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HYPERGROUP EXTENSIONS OF FINITE ABELIAN
GROUPS BY HYPERGROUPS OF ORDER TWO
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ABSTRACT. The purpose of the present paper is to establish necessary con-
ditions and sufficient conditions that finite commutative hypergroups are ex-
tensions of finite Abelian groups by hypergroups of order two. Applying our
results to some concrete cases one can determine all such extensions.

1. Introduction

Let ‘H and L be finite commutative hypergroups. A finite commutative hypergroup
IC is called an extension of £ by H if the sequence

1 H-K-=>L—=1

is exact, i.e., if there exists a hypergroup homomorphism ¢ from & onto £ such that
Kerp = H and H is embedded in K. The extension problem is to determine all
extensions K of £ by H when H and L are given.

It is known that there exist some methods to construct a new hypergroup from
given ones. The structure of hypergroups is not yet known very well even in the case
of finite hypergroups of low orders. The structure of hypergroups of order three is
determined in 2002 by N.J.Wildberger [10]. In order to understand the full structure
of hypergroups, it will play an essential role to determine all extensions IC of £ by
‘H for given commutative hypergroups H and L.

Splitting extensions of hypergroups are introduced in [4] and [3]. Extension
hypergroups associated with group actions have been constructed in [2] and [3].
Extension problems of the Golden hypergroup were studied in [5] and [6].

By stimulating with Voit’s work [8] in 2008 on hypergroup structures on two tori,
we have started to consider the extension problem in the category of commutative
hypergroups and we succeeded to determine all commutative hypergroup extensions
of hypergroups of order two by finite Abelian groups including non-splitting exten-
sions in [7].

In the present paper we investigate the dual version of the above extension prob-
lem, namely we analyze the structure of extensions K of finite Abelian groups £ by
hypergroups H of order two. We give the necessary conditions of such extensions

2000 Mathematics Subject Classification. 43A62, 20N20.
Key words and phrases. Hypergroup, extension, Abelian group.



in Theorem 3.7 and Corollary 3.8. We give the sufficient conditions of such exten-
sions in the flat case in Theorem 3.10 and Corollary 3.11 and in the crossing case
in Theorem 3.12 and Corollary 3.13. Applying these results one can determine all
extensions of the cyclic groups £ of low orders by hypergroups H of order two.

2. Preliminaries

We recall some notions and facts on finite commutative hypergroups which are
described in Wildberger’s paper [9] and Bloom-Heyer’s book [1].

Axiom of a finite commutative hypergroup. A pair £ := (K, A) is called
a finite commutative hypergroup if the following conditions (i)—(v) are satisfied.

(i) A(K) is a *-algebra over C with unit co.
(ii) K ={co,c1,...,cy} is a linear basis of A and K* = K.

(iii) The structure constants n£ € C defined by ¢;ic; = >, n@ck satisfy that
nf; > 0. Moreover, ¢; = ¢; if and only if n; > 0.

(iv) Yoh_oni; =1 for all 4, ;.
(v) cic; = cjc; for all 4, 5.

The weight of an element ¢; of K is defined by w(c;) = (n;)~" where ¢; = ¢

and the total weight of K is defined by w(K) = Y7 ,w(¢;). Let wx denote the
normalized Haar measure of K which is given by

Let M'(K) denote the set of all non-negative probability measures on K, i.e.,

MY(K) = {Zam; ap >0 (k=0,1,...,n), > ar= 1}‘
k=0

k=0

A complex function x on K is called a character of K if

X(eo) =1, x(e)x(e) =Y nfix(cr) and x(c}) = x(c:).

Let K and L be finite commutative hypergroups. A hypergroup homomorphism
¢ from K into £ means that there exists the unique *-homomorphism ¢ from A(K)
into A(L) such that ¢(¢;) = ¢(¢;) for all ¢; € K. Sometimes a hypergroup homo-
morphism is called simply a homomorphism.



Let H = {ho, h1} be a hypergroup of order two with unit hg. Then the structure
of H is determined by a parameter 0 < ¢ < 1 such that

h% =qho+ (1 —q)hy.

Hence we denote hypergroup H by Z,(2). The weights and the normalized Haar
measure on Z,(2) are given by

w(ho) = 1, w(hy) = ~, w(Zy(2)) = 4,

w(ho) _w(l) q 1

RO Tz @) w(Zy2) T T g

ho +
The characters o and x; of Z,(2) are given by

Xo(ho) = xo(h1) =1,
x1(ho) =1, x1(h1) = —q.

3. Extension

Let ‘H and L be finite commutative hypergroups. A finite commutative hypergroup
KC is called an extension of £ by H if the sequence

1 H-K-=>L-=>1

is exact, i.e., if H is embedded in I and there exists a homomorphism ¢ from K onto
L such that Ker ¢ = H. When finite commutative hypergroups H and L are given,
the extension problem is to determine all finite commutative hypergroup extensions
of £ by H up to equivalence as extensions.

In the present paper we discuss the above extension problem in the case that
H = Za(q) = {ho,h1} is a hypergroup of order two and £ = {{y,¢1,...,0,} is a
finite Abelian group with unit /.

Let S; = ¢ 1(¢;) for ¢; € L. Then K is decomposed to the disjoint union of the
sets S; (1 =0,1,2,...,n) as K= SoU S, U---US,, where Sy = H. We have the
following lemma about the cardinal number |S;| of S;.

Lemma 3.1. |S;| =1 or 2 for eachi=1,2,...,n.

Proof. Suppose that |S;| > 3. Take s, s1,$2 € S;. Let ¢ be a homomorphism from
K onto L. Since

p(s080) = p(s0)9(85) = w(s0)p(s0)" = Lil; = Ly,

the product sgsj; must be in M'(H). In a similar way, sos}, soss and s;s5 must be
in M*(H). Then

* * * *
spso = Tho + (1 —7)hy and sgsy = sps5 = 5155 = hy,



where 7 = w(sg) ™! > 0. Hence we have on one hand
sos15083 = (5551)(5083) = hi = gho + (1 — ¢)l
and on the other hand

s0515085 = (8050)(5153)
= (tho+ (1 —=7)h)l
= q1-1)ho+(T+(1—q)(L—7))h.

