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LINEAR ISOMETRIES ON SPACES OF
CONTINUOUSLY DIFFERENTIABLE AND LIPSCHITZ
CONTINUOUS FUNCTIONS

HIRONAO KOSHIMIZU

ABSTRACT. We characterize the surjective linear isometries on C(™[0,1] and
Lip[0,1]. Here C™][0,1] denotes the Banach space of n-times continuously dif-
ferentiable functions on [0, 1] equipped with the norm

n—1
£ =Y 1)+ sup [f™ ()] (f € C™0,1]),
k=0 z€][0,1]

and Lip[0, 1] denotes the Banach space of Lipschitz continuous functions on [0, 1]
equipped with the norm

If1I = 1£(0)] +esssup | f'(z)| (f € Lip[0,1]).
z€]0,1]

1. Introduction

The linear isometries on various function spaces have been studied by many mathe-
maticians (see [5]). The source of this subject is the classical Banach-Stone theorem,
which characterizes the surjective linear isometries on C'(X), the Banach space of
all complex-valued continuous functions on a compact Hausdorff space X with the
supremum norm || - ||«. It states that every surjective linear isometry 7" from C'(X)
onto itself has the canonical form: Tf = w(f o ¢) for all f € C(X), where ¢ is
a homeomorphism of X onto itself and w is a unimodular continuous function on
X. In this paper, we investigate the surjective linear isometries on two types of the
spaces C™1[0,1] and Lip|0, 1].

We denote by C™10,1] for a positive integer n the K-linear space of K-valued n-
times continuously differentiable functions on the closed unit interval [0, 1], where K
is the real field R or the complex field C. With each of the following five equivalent
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norms the space C™[0,1] is a Banach space respectively:

(k)
Hf||g—max{z|f 2l xE[O,l]},
(k)

11l = maX{llfHoo, 1 Noos -, 1F ™l
£ llm = rnaX{If(O)I PO LD O 1L oo

1fllo = Zlf““ O+ 1™ loo

for f € C™I0,1]. Among them, (C™[0,1],|| - [l¢) and (C™[0,1],] - ||s) are unital
semisimple commutative Banach algebras.

In [2], Cambern characterized the surjective linear isometries on (C[0, 1], |- |lc)-
Later, Pathak [12] extended this result to (C™][0,1],] - |l¢). The other extensions
may be found in [3] and [11]. On the other hand, Rao and Roy [13] and Jarosz
and Pathak [7] characterized the surjective linear isometries on (CM[0,1],]| - [|x)
and (CMI[0,1], | - |lar), respectively. Those results say that every surjective linear
isometry has the canonical form. However, the author [10] proved that the surjective
linear isometries on (C™[0, 1], ]| -||,) have the different form. In this paper, we show
a similar result for the space (C™][0, 1], - ||,).

To state our theorem we introduce an integral operator S: for any f € C([0,1]),
we put (Sf)(z) = [y f(t)dt for all 2 € [0,1]. Then S is a linear operator of C([0, 1])
onto {f € C’ )0,1] : f( ) = 0}, and S™ maps C([0,1]) onto {f € C™I[0,1] :
f®() = 0 for k = 0,1,...,n — 1}. Hence {f™ : f € C™[0,1]} = C([0,1]).
Moreover we have

fa) =3 Pt (@) @ e 1), £ e o).

The following is a characterization of the surjective linear isometries on (C™][0, 1],

- {lo)-

Theorem 1.1. Let T be a linear operator from (C™[0,1], || - ||,) onto itself. Then
T is an isometry if and only if there exist a homeomorphism ¢ of [0, 1] onto itself, a
unimodular continuous function w on [0, 1], a permutation {7(0),7(1),...,7(n—1)}
of {0,1,...,n— 1} and unimodular constants Ao, \1, ..., A\n_1 such that

nl (T(K))
) = 3 0k (o ) () (1)



for all x € [0,1] and f € (C™[0,1],] - |l5)-

We denote the K-linear space of K-valued Lipschitz continuous functions on [0, 1]
by Lip[0, 1]. Every f € Lip|0, 1] has the derivative f’(x) for almost all z € [0, 1], and
the set {f’ : f € Lip|0, 1]} coincides with L>°[0, 1]; the Banach algebra of K-valued
essentially bounded functions on [0, 1] with the essential supremum norm || - || 1.
With each of the following four equivalent norms the space Lip[0, 1] is a Banach
space respectively:

11l = 1 lloo + 11l oo,
£ llar = max{[| flloo, 1/"l| 2o}
1/l = max{[f(O)[, |/l =},
1 llo = [FO) 4+ [1f Nl 2=

for f € Lip[0,1]. Among them, (Lip[0,1],|| - ||s) is a unital semisimple commutative
Banach algebra. It is known that every surjective linear isometry on (Lip|[0, 1], |- ||x)
or (Lip[0,1], || - |lar) has the canonical form ([7, 8, 13]). In [10], the author proved
that the surjective linear isometries on (Lip[0, 1], || - ||:) have the different form. The
following is a characterization of the surjective linear isometries on (Lip|0, 1], || - ||, )-

Theorem 1.2. Let T be a linear operator from (Lip[0,1],| - ||,) onto itself. Then
T is an isometry if and only if there exist an algebra automorphism ® of L*[0, 1],
a unimodular function w € L*[0,1] and a unimodular constant A such that

(Tf)(x) = Af(0) + / Cw(t)(@ ) (1)dt (1.2)
for all z € [0,1] and f € (Lip[0,1], || - [|»)-

It is known that every algebra automorphism ® of L>°[0, 1] has the form: ®f =
fog forall f € L>0,1], where ¢ € L*>*[0,1] and ¢(z) € [0,1] for almost all
x € [0, 1]. This fact is proved by the method of the proof of [6, Theorem 1].

