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HYPERGROUP EXTENSIONS OF FINITE ABELIAN
GROUPS BY HYPERGROUPS OF ORDER TWO

RYO ICHIHARA, SATOSHI KAWAKAMI, MASAFUMI SAKAO

Abstract. The purpose of the present paper is to establish necessary con-
ditions and sufficient conditions that finite commutative hypergroups are ex-
tensions of finite Abelian groups by hypergroups of order two. Applying our
results to some concrete cases one can determine all such extensions.

1. Introduction

Let H and L be finite commutative hypergroups. A finite commutative hypergroup
K is called an extension of L by H if the sequence

1 → H → K → L → 1

is exact, i.e., if there exists a hypergroup homomorphism φ from K onto L such that
Kerφ = H and H is embedded in K. The extension problem is to determine all
extensions K of L by H when H and L are given.

It is known that there exist some methods to construct a new hypergroup from
given ones. The structure of hypergroups is not yet known very well even in the case
of finite hypergroups of low orders. The structure of hypergroups of order three is
determined in 2002 by N.J.Wildberger [10]. In order to understand the full structure
of hypergroups, it will play an essential role to determine all extensions K of L by
H for given commutative hypergroups H and L.

Splitting extensions of hypergroups are introduced in [4] and [3]. Extension
hypergroups associated with group actions have been constructed in [2] and [3].
Extension problems of the Golden hypergroup were studied in [5] and [6].

By stimulating with Voit’s work [8] in 2008 on hypergroup structures on two tori,
we have started to consider the extension problem in the category of commutative
hypergroups and we succeeded to determine all commutative hypergroup extensions
of hypergroups of order two by finite Abelian groups including non-splitting exten-
sions in [7].

In the present paper we investigate the dual version of the above extension prob-
lem, namely we analyze the structure of extensions K of finite Abelian groups L by
hypergroups H of order two. We give the necessary conditions of such extensions
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in Theorem 3.7 and Corollary 3.8. We give the sufficient conditions of such exten-
sions in the flat case in Theorem 3.10 and Corollary 3.11 and in the crossing case
in Theorem 3.12 and Corollary 3.13. Applying these results one can determine all
extensions of the cyclic groups L of low orders by hypergroups H of order two.

2. Preliminaries

We recall some notions and facts on finite commutative hypergroups which are
described in Wildberger’s paper [9] and Bloom-Heyer’s book [1].

Axiom of a finite commutative hypergroup. A pair K := (K, A) is called
a finite commutative hypergroup if the following conditions (i)–(v) are satisfied.

(i) A(K) is a ∗-algebra over C with unit c0.

(ii) K = {c0, c1, . . . , cn} is a linear basis of A and K∗ = K.

(iii) The structure constants nk
ij ∈ C defined by cicj =

∑n
k=0 n

k
ijck satisfy that

nk
ij ≥ 0. Moreover, c∗i = cj if and only if n0

ij > 0.

(iv)
∑n

k=0 n
k
ij = 1 for all i, j.

(v) cicj = cjci for all i, j.

The weight of an element ci of K is defined by w(ci) = (n0
ij)

−1 where cj = c∗i
and the total weight of K is defined by w(K) =

∑n
i=0w(ci). Let ωK denote the

normalized Haar measure of K which is given by

ωK =
n∑

k=0

w(ck)

w(K)
ck.

Let M1(K) denote the set of all non-negative probability measures on K, i.e.,

M1(K) :=

{
n∑

k=0

akck; ak ≥ 0 (k = 0, 1, . . . , n),
n∑

k=0

ak = 1

}
.

A complex function χ on K is called a character of K if

χ(c0) = 1, χ(ci)χ(cj) =
n∑

k=0

nk
ijχ(ck) and χ(c∗i ) = χ(ci).

Let K and L be finite commutative hypergroups. A hypergroup homomorphism
φ from K into L means that there exists the unique ∗-homomorphism φ̃ from A(K)
into A(L) such that φ̃(ci) = φ(ci) for all ci ∈ K. Sometimes a hypergroup homo-
morphism is called simply a homomorphism.
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Let H = {h0, h1} be a hypergroup of order two with unit h0. Then the structure
of H is determined by a parameter 0 < q ≤ 1 such that

h21 = qh0 + (1− q)h1.

Hence we denote hypergroup H by Zq(2). The weights and the normalized Haar
measure on Zq(2) are given by

w(h0) = 1, w(h1) =
1

q
, w(Zq(2)) =

1 + q

q
,

ωZq(2) =
w(h0)

w(Zq(2))
h0 +

w(h1)

w(Zq(2))
h1 =

q

1 + q
h0 +

1

1 + q
h1.

The characters χ0 and χ1 of Zq(2) are given by

χ0(h0) = χ0(h1) = 1,

χ1(h0) = 1, χ1(h1) = −q.

3. Extension

Let H and L be finite commutative hypergroups. A finite commutative hypergroup
K is called an extension of L by H if the sequence

1 → H → K → L → 1

is exact, i.e., if H is embedded in K and there exists a homomorphism φ from K onto
L such that Ker φ = H. When finite commutative hypergroups H and L are given,
the extension problem is to determine all finite commutative hypergroup extensions
of L by H up to equivalence as extensions.

In the present paper we discuss the above extension problem in the case that
H = Z2(q) = {h0, h1} is a hypergroup of order two and L = {ℓ0, ℓ1, . . . , ℓn} is a
finite Abelian group with unit ℓ0.

Let Si = φ−1(ℓi) for ℓi ∈ L. Then K is decomposed to the disjoint union of the
sets Si (i = 0, 1, 2, . . . , n) as K = S0 ∪ S1 ∪ · · · ∪ Sn, where S0 = H. We have the
following lemma about the cardinal number |Si| of Si.

Lemma 3.1. |Si| = 1 or 2 for each i = 1, 2, . . . , n.

Proof. Suppose that |Si| ≥ 3. Take s0, s1, s2 ∈ Si. Let φ be a homomorphism from
K onto L. Since

φ(s0s
∗
0) = φ(s0)φ(s

∗
0) = φ(s0)φ(s0)

∗ = ℓiℓ
∗
i = ℓ0,

the product s0s
∗
0 must be in M1(H). In a similar way, s0s

∗
1, s0s

∗
2 and s1s

∗
2 must be

in M1(H). Then

s∗0s0 = τh0 + (1− τ)h1 and s∗0s1 = s0s
∗
2 = s1s

∗
2 = h1,
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where τ = w(s0)
−1 > 0. Hence we have on one hand

s∗0s1s0s
∗
2 = (s∗0s1)(s0s

∗
2) = h21 = qh0 + (1− q)h1

and on the other hand

s∗0s1s0s
∗
2 = (s∗0s0)(s1s

∗
2)

= (τh0 + (1− τ)h1)h1

= q(1− τ)h0 + (τ + (1− q)(1− τ))h1.

Compare the coefficients of h0. Then we have q = q(1− τ). Since q ̸= 0, we obtain
τ = 0. This contradicts the fact that τ > 0. Therefore |Si| must be one or two.

When |Si| = 2, we put Si = {s0(ℓi), s1(ℓi)} and γi = w(s1(ℓi))/w(s0(ℓi)), where
s0(ℓ0) = h0, s1(ℓ0) = h1, and γ0 = 1/q. This positive real numbers γi will play an
important role to determine the structure of extensions of L by H. When |Si| = 1,
we put Si = {s(ℓi)}.

Lemma 3.2. The products of each element in Si are given as follows:

(i) In the case that Si = {s0(ℓi), s1(ℓi)}, one has

s0(ℓi)s0(ℓi)
∗ =

q(1 + γi)

1 + q
h0 +

1− qγi
1 + q

h1,

s1(ℓi)s1(ℓi)
∗ =

q(1 + γ−1
i )

1 + q
h0 +

1− qγ−1
i

1 + q
h1,

s0(ℓi)s1(ℓi)
∗ = s0(ℓi)

∗s1(ℓi) = h1, where q ≤ γi ≤ 1/q.

(ii) In the case that Si = {s(ℓi)}, one has s(ℓi)s(ℓi)
∗ = ωH.

Proof. (i) In the case that |Si| = 2, we have

s0(ℓi)s0(ℓi)
∗ = τih0 + (1− τi)h1,

s1(ℓi)s1(ℓi)
∗ = ρih0 + (1− ρi)h1,

s0(ℓi)s1(ℓi)
∗ = h1,

where τi = w(s0(ℓi))
−1 > 0 and ρi = w(s1(ℓi))

−1 > 0. Note that τi = γiρi. We have

s0(ℓi)s0(ℓi)
∗s1(ℓi)s1(ℓi)

∗ = (s0(ℓi)s0(ℓi)
∗)(s1(ℓi)s1(ℓi)

∗)

= (τih0 + (1− τi)h1)(ρih0 + (1− ρi)h1)

= τiρih0 + (1− τi)ρih1 + τi(1− ρi)h1 + (1− τi)(1− ρi)h
2
1

= τiρih0 + (1− τi)ρih1 + τi(1− ρi)h1 + (1− τi)(1− ρi)(qh0 + (1− q)h1)

= (τiρi + q(1− τi)(1− ρi))h0

+((1− τi)ρi + τi(1− ρi) + (1− q)(1− τi)(1− ρi))h1.
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On the other hand

s0(ℓi)s0(ℓi)
∗s1(ℓi)s1(ℓi)

∗ = (s0(ℓi)s1(ℓi)
∗)(s1(ℓi)s0(ℓi)

∗)

= h21 = qh0 + (1− q)h1.