Compare the coefficients of hy. Then we have ¢ = ¢(1 — 7). Since ¢ # 0, we obtain
7 = 0. This contradicts the fact that 7 > 0. Therefore |S;| must be one or two. [

When |S;| = 2, we put S; = {so(¢;),s1(¢;)} and v; = w(s1(4;))/w(so(¢;)), where
so(lo) = ho, s1(¢g) = hi1, and vy = 1/q. This positive real numbers 7; will play an
important role to determine the structure of extensions of £ by H. When |S;| = 1,

we put S; = {s(¢;)}.
Lemma 3.2. The products of each element in S; are given as follows:

(1) In the case that S; = {so({;), s1(¢;)}, one has

q(1+ ) L —qy

so(li)so(li)” = 1+q ho + 1+ q hy,
. Lty ),  1-an!
sty = My 10y,

50<£i)51(€i)* = 50<£i)*31<€i) =hy, where q<; < 1/Q-

(ii) In the case that S; = {s(€;)}, one has s(€;)s(€;)* = wy.
Proof. (i) In the case that |S;| = 2, we have

S(](éi)SO(ei)* = Tiho + (1 — Ti>h1,
s1(6)s1(6;)" = piho + (1 — pi)ha,
So(&)sl(&)* = hy,

where 7; = w(so(¢;))™ > 0 and p; = w(sy(4;))~! > 0. Note that 7, = v;p;. We have

so(€i)so(li)"s1(€i)s1(6;)" = (s0(€i)so(€:)")(s1(€5)s1()")
(iho + (1 = 7)h1) (piho + (1 = pi)ha)
= Tipiho + (1 — ) pihy + 7(1 — pi)hy + (1 — 7)(1 — py)h3
= Tipiho + (1 — 7)piha + (1 — pi)ha + (1 — 1) (1 — pi)(gho + (1 — @)h1)
= (mipi +q(1 = 7)(1 = pi)) ho
(L =7)pi + 7L = pi) + (1 = )(1 = 75)(1 = p;)) s



On the other hand
so(li)so(€:) s1(6i)s1(6:)" = (so(€i)s1(€:)") (s1(6)s0(£:)")
= hi=qho+(1—q)hi.
By comparing the coefficients of hy we obtain
Tipi +q(1 = 7)1 = pi) = ¢.
Since 1;p; + q(1 — 7;)(1 — p;) = q and 7; = ;p;, we have
7 =q(1+7)/(1+q)

and
pi=7"ri=ql+5)y "/ (L+4q) =q1+~")/(1+q).

It is easy to see that ¢ < 7; < 1/q from the facts that 1 — 7, = 1 — ¢7; > 0 and
1—pi:1—q7;120.

(ii) In the case that S; = {s(¢;)}, it is obvious that hys(¢;) = s(¢;), so that
wys(l;) = s(¢;). Since s(¢;)s(€;)* = c € M'(H) and wyc = wy,

s(€;)s(4;)" = (wus(l:))s(l;)" = wu(s(l)s(l;)") = wype = wy.
Therefore s(¢;)s(¢;)* = wy. O
For ¢; € L, we will use a notation * given by ¢;« = (.
Lemma 3.3. Ly = {(; € £; |S;| =2} is a subgroup of L.

Proof. First we show that ¢, = (;{; € L for ¢;, {; € Ly. Suppose that ¢, = (;{; & Ly
for 0;,0; € Ly. It is easy to see that

so(li)so(l;) = s1(li)s1(4;) = s(lx)

and
so(li)s1(6:)" = so(£;)s1(€;)" = ha.

It is shown that s(fx)s(fx)* = wy by Lemma 3.2. Hence we have

so(li)so(€s)s1(€i) s1(€;)" = (so(li)so(l;))(s1(Li)s1(45))"
= s(lp)s(lp)" = wy.

On the other hand
so(£i)so()s1(£:)"s1(0;)" = (so(€s)s1(6:)") (s0(£5)s1(£5)") = hi.

Hence we have wy = h?. This is a contradiction. Therefore £, must be in Lj.
Since for ¢; € Ly we have |Sf| = 2, the involution ¢ of ¢; must be in Ly.
Consequently we see that Ly is a subgroup of L. O



For so(¢;), s1(¢;) € S;, there are two possibilities that so(¢;)* = so(¢}) or so(¢;)* =
s1(65) for ¢; € Ly. Here we give some notations which are used in our discussion. We
call F'={{; € Lo; so(€;)* = so(£;)} the flat part of Ly and C = {{; € Lo; so(€;)* =
s1(€¥)} the crossing part of Ly. We note that Ly = CUF and CNF = (. It is
obvious that F* = F and C* = C'. Moreover, we put Cy = {{; € C; {; = {;}.

Lemma 3.4. For {; € Lg, the relations of between ~; and ;< are as follows:
i if b € F,
ve=1q v iftie CNG,
Proof. For ¢; € Ly, we have

So(gi*)so(gi*)* = C](l + 7+ )(1 + Q)_lho + (1 - q%*)(l + Q)_lhl (3-1)

by Lemma 3.2. In the case that ¢; € F', we have

so(li)so(lx)" = so(li)*so(li)
= q(1+7)1+q) ho+ (1 —gy)(1+q) .

By comparing the coefficients of hg in the above equality and (3.1) we obtain v+ = ;.
In the case that ¢; € C, we have

80(&*)50(&'*)* = 81(&)*81(&)
= g+ +9) " ho+ (1= H(A + ) ha.

Compare the coefficients of hg in the above equality and (3.1) we obtain ;- = 7; '
When ¢; € CY, 72-_1 =, by l;+ = £;. Then we obtain v; = 1 by ; > 0. O

Lemma 3.5. If (;,{; € Cy, then l;{; € F.

Proof. Let x be a character of K with x(h;) = —¢q. Note that for £ € Cy, so(£)? =
s0(0)so(0*) = so(€)s1(£)* = hy by Lemma 3.2. Since x(s0(£))? = x(s0(£)?) = x(hy) =

—dq,
x(s0(f)) = v/ —¢.
For ¢;,¢; € Cy, there exists a € [0,1] such that
So(éi)So(gj) = CLS()(E]C) + (1 - a)sl(ﬁk)

where ¢ = (;¢;. Suppose {;, € C. Then since 3 = {y and so({)* = s1((}), we know
that ¢, must be in Cy. Hence we have on one hand

x(s0(li)s0(£5)) = x(s0(4:))x(s0(¢;)) = *q,



and on the other hand

X(s0(4i)so(ly)) = ax(so(le)) + (1 —a)x(s1(lx))

= ax(so(fx)) + (1 —a)x(so(f))
— tyga+ G- )

It is obvious that +/—qa + F+1/—¢(1 — a) is a purely imaginary or zero. This
contradicts the fact ¢ > 0. Therefore ¢, must be in F'. O]

Proposition 3.6. The products by hy € H and so(¢;),s1(¢;) € S; for {; € Ly are
the following:

: 1 —qy (14 q)v
huso(l:) = 0) + DY g
(i) hiso(£:) T so(li) + Tt s1(4i),

_1+g Vi~ 4
= 1 n ” 30(61) + 51(61).

Proof. We can write

h180(€i> = CiS()(gi) + 6151(&) and hlsl(&) = bZS()(gZ) + b181(€1>
where b;, ¢; € [0, 1], bi=1—0b;and & =1 — c;. Applying Lemma 3.2 we have

(hiso(4:))s1(6:)* = ciso(ly)s1(6;)" + ¢is1(€;)s1(4;)"
= cihy 4+ &g+ Y1+ ) he
+H(1 =gy )1 +q) " )
= g1+ )L +q) Gho
+(a+ 1 =gy Hl+9)'a)

and

hi(so(€;)s1(4:)*) = h? = qho + (1 — q)hs.

