SIMULTANEOUS EXTENSIONS OF SELBERG INEQUALITY AND HEINZ-KATO-FURUTA INEQUALITY

Masatoshi Fujii* and Ritsuo Nakamoto**

ABSTRACT. Based on Heinz-Kato-Furuta inequality, we gave an extension of recent Lin's improvement of a generalized Schwarz inequality in our previous note. We present a simultaneous extension of Selberg and Heinz-Kato-Furuta inequalities. As a consequence, we can sharpen the Heinz-Kato-Furuta inequality and further extensions are obtained by Furuta inequality.

1. Introduction.

Throughout this note, an operator means a bounded linear one acting on a Hilbert space. An operator A is positive, denoted by $A \ge 0$, if $(Ax, x) \ge 0$ for all $x \in H$. We first cite the Heinz-Kato-Furuta inequality, [8] and also [7]:

The Heinz-Kato-Furuta inequality. Let A and B be positive operators on H. If an operator T on H satisfies $T^*T \leq A^2$ and $TT^* \leq B^2$, then

$$|(T|T|^{\alpha+\beta-1}x,y)| \le ||A^{\alpha}x|| ||B^{\beta}y||$$

for all $\alpha, \beta \in [0,1]$ with $\alpha + \beta \geq 1$ and $x, y \in H$.

We here remark that the Heinz-Kato inequality is just the case $\alpha + \beta = 1$ in above. Based on (1), we have the following extension of a recent Lin's refinement [11] of the generalized Schwarz inequality. Let T = U|T| be the polar decomposition of an operator T on H in the below.

Theorem A. [2] Let T be an operator on H and $0 \neq y \in H$. For $z \in H$ satisfying $T|T|^{\alpha+\beta-1}z \neq 0$ and $(T|T|^{\alpha+\beta-1}z, y) = 0$,

$$(2) \qquad |(T|T|^{\alpha+\beta-1}x,y)|^{2} + \frac{|(|T|^{2\alpha}x,z)|^{2}(|T^{*}|^{2\beta}y,y)}{(|T|^{2\alpha}z,z)} \leq (|T|^{2\alpha}x,x)(|T^{*}|^{2\beta}y,y)$$

for all $\alpha, \beta \geq 0$ with $\alpha + \beta \geq 1$ and $x \in H$.

It is easily seen that Lin's theorem [11; Theorem 1] is the case $\alpha + \beta = 1$ in Theorem A. As a consequence, we have the following improvement of the Heinz-Kato-Furuta inequality via the Löwner-Heinz inequality, i.e., $A \geq B \geq 0$ implies $A^{\alpha} \geq B^{\alpha}$ for $\alpha \in [0, 1]$, see [12]:

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A30, 47A63.

Key words and phrases. Generalized Schwarz inequality, Heinz-Kato-Furuta inequality, Furuta inequality and Selberg inequality.

Theorem B. Let A and B be positive operators on H. If an operator T on H satisfies $T^*T \leq A^2$ and $TT^* \leq B^2$, then

$$|(T|T|^{\alpha+\beta-1}x,y)|^2 + \frac{|(|T|^{2\alpha}x,z)|^2(|T^*|^{2\beta}y,y)}{(|T|^{2\alpha}z,z)} \le ||A^{\alpha}x||^2 ||B^{\beta}y||^2$$

for all $\alpha, \beta \in [0,1]$ with $\alpha + \beta \geq 1$ and $x,y,z \in H$ such that $T|T|^{\alpha+\beta-1}z \neq 0$ and $(T|T|^{\alpha+\beta-1}z,y)=0$.

On the other hand, Kubo informed us of the Selberg inequality which is a generalization of the Bessel inequality, [10] and cf. [6], [3]: For given nonzero vectors $z_1, \dots, z_n \in H$,

(4)
$$\sum_{i} \frac{|(x, z_i)|^2}{\sum_{j} |(z_i, z_j)|} \le ||x||^2$$

holds for all $x \in H$.

In this note, we first point out that the Selberg inequality (4) is refined as follows: If $(y, z_i) = 0$ for given $\{z_i\}$, then

(5)
$$|(y,x)|^2 + \sum_{i} \frac{|(x,z_i)|^2}{\sum_{j} |(z_i,z_j)|} ||y||^2 \le ||x||^2 ||y||^2$$

holds for all x. Though the refinement (5) is motivated by Theorem A, it gives us further extensions of Theorem A, precisely a simultaneous extension of Selberg and Heinz-Kato-Furuta inequalities. Along with our preceding paper [2], we moreover consider its generalizations via the Furuta inequality.