By comparing the coefficients of h0 we obtain

τiρi + q(1− τi)(1− ρi) = q.

Since τiρi + q(1− τi)(1− ρi) = q and τi = γiρi, we have

τi = q(1 + γi)/(1 + q)

and
ρi = γ−1

i τi = q(1 + γi)γ
−1
i /(1 + q) = q(1 + γ−1

i )/(1 + q).

It is easy to see that q ≤ γi ≤ 1/q from the facts that 1 − τi = 1 − qγi ≥ 0 and
1− ρi = 1− qγ−1

i ≥ 0.
(ii) In the case that Si = {s(ℓi)}, it is obvious that h1s(ℓi) = s(ℓi), so that

ωHs(ℓi) = s(ℓi). Since s(ℓi)s(ℓi)
∗ = c ∈M1(H) and ωHc = ωH,

s(ℓi)s(ℓi)
∗ = (ωHs(ℓi))s(ℓi)

∗ = ωH(s(ℓi)s(ℓi)
∗) = ωHc = ωH.

Therefore s(ℓi)s(ℓi)
∗ = ωH.

For ℓi ∈ L, we will use a notation i∗ given by ℓi∗ = ℓ∗i .

Lemma 3.3. L0 = {ℓi ∈ L; |Si| = 2} is a subgroup of L.

Proof. First we show that ℓk = ℓiℓj ∈ L0 for ℓi, ℓj ∈ L0. Suppose that ℓk = ℓiℓj ̸∈ L0

for ℓi, ℓj ∈ L0. It is easy to see that

s0(ℓi)s0(ℓj) = s1(ℓi)s1(ℓj) = s(ℓk)

and
s0(ℓi)s1(ℓi)

∗ = s0(ℓj)s1(ℓj)
∗ = h1.

It is shown that s(ℓk)s(ℓk)
∗ = ωH by Lemma 3.2. Hence we have

s0(ℓi)s0(ℓj)s1(ℓi)
∗s1(ℓj)

∗ = (s0(ℓi)s0(ℓj))(s1(ℓi)s1(ℓj))
∗

= s(ℓk)s(ℓk)
∗ = ωH.

On the other hand

s0(ℓi)s0(ℓj)s1(ℓi)
∗s1(ℓj)

∗ = (s0(ℓi)s1(ℓi)
∗)(s0(ℓj)s1(ℓj)

∗) = h21.

Hence we have ωH = h21. This is a contradiction. Therefore ℓk must be in L0.
Since for ℓi ∈ L0 we have |S∗

i | = 2, the involution ℓ∗i of ℓi must be in L0.
Consequently we see that L0 is a subgroup of L.
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For s0(ℓi), s1(ℓi) ∈ Si, there are two possibilities that s0(ℓi)
∗ = s0(ℓ

∗
i ) or s0(ℓi)

∗ =
s1(ℓ

∗
i ) for ℓi ∈ L0. Here we give some notations which are used in our discussion. We

call F = {ℓi ∈ L0; s0(ℓi)
∗ = s0(ℓ

∗
i )} the flat part of L0 and C = {ℓi ∈ L0; s0(ℓi)

∗ =
s1(ℓ

∗
i )} the crossing part of L0. We note that L0 = C ∪ F and C ∩ F = ∅. It is

obvious that F ∗ = F and C∗ = C. Moreover, we put C0 = {ℓi ∈ C; ℓ∗i = ℓi}.

Lemma 3.4. For ℓi ∈ L0, the relations of between γi and γi∗ are as follows:

γi∗ =


γi if ℓi ∈ F,
γ−1
i if ℓi ∈ C ∩ Cc

0,
γi = 1 if ℓi ∈ C0.

Proof. For ℓi ∈ L0, we have

s0(ℓi∗)s0(ℓi∗)
∗ = q(1 + γi∗)(1 + q)−1h0 + (1− qγi∗)(1 + q)−1h1 (3.1)

by Lemma 3.2. In the case that ℓi ∈ F , we have

s0(ℓi∗)s0(ℓi∗)
∗ = s0(ℓi)

∗s0(ℓi)

= q(1 + γi)(1 + q)−1h0 + (1− qγi)(1 + q)−1h1.

By comparing the coefficients of h0 in the above equality and (3.1) we obtain γi∗ = γi.
In the case that ℓi ∈ C, we have

s0(ℓi∗)s0(ℓi∗)
∗ = s1(ℓi)

∗s1(ℓi)

= q(1 + γ−1
i )(1 + q)−1h0 + (1− qγ−1

i )(1 + q)−1h1.

Compare the coefficients of h0 in the above equality and (3.1) we obtain γi∗ = γ−1
i .

When ℓi ∈ C0, γ
−1
i = γi by ℓi∗ = ℓi. Then we obtain γi = 1 by γi > 0.

Lemma 3.5. If ℓi, ℓj ∈ C0, then ℓiℓj ∈ F .

Proof. Let χ be a character of K with χ(h1) = −q. Note that for ℓ ∈ C0, s0(ℓ)
2 =

s0(ℓ)s0(ℓ
∗) = s0(ℓ)s1(ℓ)

∗ = h1 by Lemma 3.2. Since χ(s0(ℓ))
2 = χ(s0(ℓ)

2) = χ(h1) =
−q,

χ(s0(ℓ)) = ±
√
−q.

For ℓi, ℓj ∈ C0, there exists a ∈ [0, 1] such that

s0(ℓi)s0(ℓj) = as0(ℓk) + (1− a)s1(ℓk)

where ℓk = ℓiℓj. Suppose ℓk ∈ C. Then since ℓ2k = ℓ0 and s0(ℓk)
∗ = s1(ℓ

∗
k), we know

that ℓk must be in C0. Hence we have on one hand

χ(s0(ℓi)s0(ℓj)) = χ(s0(ℓi))χ(s0(ℓj)) = ±q,
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and on the other hand

χ(s0(ℓi)s0(ℓj)) = aχ(s0(ℓk)) + (1− a)χ(s1(ℓk))

= aχ(s0(ℓk)) + (1− a)χ(s0(ℓk))

= ±
√
−qa+∓

√
−q(1− a).

It is obvious that ±
√
−qa + ∓

√
−q(1 − a) is a purely imaginary or zero. This

contradicts the fact q > 0. Therefore ℓk must be in F .

Proposition 3.6. The products by h1 ∈ H and s0(ℓi), s1(ℓi) ∈ Si for ℓi ∈ L0 are
the following:

(i) h1s0(ℓi) =
1− qγi
1 + γi

s0(ℓi) +
(1 + q)γi
1 + γi

s1(ℓi),

(ii) h1s1(ℓi) =
1 + q

1 + γi
s0(ℓi) +

γi − q

1 + γi
s1(ℓi).

Proof. We can write

h1s0(ℓi) = cis0(ℓi) + c̃is1(ℓi) and h1s1(ℓi) = bis0(ℓi) + b̃is1(ℓi)

where bi, ci ∈ [0, 1], b̃i = 1− bi and c̃i = 1− ci. Applying Lemma 3.2 we have

(h1s0(ℓi))s1(ℓi)
∗ = cis0(ℓi)s1(ℓi)

∗ + c̃is1(ℓi)s1(ℓi)
∗

= cih1 + c̃i(q(1 + γ−1
i )(1 + q)−1h0

+(1− qγ−1
i )(1 + q)−1h1)

= q(1 + γ−1
i )(1 + q)−1c̃ih0

+
(
ci + (1− qγ−1

i )(1 + q)−1c̃i
)
h1

and
h1(s0(ℓi)s1(ℓi)

∗) = h21 = qh0 + (1− q)h1.

The coefficients of h0 in each are q(1 + γ−1
i )(1 + q)−1c̃i and q respectively. Since the

both must be equal, we have

ci = (1− qγi)(1 + γi)
−1 and c̃i = (1 + q)γi(1 + γi)

−1.

Moreover, we also see that

bi = (1 + q)(1 + γi)
−1 and b̃i = (γi − q)(1 + γi)

−1

by comparing the coefficients of h0 in h1(s1(ℓi)s1(ℓi)
∗) and (h1s1(ℓi))s1(ℓi)

∗.
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The extension hypergroup K of L by H is written as K = {s0(ℓi), s1(ℓi), s(ℓj) ;
ℓi ∈ L0, ℓj ∈ L∩Lc

0}. For ℓi, ℓj ∈ L0 we write the constants a
k
ij, b

k
ij and c

k
ij given by

s0(ℓi)s0(ℓj) = akijs0(ℓ
∗
k) + ãkijs1(ℓ

∗
k),

s1(ℓi)s1(ℓj) = bkijs0(ℓ
∗
k) + b̃kijs1(ℓ

∗
k),

s0(ℓi)s1(ℓj) = ckijs0(ℓ
∗
k) + c̃kijs1(ℓ

∗
k) (3.2)

where ℓ∗k = ℓiℓj, ã
k
ij = 1−akij, b̃kij = 1−bkij and c̃kij = 1−ckij. We note that 0 ≤ akij ≤ 1,

0 ≤ bkij ≤ 1 and 0 ≤ ckij ≤ 1 by Axiom of a finite commutative hypergroup. We
use the functions f+ and f− defined by f+(x, y, z) := (1 +

√
qxyz)/(1 + z) and

f−(x, y, z) := (1−√
qxyz)/(1 + z) for x, y, z > 0.