The coefficients of hq in each are q(1+v; ")(1+ q) & and q respectively. Since the
both must be equal, we have

ci=(1—qu)(1+7) " and & = (1+¢)y(l +7%) 7"
Moreover, we also see that
bi = (1+q)(1+ )" and by = (v, — q)(1 + )~

by comparing the coefficients of hg in hy(s1(¢;)s1(¢;)*) and (hys1(€;))s1(4;)*. O



The extension hypergroup K of £ by H is written as K = {SO( i), S (E ), s(¢)) ;

l; € Ly, {; € LNLGY. For 4;,0; € Ly we write the constants a”, bf] and c given by

(L)so(l;) = aj;so(lr) + agsi(6h),
si1(li)si(t;) = 5550(52) + 5551(52)»
so(li)s1(l;) = cfjso(ﬁ}';) + 6@51(62) (3.2)
where ¢ = (;¢;, a¥ =1- akj,bfj l—bfj andé —l—c Wenotethaut()<a’l‘C <1,

0< bfj < 1 and O < ck < 1 by Axiom of a ﬁnlte commutatlve hypergroup We
use the functions f, and f— defined by fi(z,y,2) := (14 /qzyz)/(1+ z) and
f-(z,y,2) = (1 —\/qzyz)/(1 + z) for z,y,z > 0.

We give the necessary condition that the extension K of £ by H is hypergroup.

Theorem 3.7. Let H = Z,(2) = {ho, h1} be a hypergroup of order two and L =
{lo, l1,..., L.} an Abelian group with unit ly. Let KC be an extension hypergroup of
L by H such that |S;| = 2 for alli =1,2,...,n. For {;,{; {; € L with {; = (;{;,
each coefficient af], b’“ and cfj in (3.2) has the following values:

(1) In the case of Uy € F, either (1) or (2) occurs.

(1) ai?j = f+(7i77j77k)7 bfj = f+(’yz 7/7J 77’6) Zj f (7177;17716)
where ;'Y Ve > @ W = G e = 4 W e = 46
(2) CLZ - f (’717,}/]”)%5)7 z] = .f (77, ’7] 77"&) f-‘r(,}/l?,YJ 77](?)
where 7 e 2 4 e 2 G Y vm 2 4 W > g

(ii) In the case of by € C, either (1) or (2) occurs.
(1) afy = fr(vovm v ) b = e L v D), = (v L)
where vt > q vt = 4 e = a0 v e > 4
(2) aly = f-(vv v ) 0 = O s ey = Fa (),
where 37 Y 2 a0 Y = 4% Y 2 4N e 2 4

Proof. (i) Case of ¢} € F.
Consider the product so(¢;)so(¢;)s0(¢;)*so(¢;)* for £;,¢; € L. We have

so(£i)s0(€5)s0(€:)"s0(£;)"
(s0(€:)s0(£5))(s0(£i)s0(€5))"
(agso(6r) + aiysa(6o) (aso(0r)" + ajsi(6r)7)
= (agso(te)” + agysu(Ge)”) (agzso(le) + agsa(Cr))
(aj; )So(ﬁk)So(&c)* (a5;)?s1(C)s1(C)"

+a a (SO(&C) Sl(ék) (Ek) SO(Ek))



= ()’ (1 +q) " (q(1 + i) ho + (1 — qyk)ha)
+(@k )21+ ¢) 7t (a1 + v Hho + (1 — gy Hha) + 2akafh
(by Lemma 3.2)
= 1+ ) (L +y)(al)? + (L4+7.1)(@)?) ho
H(1+q) 7 (1= gm) (@) + (1= g )(@5)?) by + 240550
= a((1+m)(a)® = 2af; + )ho + a (— (1 + ) (af;)” + 2(1 ) hy
+ (= @)1+ ) h)

where a = q(1 + ¢) "', *(1 + 75) and

so(4i)so(€j)s0(€;)*so(£5)"
(s0(£:)s0(€:)") (s0(€;)0(£5)")
= (1+¢) 7 (a1 +7)ho + (1 = gva)hn) (a1 + 7)o + (1 = gv5) )
(by Lemma 3.2)
q(1+q)~" (1 + qrivy)ho + (1 = @) ha)
= q(1+¢) (14 qrvj)ho + a1+ @) (1 — ¢*vivj) .

Comparing each coefficient of hg, we obtain the following quadratic equation for afj:

(1+m)%(af;)® = 2(1 4+ yi)af; + 1 — gy = 0.

Then
w1 E VO

ay. =
“ I+

We show the relation of ¢}; and af; by associativity (hiso(£;))so(fs) = ha(so(£;)s0(£s)).-
The left hand side is

(h1so(£;))s0(li) = (s1(bo)so(l;))so(4i)

= fi(%%‘,%)'

where c;O = (1 —qv;)/(1 + ;) by Proposition 3.6 and the right hand side is

h (50(6) so(li)) = (Cﬁ*oa +bk*0a )so(€y) + (Ck*oa +bk oa )31(62)7

where
ko= (1 —que) /(X + 7)) = (L — qm) /(1 + )

and
biog=(14+q)/(L+v) = (1+q)/(1+7)



by Proposition 3.6 and Lemma 3.4. By comparing coefficients of so(¢;), applying
Proposition 3.6 and Lemma 3.4, we have the following equalities:

-1
1+ B L/ aviv; B
k J 1k 1
cC.. = —- — P R — = i : .
ij 7](1‘1"}%) Vo Qg 1+’Yk f$(7 7 fYk)

In a similar way to the above, we have the following equalities:

/1 1
- 1+ —1k_1i ay; 7; ’Yk_

0T Vi CGij = = fe (vt ).

L+ v
We note that 0 < afj <1,0< bfj < land 0 < cfj < 1 by Axiom of a finite

commutative hypergroup. In the case that af; = f4 (7,7, %), bf; = fr( ”yj’l, Vi),

cfj =f_ (%,vj_l,%) and c;?i = f_(v;,7; ", ), the real numbers ~;, v; and 1, satisfy

Y 2 4 v 2 4 % e > g and vty > g by afy < 1 b <1,
¢k >0 and ¢k, > 0. In the case that af, = £ (i, v ), b = £ (3,77 ), ¢y =
Fe(iyt) and ¢ = fi (95,777 ), we obtain that v,y v > g, vy 2 4,
v 'y > ¢ and ,Yﬁj—l% > ¢ in a similar way to the above.

(ii) Case of ¢y € C.
Since so(4)* = s1(£}), we obtain the following quadratic equation in a similar way
to the case of (i):

(1 +7)%(a;)* = 29 (1 + w)a; + 72 — @y = 0.