2. Refinements of Selberg inequality.

We begin with the proof of (5), which is done along with Furuta's way [6]:

Lemma 1. If $(y, z_i) = 0$ for given nonzero vectors $\{z_i; i = 1, 2, \dots, n\}$, then

(5)
$$|(x,y)|^2 + \sum_{i} \frac{|(x,z_i)|^2}{\sum_{i} |(z_i,z_j)|} ||y||^2 \le ||x||^2 ||y||^2$$

holds for all x.

Proof. We put

$$u = x - \sum_{i} \frac{(x, z_i)}{\sum_{j} |(z_j, z_i)|} z_i = x - \sum_{i} a_i z_i.$$

Then we have

$$||u||^{2} = ||x - \sum_{i} a_{i} z_{i}||^{2}$$

$$\leq ||x||^{2} - 2\operatorname{Re} \sum_{i} \overline{a}_{i}(x, z_{i}) + \sum_{i} \{|a_{i}|^{2} \sum_{j} |(z_{i}, z_{j})|\}$$

$$= ||x||^{2} - \sum_{i} \frac{|(x, z_{i})|^{2}}{\sum_{j} |(z_{i}, z_{j})|}.$$

Hence it follows that

$$||y||^{2} \{||x||^{2} - \sum_{i} \frac{|(x, z_{i})|^{2}}{\sum_{j} |(z_{i}, z_{j})|} \} \ge ||y||^{2} ||u||^{2} \ge |(y, u)|^{2}$$

$$= |(y, x - \sum_{i} \frac{(x, z_{i})}{\sum_{j} |(z_{j}, z_{i})|} z_{i})|^{2} = |(y, x)|^{2}.$$

Now Furuta [6; Theorem 2] showed the following extension of the Selberg inequality: Let T be an operator on H with the kernel ker (T). For given $\{z_i\} \not\subset \ker(T^*)$,

(6)
$$\sum_{i} \frac{|(Tx, z_i)|^2}{\sum_{j} |(|T^*|^{2(1-\alpha)} z_i, z_j)|} \le |||T|^{\alpha} x||^2$$

holds for all $x \in H$ and $\alpha \in [0, 1]$.

Thus we have a refinement of (6) by Lemma 1.

Theorem 2. Let T = U|T| be the polar decomposition of an operator T on H, $\{z_i; i = 1, 2, \dots, n\} \not\subset \ker(T^*)$ and $\alpha \in [0, 1]$. If $(U|T|^{1-\alpha}y, z_i) = 0$ for all i, then

(7)
$$|(|T|^{\alpha}x, y)|^{2} + \sum_{i} \frac{|(Tx, z_{i})|^{2}}{\sum_{j} |(|T^{*}|^{2(1-\alpha)}z_{i}, z_{j})|} ||y||^{2} \le |||T|^{\alpha}x||^{2} ||y||^{2}$$

holds for all $x \in H$.

Proof. We replace x and z_i by $|T|^{\alpha}x$ and $|T|^{1-\alpha}U^*z_i$ in Lemma 1 respectively. Then we have (7).

Next we propose another refinement of (6). As a matter of fact, it is contained in (9) below.

Theorem 3. Suppose that $\{z_i; i=1,2,\cdots,n\} \not\subset \ker(T^*)$ and $\alpha,\beta \geq 0$ with $\alpha+\beta \geq 1 \geq \alpha$. If $(|T^*|^{\beta+1-\alpha}y,z_i)=0$ for all i, then

(8)
$$|(T|T|^{\alpha+\beta-1}x,y)|^2 + \sum_{i} \frac{|(Tx,z_i)|^2 ||T^*|^\beta y||^2}{\sum_{i} |(|T^*|^{2(1-\alpha)}z_i,z_j)|} \le ||T|^\alpha x||^2 ||T^*|^\beta y||^2$$

holds for all $x \in H$. In particular, if $(|T^*|^{2(1-\alpha)}y, z_i) = 0$ for $\alpha \in [0, 1]$, then

(9)
$$|(Tx,y)|^2 + \sum_{i} \frac{|(Tx,z_i)|^2 ||T^*|^{1-\alpha}y||^2}{\sum_{j} |(|T^*|^{2(1-\alpha)}z_i,z_j)|} \le ||T^\alpha x||^2 ||T^*|^{1-\alpha}y||^2$$

holds for all $x \in H$.