We give the necessary condition that the extension K of L by H is hypergroup.

Theorem 3.7. Let H = Zq(2) = {h0, h1} be a hypergroup of order two and L =
{ℓ0, ℓ1, . . . , ℓn} an Abelian group with unit ℓ0. Let K be an extension hypergroup of
L by H such that |Si| = 2 for all i = 1, 2, . . . , n. For ℓi, ℓj, ℓk ∈ L with ℓ∗k = ℓiℓj,
each coefficient akij, b

k
ij and ckij in (3.2) has the following values:

(i) In the case of ℓk ∈ F , either (1) or (2) occurs.

(1) akij = f+(γi, γj, γk), b
k
ij = f+(γ

−1
i , γ−1

j , γk), c
k
ij = f−(γi, γ

−1
j , γk)

where γ−1
i γ−1

j γk ≥ q, γiγjγk ≥ q, γ−1
i γjγ

−1
k ≥ q, γiγ

−1
j γ−1

k ≥ q.

(2) akij = f−(γi, γj, γk), b
k
ij = f−(γ

−1
i , γ−1

j , γk), c
k
ij = f+(γi, γ

−1
j , γk)

where γ−1
i γ−1

j γ−1
k ≥ q, γiγjγ

−1
k ≥ q, γ−1

i γjγk ≥ q, γiγ
−1
j γk ≥ q.

(ii) In the case of ℓk ∈ C, either (1) or (2) occurs.

(1) akij = f+(γi, γj, γ
−1
k ), bkij = f+(γ

−1
i , γ−1

j , γ−1
k ), ckij = f−(γi, γ

−1
j , γ−1

k )

where γ−1
i γ−1

j γ−1
k ≥ q, γiγjγ

−1
k ≥ q, γ−1

i γjγk ≥ q, γiγ
−1
j γk ≥ q.

(2) akij = f−(γi, γj, γ
−1
k ), bkij = f−(γ

−1
i , γ−1

j , γ−1
k ), ckij = f+(γi, γ

−1
j , γ−1

k ),

where γ−1
i γ−1

j γk ≥ q, γiγjγk ≥ q, γ−1
i γjγ

−1
k ≥ q, γiγ

−1
j γ−1

k ≥ q.

Proof. (i) Case of ℓk ∈ F .
Consider the product s0(ℓi)s0(ℓj)s0(ℓi)

∗s0(ℓj)
∗ for ℓi, ℓj ∈ L. We have

s0(ℓi)s0(ℓj)s0(ℓi)
∗s0(ℓj)

∗

= (s0(ℓi)s0(ℓj))(s0(ℓi)s0(ℓj))
∗

= (akijs0(ℓ
∗
k) + ãkijs1(ℓ

∗
k))(a

k
ijs0(ℓ

∗
k)

∗ + ãkijs1(ℓ
∗
k)

∗)

= (akijs0(ℓk)
∗ + ãkijs1(ℓk)

∗)(akijs0(ℓk) + ãkijs1(ℓk))

= (akij)
2s0(ℓk)s0(ℓk)

∗ + (ãkij)
2s1(ℓk)s1(ℓk)

∗

+akij ã
k
ij(s0(ℓk)

∗s1(ℓk) + s1(ℓk)
∗s0(ℓk))
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= (akij)
2(1 + q)−1 (q(1 + γk)h0 + (1− qγk)h1)

+(ãkij)
2(1 + q)−1

(
q(1 + γ−1

k )h0 + (1− qγ−1
k )h1

)
+ 2akij ã

k
ijh1

(by Lemma 3.2)

= q(1 + q)−1
(
(1 + γk)(a

k
ij)

2 + (1 + γ−1
k )(ãkij)

2
)
h0

+(1 + q)−1
(
(1− qγk)(a

k
ij)

2 + (1− qγ−1
k )(ãkij)

2
)
h1 + 2akij ã

k
ijh1

= α((1 + γk)(a
k
ij)

2 − 2akij + 1)h0 + α
(
−(1 + γk)(a

k
ij)

2 + 2akij
)
h1

+
(
(γk − q)(1 + q)−1γ−1

k

)
h1,

where α = q(1 + q)−1γ−1
k (1 + γk) and

s0(ℓi)s0(ℓj)s0(ℓi)
∗s0(ℓj)

∗

= (s0(ℓi)s0(ℓi)
∗)(s0(ℓj)s0(ℓj)

∗)

= (1 + q)−2 (q(1 + γi)h0 + (1− qγi)h1) (q(1 + γj)h0 + (1− qγj)h1)

(by Lemma 3.2)

= q(1 + q)−1
(
(1 + qγiγj)h0 + (1− q2γiγj)h1

)
= q(1 + q)−1(1 + qγiγj)h0 + q(1 + q)−1(1− q2γiγj)h1.

Comparing each coefficient of h0, we obtain the following quadratic equation for akij:

(1 + γk)
2(akij)

2 − 2(1 + γk)a
k
ij + 1− qγiγjγk = 0.

Then

akij =
1±√

qγiγjγk

1 + γk
= f±(γi, γj, γk).

We show the relation of ckij and a
k
ij by associativity (h1s0(ℓj))s0(ℓi) = h1(s0(ℓj)s0(ℓi)).

The left hand side is

(h1s0(ℓj))s0(ℓi) = (s1(ℓ0)s0(ℓj))s0(ℓi)

= (cj
∗

j0s0(ℓj) + c̃j
∗

j0s1(ℓj))s0(ℓi)

= cj
∗

j0(a
k
ijs0(ℓ

∗
k) + ãkijs1(ℓ

∗
k)) + c̃j

∗

j0(c
k
ijs0(ℓ

∗
k) + c̃kijs1(ℓ

∗
k))

= (cj
∗

j0a
k
ij + c̃j

∗

j0c
k
ij)s0(ℓ

∗
k) + (cj

∗

j0ã
k
ij + c̃j

∗

j0c̃
k
ij)s1(ℓ

∗
k),

where cj
∗

j0 = (1− qγj)/(1 + γj) by Proposition 3.6 and the right hand side is

h1(s0(ℓj)s0(ℓi)) = (ckk∗0a
k
ij + bkk∗0ã

k
ij)s0(ℓ

∗
k) + (c̃kk∗0a

k
ij + b̃kk∗0ã

k
ij)s1(ℓ

∗
k),

where
ckk∗0 = (1− qγk∗)/(1 + γk∗) = (1− qγk)/(1 + γk)

and
bkk∗0 = (1 + q)/(1 + γk∗) = (1 + q)/(1 + γk)
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by Proposition 3.6 and Lemma 3.4. By comparing coefficients of s0(ℓ
∗
k), applying

Proposition 3.6 and Lemma 3.4, we have the following equalities:

ckij =
1 + γj

γj(1 + γk)
− γ−1

j akij =
1∓

√
qγiγ

−1
j γk

1 + γk
= f∓(γi, γ

−1
j , γk).

In a similar way to the above, we have the following equalities:

bkij =
1 + γi

γi(1 + γk)
− γ−1

i ckij =
1±

√
qγ−1

i γ−1
j γk

1 + γk
= f±(γ

−1
i , γ−1

j , γk).

We note that 0 ≤ akij ≤ 1, 0 ≤ bkij ≤ 1 and 0 ≤ ckij ≤ 1 by Axiom of a finite

commutative hypergroup. In the case that akij = f+(γi, γj, γk), b
k
ij = f+(γ

−1
i , γ−1

j , γk),

ckij = f−(γi, γ
−1
j , γk) and c

k
ji = f−(γj, γ

−1
i , γk), the real numbers γi, γj and γk satisfy

γ−1
i γ−1

j γk ≥ q, γiγjγk ≥ q, γ−1
i γjγ

−1
k ≥ q and γiγ

−1
j γ−1

k ≥ q by akij ≤ 1, bkij ≤ 1,

ckij ≥ 0 and ckji ≥ 0. In the case that akij = f−(γi, γj, γk), b
k
ij = f−(γ

−1
i , γ−1

j , γk), c
k
ij =

f+(γi, γ
−1
j , γk) and c

k
ji = f+(γj, γ

−1
i , γk), we obtain that γ−1

i γ−1
j γ−1

k ≥ q, γiγjγ
−1
k ≥ q,

γ−1
i γjγk ≥ q and γiγ

−1
j γk ≥ q in a similar way to the above.

(ii) Case of ℓk ∈ C.
Since s0(ℓk)

∗ = s1(ℓ
∗
k), we obtain the following quadratic equation in a similar way

to the case of (i):

(1 + γk)
2(akij)

2 − 2γk(1 + γk)a
k
ij + γ2k − qγiγjγk = 0.

The solution is

akij =
γk ±

√
qγiγjγk

1 + γk
= f±(γi, γj, γ

−1
k ).

We have the following equalities in a similar computation to the case of (i):

ckij =
(1 + γj)γk
γj(1 + γk)

− γ−1
j akij =

γk ∓
√
qγiγ

−1
j γk

1 + γk
= f∓(γi, γ

−1
j , γ−1

k )

and

bkij =
(1 + γi)γk
γi(1 + γk)

− γ−1
i ckij =

γk ±
√
qγ−1

i γ−1
j γk

1 + γk
= f±(γ

−1
i , γ−1

j , γ−1
k ).

It is easy to see that the desired conditions on γi, γj and γk in a similar way to
the case of (i).

