ · · · ∧ dtp−q

)
.

Here Hq(Sp−q) means the term that Rij (1 ≤ i < j ≤ p − q + 1) are put q -times

between ψk and ψl in Sp−q permitting overlaps; aij(Hq(Sp−q)) means the number of

Rij in it.
∑

means the sum of all such terms.

Proof. We can easily check that the cocycle in Theorem 3.2 is mapped to the cochain

in Theorem 3.1 by γ∗ : Ωp+q(NG(p−q)) → Ωp+q(NḠ(p−q)). The statement folllows

from this. □
Remark 3.1. The coefficients in Theorem 3.2 are calculated using the following fa-

mous formula.∫
∆r

tb00 t
b1
1 · · · tbrr dt1 ∧ · · · ∧ dtr =

b0! b1! · · · br!
(b0 + b1 + · · ·+ br + r)!

.

Corollary 3.1. The cochain ωp in Ω2p−1(NG(1)) which corresponds to the p-th

Chern character is given as follows:

ω1 =
1

p!

(
1

2πi

)p
1

2p−1Cp−1

tr(h−1dh)2p−1.

Corollary 3.2. The cochain ωp in Ωp(NG(p)) which corresponds to the p-th Chern

character is given as follows:

ωp = (−1)p(p−1)/2 1

p!(p− 1)!

(
1

2πi

)p

tr

φ1 ∧
∑

σ∈Sp−1

sgn(σ)φσ(1)+1 · · ·φσ(p−1)+1

 .

Example 3.1. The cocycle which represents the second Chern character ch2 in Ω4(NG)

is the sum of the following C1,3 and C2,2:

0xd′′

C1,3 ∈ Ω3(G)
d′−−−→ Ω3(NG(2))xd′′

C2,2 ∈ Ω2(NG(2))
d′−−−→ 0
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C1,3 =

(
1

2πi

)2
1

6
tr(h−1dh)3, C2,2 =

(
1

2πi

)2 −1

2
tr(dh1dh2h

−1
2 h−1

1 ).

Corollary 3.3. The cocycle which represents the second Chern class c2 in Ω4(NG)

is the sum of the following c1,3 and c2,2:

0xd′′

c1,3 ∈ Ω3(G)
d′−−−→ Ω3(NG(2))xd′′

c2,2 ∈ Ω2(NG(2))
d′−−−→ 0

c1,3 =

(
1

2πi

)2 −1

6
tr(h−1dh)3

c2,2 =

(
1

2πi

)2
1

2
tr(dh1dh2h

−1
2 h−1

1 )−
(

1

2πi

)2
1

2
tr(h−1

1 dh1)tr(h
−1
2 dh2).

Example 3.2. The cocycle which represents the 3rd Chern character ch3 in Ω6(NG)

is the sum of the following C1,5, C2,4 and C3,3:

0xd′′

C1,5 ∈ Ω5(G)
d′−−−→ Ω5(NG(2))xd′′

C2,4 ∈ Ω4(NG(2))
d′−−−→ Ω4(NG(3))xd′′

C3,3 ∈ Ω3(NG(3))
d′−−−→ 0

C1,5 =
1

3!

(
1

2πi

)3
1

10
tr(h−1dh)5

C2,4 =
−1

3!

(
1

2πi

)3(
1

2
tr(dh1h1

−1dh1h1
−1dh1dh2h2

−1h1
−1)

+
1

4
tr(dh1dh2h2

−1h1
−1dh1dh2h2

−1h1
−1)

+
1

2
tr(dh1dh2h2

−1dh2h2
−1dh2h2

−1h1
−1)

)
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C3,3 =
−1

3!

(
1

2πi

)3(
1

2
tr(dh1dh2dh3h3

−1h2
−1h1

−1)

−1

2
tr(dh1h2dh3h3

−1h2
−1dh2h2

−1h1
−1)

)
.

4. The Chern-Simons form

We briefly recall the notion of the Chern-Simons form in [4].

Let π : E → M be any principal G-bundle and θ, Ω denote its connection form

and the curvature. For any P ∈ Ik(G), we define the (2k − 1)-form TP (θ) on E as:

TP (θ) := k

∫ 1

0

P (θ ∧ ϕk−1
t )dt.

Here ϕt := tΩ + 1
2
t(t − 1)[θ, θ]. Then the equation d(TP (θ)) = P (Ωk) holds and

TP (θ) is called the Chern-Simons form of P (Ωk). When the bundle is flat, its

curvature vanishes and hence d(TP (θ)) = P (Ωk) = 0.