Remark. Theorems 1.1 and 1.2 are the same results as the cases (C™10, 1], ||-||,») and
(Lip[0, 1], - ||m), respectively (see [10]). However we need a different consideration
for their proofs.

Throughout this paper, we use the notations below: Put T = {z € K : |z| = 1}.
If K=R, then T = {1,—1}. If K = C, then T denotes the unit circle in C. For
any nonnegative integer £, we define i‘(x) = z* for z € [0, 1]. In particular, we write
i® =1and i' =i. Let f € C™[0,1] and £ = 1,2,...,n. Then f = i if and only
if £(0)=f'(0)=---= f&1(0) =0and fO(x) = ¢ for z € [0,1]. For a normed
linear space B, we put ball B = {¢ € B: ||¢||z < 1} and denote its dual space by B*.



2. Lemmas
Before proving the theorem we state useful lemmas.

Lemma 2.1. Let Sy, ...,8; be normed linear spaces, and let B = 81 X -+ X &; be
the product space equipped with the norm

(8155 s0)lls = max{lsils,, - Isells, ) (5155 50) € B).

Then (s1,...,8¢) is an extreme point of ball B if and only if sy is an extreme point

of ball Sy, for all k =1,...,¢.

Proof. Suppose s is an extreme point of ball S, for all k. To prove that (sq,. .., s,) is
an extreme point of ball B, write (s1,...,s¢) = ((s1,...,5y) + (s],...,57))/2, where
(sh,--.y8y),(s],...,s)) € ball B. Then for each k = 1,...,¢ we have
1 / 14
S = §sk + §sk.
Also, ||sills, < max{[|si]ls,,- -, Istlls,} = (51, -, sp)lls < 1. Similarly, [[s¢fls, <
1. By hypothesis, s, = s, = s{. Hence (s1,...,8) = (s],...,8,) = (s],...,57).
Thus (s1,...,s) is an extreme point of ball B.
The converse can be proved in a similar manner. O

Lemma 2.2. Suppose that 11 and 1y are injective continuous mappings from [0, 1]
into [0,1]. Let a« € C. If a(g o)+ (g oha) is constant on [0, 1] for all real-valued
continuous functions g on [0, 1], then 1 = 1hy.

Proof. Assume 1 # 9. Then ¢1(p) # o(p) for some p € [0,1]. Since ¥ is
continuous there exists ¢ € [0, 1] such that ¢ # p and ¥1(q) # ¥(p). Since 1, is
injective, ¥9(q) # ¥o(p). Applying the Urysohn’s lemma there exists a real-valued
continuous function gy on [0, 1] so that go(¢2(p)) = 1 and go(¢¥1(p)) = go(¥1(q)) =

90(¥2(q)) = 0. Then we have ago(v1(p))+90(¢2(p)) = 1 and ago(¥1(q))+90(¥2(q)) =
0. This contradicts the fact that a(gootr )+ (goo1p2) is constant. Hence ¢y = 1)y, O

3. Proof of Theorem 1.1

From now on, we write simply C™ and C for the Banach spaces (C™]0,1],] - [|o)
and (C([0,1]),] - |loo), respectively.
We first give a proof for the elementary part:

Proof of the “if” part. Suppose T has the form (1.1). It is clear that 7" is linear.
Let f € C™. For each ¢ =0,1,...,n — 1 we have

n—1
)\kf e

k=¢

+ (S w(f™ o)) (z) (z € 0,1)).



Thus (T£)(0) = A fT)(0) since (Sg)(0) = 0 for all g € C. Moreover (Tf)™ =
w(f™ o ). Therefore

ITfllo = ZWJ”“) )+ llw (£ 0 )l = Z\f 0) + 1f™llee = IIf 1l

Hence T’ is an isometry.
To prove that T is surjective let g € C™. Put

5 mg;1<k>>(0) (sn (—(n) ° Wl)) (2) (xe01).

W O
k=0 Y

-1

Then f9(0) = A -1pg™ D(0) for £ =0,1,...,n—1and f = (g™ op!)/(wo

¢©~1). Hence
171y Fg® () 6 o1
- EAEEL (o (L2570
k=0 '
n—1 (k)
=S ki (579 (1) = i)
k=0
for all z € [0, 1]. O

The rest of this section is devoted to the proof of the “only if” part. Let T be
a linear isometry of C'™ onto itself. Let K” denote the product space of n copies
of K. The points of K" are thus ordered n-tuples @ = (ag,as,...,a,_1), where
ag,ai,...,a,—1 € K. For instance, we write b = (by,by1,...,b,-1), 1 = (1,1,...,1)
and so on.