The solution is
ke BV

ar.
* 14 v

We have the following equalities in a similar computation to the case of (i):

/ 1
ko (l‘l”}/])'yk ik Ve F A/ 4V Vk

fi(7i>7j771;1>~

-1 -1

c.. = ————— Al = = i s . s

1] ,Yj(l_,r_,yk) fY] 1] 1+'7k; f:F(’YZ fY] fYk )
and

1,1
14 Ye A/ Y Wk
b = Uk e — = L0 -
Vi1 + ) L+
It is easy to see that the desired conditions on ~;, 7; and 7, in a similar way to

the case of (i). O

Corollary 3.8. If Ly = {{; € L; |S;| = 2} is not necessary to be L, the extension
K = {so(t;),s1(¢;),s(¢;) ; t; € Lo, {; € LNLG} has the same structure equations
for l; € Ly as described in Theorem 3.7. Moreover, for {; € LN LG, K has the
following structure equations:



(1) If ¢; € Ly, Ej eLn LS, then
f;; = E'ng eLn Lg and 80(&)8(€j) = Sl(€i>5(€j) = S(f;;)

(i) If €;,¢; € LN LG, then

(1 Vi .
)+ —E s (62) iflEF
Tk o(g*)+le(z*) if i e CNCE
s(eys(ey =4 T+ 7 Thy g o
1 1 .
530(52) + 531(52) if €, € Co,
L s(67) if i€ LN LG

Proof. (i) It is easy to see the desired equality. So we omit the details.
(i) For ¢;,¢; € LN L§ let ¢ € Ly. Then there exists 0 < a < 1 such that

s(4;)s(l;) = aso(£r,) + (1 —a)s1(Ly).
We have
(has(6:)s(4;) = s(l;)s(4;) = aso(ly) + (1 — a)s1(6y)
and by Proposition 3.6

hi(s(€i)s(£;)) = haaso(€y) + asi(6;))
= ah180<€:)+ah181<£z>

_ a(l_QVk*SO(EZ)+ (1+Q)7k*81(€z))

1+ g L+ g
[ 1+q Vier — ¢ )
+a so(l3) + s1(0x
(1+%* o(f%) L T 1(41,)
1+q—q(l+y)a Yo — ¢+ q(1 4+ 1+)a
= so(l3) + s1(0%).
T o(lx) T 1(41,)

The coefficients of so(£:) in each are a and (14 ¢ — g(1 + ¢)y-a) (1 +v4-)"", re-
spectively. Since the both must be equal, we obtain

1
a= :
Therefore, by this equality and Lemma 3.4 we have the product of s(¢;)s(¢;).
For ¢;,¢; € LNL, let £; € LN L§. Then it is easy to see that s(¢;)s(¢;) = s().
So we omit the details. O



If Lo = {¢y}, then the extension K of £ by H is the join H V L of H by L.
Theorem 3.7 and Corollary 3.8 are the necessary condition that the extension K
of £ by H is a hypergroup where £ is a finite Abelian group and H = Z,(2) is
a hypergroup of order two. We give a condition that the associativity law of the
extension K holds. For ¢;, ¢;, (), € Lo with ¢ = {;{;, let 0 be a mapping from L x Ly
to Zy = {—1,1} such that for ¢; # ¢}

N 1 if afj:ﬂr(%ﬁjﬁk) or afj = f+(vi v 7% )
0(0;,0;) = o L i B
-1 if az’j:f—(%‘,%’ﬁk) or aii = f— (Vi ViV )

and for ¢; =}
o 1 ifad. #0
TR R (33
where aj; is the coefficient in (3.2). Note that 6(¢o,(;) = 1.

Proposition 3.9. Let £ = {ly,l1,...,0,} be an Abelian group with unit ly. Then
the associativity (Sqs(;)(4i)So(j)(5))Se()(lr) = So@)(li)(Sa)(4;) Sowy(€r)) holds for
o(i), o(j), o(r) € {0,1} if and only if 6(4;,€;)0(4:4;,0.) = 0(¢;,0,)0(¢;,0L,) for
Ui, U, L. € Ly, namely 0 is a Zy-valued 2-cocycle on Ly.

Proof. We can establish the following conditions between the value of 0(¢;, £;)0(¢;¢;, ¢,)
and the product of so(¢;), so(¢;) and so(¢,) and between the value of 6(¢;, ¢,)0(¢;, ¢;¢,)
and the product of them by straightforward computation:

() 00, £)0(00,.0) =1 =
T (@vivy, v ve)s0(€) + f=(qrivss ves e ) s1(67)
if (; € F,

F(@vivi e e D)so () + f=(qvivy, Yo ) s1(65)
if ¢; € C,

(s0(€i)so(€;))so(br) =

(i) 0(;,0,)0(0;,0,0,) =1 <

F @y i 1) 50(€5) + F—(aqvive vis e ) s1(€5)
it eF,
T (@i ¥e Yis e )80 () + F—(avive i Ye) s1(67)
if 4y € C,

so(£i)(50(€5)s0(6r)) =

for ¢;,¢;,¢, € Ly where {; = (;{;(,. Since fi(qxy,v,z) = fr(qyv,x,2), it is easy to
see that

0005, 0,)0(,8,,0,) = 0(L;, £,)0(L, £;0,)
< (s0(li)so(€;))so(lr) = so(li)(s0(€;)s0(¢;))



from the above computation. In the case that
9(&, 6])0(&6], 67«) = 9(@, ET)H(&, gj&n) - —1,

we obtain the above condition in a similar way to the above since f_(qzy,v,z) =
f-(qyv,z,z). Consider in the case that

O(0;,0,)0(L:il;,0,) # 0(¢;,0,)0(4;,0,¢,).

Since ¢ > 0, z > 0, y > 0 and z > 0, we have f,(qzy,v,z) # f_(qyv,z,z). So if
0(Ci, €;)0(0it5, 6r) 7 05, £:)0(Li, £5€,), then (so(£i)so((;))s ( r) 7 50(Ci) (s0(£5)s0(£r))-
We can obtain the same results in the case of 0(i) =1, 0(j) =1 or o(r) = 1 in

a similar computation to the above.
Therefore, ($5()(4i)Se(;)(€;))Som)(lr) = Soty(li)(So()(£5)s0)(4r)) if and only if
0(0;,0;)0(:0;,0,) = 0(L;,0,)0(0;,¢;0,) for €;, £;, £, € Ly. O

Next we will give the sufficient condition that the extension I of finite Abelian
groups £ by hypergroups H of order two is a commutative hypergroup.