Corollary 3.8. If L0 = {ℓi ∈ L; |Si| = 2} is not necessary to be L, the extension
K = {s0(ℓi), s1(ℓi), s(ℓj) ; ℓi ∈ L0, ℓj ∈ L ∩ Lc

0} has the same structure equations
for ℓi ∈ L0 as described in Theorem 3.7. Moreover, for ℓj ∈ L ∩ Lc

0, K has the
following structure equations:
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(i) If ℓi ∈ L0, ℓj ∈ L ∩ Lc
0, then

ℓ∗k = ℓiℓj ∈ L ∩ Lc
0 and s0(ℓi)s(ℓj) = s1(ℓi)s(ℓj) = s(ℓ∗k).

(ii) If ℓi, ℓj ∈ L ∩ Lc
0, then

s(ℓi)s(ℓj) =



1

1 + γk
s0(ℓ

∗
k) +

γk
1 + γk

s1(ℓ
∗
k) if ℓ∗k ∈ F,

γk
1 + γk

s0(ℓ
∗
k) +

1

1 + γk
s1(ℓ

∗
k) if ℓ∗k ∈ C ∩ Cc

0,

1

2
s0(ℓ

∗
k) +

1

2
s1(ℓ

∗
k) if ℓ∗k ∈ C0,

s(ℓ∗k) if ℓ∗k ∈ L ∩ Lc
0.

Proof. (i) It is easy to see the desired equality. So we omit the details.
(ii) For ℓi, ℓj ∈ L ∩ Lc

0 let ℓ∗k ∈ L0. Then there exists 0 ≤ a ≤ 1 such that

s(ℓi)s(ℓj) = as0(ℓ
∗
k) + (1− a)s1(ℓ

∗
k).

We have
(h1s(ℓi))s(ℓj) = s(ℓi)s(ℓj) = as0(ℓ

∗
k) + (1− a)s1(ℓ

∗
k)

and by Proposition 3.6

h1(s(ℓi)s(ℓj)) = h1(as0(ℓ
∗
k) + ãs1(ℓ

∗
k))

= ah1s0(ℓ
∗
k) + ãh1s1(ℓ

∗
k)

= a

(
1− qγk∗

1 + γk∗
s0(ℓ

∗
k) +

(1 + q)γk∗

1 + γk∗
s1(ℓ

∗
k)

)
+ã

(
1 + q

1 + γk∗
s0(ℓ

∗
k) +

γk∗ − q

1 + γk∗
s1(ℓ

∗
k)

)
=

1 + q − q(1 + γk∗)a

1 + γk∗
s0(ℓ

∗
k) +

γk∗ − q + q(1 + γk∗)a

1 + γk∗
s1(ℓ

∗
k).

The coefficients of s0(ℓ
∗
k) in each are a and (1 + q − q(1 + q)γk∗a) (1 + γk∗)

−1, re-
spectively. Since the both must be equal, we obtain

a =
1

1 + γk∗
.

Therefore, by this equality and Lemma 3.4 we have the product of s(ℓi)s(ℓj).
For ℓi, ℓj ∈ L∩Lc

0, let ℓ
∗
k ∈ L∩Lc

0. Then it is easy to see that s(ℓi)s(ℓj) = s(ℓ∗k).
So we omit the details.
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If L0 = {ℓ0}, then the extension K of L by H is the join H ∨ L of H by L.
Theorem 3.7 and Corollary 3.8 are the necessary condition that the extension K
of L by H is a hypergroup where L is a finite Abelian group and H = Zq(2) is
a hypergroup of order two. We give a condition that the associativity law of the
extension K holds. For ℓi, ℓj, ℓk ∈ L0 with ℓ

∗
k = ℓiℓj, let θ be a mapping from L0×L0

to Z2 = {−1, 1} such that for ℓj ̸= ℓ∗i

θ(ℓi, ℓj) =

{
1 if akij = f+(γi, γj, γk) or akij = f+(γi, γj, γ

−1
k )

−1 if akij = f−(γi, γj, γk) or akij = f−(γi, γj, γ
−1
k )

and for ℓj = ℓ∗i

θ(ℓi, ℓ
∗
i ) =

{
1 if a0ii∗ ̸= 0

−1 if a0ii∗ = 0
(3.3)

where akij is the coefficient in (3.2). Note that θ(ℓ0, ℓi) = 1.

Proposition 3.9. Let L = {ℓ0, ℓ1, . . . , ℓn} be an Abelian group with unit ℓ0. Then
the associativity (sσ(i)(ℓi)sσ(j)(ℓj))sσ(r)(ℓr) = sσ(i)(ℓi)(sσ(j)(ℓj) sσ(r)(ℓr)) holds for
σ(i), σ(j), σ(r) ∈ {0, 1} if and only if θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr) for
ℓi, ℓj, ℓr ∈ L0, namely θ is a Z2-valued 2-cocycle on L0.

Proof. We can establish the following conditions between the value of θ(ℓi, ℓj)θ(ℓiℓj, ℓr)
and the product of s0(ℓi), s0(ℓj) and s0(ℓr) and between the value of θ(ℓj, ℓr)θ(ℓi, ℓjℓr)
and the product of them by straightforward computation:

(i) θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = 1 ⇐⇒

(s0(ℓi)s0(ℓj))s0(ℓr) =


f+(qγiγj, γr, γt)s0(ℓ

∗
t ) + f−(qγiγj, γr, γ

−1
t )s1(ℓ

∗
t )

if ℓ∗t ∈ F,
f+(qγiγj, γr, γ

−1
t )s0(ℓ

∗
t ) + f−(qγiγj, γr, γt)s1(ℓ

∗
t )

if ℓ∗t ∈ C,

(ii) θ(ℓj, ℓr)θ(ℓi, ℓjℓr) = 1 ⇐⇒

s0(ℓi)(s0(ℓj)s0(ℓr)) =


f+(qγjγr, γi, γt)s0(ℓ

∗
t ) + f−(qγjγr, γi, γ

−1
t )s1(ℓ

∗
t )

if ℓ∗t ∈ F,
f+(qγjγr, γi, γ

−1
t )s0(ℓ

∗
t ) + f−(qγjγr, γi, γt)s1(ℓ

∗
t )

if ℓ∗t ∈ C,

for ℓi, ℓj, ℓr ∈ L0 where ℓ∗t = ℓiℓjℓr. Since f+(qxy, v, z) = f+(qyv, x, z), it is easy to
see that

θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr)

⇐⇒ (s0(ℓi)s0(ℓj))s0(ℓr) = s0(ℓi)(s0(ℓj)s0(ℓr))
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from the above computation. In the case that

θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr) = −1,

we obtain the above condition in a similar way to the above since f−(qxy, v, z) =
f−(qyv, x, z). Consider in the case that

θ(ℓi, ℓj)θ(ℓiℓj, ℓr) ̸= θ(ℓj, ℓr)θ(ℓi, ℓjℓr).

Since q > 0, x > 0, y > 0 and z > 0, we have f+(qxy, v, z) ̸= f−(qyv, x, z). So if
θ(ℓi, ℓj)θ(ℓiℓj, ℓr) ̸= θ(ℓj, ℓr)θ(ℓi, ℓjℓr), then (s0(ℓi)s0(ℓj))s0(ℓr) ̸= s0(ℓi)(s0(ℓj)s0(ℓr)).

We can obtain the same results in the case of σ(i) = 1, σ(j) = 1 or σ(r) = 1 in
a similar computation to the above.

Therefore, (sσ(i)(ℓi)sσ(j)(ℓj))sσ(r)(ℓr) = sσ(i)(ℓi)(sσ(j)(ℓj)sσ(r)(ℓr)) if and only if
θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr) for ℓi, ℓj, ℓr ∈ L0.

Next we will give the sufficient condition that the extension K of finite Abelian
groups L by hypergroups H of order two is a commutative hypergroup.

Theorem 3.10. Let H = {h0, h1} = Zq(2) be a hypergroup of order two and L =
{ℓ0, ℓ1, . . . , ℓn} be a finite Abelian group with unit ℓ0. Let K be the disjoint union of
the sets Si = {s0(ℓi), s1(ℓi)} for ℓi ∈ L, namely K =

∪n
i=0 Si. For 1 ≤ i ≤ n, γi is

the real number such that q ≤ γi ≤ 1/q, γi∗ = γi and γ0 = 1/q. For ℓi, ℓj, ℓk ∈ L with
ℓiℓjℓk = ℓ0, the real numbers γi, γj and γk satisfy that q ≤ γiγjγk and q ≤ γ−1

i γ−1
j γk.

If the structure equations of K is given by the following:

s0(ℓi)s0(ℓj) = f+(γi, γj, γk)s0(ℓ
∗
k) + f−(γi, γj, γ

−1
k )s1(ℓ

∗
k),

s1(ℓi)s1(ℓj) = f+(γ
−1
i , γ−1

j , γk)s0(ℓ
∗
k) + f−(γ

−1
i , γ−1

j , γ−1
k )s1(ℓ

∗
k),

s0(ℓi)s1(ℓj) = f−(γi, γ
−1
j , γk)s0(ℓ

∗
k) + f+(γi, γ

−1
j , γ−1

k )s1(ℓ
∗
k),

then K is a commutative hypergroup such that s0(ℓi)
∗ = s0(ℓ

∗
i ) for all ℓi ∈ L and

h0 = s0(ℓ0) and K is an extension of L by H.