Definition 3.1. For each (a,c,z) € T" x T x [0,1] we define a functional A(q )
on C™ by

. Zakf 0) +cf™(@) (fec™).

It is clear that Agcq) € ball(C’(”)) i

Proposition 3.2. Let £ € (C™)*. Then £ is an extreme point of ball(C™)* if and
only if there exists (a,c,x) € T x T x [0,1] such that § = Mg cq)-

Proof. If the product spaces K® x C' and K" x C* are equipped with the norms

bl =3 1be] + gl (b.g) € K" x ),

(@, || = max{|ao, |as], ..., lanl, Inll}  ((a,n) € K" x C%),



then (K" x C)* is linearly isometric to K" x C*. In fact, the linear isometry @ of
K™ x C* onto (K" x C')* is given by

n—1

(Qa,m)(b,g) =Y _arbi+n(g) ((a,n) €K" x C% (b,g) € K" x ).

k=0

Now, define a mapping P of C™ into K" x C by
Pf = ((f(0), f/(0),..., f"D(0)), f™)  (f € C™).

onto K" x C. Then the conjugate operator P*

*

Clearly P is a linear isometry of C'®)

of P is a linear isometry of (K" x C')* onto (C™)*. Hence P*Q is a linear isometry
of K® x C* onto (C™)*. Thus ¢ € (C™)* is an extreme point of ball(C™)* if and
only if £ = P*Q(a,n), where (a,n) is an extreme point of ball(K™ x C*). Note
that the set of all extreme points of ballK is T. Also it is known that the set of
all extreme points of ballC* is {ce, : ¢ € T,z € [0, 1]}, where e, is the evaluation
functional at z: e,(g) = g(z) for g € C (see [4, Theorem V.8.4]). By Lemma 2.1,
(a,n) is an extreme point of ball(K" x C*) if and only if @ € T™ and n = ce,, where
ce T, z €[0,1]. Thus the conclusion follows from

(P*Q(a, cex))(f) = (Q(a, ce)) ((£(0), £/(0),..., f71(0)), F)

n—1

= akf( )( ) + Cf(n) (I’) = A(a,c,x)(f)

k=0

for f € O™, O

Claim 3.3. For any (a,c,z) € T" x T x [0,1] there exists a unique (b,d,y) €
T x T x [0, 1] such that T*A(a,cw) = A(b,d,y)-

Proof. Let (a,c,x) € T" x T x [0, 1]. By Proposition 3.2, A(g. ) is an extreme point
of ball(C™)*. Since T* is a linear isometry of (C™)* onto itself, T*A(g ) is an
extreme point of ball(C™)*. By Proposition 3.2 there exists (b, d,y) € T" x T x [0, 1]
such that T*A(a’c,z) = A(b,d,y)-

For the uniqueness of (b, d,y) suppose T*A(q.ca) = Ay a1,y for some (b',d',y/) €
T" x T x [0,1], where b = (g, b, ..., 8,_;). Then Awpay) = Ap ) and so

» ¥nm—1

3
—

n—1
> b fO0) +df () = 3B FPO) + dF) (FEC™). (31)
k=0

0

B
Il

For each £ = 0,1,...,n — 1 put f = i’ in (3.1). Then b, = b, holds hence b = b'.
Substituting f = " and f = i"™! respectively in (3.1) we obtain d = d' and
y=y" O



Definition 3.4. Let (a,z) € T™ x [0,1]. Applying Claim 3.3 there exists a unique
(b,d,y) € T" x T x [0,1] such that T*Aq1.2) = Aw,ay). Since b = (by,...,bp—1), d
and y depend on (a, ) we write

by = ug(a,z) (k=0,1,....,n—1), d=v(a,z) and y=1(a,x).

Thus ux and v are unimodular functions on T™x [0, 1] and ¢ is a mapping of T" x [0, 1]
into [0, 1]. Moreover we have

Naiz)(Tf) = (T"Nap2)(f) = Muo(aw),...un—1(ae)w(as)waz) ()
for f € C™ and so

n—1

> ar(TF)P(0) + (T ) Zwaxf“) 0) +v(a,2)f" (Y(a,z). (3.2)

k=0
Substituting f = ™ for m = 0,1,...,n — 1 respectively in (3.2) we have

2 ap(Ti™)P(0) + (Ti™) ™ (2) = mluy(a, z). (3.3)

Substituting " and "*! for f in (3.2) we have

i ax(Ti") P (0) + (Ti") "™ (z) = nlv(a, z), (3.4)

-1

Z T ® (0) + (TP (2) = (n+ 1)lv(a, 2)¢(a, ). (3.5)

k=0
Claim 3.5. For k=0,1,...,n— 1, ux and v are unimodular continuous functions
on T™ x [0,1]. Also, 1 is a continuous mapping of T" x [0, 1] onto [0, 1].