Theorem 3.10. Let H = {ho, h1} = Z,(2) be a hypergroup of order two and L =
{lo,l1,...,L,} be a finite Abelian group with unit {y. Let IC be the disjoint union of
the sets S; = {so({;), 51(4;)} for £; € L, namely K = J;_, S;. For1 <i<mn, 7 is
the real number such that ¢ < v; < 1/q, vi» =y and o = 1/q. For {;,4;, 0, € L with
Uilily = Ly, the real numbers vy;, v; and vy, satisfy that ¢ < vy and ¢ < %—1%—1%'
If the structure equations of IC is given by the following:

so(li)so(;) = f4+ (Vi V5> ve)s0(Gy) + f- (%%7%; )31(5*)
s1()s1(0;) = fe(n h; ) so() + f- (! T ,Vk Ds1(£5),
so(€i)s1(05) = f=(vi,v; ) so () + fe (v v; v D) sa(6r),

then K is a commutative hypergroup such that so(4;)* = so(€F) for all {; € L and
ho = so(ly) and K is an extension of L by H.

Proof. To show that K is a finite commutative hypergroup, We will check that K
satisfies Axiom of a finite commutative hypergroup. Since a = f+(v, v, ) for
0, 0,0, € L such that ¢} = (;¢;, we obtain §(¢;,(;) = 1 and so 9(62,5 )0(Lil;,0,) =
0(¢;,0,)0(¢;,¢;0,). Hence the associativity law in K holds by Proposition 3.9. Since
it is easy to see that fiy (v, vi-,70) = q(1 4+ ) (1 + q)7, it must be so(€;)* = so(€})
and sq(6;)* = s1(¢F) for all ¢; € L by Lemma 3.2, i.e., K* = K. Hence K satisfies
the conditions (i) and (ii) in Axiom of a finite commutative hypergroup. Observe
that fi(x,y,2) for z,y,z > 0. Thus the other conditions (iii), (iv) and (v) are
automatically satisfied. Therefore K is a finite commutative hypergroup.

Let ¢ be a mapping from I onto £ such that ¢(so(f;)) = w(s1(¢4;)) = ¢; for
l; € L. 1t is easy to see that ¢ becomes a homomorphism from K onto £ such that
Ker ¢ = H and H is a subhypergroup of K.

Therefore K is an extension hypergroup of £ by H. m



Corollary 3.11. Let Ly be a subgroup of a finite Abelian group L and K = {so(¢;),
s1(6;), s(€;); ¢; € Lo, £; € LN LG} have the same structure equations as described
in Theorem 3.10 for {; € Ly. For {; € LN Lg, let K have the following structure
equations:

(i) If¢; € Ly, ¢; € LN LG, then

e =00, € LNLG and so(li)s(l) = s1(4i)s(€;) = s(€5).
(i) If 4, ¢; € LNLG, then
() + () i Lo

s(E)s(t) = L+ L+
s(6) if 0 € LN LE.

Then K becomes a commutative hypergroup which is an extension of L by H.

Proof. Since s((;)s({;) = w(H), we obtain s({;)* = s({;) for £; € LN L§ by
Lemma 3.2. We already showed that so(¢;)* = so(¢f) for ¢; € L in the proof of
Theorem 3.10. Hence K£* = K. We will check that the associativity law holds for
Ci, b b€ Lo1E 4, 0; € LN LG and ¢, € Loy, then we have

(s(:)s(€;))s0m) (€r) = 5(€:)(s(£;)80(r) (£r))

* Vi * .
14 14 f¢relL
_ 1_}_%50( t)+1+7t31(t) L £, € Lo,

s(6) if ¢ € £ L

by straightforward computation for o(r) € {0,1} where ¢ is a number such that
bl by = Ly IE0;, 05, 0, € LNLG, then we have (s(4;)s(€;))s(¢,) = s(€;)(s(¢;)s(¢,)) in
a similar way to the above. If {; € LNL§ and ¢, ¢, € Ly, then ¢ € LNL{ and we have
((63)3005 (£3))520) (€)= () (303 (£) 300, (1)) = 5(6) for 0(3). o (r) € {0, 1}. The
other conditions of Axiom of a finite commutative hypergroup can be established in
K in a similar way to the proof of Theorem 3.10. Therefore K is a finite commutative
hypergroup.

Let ¢ be a mapping from K onto £ such that ¢(so(f;)) = @(s1(¢4;)) = ¢; for
l; € Ly and @(s(¢;)) = ¢; for ¢; € LN L. It is easy to see that ¢ becomes a
homomorphism from I onto £ such that Ker ¢ = H and H is a subhypergroup of
IC. Therefore K is an extension hypergroup of £ by H. O

Next we will give another sufficient condition that the extension I of cyclic
groups L by hypergroups H of order two is a commutative hypergroup.



Theorem 3.12. Let H = {ho,h1} = Z,(2) be a hypergroup of order two and L =
{lo, 01, ..., lom—1} be a cyclic group of order 2m with unit {y. Let K be the disjoint
union of the sets S; = {so(l;), s1(¢;)}, where so(by) = hg and s1(€y) = hy for l; € L,
namely K = U?Z)_ISZ-. For 1 <1 < 2m — 1, ~; s the real number such that
¢ <7 <1q v =" (0 #m), ym =1and v = 1/q. For {;, {;, by € L
with ;00 = Ly, the real numbers v;, v; and vy, satisfy that ¢ < vy < 1/q and
q < %_1%'_1’71@ < 1/q. Let K be the set which is given by the following structure
equations:

(i) Case of 0 <i+j<2m wherei#0 orj#0.

80(@)50(@) = f+(%'77j77k_1)30<€2) + f—(%v%a%)Sl(gZ)?
s1(li)s1(4;) = f+(7;1:7;1:71;1)50(62) + ff(”Yfl»”Yfla”Yk)Sl(%)a
50(&)51(@') - f—(7i77;177]:1)80(€l:) + f+(")/z,’yj_1,’yk)$1(62)

(ii) Case of 2m < i+ j < 4m.

so(li)so(l;) = f-(Yir v )s0(0h) 4 f (s 750 )51 (€5),
si(li)si(ly) = f-(v 57 b Dso(lr) + Fr (v ) s (@),
J

so(li)si(l;) = fo(vv; v Dsollr) + f- (v ) sa(£5).-

=

(iii) Case of i +j = 2m.

so(li)so(ly) = so(li)so(l;) = hy,  s1(li)s1(€;) = s1(li)s1(€7) = ha,
80(&)81(@‘) = so(li)s1(4;) = f+(%‘a%'_*la 1/q)ho + f—(%7%_*17 q)ha.

Then K is a commutative hypergroup such that so(€;)* = s1(€F) for €; € L\{ly} and
IC is an extension of L by H.