Proof. To show that K is a finite commutative hypergroup, we will check that K
satisfies Axiom of a finite commutative hypergroup. Since akij = f+(γi, γj, γk) for
ℓi, ℓj, ℓk ∈ L such that ℓ∗k = ℓiℓj, we obtain θ(ℓi, ℓj) = 1 and so θ(ℓi, ℓj)θ(ℓiℓj, ℓr) =
θ(ℓj, ℓr)θ(ℓi, ℓjℓr). Hence the associativity law in K holds by Proposition 3.9. Since
it is easy to see that f+(γi, γi∗ , γ0) = q(1 + γi)(1 + q)−1, it must be s0(ℓi)

∗ = s0(ℓ
∗
i )

and s1(ℓi)
∗ = s1(ℓ

∗
i ) for all ℓi ∈ L by Lemma 3.2, i.e., K∗ = K. Hence K satisfies

the conditions (i) and (ii) in Axiom of a finite commutative hypergroup. Observe
that f±(x, y, z) for x, y, z > 0. Thus the other conditions (iii), (iv) and (v) are
automatically satisfied. Therefore K is a finite commutative hypergroup.

Let φ be a mapping from K onto L such that φ(s0(ℓi)) = φ(s1(ℓi)) = ℓi for
ℓi ∈ L. It is easy to see that φ becomes a homomorphism from K onto L such that
Kerφ = H and H is a subhypergroup of K.

Therefore K is an extension hypergroup of L by H.
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Corollary 3.11. Let L0 be a subgroup of a finite Abelian group L and K = {s0(ℓi),
s1(ℓi), s(ℓj); ℓi ∈ L0, ℓj ∈ L ∩ Lc

0} have the same structure equations as described
in Theorem 3.10 for ℓi ∈ L0. For ℓj ∈ L ∩ Lc

0, let K have the following structure
equations:

(i) If ℓi ∈ L0, ℓj ∈ L ∩ Lc
0, then

ℓ∗k = ℓiℓj ∈ L ∩ Lc
0 and s0(ℓi)s(ℓj) = s1(ℓi)s(ℓj) = s(ℓ∗k).

(ii) If ℓi, ℓj ∈ L ∩ Lc
0, then

s(ℓi)s(ℓj) =


1

1 + γk
s0(ℓ

∗
k) +

γk
1 + γk

s1(ℓ
∗
k) if ℓ∗k ∈ L0,

s(ℓ∗k) if ℓ∗k ∈ L ∩ Lc
0.

Then K becomes a commutative hypergroup which is an extension of L by H.

Proof. Since s(ℓj)s(ℓ
∗
j) = ω(H), we obtain s(ℓj)

∗ = s(ℓ∗j) for ℓj ∈ L ∩ Lc
0 by

Lemma 3.2. We already showed that s0(ℓi)
∗ = s0(ℓ

∗
i ) for ℓi ∈ L in the proof of

Theorem 3.10. Hence K∗ = K. We will check that the associativity law holds for
ℓi, ℓj, ℓr ∈ L. If ℓi, ℓj ∈ L ∩ Lc

0 and ℓr ∈ L0, then we have

(s(ℓi)s(ℓj))sσ(r)(ℓr) = s(ℓi)(s(ℓj)sσ(r)(ℓr))

=


1

1 + γt
s0(ℓ

∗
t ) +

γt
1 + γt

s1(ℓ
∗
t ) if ℓ∗t ∈ L0,

s(ℓ∗t ) if ℓ∗t ∈ L ∩ Lc
0

by straightforward computation for σ(r) ∈ {0, 1} where t is a number such that
ℓiℓjℓrℓt = ℓ0. If ℓi, ℓj, ℓr ∈ L∩Lc

0, then we have (s(ℓi)s(ℓj))s(ℓr) = s(ℓi)(s(ℓj)s(ℓr)) in
a similar way to the above. If ℓi ∈ L∩Lc

0 and ℓj, ℓr ∈ L0, then ℓ
∗
t ∈ L∩Lc

0 and we have
(s(ℓi)sσ(j)(ℓj))sσ(r)(ℓr) = s(ℓi)(sσ(j)(ℓj)sσ(r)(ℓr)) = s(ℓ∗t ) for σ(j), σ(r) ∈ {0, 1}. The
other conditions of Axiom of a finite commutative hypergroup can be established in
K in a similar way to the proof of Theorem 3.10. Therefore K is a finite commutative
hypergroup.

Let φ be a mapping from K onto L such that φ(s0(ℓi)) = φ(s1(ℓi)) = ℓi for
ℓi ∈ L0 and φ(s(ℓj)) = ℓj for ℓj ∈ L ∩ Lc

0. It is easy to see that φ becomes a
homomorphism from K onto L such that Kerφ = H and H is a subhypergroup of
K. Therefore K is an extension hypergroup of L by H.

Next we will give another sufficient condition that the extension K of cyclic
groups L by hypergroups H of order two is a commutative hypergroup.
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Theorem 3.12. Let H = {h0, h1} = Zq(2) be a hypergroup of order two and L =
{ℓ0, ℓ1, . . . , ℓ2m−1} be a cyclic group of order 2m with unit ℓ0. Let K be the disjoint
union of the sets Si = {s0(ℓi), s1(ℓi)}, where s0(ℓ0) = h0 and s1(ℓ0) = h1 for ℓi ∈ L,
namely K =

∪2m−1
i=0 Si. For 1 ≤ i ≤ 2m − 1, γi is the real number such that

q ≤ γi ≤ 1/q, γi∗ = γ−1
i (i ̸= m), γm = 1 and γ0 = 1/q. For ℓi, ℓj, ℓk ∈ L

with ℓiℓjℓk = ℓ0, the real numbers γi, γj and γk satisfy that q ≤ γiγjγk ≤ 1/q and
q ≤ γ−1

i γ−1
j γk ≤ 1/q. Let K be the set which is given by the following structure

equations:

(i) Case of 0 < i+ j < 2m where i ̸= 0 or j ̸= 0.

s0(ℓi)s0(ℓj) = f+(γi, γj, γ
−1
k )s0(ℓ

∗
k) + f−(γi, γj, γk)s1(ℓ

∗
k),

s1(ℓi)s1(ℓj) = f+(γ
−1
i , γ−1

j , γ−1
k )s0(ℓ

∗
k) + f−(γ

−1
i , γ−1

j , γk)s1(ℓ
∗
k),

s0(ℓi)s1(ℓj) = f−(γi, γ
−1
j , γ−1

k )s0(ℓ
∗
k) + f+(γi, γ

−1
j , γk)s1(ℓ

∗
k).

(ii) Case of 2m < i+ j < 4m.

s0(ℓi)s0(ℓj) = f−(γi, γj, γ
−1
k )s0(ℓ

∗
k) + f+(γi, γj, γk)s1(ℓ

∗
k),

s1(ℓi)s1(ℓj) = f−(γ
−1
i , γ−1

j , γ−1
k )s0(ℓ

∗
k) + f+(γ

−1
i , γ−1

j , γk)s1(ℓ
∗
k),

s0(ℓi)s1(ℓj) = f+(γi, γ
−1
j , γ−1

k )s0(ℓ
∗
k) + f−(γi, γ

−1
j , γk)s1(ℓ

∗
k).

(iii) Case of i+ j = 2m.

s0(ℓi)s0(ℓj) = s0(ℓi)s0(ℓ
∗
i ) = h1, s1(ℓi)s1(ℓj) = s1(ℓi)s1(ℓ

∗
i ) = h1,

s0(ℓi)s1(ℓj) = s0(ℓi)s1(ℓ
∗
i ) = f+(γi, γ

−1
i∗ , 1/q)h0 + f−(γi, γ

−1
i∗ , q)h1.

Then K is a commutative hypergroup such that s0(ℓi)
∗ = s1(ℓ

∗
i ) for ℓi ∈ L\{ℓ0} and

K is an extension of L by H.

Proof. First we will check that the associativity law under K-multiplication. For ℓi,
ℓj, ℓr ∈ L, let k, u and t be numbers such that ℓiℓjℓk = ℓ0, ℓjℓrℓu = ℓ0 and ℓiℓjℓrℓt =
ℓ0. The associativity law holds if and only if θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr) for
ℓi, ℓj, ℓr ∈ L by Proposition 3.9. The values of θ(ℓi, ℓj)θ(ℓiℓj, ℓr) and θ(ℓj, ℓr)θ(ℓi, ℓjℓr)
depend on the values of i+ j and j + r. So we check the following case:

(i) 0 < i+ j < 2m. Since akij = f+(γi, γj, γ
−1
k ) in (3.3), θ(ℓi, ℓj) = 1.

(1) 0 < j + r < 2m.
It is obvious that θ(ℓj, ℓr) = 1. Since k∗+r = i+j+r = i+u∗, we obtain
θ(ℓiℓj, ℓr) = θ(ℓi, ℓjℓr). Hence θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr).

(2) 2m < j + r < 4m.
It is obvious that θ(ℓj, ℓr) = −1. Since k∗+r = i+ j+r > 2m, we obtain
θ(ℓiℓj, ℓr) = −1. Since i+u∗ = i+(j+r−2m) = (i+j−2m)+r < r < 2m,
we obtain θ(ℓi, ℓjℓr) = 1. Hence θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr).
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(3) j + r = 2m.
Since r = j∗ and t∗ ≡ i + j + r (mod 2m) = i, we will check the
values of θ(ℓi, ℓj)θ(ℓiℓj, ℓ

∗
j) and θ(ℓj, ℓ

∗
j)θ(ℓ0, ℓi). Since j∗ + k∗ = j∗ +

i + j = i + 2m ≥ 2m, we obtain θ(ℓiℓj, ℓ
∗
j) = −1. Hence we have

θ(ℓi, ℓj)θ(ℓiℓj, ℓ
∗
j) = −1. Since a0jj∗ = 0 in (3.3), θ(ℓj, ℓ

∗
j) = −1. The value

of θ(ℓ0, ℓi) is always equal to 1. Hence we have θ(ℓj, ℓ
∗
j)θ(ℓ0, ℓi) = −1.