Proof. Note that the left hand sides of (3.3), (3.4) and (3.5) are continuous in (a, z) €
T™ x [0,1]. The first two equations show that u; and v are continuous. Since v is
unimodular, (3.5) implies that 1 is also continuous.

To prove that ¢ : T" x [0, 1] — [0, 1] is surjective let y € [0, 1]. Since T* is a linear
isometry of (C™)* onto itself, Proposition 3.2 gives (a,c,z) € T" x T x [0, 1] such
that T"A(g o) = A(1,1,4)- Then we have

(T"Aap)(f) = ¢ (Z ar(Tf)®(0) + (T )™ (@) = cT"Mae)(f)

n—1

= (M) (f) = <Z cfM(0) + Ef(")(y)> = A1y (f)

k=0
for f € C™. By the definition of 1) we get ¥(¢a,x) = y. Hence 1 is surjective. [

Claim 3.6. For any fized x € [0, 1], (T"™ x {z}) is a singleton.



Proof in case K=R. Fix a1,...,a,1 € T = {1,—1}. For t € {1,—1} put a; =
(t,a1,...,an—1). By Claim 3.5 functions ux(as, x) and v(as, x) are continuous and
take values within —1 and 1, so that they are constant functions as the interval [0, 1]
is connected. Let

up(ap,x) = apr and v(a,x) = B (x €1]0,1)),

where oy and f; are 1 or —1. Define ¢4(z) = ¢(as x) for all ¢ € {1,—1} and
x € [0, 1]. Putting a = a; in (3.2) we have

H(TH0) + 3 aeTHPO) + (THP () = 3 e fO0) + fuf @ (th(x))  (36)
k=1 =0

for all z € [0,1] and f € C™.

By Claim 3.5 1y is continuous. We show that 1)y is injective. Since T is surjective
we can choose fy € C™ so that Tfy = i"*1/(n + 1)|. Putting f = fo in (3.6) we
have

n—1
L= Z anefs (0) + Bufs” (wi(2)).
P

Since the left hand side is injective in = € [0, 1], ¢y must be injective.
Now the difference of (3.6) with ¢ =1 and (3.6) with t = —1 is

n—

2(TF)(0) =Y (are—a—1,0) fO0) + Bif™ (Wi (x)) — B f™ (W1 (2))

[y

T
o

for all x € [0,1] and f € C™. If v = —j,/B_1, then the above equation implies
that v(f™ o4y) + (f™ o1h_) is constant on [0, 1] for all f € C™. In other words,
v(g o) + (gotp_q) is constant for all g € C. Hence Lemma 2.2 yields ¢ = 91,
that is,

(1, a1, .. a0-1,2) = 1(x) = _q(z) =¥Y(—1,a1,...,an_1,2) (z €][0,1]).

If we fix x € [0, 1], then the set ¥(T x {ai} x -+ x {a,_1} X {x}) is a singleton.
By the similar argument we can show that for each ¢ = 0,1,...,n — 1 and for
fixed ag,...,ai_1,a011,...,a,—1 € T and z € [0, 1] the set

({ao} > -+ x{apa} X T x {agp} x - x {ana} x {z})
is a singleton. Since ¢ is arbitrary we see that ¢ (T™ x {z}) is also a singleton. [

Proof in case K=C. Fix ay,...,a,_1 € T and x € [0,1]. Since T X {a;} x -+ x
{a,_1} x {x} is connected and compact the continuity of ¢ implies that (T x
{a1} x -+- x{an_1} x {z}) is connected and compact in [0, 1]. Hence we can write
Y(T x{ar} x -+ x{an—1} x{z}) = [s,t], where s,t € [0,1] and s < t. To show that
s =t assume s < t. Then we easily find three distinct points p,q,r € [s,t] and a



function fo € C™ such that fo(0) = f4(0) =--- = f"Y0) = () = fM(g) =0
and fé")(r) = 1. Since p,q,7 € Y(T x {a1} x -+ x {an,_1} x {x}) there exist three
distinct points b, ¢, d € T such that ¥(b, ay,...,a,_1,2) = p, ¥(c,a1,...,a,-1,%) =q
and ¢(d,as,...,a,-1,2) =r. Putting f = fo in (3.2) we have

b(T fo)(0) + Zak T fo)M(0) + (T fo)™ (x) = 0, (3.7)
(T f,)(0) + Z@k Tf)®(0) + (T fo)™(z) =0, (3.8)
d(T fo)(0) + Z ar(T o) ®(0) + (T fo)™(z) = v(d, ay, . .., an_1, ). (3.9)

By (3.7) and (3.8) we have (T'f;)(0) = 0 and 33— ar(Tfo)*(0) + (T'f5)™ (x) = 0
because b # c. It follows by (3.9) that 0 = v(d,a; ...,a,—1,x). This contradicts the
fact that v is unimodular. Thus we obtain s = ¢, and (T x{ay} x- - - x{an_1} x{z})
is a singleton {s}.