Proof. First we will check that the associativity law under C-multiplication. For /;,
U, b, € L, let k, u and ¢t be numbers such that ;0;¢;, = (o, {;{.0,, = o and {;0;0,.0, =
lo. The associativity law holds if and only if 6(¢;, £;)0(¢:4;, £,) = 0(¢;,¢,)0(¢;, €;¢,) for
l;, L, 0. € Lby Proposition 3.9. The values of §(¢;, €;)0(¢;(;,(,) and 0(¢;, £,)0(;, ;L)
depend on the values of ¢ + 7 and 7 + r. So we check the following case:
(i) 0 <i+j<2m. Since af; = fi (v, 7,7, ") in (3.3), 0(4;, 4;) = 1.
(1) 0<j+r<2m.
It is obvious that 6(¢;,¢,) = 1. Since k*+r =i+ j+r = i+u*, we obtain
0(&[]'7 ér,‘) = 0(&, gj&«). Hence 0(6“ €]>8(€Z€j7 67‘) = 9<€j) ET)G(&, €j£r>-
(2) 2m < j+r <4m.
It is obvious that 6(¢;,¢,) = —1. Since k* +r =i+ j+r > 2m, we obtain
0(¢:l;,0,) = —1. Since i+u* = i+(j+r—2m) = (i+5—2m)+r <r < 2m,
we obtain 9(&,@&) = 1. Hence 9(&, 63)9(£15],€r> = 9(@,&)9(&,@&)



(3) j+7r=2m.
Since r = j* and t* = i + j + r (mod 2m) = i, we will check the
values of 6(¢;,0;)0(¢:4;,0%) and 0(¢;,05)0(lo, ¢;). Since j* + k* = j* +

Jr%g 7%
i+j =i+2m > 2m, we obtain 0((;(;,(;) = —1. Hence we have
0(Li, £;)0(¢:l;,05) = —1. Since ;. = 0in (3.3), (¢;,£;) = —1. The value

of 0({y, ;) is always equal to 1. Hence we have 0((;, (;)0(4o, (;) = —1.
Therefore 0((;, £;)0(C:l;,05) = 0(¢;,£5)0(Lo, Ls).

(11) 2m S Z+] < 4m. We obtain 0(&,6])6(&63767‘) = 9(@,&)9(&,@&) in a similar

way to the case of (i). So we omit details.

The associativity holds by Proposition 3.9. The other conditions of Axiom of a
finite commutative hypergroup can be established in K in a similar way to the proof
of Theorem 3.10. Therefore K is a finite commutative hypergroup.

Let ¢ be a mapping from K onto £ such that ¢(so(f;)) = @(s1(¢4;)) = ¢; for
l; € L. It is easy to see that ¢ becomes a homomorphism from K onto £ such that
Ker ¢ = H and H is a subhypergroup of K.

Therefore K is an extension of hypergroup of £ by H. O]

Corollary 3.13. Let Lo be a subgroup of a cyclic group L such that |Lo| = 2m and
K = {so(li),s1(¢;),s(¢;); ;i € Lo, {; € LN LG} have the same structure equations
as described in Theorem 3.12 for {; € Ly. For {; € LN L, let K have the following
structure equations:

(1) If t; € Ly, Ej eLn LS, then
gk* = glej eLnN L(c) and Sg(&)S(ﬁj) = 81<£Z’>S(€j) = S(EZ)

(ii) If ¢, £; € LNLG, then

Tk ] 1 ©
so(05) + ———s1(£3) if €5 € Lo,
s)s() =4 1+m o) ) e Lo
s(t}) if 6 € LN L.

Then IC becomes a commutative hypergroup which an extension of L by H.

Proof. We can show in a similar way to the proof of Corollary 3.11 so we omit the
details. 0

4. Applications and Examples

Under these preparations one can determine the extensions K of £ by H for concrete
Abelian groups £ = Zy, Zs, Zy, Z5 and a hypergroup H = {hg, h1} = Z,(2) of order
two.



Let K1 and Ky be two extensions of £ by H and ¢ [resp., ¢o] be a hypergroup
homomorphism from K; [resp., K] onto £. Then K is called to be equivalent to
ICo as extensions if there exists a hypergroup isomorphism ¢ from Ky onto Ky such
that ¥)(h) = h for all h € H and s 0 1) = ¢1. A hypergroup isomorphism means
that a bijective hypergroup homomorphism. Let Ly be a subgroup of £ such that
Lo={leL;]pi(0)] =2},

We have already calculated all extensions of the hypergroup of order two by
concrete Abelian groups in our paper [7]. The following examples are dual versions
of such extension.

Example 4.1. Let £ = {lo,ly; 03 = by} & Zy and H = Z,(2) = {ho,h1; I3 =
qgho + (1 — q)h1, 0 < g < 1}. Since the subgroup Lo of L is £ or {{y}, one has the
extensions such that || =4 and |K| = 3 respectively.

(i) Case of || = 4.

(1) Hermitian case, i.e., so(¢1)* = so(¢1).
Let v be a real number such that ¢ < v < 1/q. We denote IC,(y) =
{ho, h1, so(f1), s1(£1)}. The structure equations of K,(7y) is given by the

following;:
1-— 1+

(a) huso(ls) = L;?%MQ+ST:%1&w¢
1+g)y! 1—qy!

(b) hlsl(gl) = %80(51) -+ T’WSI@D’

(e) 50(61)51(51) = hl.
Next we give a non Hermitian hypergroup extension.

(2) Non Hermitian case, i.e., so(¢1)* = s1(¢1).
We denote K, = {ho, h1,s0(¢1),51(¢1)}. The structure equations of K is
given by the following:

@)m%@gzlgq%@o+

1+ 1-—
q80(€1>+ c

14+¢

81<£1)7

(b) hisi(lr) =
(c) 50@1)2 = 81(51)2 = hy,

2q 1—g¢q
d 14 ) = ho + hy.
(d) so(f1)s1(f1) 1+gq 0 1+g 1

81<€1)7




(ii) Case of |[K| = 3.
Ko = {ho, h1,s(f1)} is the join H V L of H by L.

Remark 1. The set IC,(7) is a commutative Hermitian hypergroup and the ex-
tension of £ by H by Theorem 3.10. This IC,(y) is also the extensions such that
ady = f+(7,7,1/q) in (i)~(1) of Theorem 3.7. By Theorem 3.7 there is another possi-
bility that ay; = f_(v,7,1/q) = q(1—7)/(1+q). Since the case of a{, = f_(v,7,1/q)
does not satisfy Lemma 3.2, the extensions C,(7) and Ko are all extensions of £
by H in Hermitian case. The set K} is a commutative non Hermitian hypergroup
and the extension of £ by H by Theorem 3.12. This K, is also the extension such
that a¥; = f_(1,1,1/q) = 0 in (i)—(2) of Theorem 3.7. In a similar discussion to the
above K is all extensions in non Hermitian case. Therefore all extensions IC of £
by H are Ku(7) (¢ < v <1/q), Ky and Ky. Moreover, K,(7y) is equivalent to ICo(7')
as extensions if and only if 7/ = v or o' = y7L.