Therefore θ(ℓi, ℓj)θ(ℓiℓj, ℓ
∗
j) = θ(ℓj, ℓ

∗
j)θ(ℓ0, ℓi).

(ii) 2m ≤ i+ j < 4m. We obtain θ(ℓi, ℓj)θ(ℓiℓj, ℓr) = θ(ℓj, ℓr)θ(ℓi, ℓjℓr) in a similar
way to the case of (i). So we omit details.

The associativity holds by Proposition 3.9. The other conditions of Axiom of a
finite commutative hypergroup can be established in K in a similar way to the proof
of Theorem 3.10. Therefore K is a finite commutative hypergroup.

Let φ be a mapping from K onto L such that φ(s0(ℓi)) = φ(s1(ℓi)) = ℓi for
ℓi ∈ L. It is easy to see that φ becomes a homomorphism from K onto L such that
Ker φ = H and H is a subhypergroup of K.

Therefore K is an extension of hypergroup of L by H.

Corollary 3.13. Let L0 be a subgroup of a cyclic group L such that |L0| = 2m and
K = {s0(ℓi), s1(ℓi), s(ℓj); ℓi ∈ L0, ℓj ∈ L ∩ Lc

0} have the same structure equations
as described in Theorem 3.12 for ℓi ∈ L0. For ℓj ∈ L ∩ Lc

0, let K have the following
structure equations:

(i) If ℓi ∈ L0, ℓj ∈ L ∩ Lc
0, then

ℓk∗ = ℓiℓj ∈ L ∩ Lc
0 and s0(ℓi)s(ℓj) = s1(ℓi)s(ℓj) = s(ℓ∗k).

(ii) If ℓi, ℓj ∈ L ∩ Lc
0, then

s(ℓi)s(ℓj) =


γk

1 + γk
s0(ℓ

∗
k) +

1

1 + γk
s1(ℓ

∗
k) if ℓ∗k ∈ L0,

s(ℓ∗k) if ℓ∗k ∈ L ∩ Lc
0.

Then K becomes a commutative hypergroup which an extension of L by H.

Proof. We can show in a similar way to the proof of Corollary 3.11 so we omit the
details.

4. Applications and Examples

Under these preparations one can determine the extensions K of L by H for concrete
Abelian groups L = Z2,Z3,Z4,Z5 and a hypergroup H = {h0, h1} = Zq(2) of order
two.
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Let K1 and K2 be two extensions of L by H and φ1 [resp., φ2] be a hypergroup
homomorphism from K1 [resp., K2] onto L. Then K1 is called to be equivalent to
K2 as extensions if there exists a hypergroup isomorphism ψ from K1 onto K2 such
that ψ(h) = h for all h ∈ H and φ2 ◦ ψ = φ1. A hypergroup isomorphism means
that a bijective hypergroup homomorphism. Let L0 be a subgroup of L such that
L0 = {ℓ ∈ L ; |φ−1(ℓ)| = 2}.

We have already calculated all extensions of the hypergroup of order two by
concrete Abelian groups in our paper [7]. The following examples are dual versions
of such extension.

Example 4.1. Let L = {ℓ0, ℓ1; ℓ21 = ℓ0} ∼= Z2 and H = Zq(2) = {h0, h1; h21 =
qh0 + (1 − q)h1, 0 < q ≤ 1}. Since the subgroup L0 of L is L or {ℓ0}, one has the
extensions such that |K| = 4 and |K| = 3 respectively.

(i) Case of |K| = 4.

(1) Hermitian case, i.e., s0(ℓ1)
∗ = s0(ℓ1).

Let γ be a real number such that q ≤ γ ≤ 1/q. We denote Ka(γ) =
{h0, h1, s0(ℓ1), s1(ℓ1)}. The structure equations of Ka(γ) is given by the
following:

(a) h1s0(ℓ1) =
1− qγ

1 + γ
s0(ℓ1) +

(1 + q)γ

1 + γ
s1(ℓ1),

(b) h1s1(ℓ1) =
(1 + q)γ−1

1 + γ−1
s0(ℓ1) +

1− qγ−1

1 + γ−1
s1(ℓ1),

(c) s0(ℓ1)
2 =

q(1 + γ)

1 + q
h0 +

1− qγ

1 + q
h1,

(d) s1(ℓ1)
2 =

q(1 + γ−1)

1 + q
h0 +

1− qγ−1

1 + q
h1,

(e) s0(ℓ1)s1(ℓ1) = h1.

Next we give a non Hermitian hypergroup extension.

(2) Non Hermitian case, i.e., s0(ℓ1)
∗ = s1(ℓ1).

We denote Kb = {h0, h1, s0(ℓ1), s1(ℓ1)}. The structure equations of Kb is
given by the following:

(a) h1s0(ℓ1) =
1− q

2
s0(ℓ1) +

1 + q

2
s1(ℓ1),

(b) h1s1(ℓ1) =
1 + q

2
s0(ℓ1) +

1− q

2
s1(ℓ1),

(c) s0(ℓ1)
2 = s1(ℓ1)

2 = h1,

(d) s0(ℓ1)s1(ℓ1) =
2q

1 + q
h0 +

1− q

1 + q
h1.
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(ii) Case of |K| = 3.
K2 = {h0, h1, s(ℓ1)} is the join H ∨ L of H by L.

Remark 1. The set Ka(γ) is a commutative Hermitian hypergroup and the ex-
tension of L by H by Theorem 3.10. This Ka(γ) is also the extensions such that
a011 = f+(γ, γ, 1/q) in (i)–(1) of Theorem 3.7. By Theorem 3.7 there is another possi-
bility that a011 = f−(γ, γ, 1/q) = q(1−γ)/(1+q). Since the case of a011 = f−(γ, γ, 1/q)
does not satisfy Lemma 3.2, the extensions Ka(γ) and K2 are all extensions of L
by H in Hermitian case. The set Kb is a commutative non Hermitian hypergroup
and the extension of L by H by Theorem 3.12. This Kb is also the extension such
that a011 = f−(1, 1, 1/q) = 0 in (i)–(2) of Theorem 3.7. In a similar discussion to the
above Kb is all extensions in non Hermitian case. Therefore all extensions K of L
by H are Ka(γ) (q ≤ γ ≤ 1/q), Kb and K2. Moreover, Ka(γ) is equivalent to Ka(γ

′)
as extensions if and only if γ′ = γ or γ′ = γ−1.

Example 4.2. Let L = {ℓ0, ℓ1, ℓ2; ℓ21 = ℓ2, ℓ
∗
1 = ℓ2} ∼= Z3 and H = Zq(2) =

{h0, h1; h21 = qh0 + (1− q)h1, 0 < q ≤ 1}. Since the subgroup L0 of L is L or {ℓ0},
one has the extensions such that |K| = 6 and |K| = 4 respectively.

(i) Case of |K| = 6.
Let γ be a real number such that q1/3 ≤ γ ≤ 1/q. We denote

Ka(γ) = {h0, h1, s0(ℓ1), s1(ℓ1), s0(ℓ2), s1(ℓ2)} .

The structure equations of Ka(γ) is given by the following:

(1) h1s0(ℓ1) =
1− qγ

1 + γ
s0(ℓ1) +

(1 + q)γ

1 + γ
s1(ℓ1),

h1s0(ℓ2) =
1− qγ

1 + γ
s0(ℓ2) +

(1 + q)γ

1 + γ
s1(ℓ2),

(2) h1s1(ℓ1) =
(1 + q)γ−1

1 + γ−1
s0(ℓ1) +

1− qγ−1

1 + γ−1
s1(ℓ1),

h1s1(ℓ2) =
(1 + q)γ−1

1 + γ−1
s0(ℓ2) +

1− qγ−1

1 + γ−1
s1(ℓ2),

(3) s0(ℓ1)s0(ℓ2) =
q(1 + γ)

1 + q
h0 +

1− qγ

1 + q
h1,

s1(ℓ1)s1(ℓ2) =
q(1 + γ−1)

1 + q
h0 +

1− qγ−1

1 + q
h1,

s0(ℓ1)s1(ℓ2) = s0(ℓ2)s1(ℓ1) = h1,

(4) s0(ℓ1)
2 =

1 + γ
√
qγ

1 + γ
s0(ℓ2) +

γ − γ
√
qγ

1 + γ
s1(ℓ2),

s0(ℓ2)
2 =

1 + γ
√
qγ

1 + γ
s0(ℓ1) +

γ − γ
√
qγ

1 + γ
s1(ℓ1),
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(5) s1(ℓ1)
2 =

1 +
√
qγ−1

1 + γ
s0(ℓ2) +

γ −
√
qγ−1

1 + γ
s1(ℓ2),

s1(ℓ2)
2 =

1 +
√
qγ−1

1 + γ
s0(ℓ1) +

γ −
√
qγ−1

1 + γ
s1(ℓ1),

(6) s0(ℓ1)s1(ℓ1) =
1−√

qγ

1 + γ
s0(ℓ2) +

γ +
√
qγ

1 + γ
s1(ℓ2),

s0(ℓ2)s1(ℓ2) =
1−√

qγ

1 + γ
s0(ℓ1) +

γ +
√
qγ

1 + γ
s1(ℓ1).