A similar argument shows that for each ¢ = 0,1, ... ,n—1 and for fixed ay, . .., ap_1,
Qpi1y .- an_1 € T the set

v({ao} x - x{agr} x T x {agsr} x - x {an—1} x {z})

is a singleton. Hence we see that ¢ (T" x {z}) is also a singleton. This concludes
the claim. 0

Definition 3.7. Define a mapping ¢ of [0, 1] into [0, 1] by

p(r) =¢(1,z) (ze]0,1]).

Since 9 is a continuous mapping of T™ x [0, 1] onto [0, 1], ¢ is a continuous mapping
of [0,1] onto [0,1]. By Claim 3.6 we have ¢(x) = ¥(1,z) = 9(a,z) for (a,z) €
T" x [0, 1]. Moreover for any (a,z) € T" x [0,1] and f € C™, (3.2) is written as

S alTHO0) + (T @) = 3 uela,2)fO0) +vla,) /0 (p(x).
k=0 /=0



Applying (3.3) and (3.4) we have by removing u, and v the equation

k=0
n—1 n—1 T ) T (k)
“Ya (Z 20 o0y + T (O)f(”)(w(fv))>
k=0 (=0 )
n—1 0\ (n) 7\ (n)
+ 3 TR oo g) 4 TR o
£=0 ’ ’
Since this holds for all @ = (ag, a1, ...,a,-1) € T" we have

ity (k) i) (k)
@p®) =3 L0 ) T poo iy (3.10)

— Al n!
) — (T (@) L (Ti") " () )
(TF)™ () = i OO+ Y ). (31

Claim 3.8. For each k =0,1,...,n—1, (Ti")®(0) = 0 and

n—

gy =5 T o) (g e co) 312

=0

Proof. Fix k =0,1,...,n — 1. Putting f = """ in (3.10) we have
(T ®(0) = (Ti")P(0)(n + Dp(x)  (x € [0,1]).

Note that the left hand side is constant while ¢ maps [0, 1] onto [0,1]. We must
have (7")*)(0) = 0. Substituting this into (3.10) we obtain (3.12). O

Definition 3.9. Define w(z) = (79")™(x)/n! for all + € [0,1]. Clearly w is a
continuous function on [0, 1].

Claim 3.10. The function w is a unimodular continuous function on [0, 1].

Proof. By Claim 3.8 and Equation (3.4) we have

(T @) = | ST O0) + (7)) (@) = nlo(1,2)] =
for all x € [0,1]. Hence |w(z)| =1 for z € [0, 1]. O

Claim 3.11. For each k € {0,1,...,n—1} there ezist a uniqgue m € {0,1,...,n—1}
and a unique o € C such that Ti™ = ai® and |a| = m!/k!.



Proof. Let k € {0,1,...,n—1}. Assume (T4°)®(0) = 0 for all £ € {0,1,...,n—1}.
Then (3.12) shows that (Tf)*)(0) = 0 for all f € C™, which is a contradiction
if we choose f so that T'f = i¥ because T is surjective. Therefore there exists
m € {0,1,...,n — 1} such that (7%)*)(0) # 0. By (3.3) we have

—_

n—

m! = |mlu,(a,z)| = ag(Ti™)O(0) + (Ti™) ™ (x)

LT
= o

< )T O0) + (1) ()] < [T o = [ ]ls = m!
=0

for all (a,z) € T" x [0,1]. Since the equality holds in the first inequality for all
a = (ag,ay,...,a,_1) € T and since (T5™)*)(0) # 0, we must have (7)) (0) = 0
for all £ € {0,1,...,n — 1} \ {k} and (T%™)"™(z) = 0 for all x € [0,1]. Moreover
|(Ti™)®)(0)] = m!. Put a = (Ti™)*)(0)/k!. Then |a| = m!/k! and

n—1 . .
m (Ti™)®(0) (. (Ti™)™(0) :
(Tim) () = Yy + (M) () = =" = aif(z) (z € [0,1)).
=0
For the uniqueness assume T9™ = o/i®, where m’ € {0,1,...,n — 1}, o/ € C
and |o/| = m!/k!. Then T(i™/a) = i* = T(i™ /a/). Since T is injective we have
i™ /o = i™ /o, This yields a = o/ and m = m/. O

Definition 3.12. According to Claim 3.11, with each k£ € {0,1,...,n — 1} we
associate m € {0,1,...,n — 1} and a € C such that 7™ = «i* and |a| = m!/k!.
Since m and « depend on k we write

|
m=7(k) and o= %)\k.
Then we have
k)!
TiT®) = T(k—'Uki’f and | \;| = 1.

To complete the proof it remains to show the following claim:

Claim 3.13. (a) ¢ is a homeomorphism of [0, 1] onto [0, 1].
(b) {7(0),7(1),...,7(n— 1)} is a permutation of {0,1,...,n—1}.
(¢) T has the form (1.1).

Proof. We first show (b). For (b), it suffices to show that 7 is injective. Suppose
7(k) = 7(K'), where k, k" € {0,1,...,n — 1}. Then
—T(Ij)! A = Tk = 1) =

This implies kK = k’. So 7 is injective.

T(K')

k!
1 )\kll .