Now we put the simplicial connection into TP and using the same argument in

section 3, then we obtain the Chern-Simons form in Ω2p−1(NḠ).

Proposition 4.1. The Chern-Simons form in Ω3(NU(n)) which corresponds to the

second Chern class c2 is the sum of the following Tc0,3, Tc1,2:

0xd′′

Tc0,3 ∈ Ω3(U(n))
d′−−−→ Ω3(NU(n)(1))xd′′

Tc1,2 ∈ Ω2(NU(n)(1))
d′−−−→ Ω2(NU(n)(2))

Tc0,3 =

(
1

2πi

)2
1

6
tr(g−1dg)3

Tc1,2 =

(
1

2πi

)2(
1

2
tr(g−1

0 dg0g
−1
1 dg1)−

1

2
tr(g−1

0 dg0)tr(g
−1
1 dg1)

)
.

Remark 4.1. The term
(

1
2πi

)2 1
2
tr(g−1

0 dg0)tr(g
−1
1 dg1) vanishes when we restrict it to

SU(n).
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5. Formulas for a cocycle in a truncated complex

In this section, we prove the conjecture due to Brylinski in [3].

At first, we introduce the filtered local simplicial de Rham complex.

Definition 5.1 ([3]). The filtered local simplicial de Rham complex F pΩ∗,∗
loc(NG)

over a simplicial manifold NG is defined as follows:

F pΩr,s
loc(NG) =

{
lim−→1∈V⊂Gr Ωs(V ) if s ≥ p

0 otherwise.

Let F pΩ∗(NG) be a filtered complex

F pΩr,s(NG) =

{
Ωs(NG(r)) if s ≥ p

0 otherwise

and [σ<pΩ
∗(NG)] a truncated complex

[σ<pΩ
r,s(NG)] =

{
0 if s ≥ p

Ωs(NG(r)) otherwise.

Then there is an exact sequence:

0 → F pΩ∗(NG) → Ω∗(NG) → [σ<pΩ
∗(NG)] → 0

which induces a boundary map

β : H l(NG, [σ<pΩ
∗
loc]) → H l+1(NG, [F pΩ∗

loc]).

Let ω1 + · · · + ωp, ωp−q ∈ Ωp+q(NG(p − q)) be the cocycle in Ω2p(NG) which

represents the p-th Chern character. By using this cocycle, Brylinski constructed a

cochain η in [σ<pΩ
∗
loc(NG)] in the following way.

We take a contractible open set U ⊂ G containing 1. Using the same argument

in [6, Lemma 9.7], we can construct mappings {σl : ∆l × U l → U}0≤l inductively

with the following properties:

(1) σ0(pt) = 1;

(2)

σl(ε
j(t0, · · · , tl−1);h1, · · · , hl) =

{
σl−1(t0, · · · , tl−1; εj(h1, · · · , hl)) if j ≥ 1

h1 · σl−1(t0, · · · , tl−1;h2, · · · , hl) if j = 0.

Then we define mappings {fm,q : ∆
q × Um+q−1 → Gm} by

fm,q(t0, · · · , tq;h1, · · · , hm+q−1) := (h1, · · · , hm−1, σq(t0, · · · , tq;hm, · · · , hm+q−1)).

We can check fm,q ◦ εj = fm,q+1 ◦ εj−m+1 : ∆q × Um+q → Gm if m ≤ j ≤ m+ q and

fm,q ◦ εj = εj ◦ fm+1,q if m− 1 ≥ j ≥ 0 and εm ◦ fm+1,q = fm,q+1 ◦ ε0 holds.
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We define a (2p−m− q)-form βm,q on U
m+q−1 by βm,q = (−1)m

∫
∆q f

∗
m,qωm. Then

the cochain η is defined as the sum of following ηl on U
2p−1−l for 0 ≤ l ≤ p− 1:

ηl :=
∑

m+q=2p−l, m≥1

βm,q.

Now we are ready to state the theorem whose statement is conjectured by Brylinski

[3].

Theorem 5.1. η := η0+ · · ·+ ηp−1 is a cocycle in [σ<pΩ
∗
loc(NG)] whose cohomology

class is mapped to [ω1 + · · · + ωp] in H2p(NG, [F pΩ∗
loc]) by a boundary map β :

H2p−1(NG, [σ<pΩ
∗
loc]) → H2p(NG, [F pΩ∗

loc]).