(ii) Case of |K| = 4.
K2 = {h0, h1, s(ℓ1), s(ℓ2)} is the join H ∨ L of H by L.

Remark 2. The set Ka(γ) is a commutative hypergroup such that s0(ℓi)
∗ = s0(ℓ

∗
i )

for i = 1, 2 and the extension of L by H by Theorem 3.10. The real numbers γ1 and
γ2 in Theorem 3.10 satisfy γ21γ2 ≥ q and γ−2

1 γ2 ≥ q. Since s0(ℓ1)
∗ = s0(ℓ2), we obtain

γ2 = γ1∗ = γ1 by Lemma 3.4. We write γ = γ1 simply. Hence q1/3 ≤ γ ≤ 1/q. This
Ka(γ) is also the extension such that a111 = f+(γ, γ, γ) in (i)–(1) of Theorem 3.7.
There are other extensions by Theorem 3.7 and Proposition 3.9. However it is easy to
see that other extensions are equivalent to Ka(γ) as extensions by transposing s0(ℓ1)
to s1(ℓ1) or s0(ℓ2) to s1(ℓ2). Therefore all extensions K of L by H are equivalent to
one of Ka(γ) and K2 as extensions.

Example 4.3. Let L =
{
ℓ0, ℓ1, ℓ2, ℓ3; ℓ

k
1 = ℓk (k = 2, 3), ℓ∗1 = ℓ3, ℓ

∗
2 = ℓ2

} ∼= Z4 and
H = Zq(2) = {h0, h1; h21 = qh0 + (1− q)h1, 0 < q ≤ 1}. Since the subgroup L0 of L
is L, {ℓ0, ℓ2} or {ℓ0}, one has the extensions such that |K| = 8, |K| = 6 and |K| = 5.

(i) Case of |K| = 8.

(1) Case of s0(ℓ)
∗ = s0(ℓ

∗) for all ℓ ∈ L.
Let γ1 and γ2 be real numbers such that q ≤ γi ≤ 1/q for i = 1, 2,
q ≤ γ21γ2 and q ≤ γ−2

1 γ2. We denote K1-a(γ1, γ2) = {h0, h1, s0(ℓ1), s1(ℓ1),
s0(ℓ2), s1(ℓ2), s0(ℓ3), s1(ℓ3)}. The structure equations of K1-a(γ1, γ2) is
given by the following:

(a) h1s0(ℓ1) =
1− qγ1
1 + γ1

s0(ℓ1) +
(1 + q)γ1
1 + γ1

s1(ℓ1),

h1s0(ℓ2) =
1− qγ2
1 + γ2

s0(ℓ2) +
(1 + q)γ2
1 + γ2

s1(ℓ2),

h1s0(ℓ3) =
1− qγ1
1 + γ1

s0(ℓ3) +
(1 + q)γ1
1 + γ1

s1(ℓ3),

(b) h1s1(ℓ1) =
(1 + q)γ−1

1

1 + γ−1
1

s0(ℓ1) +
1− qγ−1

1

1 + γ−1
1

s1(ℓ1),

h1s1(ℓ2) =
(1 + q)γ−1

2

1 + γ−1
2

s0(ℓ2) +
1− qγ−1

2

1 + γ−1
2

s1(ℓ2),

h1s1(ℓ3) =
(1 + q)γ−1

1

1 + γ−1
1

s0(ℓ3) +
1− qγ−1

1

1 + γ−1
1

s1(ℓ3),
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(c) s0(ℓ1)s0(ℓ3) =
q(1 + γ1)

1 + q
h0 +

1− qγ1
1 + q

h1,

s1(ℓ1)s1(ℓ3) =
q(1 + γ−1

1 )

1 + q
h0 +

1− qγ−1
1

1 + q
h1,

s0(ℓ1)s1(ℓ3) = s0(ℓ3)s1(ℓ1) = h1,

(d) s0(ℓ2)
2 =

q(1 + γ2)

1 + q
h0 +

1− qγ2
1 + q

h1,

s1(ℓ2)
2 =

q(1 + γ−1
2 )

1 + q
h0 +

1− qγ−1
2

1 + q
h1, s0(ℓ2)s1(ℓ2) = h1,

(e) s0(ℓ1)
2 =

1 + γ1
√
qγ2

1 + γ2
s0(ℓ2) +

γ2 − γ1
√
qγ2

1 + γ2
s1(ℓ2),

s1(ℓ1)
2 =

1 + γ−1
1

√
qγ2

1 + γ2
s0(ℓ2) +

γ2 − γ−1
1

√
qγ2

1 + γ2
s1(ℓ2),

s0(ℓ1)s1(ℓ1) =
1−√

qγ2

1 + γ2
s0(ℓ2) +

γ2 +
√
qγ2

1 + γ2
s1(ℓ2),

(f) s0(ℓ1)s0(ℓ2) =
1 + γ1

√
qγ2

1 + γ1
s0(ℓ3) +

γ1 − γ1
√
qγ2

1 + γ1
s1(ℓ3),

s1(ℓ1)s1(ℓ2) =
1 +

√
qγ−1

2

1 + γ1
s0(ℓ3) +

γ1 −
√
qγ−1

2

1 + γ1
s1(ℓ3),

s0(ℓ1)s1(ℓ2) =
1− γ1

√
qγ−1

2

1 + γ1
s0(ℓ3) +

γ1 + γ1
√
qγ−1

2

1 + γ1
s1(ℓ3).

(2) Case of s0(ℓ)
∗ = s1(ℓ

∗) for all ℓ ∈ L.
Let γ be a real number such that q1/2 ≤ γ ≤ q−1/2. We put K1-b(γ) = {h0,
h1, s0(ℓ1), s1(ℓ1), s0(ℓ2), s1(ℓ2), s0(ℓ3), s1(ℓ3)}. The structure equation of
K1-b(γ) is given by the following:

(a) h1s0(ℓ1) =
1− qγ

1 + γ
s0(ℓ1) +

(1 + q)γ

1 + γ
s1(ℓ1),

h1s0(ℓ2) =
1− q

2
s0(ℓ2) +

1 + q

2
s1(ℓ2),

h1s0(ℓ3) =
1− qγ−1

1 + γ−1
s0(ℓ3) +

(1 + q)γ−1

1 + γ−1
s1(ℓ3),

(b) h1s1(ℓ1) =
(1 + q)γ−1

1 + γ−1
s0(ℓ1) +

1− qγ−1

1 + γ−1
s1(ℓ1),

h1s1(ℓ2) =
1 + q

2
s0(ℓ2) +

1− q

2
s1(ℓ2),

h1s1(ℓ3) =
(1 + q)γ

1 + γ
s0(ℓ3) +

1− qγ

1 + γ
s1(ℓ3),

(c) s0(ℓ1)s1(ℓ3) =
q(1 + γ)

1 + q
h0 +

1− qγ

1 + q
h1,
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s1(ℓ1)s0(ℓ3) =
q(1 + γ−1)

1 + q
h0 +

1− qγ−1

1 + q
h1, s0(ℓ1)s0(ℓ3) = h1,

(d) s0(ℓ2)s1(ℓ2) =
2q

1 + q
h0 +

1− q

1 + q
h1, s0(ℓ2)

2 = s1(ℓ2)
2 = h1,

(e) s0(ℓ1)
2 =

1 + γ
√
q

2
s0(ℓ2) +

1− γ
√
q

2
s1(ℓ2),

s1(ℓ1)
2 =

1 + γ−1√q
2

s0(ℓ2) +
1− γ−1√q

2
s1(ℓ2),

s0(ℓ1)s1(ℓ1) =
1−√

q

2
s0(ℓ2) +

1 +
√
q

2
s1(ℓ2),

(f) s0(ℓ1)s0(ℓ2) =
1 + γ

√
q

1 + γ
s0(ℓ3) +

γ − γ
√
q

1 + γ
s1(ℓ3),

s1(ℓ1)s1(ℓ2) =
1 +

√
q

1 + γ
s0(ℓ3) +

γ −√
q

1 + γ
s1(ℓ3),

s0(ℓ1)s1(ℓ2) =
1− γ

√
q

1 + γ
s0(ℓ3) +

γ + γ
√
q

1 + γ
s1(ℓ3).

(ii) Case of |K| = 6.

(1) Case of s0(ℓ2)
∗ = s0(ℓ2).

Let γ be a real number such that q ≤ γ ≤ 1/q. We denote K2-a(γ) = {h0,
h1, s(ℓ1), s0(ℓ2), s1(ℓ2), s(ℓ3)}. The structure equations of K2-a(γ) is
given by the following:

(a) h1s(ℓ1) = s(ℓ1), h1s(ℓ3) = s(ℓ3),

h1s0(ℓ2) =
1− qγ

1 + γ
s0(ℓ2) +

(1 + q)γ

1 + γ
s1(ℓ2),

h1s1(ℓ2) =
(1 + q)γ−1

1 + γ−1
s0(ℓ2) +

1− qγ−1

1 + γ−1
s1(ℓ2),

(b) s(ℓ1)s(ℓ3) =
q

1 + q
h0 +

1

1 + q
h1,

(c) s0(ℓ2)s0(ℓ2) =
q(1 + γ)

1 + q
h0 +

1− qγ

1 + q
h1,

s1(ℓ2)s1(ℓ2) =
q(1 + γ−1)

1 + q
h0 +

1− qγ−1

1 + q
h1, s0(ℓ2)s1(ℓ2) = h1,

(d) s(ℓ1)
2 = s(ℓ3)

2 =
1

1 + γ
s0(ℓ2) +

γ

1 + γ
s1(ℓ2),

(e) s(ℓ1)s0(ℓ2) = s(ℓ1)s1(ℓ2) = s(ℓ3), s0(ℓ2)s(ℓ3) = s(ℓ1),

s1(ℓ2)s(ℓ3) = s(ℓ1).
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(2) Case of s0(ℓ2)
∗ = s1(ℓ2).