For (c), let x € [0,1] and f € C™. Since we have established (b), (3.12) implies
(k

n—lTZg n—1 ‘
=5 TT00 e = 5 (W)

£=0 £=0
n—1

_ f(T(If) (0) = )\k‘f(T(k:))(O)'

)
(0) f7(0)

On the other hand, by (b) for any ¢ € {0,1,...,n—1} thereis k € {0,1,...,n—1}
such that 7(k) = £. Then

7(k)! (n)
(Tif)) () = (Ti7®Y®) () = (%mk) (2) = 0

because k < n. Hence (3.11) shows

(TH" () = w(@) [T (). (3.13)
Thus it follows that
rp@) =3 Ty (o)
= A fTE)(0)

Lk (S 0 9)) (a).

ol

=0

Finally we show (a). Since ¢ is continuous and surjective it suffices to show that
¢ is injective. Choose fy € C™ so that T'fy = i"+'/(n +1)! because T is surjective.
Using Claim 3.10 and Equation (3.13) we have

L (@) = |w(@) £ (@) = [(Tfo) ™ ()| = li(z)| = || =2 (x € [0,1]).

Hence if ¢(z1) = ¢(23), then x; = |f, (")( (1)) = |f0(")(g0(:n2))| = 5. Therefore ¢
is injective, as desired. Thus we finish the proof of Theorem 1.1. O

4. Proof of Theorem 1.2

Throughout the rest of this paper, we write simply Lip and L* for the Banach
space (Lip[0, 1], || - ||,) and the Banach algebra (L>°[0, 1], - ||z=), respectively. If we
indicate the scalar field K, we write Lg® instead of L.

Let 9 be the maximal ideal space of Lg". Then 9 is a compact Hausdorff space.
We know that 9 is totally disconnected, that is, every component of 90t consists
of one point ([1, Theorem 1.3.4]) and that 97 has no isolated points ([14, Exercise
11.18)).

We write Ck (9) or simply C'(90t) for the Banach algebra of all K-valued continu-
ous functions on M with the supremum norm || -||«. For any g € L, g denotes the



Gelfand representation of g. The Gelfand-Naimark theorem says that the Gelfand
transformation I' : g +— g is an algebra *-isomorphism of L onto C¢(9) and
gl = ||7llco. Also I’ maps L onto Cx(9M), and {f": f € Lip} = C(M).

We first give a proof of the “if” part:

Proof of the “if” part. Suppose T has the form (1.2). It is clear that 7T is linear.
Define ¥ = I'®I'~!. Then W is an algebra automorphism of C'(90). By [9, Theorem
3.4.3], ¥ has the form Wh = h o ¢ for some homeomorphism ¢ of 9t onto itself.

Hence W is an isometry of C(9) onto itself and so ® is an isometry of L onto
itself. Also we have (T'f)(0) = Af(0) and (Tf)" = w(®f’) for f € Lip. Therefore

1T fllo = IAFO)] + (@S )l zoe = [£O)] + 12 | o = [£O)] + [1F e = [ fllo-

Hence T' is an isometry.
To prove that T is surjective let g € Lip. Put

Fa) = Rg(0) + [ @ @0t (o 0,1)
Then f(0) = Ag(0) and f’ = & '(wg'), and so

(Tf)(x) = ARg(0) + / (1) (@ (@g)) (t)dt = 9(0) + / " (1)t = ga)
for all z € [0, 1]. O

The rest of the paper is devoted to the proof of the “only if 7 part. Let T" be a
linear isometry of Lip onto itself.

Definition 4.1. For each (a,c,m) € T x T x 9 we define a functional A (g cm) on
Lip by

Aaemy(f) = af(0) + ¢f'(m) (f € Lip).
It is clear that A(gcm) € ball(Lip)*.

Proposition 4.2. Let £ € (Lip)*. Then £ is an extreme point of ball(Lip)* if and
only if there exists (a,c,m) € T x T x M such that & = Aacm)-

Proof. If the product spaces K x L and K x C(9)* are equipped with the norms
16, )|l = 1ol + llglle  ((b,g) € K x L),

I, m)|| = max{]al, Ifl}  ((a;n) € Kx C(M)7),
then the next operator @ is a linear isometry of K x C'(9t)* onto (K x L*)*:

(Q(a,n))(b,g) = ab+n(g) ((a,n) € KxCM)", (b,g) € Kx LZ).
Define a linear isometry P of Lip onto K x L* by

Pf=(f(0),f) (f € Lip).