Proof. As in the proof of Lemma 1, we put $u = |T|^{\alpha}x - \sum_{i} \frac{|T|^{1-\alpha}U^*z_i}{\sum |(|T^*|^{2(1-\alpha)}z_i,z_j)|}$. Since

$$||u||^2 \le |||T|^{\alpha}x||^2 - \sum_i \frac{|(Tx, z_i)|^2}{\sum_j |(|T^*|^{2(1-\alpha)}z_i, z_j)|}$$

we have

$$||T^*|^{\beta}y||^2 \{ |||T|^{\alpha}x||^2 - \sum_{i} \frac{|(Tx, z_i)|^2}{\sum_{j} |(|T^*|^{2(1-\alpha)}z_i, z_j)|} \}$$

$$\geq |||T^*|^{\beta}y||^2 ||u||^2$$

$$\geq |(|T^*|^{\beta}y, Uu)|^2$$

$$= |(|T^*|^{\beta}y, U|T|^{\alpha}x - \sum_{i} \frac{U|T|^{1-\alpha}U^*z_i}{\sum_{j} |(|T^*|^{2(1-\alpha)}z_i, z_j)|})|^2$$

$$= |(|T^*|^{\beta}y, U|T|^{\alpha}x - \sum_{i} \frac{|T^*|^{1-\alpha}z_i}{\sum_{j} |(|T^*|^{2(1-\alpha)}z_i, z_j)|})|^2$$

Moreover it follows from the assumption $(|T^*|^{\beta+1-\alpha}y,z_i)=0$ that

$$|(T|T|^{\alpha+\beta-1}x,y)|^2 + \sum_{i} \frac{|(Tx,z_i)|^2 ||T^*|^\beta y||^2}{\sum_{j} |(|T^*|^{2(1-\alpha)}z_i,z_j)|} \le |||T|^\alpha x||^2 ||T^*|^\beta y||^2.$$

By a similar way to Lemma 1, we have an alternative simultaneous extension of Selberg and generalized Schwarz inequalities:

Theorem 4. Suppose that $\{z_i; i=1,2,\cdots,n\} \not\subset \ker(T) \text{ and } \alpha, \beta \geq 0 \text{ with } \alpha+\beta \geq 1.$ If $(T|T|^{\alpha+\beta-1}z_i,y)=0$ for all i, then

$$(10) \qquad |(T|T|^{\alpha+\beta-1}x,y)|^{2} + \sum_{i} \frac{|(|T|^{2\alpha}x,z_{i})|^{2}||T^{*}|^{\beta}y||^{2}}{\sum_{i} |(|T|^{2\alpha}z_{i},z_{j})|} \leq ||T|^{\alpha}x||^{2}||T^{*}|^{\beta}y||^{2}$$

holds for all $x \in H$.

Proof. The proof is quite similar to that of Theorem 3. We put

$$u = x - \sum_{i} \frac{(|T|^{2\alpha}x, z_{i})}{\sum_{j} |(|T|^{2\alpha}z_{j}, z_{i})|} z_{i} = x - \sum_{i} a_{i}z_{i}.$$

Since

$$\begin{split} |||T|^{\alpha}u||^{2} &= |||T|^{\alpha}x - \sum_{i} a_{i}|T|^{\alpha}z_{i}||^{2} \\ &\leq |||T|^{\alpha}x||^{2} - 2\operatorname{Re} \sum_{i} \overline{a}_{i}(|T|^{2\alpha}x, z_{i}) + \sum_{i} \{|a_{i}|^{2} \sum_{j} |(|T|^{2\alpha}z_{i}, z_{j})|\} \\ &= |||T|^{\alpha}x||^{2} - \sum_{i} \frac{|(|T|^{2\alpha}x, z_{i})|^{2}}{\sum_{j} |(|T|^{2\alpha}z_{i}, z_{j})|}, \end{split}$$