We denote K2-b = {h0, h1, s(ℓ1), s0(ℓ2), s1(ℓ2), s(ℓ3)}. The structure
equations of K2-b is given by the following:

(a) h1s(ℓ1) = s(ℓ1), h1s(ℓ3) = s(ℓ3),

h1s0(ℓ2) =
1− q

2
s0(ℓ2) +

1 + q

2
s1(ℓ2),

h1s1(ℓ2) =
1 + q

2
s0(ℓ2) +

1− q

2
s1(ℓ2),

(b) s(ℓ1)s(ℓ3) =
q

1 + q
h0 +

1

1 + q
h1,

(c) s0(ℓ2)s1(ℓ2) =
2q

1 + q
h0 +

1− q

1 + q
h1, s0(ℓ2)s0(ℓ2) = s1(ℓ2)s1(ℓ2) = h1,

(d) s(ℓ1)
2 = s(ℓ3)

2 =
1

2
s0(ℓ2) +

1

2
s1(ℓ2),

(e) s(ℓ1)s0(ℓ2) = s(ℓ1)s1(ℓ2) = s(ℓ3), s0(ℓ2)s(ℓ3) = s1(ℓ2)s(ℓ3) = s(ℓ1).

(iii) Case of |K| = 5.
K3 = {h0, h1, s(ℓ1), s(ℓ2), s(ℓ3)} is the join H ∨ L of H by L.

Remark 3. The set K1-a(γ1, γ2) is a commutative hypergroup such that s0(ℓi)
∗ =

s0(ℓ
∗
i ) for i = 1, 2, 3 and the extension of L by H by Theorem 3.10. This K1-a(γ1, γ2)

is also the extension such that a211 = f+(γ1, γ1, γ2) in (i)–(1) of Theorem 3.7. One
has other extensions such that |K| = 8 and s0(ℓ2)

∗ = s0(ℓ2) by Theorem 3.7 and
Proposition 3.9. It is easy to see that other extension such that |K| = 8 and
s0(ℓ2)

∗ = s0(ℓ2) are equivalent to K1-a(γ1, γ2) as extensions by transposing s0(ℓ1) to
s1(ℓ1), s0(ℓ2) to s1(ℓ2) or s0(ℓ3) to s1(ℓ3).

The set K1-b(γ) is a commutative hypergroup such that s0(ℓi)
∗ = s1(ℓ

∗
i ) for

i = 1, 2, 3 and the extension of L by H Theorem 3.12. This K1-b(γ) is characterized
by a211 = f+(γ, γ, 1) and s0(ℓi)

∗ = s1(ℓ
∗
i ) in (ii)–(1) of Theorem 3.7 where γ2 = 1,

γ1 = γ and q1/2 ≤ γ ≤ q−1/2. In a similar discussion to the above, all extensions
such that |K| = 8 and s0(ℓ2)

∗ = s1(ℓ2) are equivalent to K1-b(γ) as extensions.
The set K2-a(γ) is a commutative hypergroup such that |K| = 6 and s0(ℓ2)

∗ =
s0(ℓ2) and the extension of L by H by Corollary 3.11. In a similar discussion to
Example 4.2, K2-a(γ) is all extensions such that |K| = 6 and s0(ℓ2)

∗ = s0(ℓ2).
The set K2-b is a commutative hypergroup such that |K| = 6 and s0(ℓ2)

∗ = s1(ℓ2)
and the extension of L by H by Corollary 3.13.

Therefore all extensions K of L byH are equivalent to one of K1-a(γ1, γ2), K1-b(γ),
K2-a(γ), K2-b and K3.

Example 4.4. Let L = {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4; ℓk1 = ℓk, k = 2, 3, 4, ℓ∗2 = ℓ3, ℓ
∗
1 = ℓ4} ∼= Z5

and H = Zq(2) = {h0, h1; h21 = qh0 + (1− q)h1, 0 < q ≤ 1}. Since the subgroup L0

of L is L or {ℓ0}, one has the extensions such that |K| = 10 and |K| = 6 respectively.
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(i) Case of |K| = 10.
Let γ1 and γ2 be real numbers such that q ≤ γi ≤ 1/q for i = 1, 2, q ≤ γ21γ2,
q ≤ γ−2

1 γ2, q ≤ γ1γ
2
2 and q ≤ γ1γ

−2
2 . We put K1(γ1, γ2) = {h0, h1, s0(ℓ1),

s1(ℓ1), s0(ℓ2), s1(ℓ2), s0(ℓ3), s1(ℓ3), s0(ℓ4), s1(ℓ4)}. The structure equations of
K1(γ1, γ2) is given by

(1) h1s0(ℓ1) =
1− qγ1
1 + γ1

s0(ℓ1) +
(1 + q)γ1
1 + γ1

s1(ℓ1),

h1s0(ℓ2) =
1− qγ2
1 + γ2

s0(ℓ2) +
(1 + q)γ2
1 + γ2

s1(ℓ2),

h1s0(ℓ3) =
1− qγ2
1 + γ2

s0(ℓ3) +
(1 + q)γ2
1 + γ2

s1(ℓ3),

h1s0(ℓ4) =
1− qγ1
1 + γ1

s0(ℓ4) +
(1 + q)γ1
1 + γ1

s1(ℓ4),

(2) h1s1(ℓ1) =
(1 + q)γ−1

1

1 + γ−1
1

s0(ℓ1) +
1− qγ−1

1

1 + γ−1
1

s1(ℓ1),

h1s1(ℓ2) =
(1 + q)γ−1

2

1 + γ−1
2

s0(ℓ2) +
1− qγ−1

2

1 + γ−1
2

s1(ℓ2),

h1s1(ℓ3) =
(1 + q)γ−1

2

1 + γ−1
2

s0(ℓ3) +
1− qγ−1

2

1 + γ−1
2

s1(ℓ3),

h1s1(ℓ4) =
(1 + q)γ−1

1

1 + γ−1
1

s0(ℓ4) +
1− qγ−1

1

1 + γ−1
1

s1(ℓ4),

(3) s0(ℓ1)s0(ℓ4) =
q(1 + γ1)

1 + q
h0 +

1− qγ1
1 + q

h1,

s1(ℓ1)s1(ℓ4) =
q(1 + γ−1

1 )

1 + q
h0 +

1− qγ−1
1

1 + q
h1,

s0(ℓ1)s1(ℓ4) = s0(ℓ4)s1(ℓ1) = h1,

(4) s0(ℓ2)s0(ℓ3) =
q(1 + γ2)

1 + q
h0 +

1− qγ2
1 + q

h1,

s1(ℓ2)s1(ℓ3) =
q(1 + γ−1

2 )

1 + q
h0 +

1− qγ−1
2

1 + q
h1,

s0(ℓ2)s1(ℓ3) = s0(ℓ3)s1(ℓ2) = h1,

(5) s0(ℓ1)
2 =

1 + γ1
√
qγ2

1 + γ2
s0(ℓ2) +

γ2 − γ1
√
qγ2

1 + γ2
s1(ℓ2),

s1(ℓ1)
2 =

1 + γ−1
1

√
qγ2

1 + γ2
s0(ℓ2) +

γ2 − γ−1
1

√
qγ2

1 + γ2
s1(ℓ2),

s0(ℓ1)s1(ℓ1) =
1−√

qγ2

1 + γ2
s0(ℓ2) +

γ2 +
√
qγ2

1 + γ2
s1(ℓ2),
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(6) s0(ℓ1)s0(ℓ2) =
1 + γ2

√
qγ1

1 + γ2
s0(ℓ3) +

γ2 − γ2
√
qγ1

1 + γ2
s1(ℓ3),

s1(ℓ1)s1(ℓ2) =
1 +

√
qγ−1

1

1 + γ2
s0(ℓ3) +

γ2 −
√
qγ−1

1

1 + γ2
s1(ℓ3),

s0(ℓ1)s1(ℓ2) =
1−√

qγ1

1 + γ2
s0(ℓ3) +

γ2 +
√
qγ1

1 + γ2
s1(ℓ3).

(ii) Case of |K| = 6.
K2 = {h0, h1, s(ℓ1), s(ℓ2), s(ℓ3), s(ℓ4)} is the join H ∨ L of H by L.

Remark 4. The set K1(γ1, γ2) is a commutative hypergroup such that s0(ℓi)
∗ =

s0(ℓ
∗
i ) for 1 ≤ i ≤ 4 and the extension of L by H by Theorem 3.10. This K1(γ1, γ2)

is also the extension such that a311 = f+(γ1, γ1, γ2) and a
2
12 = f+(γ1, γ2, γ2) in (i)–(1)

of Theorem 3.7.
In a similar discussion to Examples 4.2 and 4.3, all extensions K of L by H are

equivalent to one of K1(γ1, γ2) and K2.
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