Then P*Q@ is a linear isometry of K x C'(9)* onto (Lip)*. Hence £ € (Lip)* is an
extreme point of ball(Lip)* if and only if £ = P*Q(a,n), where (a,n) is an extreme
point of ball(K x C(9t)*). By Lemma 2.1 this condition on (a,n) is equivalent to the
following: a € T and there exist ¢ € T and m € 9 such that 1(g) = cen(g) = cg(m)
for g € C (). Thus the conclusion follows from

P*(Q(a, cen))(f) = (Qa, cen))(£(0), £) = af(0) + ¢f'(m) = Awem)(f)
for f € Lip. O

Claim 4.3. For any (a,c,m) € TxT x9N there exists a unique (b,d,n) € TxT xM
such that T*A(a,c,m) = A(b,d,n)-

Proof. Let (a,c,m) € T x T x 9. Since T* is a linear isometry of (Lip)* onto itself,
Proposition 4.2 shows the existence of (b,d,n) € T x T x 9 such that T*A g cm) =

Aw,dn)-
For the uniqueness of (b, d,n) suppose T*A(q,cm)y = A @ ny for some (b, d',n') €
T x T x 9. Then A(b,d,n) = A(b’,d’,n’)7 that iS,
bf(0) +df'(n) =V f(0) + df'(n) (f €Lip). (4.1)

Substituting 1 and i for f in (4.1) we get b =’ and d = d', respectively. Hence (4.1)
shows f'(n) = f'(n’) for all f € Lip. In other words, h(n) = h(n') for all h € C'(9M).
This implies n = n'. O

Definition 4.4. By Claim 4.3 for each (a,m) € T x 9 there exists a unique
(b,d,n) € T x T x M such that T*A1,m) = Apdn). Since b, d and y depend on
(a,m) we write

b=u(a,m), d=wv(a,m) and n=1(a,m).

Thus v and v are unimodular functions on T x 9 and ¢ is a mapping of T x I
into 9. Moreover we have

A(a,l,m) (Tf) - (T*A(a,l,m))(f) - A(u(a,m),v(a,m),w(mm))(f)
for f € Lip and so

—_— A~

a(Tf)(0) + (Tf) (m) = u(a,m) f(0) +v(a, m) f'(¥(a, m)). (4.2)
Substituting 1 and ¢ for f we have

a(T1)(0) + (T1) (m) = u(a,m), (4.3)

a(Ti)(0) + (/Tz\)’(m) = v(a,m). (4.4)

Claim 4.5. The mapping ¥ is a continuous mapping of T x 9 onto M.



Proof. By (4.3) and (4.4) we see that u and v are continuous on T x 9. Since v is
unimodular, (4.2) implies that f’ow is continuous on T x Mt for all f € Lip. In other
words, hot) is continuous on T x 9t for all h € C(9MN). To prove that ¢p : Tx M — M
is continuous let (ag,mo) € T x M and let V' be an open neighborhood of v (ag, my)
in 9. By the Urysohn’s lemma there exists hg € C(9) such that ho(¢(ag, mo)) =1
and ho(n) =0 for all n € M\ V. Put U = {(a,m) € T x M : |(hg o ¢)(a, m)| > 0}.
Since hg o 1) is continuous, U is an open neighborhood of (ag, mg). Moreover we can
easily see that ¢(U) C V. Thus # is continuous.

To prove that 1 is surjective let n € 9. Since T™ is a linear isometry of (Lip)*
onto itself, Proposition 4.2 gives (a,c,m) € T x T x M such that T* Ay c.m) = A1)
Then

—

(T"Aa1,m))(f) = €a(TF)(0) + (T f) (m)) = &(T" Aa,eam)) (f)
=21 () =2/ (0) +2f'(n) = Agen) ()
for f € Lip. By the definition of ) we get 1(¢a, m) = n. Hence ® is surjective. [J

Claim 4.6. For any fized m € M, (T x {m}) is a singleton.

Proof in case K=R. For t € T = {1,—1} put ¢»(m) = 1(¢t,m) for all m € M. The
difference of (4.3) with @ = 1 and (4.3) witha = —1is 2(7'1)(0) = u(1, m)—u(—1,m).
Hence the difference of (4.2) with a =1 and (4.2) with a = —1 shows that

2T f)(0) =2(T1)(0) + v(L,m) f'(hr(m)) — v(=1,m) f'(_1(m))  (4.5)
for m € 9 and f € Lip.

Assume that ¥1(mg) # ¥_1(my) for some mg € M. Then we find disjoint open
sets V4 and Vs in 9 such that 11(mg) € Vi and ¢_1(mg) € V,. Since 9 has no
isolated points there exists n € Vi \ {¢1(mo)}. Since ¢ : T x 9 — M is surjective
there exists (t,my) € T x 9 such that (¢, m1) = n. Clearly ¥,(mq) # ¢1(mg). We
also have 1;(my) # 1¥_1(mg) because n ¢ V5.

Here we Considgr the case when w_egml) = ¢—1(mo/)\- In this case, we can choose
o € Lip so that fy(tx(mo)) = 1 and f(6-1(mo)) = Fy(t(mn)) = Fult-o(my)) = 0
because of {f’ : f € Lip} = C(9M) and the Urysohn’s lemma. Put f = f; in (4.5)
and evaluate it at my and my. Then we get

2T f,)(0) = 2T1)(0) + v(1,mo) and 2T f,)(0) = 2(T1)(0).

Hence v(1,mp) = 0, which is a contradiction because v is unimodular.
_On the other hand if ¢_y(m1) # ¥_1(mo), then we choose fo € Lip so that
Bwa(me)) = 1 and fi(un(m)) = Fy(mn)) = PG i(mn)) = 0. A similar
argument shows that v(—1,mg) = 0, which is a contradiction.