Example 4.2. Let L = {60,61,62; f% = 62, gi = 62} = Zg and H = Zq(2) =
{ho, h1; h? = qho + (1 — q)h1, 0 < g < 1}. Since the subgroup Lg of £ is L or {{},
one has the extensions such that [K| = 6 and |K| = 4 respectively.

(i) Case of || = 6.
Let v be a real number such that ¢'/3 <~ < 1/q. We denote

Ka(v) = {ho, h1, s0(¢1), 51(£1), 50(L2), 51(¢2)} .

The structure equations of IC,(y) is given by the following:

() huso(tr) = 2= Doy + D¢y,

L+~ 1+~
salts) = 15 Dt + 1),
@ husi(t) = SO0 + 5 ),
hysi () = %so( 2) + 111‘13 1151(52),
) sultsolt) = L ng + =D,
s1(01)s1(62) = q“%’y;)ho + %‘”q_lhl,

80(51)81(52) = 80(52)81(51) = hy,

(4) sotr)? = VD gy L TN g,



(5) s(0r)? = VD g () 4 TV

1+~ 1+7
/ —1 —1
51(£2>2 = LT 1) + —msl(gl)
1+7 1+ ’

(6) so(t2)si(6) = %j_”smﬂff; (6,
solta)sntn) = T Do) + TV

1+~ 1+~ ().

(ii) Case of |[K| = 4.
Ko = {ho, h1,s(l1),s(ls)} is the join H V L of H by L.

Remark 2. The set IC,(y) is a commutative hypergroup such that so(¢;)* = so(¢)
for ¢ = 1,2 and the extension of £ by H by Theorem 3.10. The real numbers +; and
7 in Theorem 3.10 satisfy 727, > ¢ and 7; >y, > ¢. Since so(¢1)* = so({2), we obtain
Yo = 1+ = 71 by Lemma 3.4. We write v = v, simply. Hence ¢*/® <~ < 1/q. This
K.(7) is also the extension such that aj; = fi(7,7,7) in (i)-(1) of Theorem 3.7.
There are other extensions by Theorem 3.7 and Proposition 3.9. However it is easy to
see that other extensions are equivalent to IC,(7) as extensions by transposing so(¢;)
to s1(¢1) or so(fa) to s1(¢f2). Therefore all extensions K of £ by H are equivalent to
one of KC,(7y) and Ky as extensions.

Example 4.3. Let L = {60761762763; Elf = gk (k = 2,3),?{ = 63,63 = EQ} = Z4 and
H = Zy(2) = {ho, h1; h3 = qho + (1 — q)h1,0 < ¢ < 1}. Since the subgroup Ly of £
is £, {ly,ls} or {ly}, one has the extensions such that || =8, || =6 and || = 5.

(i) Case of |[K| =8.

(1) Case of s¢(€)* = so(¢*) for all ¢ € L.
Let 71 and -, be real numbers such that ¢ < ~; < 1/q for i = 1,2,
q < ¥?vy, and ¢ < 47 2y2. We denote Ki.o(71,72) = {ho, h1, s0(f1), s1(61),
So(ls), s1(f2), so(f3), s1(f3)}. The structure equations of Ky 4(71,72) is
given by the following:

_l—gm (14+gn
(a) hlso(ﬁl) = 1 i " 50(61) + —1 T " 81(61),

1-— 1+
hiso(l2) = 1 +q772250(€2) + (14_—(2:251(52)7

1— 1+
hyso(ls) = 7 +q7711 so(l3) + (1+—qv)1%31(£3),

) hrsstt) = SED ) 4 201 ),

( +§f1 L+91
L+q)vy 1—gv!
hysy(fy) = ~—— L2 o py 4 —— 32 o (p
151(42) T 0(€2) 1_%,721 1(42),
(14 q)7" 1—q%
husi(ly) =~ o gy 4+ = — TN o (g
151(£3) T+, s0(03) + T s1(£3),



gl +m) 1 —qmn
(C) 50(61)80(63) = 1 I q ho + 1 i q hl,

1+ A7t 1— gyt
51(1)s1(43) = C](Tﬁyql)ho + %hh

50(51)51(53) = 80(53)81(51) = hy,
() so(ta)? = g(1+7),  L—qm

ho + hy,
14¢ ) 0 14¢ 11
1+~ 1—qgv,
s1(l2)* = %ho + Tq?h1, so(l2)s1((2) = ha,
L+ 7472 Y2 — V1V 42
6 2 - g + ‘e )
(e) so(f1) 1 +-?@ s0(f2) ———i—;jj%i-—'sl( 2)
L+ Vay Y2 =Y VY
81(f1)2 = 1:_—72280(52) + 2%72231(52),
I—/4q +4
80(€1)81(€1) = Tﬂy;@So(fg) + %81(62)’
1+ 71/ — NT0
() so(lr)solls) = — VTR g () 4 LETVER (4,
I+m l+m
1++/q7 " — -1
sit)a(l) = — Esolls) + s (6),
1 o / —1 _|_ / —1
so(l1)s1(ls) = 17:_—7(1]%30(63) + n 17_1_ 71(”2 s1(3).

(2) Case of s¢(¢)* = s1(¢*) for all ¢ € L.
Let +y be a real number such that ¢'/? <y < ¢='/2. We put K14(7) = {ho,
hi, so(l1), s1(41), so(¢2), s1(€2), so(f3), s1(¢3)}. The structure equation of
K1.p(7) is given by the following:

1— 1+
(a) hlso(ﬁl) = 1 +qJSO(€1) + ( 1 +qﬁ3781(£1),

1— 1+
husolts) = —5so(62) + —s1(6)

1—qy 1+g)y!
hiso(ls) = ¢50(€3> + %51(63)7

(b) husa(tr) = SED T 4 ),

14+~71 1+
1+ 1
his1(ly) = 7 qSo(fz) + q81(£2);
~ (I+q)y 1—qy
h181(€3) = 1 T ~ ( ) + 1 i ~ 81(63),

(©) so(t)sy(ty) = Ly 1= q;hl,



Cq(l+97 1—gy! B
s1(4)so(l3) = T 14 tq ho + RV p hy,  so(f1)so(ls) = hy,
_ 2 l—¢q 2 _ 2
(d) s0(€2)s1(l2) = 1+qh0 + 7 +qh1, So(l2)” = s1(l2)” = hy,

(e) So(fl)Q = 1_'_—7\/680<€2) + 1_—7\/a81<€2),

s1(1)? = H%\/aso(@)
50(51)51(51) = 1—

2 2
(f) 80(51)80(€2) — 1 ;_—:/;//aso(&;) + ,yl_T,y’\y/aSl(eg),
51(€1)s1(la) = 11%1/?30(63) + 71_4_\//?81(63),
so(l1)s1(0a) = ~ 1‘1f so(l) + %msl(eg).

(i) Case of |[K| = 6.