Proof. To prove this, it suffices to show the equation below holds true for any l

which satisfies 0 ≤ l ≤ 2p− 1 since ω2p−l = 0 if 0 ≤ l ≤ p− 1:

2p−l∑
i=0

(−1)iε∗i ηl = (−1)2p−l+1dηl−1 + ω2p−l.

The left side of this equation is equal to

∑
m+q=2p−l, m≥1

(−1)m

(∫
∆q

m−1∑
i=0

(−1)i(fm,q ◦ εi)∗ωm +

∫
∆q

m+q∑
i=m

(−1)i(fm,q ◦ εi)∗ωm

)
.

We can check that

m−1∑
i=0

(−1)i(fm,q ◦ εi)∗ωm = f ∗
m+1,q(

m−1∑
i=0

(−1)iε∗iωm)

hence by using the cocycle relation
∑m+1

i=0 (−1)iε∗iωm = (−1)mdωm+1, we can see the

following holds:∫
∆q

m−1∑
i=0

(−1)i(fm,q ◦ εi)∗ωm =

∫
∆q

(−1)mdf∗
m+1,qωm+1

−
(
(−1)m

∫
∆q

(εm ◦ fm+1,q)
∗ωm + (−1)m+1

∫
∆q

(εm+1 ◦ fm+1,q)
∗ωm

)
.

Note that
∫
∆q(εm+1 ◦ fm+1,q)

∗ωm = 0 for q ≥ 1 and
∫
∆q(εm+1 ◦ fm+1,q)

∗ωm = ω2p−l if

q = 0.

We can also check that∫
∆q

m+q∑
i=m

(−1)i(fm,q ◦ εi)∗ωm =

∫
∆q

m+q∑
i=m

(−1)i(fm,q+1 ◦ εi−m+1)∗ωm.
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We set j = i−m+1, then we see that
∫
∆q

∑m+q
i=m (−1)i(fm,q+1 ◦ εi−m+1)∗ωm is equal

to
q+1∑
j=0

(
(−1)j+m−1

∫
∆q

(fm,q+1 ◦ εj)∗ωm

)
− (−1)m−1

∫
∆q

(εm ◦ fm+1,q)
∗ωm

since εm ◦ fm+1,q = fm,q+1 ◦ ε0.
From above, we can see that

∑2p−l
i=0 (−1)iε∗i ηl is equal to

ω2p−l +
∑

m+q=2p−l, m≥1

(∫
∆q

df ∗
m+1,qωm+1 +

q+1∑
j=0

(−1)j−1

∫
∆q

(fm,q+1 ◦ εj)∗ωm

)
.

On the other hand, for any (m′, q′) which satisfies m′+q′ = 2p−(l−1) the following

equation holds:

(−1)q
′
d

∫
∆q′

f ∗
m′,q′ωm′ =

∫
∆q′

df ∗
m′,q′ωm′ −

q′∑
j=0

∫
∆q′−1

(−1)jεj
∗
f ∗
m′,q′ωm′ .

Therefore (−1)2p−l+1dηl−1 is equal to∑
m′+q′=2p−l+1, m′≥1

(∫
∆q′

df ∗
m′,q′ωm′ −

q′∑
j=0

∫
∆q′−1

(−1)jεj
∗
f ∗
m′,q′ωm′

)
.

This completes the proof.

□

Remark 5.1. Let me explain Brylinski’s motivation in [3] to introduce these com-

plexes and the conjecture briefly. Let LU be the free loop group of a contractible

open set U ⊂ G containing 1 and ev : LU × S1 → U be the evaluation map, i.e. for

γ ∈ LU and θ ∈ S1, ev(γ, θ) is defined as γ(θ). Then
∫
S1 ev

∗ maps η1 ∈ Ω1(U2p−2) to

a cochain in Ω0(LU2p−2). This cochain defines a cohomology class in local cohomol-

ogy group H2p−2
loc (LU,C). Brylinski constructed a natural map from H2p−2

loc (LU,C)
to the the Lie algebra cohomology H2p−2(LG,C). Then as a special case p = 2,

he used the cocycle in the local truncated complex [σ<2Ω
3
loc(NG)] to construct the

standard Kac-Moody 2-cocycle. He treated not only the free loop group but also

the gauge group Map(X,G) for a compact oriented manifold X.
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