In any case, we reach a contradiction. Hence ¢;(m) = 1_1(m), that is, ¢)(1,m) =
(=1, m) for all m € M. If we fix m € M, then the set (T x{m}) is a singleton. [



Proof in case K = C. Fix m € 9. Since T x {m} is connected the continuity of
¢ implies that ¢ (T x {m}) is connected in M. Since M is totally disconnected,
(T x {m}) is a singleton. O

Definition 4.7. Define a mapping ¢ of 91 into 9 by
e(m) =4¢(1,m) (meM).
Since ¢ is a continuous mapping of T x 9T onto M, ¢ is a continuous mapping of
9 onto itself. By Claim 4.6 we have p(z) = (1, m) = ¢(a,m) for (a,m) € T x M.
Moreover for any (a,m) € T x 9 and f € Lip, (4.2) is written as
a(Tf)(0) + (Tf)(m) = ula,m)f(0) + v(a,m)f'(o(m)).
Applying (4.3) and (4.4) we have by removing u and v the equation

—

a(TF)(0) + (Tf)/(m)
— a ((T1)(0)1(0) + (T)(O0) F(o(m)) ) + (T (m) £(0) + (TiY (m) F'(sp(m))

Since this holds for all a € T we have

~

(TF)(0) = (T1)(0)£(0) + (Ti)(0) F'(io(m)), (4.6)
(T ) (m) = (T1)(m) £(0) + (Ti) (m) J(so(m)). (4.7)

Definition 4.8. Define a constant A and a function w € L*™ by
A= (T1)(0) and w = (T%)"

Claim 4.9. (a) |A\| = 1.
(b) (T'f)(0) = Af(0) for all f € Lip.
(¢) w is unimodular.

—

(d) (Tf)(m) = @(m)f’(go(m)) for allm € M and f € Lip.

Proof. We first show (b) and A # 0. Equation (4.6) says that (Tz)(())(]?’ o) is
constant on 9 for all f € Lip. In other words, (7%)(0)(h o ¢) is constant for
h € C(OM). Since ¢ is surjective and C'(9N) separates the points of 9T we must have
(T4)(0) = 0. Thus (b) follows from (4.6). Moreover if A =0, (b) yields (7f)(0) =0
for all f € Lip, which is a contradiction because T is surjective. Hence \ # 0.

For (c), we use (7)(0) = 0 and (4.4) to get
W(m)| = |(T4)'(m)| = [(T9)(0) + (T4)'(m)| = [o(L,m)] =1 (m € M).

This implies that ©© is an identity of C'(90). Since the transformation I' : g +— 7 is
a *-isomorphism of L> onto C'(9M), ww is an identity of L. This implies (c).



For (a) and (d), we use (4.3) and compute as follows:
1= [u(a,m)| = a(T1)(0) + (T1)(m)] = |a) + (T1)(m)| < |A| + |(T1) (m) s
< N+ 1T lloe = (TVO)] + |(TL[lz= = | TLs = [[1]], = 1

for all (a,m) € T x 9M. Since the equality holds in the first inequality for all a € T
and since A\ # 0 we must have (7'1)'(m) = 0. Hence (4.7) implies (d). At the same
time, we obtain |A\| = 1 because the equalities hold in (4.8). O

Claim 4.10. The mapping ¢ is a homeomorphism of 9N onto itself.

Proof. Since 9 is a compact Hausdorff space and ¢ is continuous and surjective it
suffices to show that ¢ is injective. Assume m; # my and p(my) = ¢(ms), where
mi, me € M. Then we can choose f; € Lip such that f{(ml) =1 and ﬂ(mg) =0
because of {f': f € Lip} = C(9M) and the Urysohn’s lemma. Since T is surjective
there exists fy € Lip such that 7'fy = f;. By (c) and (d) of Claim 4.9 we have

F(p(m))] = [@(m) Fy(e(m))| = (T foy (m)] = |fi(m)]  (m € 9M).

Hence 1 = |f](m1)| = | fj(e(ma))] = | F5(2(ma))| = | fi(m2)| = 0, which is a contra-
diction. Therefore ¢ is injective. O

Definition 4.11. For each h € C(9) we define a function WA on 9 by
(Wh)(m) = h(p(m))  (m < M).

Since ¢ is a homeomorphism of 91 onto itself, ¥ is an algebra automorphism of
C(OM). Put ® = T1UT. Since the Gelfand transformation I' is an algebra isomor-
phism of L> onto C'(9M), ® is an algebra automorphism of L>.

Claim 4.12. The operator T has the form (1.2).

Proof. Let f € Lip. By Claim 4.9 (d) we have

(TF)(m) =G(m)f(p(m)) = D(m)(Vf)(m) = D(m) (W f')(m)
(I'e
f) =

Il
&)

(m) (T2 (m) = Bm)@F (m) = - (@) )

for any m € 9. Hence (T w - (®f"). Together with Claim 4.9 (b) we obtain
TH@ = @HO + [ @ =0+ [ wo@na

for x € [0,1]. This completes the proof of Theorem 1.2. O
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