(1) Case of s¢(l2)* = so(£s).
Let v be a real number such that ¢ < < 1/q. We denote Ko ,(y) = {ho,
hi, s(t1), so(f2), s1(¢2), s(¢3)}. The structure equations of Ko,(7) is
given by the following:

(a) h18(£1> = 8(61), ]’LIS(£3) = S(gg),

_l—gqy (1+q)y
hiso(l2) = 15 So(fz) + T+ 51(512);
(14+q)y 1—qv
hlsl(ﬁg) = TWSO(EQ) + ﬁ81(€2)u
q 1
b) s(fy)s(ls) = h h
(b) s(f1)s(fs) T+ q 0+1+q 1,
q(I+7) 1—qy
(c) so(l2)so(ls) = 1 +q iLo+ g h171
1 1— gy
st = Iy L0t =
1
(@) 5(6)? = s(65)7 = To—soll2) + 11731(@),



(2) Case of so(l2)* = s1({3).
We denote Koy = {ho, h1, s(f1), so(f2), s1(¢2), s(f3)}. The structure
equations of Iy is given by the following:

(a) h1$(€1> = 8(61), h18(€3) = S(gg),

1— 1+
hiso(ls) = q50(€2) + 9 q31<£2)7
1+ 1-—
his1(ly) = q50(£2> + q31(£2),
1

(b) s(f1)s(l3) = 1iqho+ o

1,

2 1—
(c) so(fa)s1(ls) = 1+qqh0+ thl, so(£2)s0(ls) = s1(£2)s1(ls) = I,

(@) (02)? = s(0)* = 330(62) + 33162,

(e) s(l1)so(la) = s(l1)s1(la) = 5(£3), so(la)s(ls) = s1(fa)s(ls) = s(fy).

(iii) Case of |[K| = 5.
K3 = {ho, h1,s(¢1),s(l2),s(¢3)} is the join HV L of H by L.

Remark 3. The set Ki_4(71,72) is a commutative hypergroup such that so(¢;)* =
so(£F) for i = 1,2, 3 and the extension of £ by H by Theorem 3.10. This K14 (71,72)
is also the extension such that a3, = fi(71,71,72) in (i)—(1) of Theorem 3.7. One
has other extensions such that || = 8 and s¢(f2)* = s¢(f2) by Theorem 3.7 and
Proposition 3.9. It is easy to see that other extension such that || = 8 and
So(l2)* = so(f2) are equivalent to Ky_,(71,72) as extensions by transposing so(¢1) to
81<€1), 80(62) to 81(62) or 80(€3) to 81(63).

The set KCi4(7y) is a commutative hypergroup such that so(¢;)* = s1(¢f) for
i =1,2,3 and the extension of £ by ‘H Theorem 3.12. This KCy.,(7) is characterized
by a?, = fi(v,7,1) and so(6;)* = s1(¢F) in (ii)~(1) of Theorem 3.7 where 75 = 1,
v = v and ¢/ < v < ¢'/2. In a similar discussion to the above, all extensions
such that |[KC] = 8 and s¢(f2)* = s1(f2) are equivalent to Iy 4(7y) as extensions.

The set Ko4(7y) is a commutative hypergroup such that || = 6 and s¢(ls)* =
S0(f2) and the extension of £ by H by Corollary 3.11. In a similar discussion to
Example 4.2, Ko ,(7) is all extensions such that || = 6 and s¢(f2)* = so({s).

The set Ko is a commutative hypergroup such that |K| = 6 and so(l2)* = s1(¢3)
and the extension of £ by H by Corollary 3.13.

Therefore all extensions K of £ by H are equivalent to one of K., (71,72), K16(7),
ICQ_G(’}/), ICQ_b and IC3.

Example 4.4. Let L = {fo,gl,fg,fg,&g E’f = gk; k= 2,3,4, é; = 63, KT = 64} = Z5
and H = Z,(2) = {ho, h1; h3 = qho+ (1 —q)h1, 0 < ¢ < 1}. Since the subgroup Ly
of Lis L or {{y}, one has the extensions such that || = 10 and || = 6 respectively.



(i) Case of |K] = 10.
Let 1 and 7y, be real numbers such that ¢ < v; < 1/q for i =1, 2, ¢ < vi7s,
¢ < N ¢ < M5 and ¢ < . We put Ki(y1,92) = {ho, ha, so(f1),
s1(01), so(l2), s1(€2), so(€3), s1(¢3), so(ls), s1(£s)}. The structure equations of
K1(71,72) is given by

L —qm (1+9mn
1) h ) = 12 25/
(1) hiso(ly) T+ so(f1) + T+ s1(41),

1-— 1+
h180(€2) = : +q’;};2 30(52) + %81(42),

1-— 1+
h180(€3) — : _‘_q,;}: 30@3) + %81(43),

1— 1+
hiso(ls) = 1 +q%1 so(ls) + %81@4),

@ mn(t) = SO+ =00,
hysi(€s) = (11—:_—({)/):%_180@2) + 111—%;12_1131(62),
st = S0 )+ L2 0y,
hysi(ly) = %50(&9 + 111—(1;1_11151(&),

q(1+7) 1 —qmn
14 ) = h h
(3) s0(f1)s0(f4) T q 0+ T5q

1+ 1—qy;!
si(tsi(e) = L0y 2200,

30(61)31@4) = 30(54)31@1) = hy,

q(1+1) L —qy
4 =
( ) 50(62)8()(63) 1 i 7 ho —+ 1 n q hl,

14751 1—qgv!t
51(2)s1(¢3) = “T?ho + %hh

80(52)81(53) = 80(53)81(52) = hy,

(5) soltn)? = VT IV )

1+ 2 o L+ V2, 7
L+7 VA Y2 =M VR
51(01) = ——— Y250 (b)) + ——— "5 (4 ,
1(6) T 0(£2) T 1(£2)
1 —Vay Y2 + VY
so(1)s1(61) = Tfﬁ@ + 21+—7281(52),
2 2



T+ /4 — Y20/qY
(6) so(f1)so(la) = 1?3% n o(f3) + %51@3%
1+ —1 1
31(61)31(62) = 1 +zzl (ﬁ )—{— Y2 = ;I:l 31(6 ),
1-— + \/qY
solb1)sa(la) = 2 solts) + s 1)

(ii) Case of |K| = 6.

Remark 4. The set Ki(71,72) is a commutative hypergroup such that so(¢
so(45) for 1 < i < 4 and the extension of £ by H by Theorem 3.10. This (7
is also the extension such that a3, = f, (71,71,72) and a2, = f. (71,72,72) in (i)

Ko = {ho, h1,s(1),5(ls), s(3),s(ly)} is the join H V L of H by L.

) =

*
Y

Y2)
(1)

of Theorem 3.7.

In a similar discussion to Examples 4.2 and 4.3, all extensions K of £ by H are

equivalent to one of ICy(v1,72) and K.
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