we have

$$\begin{aligned} |||T^*|^{\beta}y||^2 \{|||T|^{\alpha}x||^2 - \sum_{i} \frac{|(|T|^{2\alpha}x, z_i)|^2}{\sum_{j} |(|T|^{2\alpha}z_i, z_j)|} \} \\ &\geq |||T^*|^{\beta}y||^2 |||T|^{\alpha}u||^2 \\ &\geq |(|T^*|^{\beta}y, U|T|^{\alpha}u)|^2 \\ &= |(|T^*|^{\beta}y, U|T|^{\alpha}x - \sum_{i} \frac{(|T|^{2\alpha}x, z_i)}{\sum_{j} |(|T|^{2\alpha}z_j, z_i)|} U|T|^{\alpha}z_i)|^2 \\ &= |(|T^*|^{\beta}y, U|T|^{\alpha}x)|^2 \\ &= |(y, T|T|^{\alpha+\beta-1}x)|^2. \end{aligned}$$

3. Refinements of Heinz-Kato-Furuta inequality. In our previous note, we pointed out that Theorem A implies Theorem B as a refinement of the Heinz-Kato-Furuta inequality. We now obtain extensions of it which includes Theorem B.

Corollary 5. Suppose that $\alpha, \beta \geq 0$ with $\alpha + \beta \geq 1 \geq \alpha - \beta$ and $z_i \notin \ker(T^*)$ satisfies $(|T^*|^{\beta+1-\alpha}y, z_i) = 0$ for $i = 1, \dots, n$. If $|T|^2 \leq A^2$ and $|T^*|^2 \leq B^2$ for $A, B \geq 0$, then

$$(11) \qquad |(T|T|^{\alpha+\beta-1}x,y)|^{2} + \sum_{i} \frac{|(Tx,z_{i})|^{2} ||T^{*}|^{\beta}y||^{2}}{\sum_{j} |(|T^{*}|^{2(1-\alpha)}z_{i},z_{j})|} \leq ||A^{\alpha}x||^{2} ||B^{\beta}y||^{2}$$

holds for all $x \in H$. In particular, if $(|T^*|^{2(1-\alpha)}y, z_i) = 0$ for $\alpha \in [0, 1]$, then

$$(12) |(Tx,y)|^2 + \sum_{i} \frac{|(Tx,z_i)|^2 ||T^*|^{1-\alpha}y||^2}{\sum_{i} |(|T^*|^{2(1-\alpha)}z_i,z_i)|} \le ||A^{\alpha}x||^2 ||B^{1-\alpha}y||^2$$

holds for all $x \in H$.

Proof. The Löwner-Heinz inequality says that the assumptions $|T|^2 \le A^2$ and $|T^*|^2 \le B^2$ for $A, B \ge 0$ imply

$$||T|^{\alpha}x|| \le ||A^{\alpha}x||$$
 and $||T^*|^{\beta}y|| \le ||B^{\beta}y||$

for all $x, y \in H$ respectively. Combining with Theorem 3, we have the conclusion.

Similarly we have the following corollary by Theorem 4:

Corollary 6. Suppose that $\alpha, \beta \geq 0$ with $\alpha + \beta \geq 1 \geq \alpha - \beta$ and $z_i \notin \ker(T)$ satisfies $(T|T|^{\alpha+\beta-1}z_i, y) = 0$ for $i = 1, 2, \dots, n$. If $|T|^2 \leq A^2$ and $|T^*|^2 \leq B^2$ for $A, B \geq 0$, then

$$(13) \qquad |(T|T|^{\alpha+\beta-1}x,y)|^{2} + \sum_{i} \frac{|(|T|^{2\alpha}x,z_{i})|^{2} ||T^{*}|^{\beta}y||^{2}}{\sum_{j} |(|T|^{2\alpha}z_{i},z_{j})|} \leq ||A^{\alpha}x||^{2} ||B^{\beta}y||^{2}$$

holds for all $x \in H$.

To give further extensions of the Heinz-Kato-Furuta inequality, we apply the Furuta inequality [4], see also [1],[5],[9], which is cited for convenience:

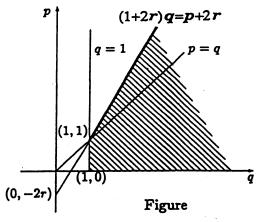
The Furuta inequality. If $A \ge B \ge 0$, then for each $r \ge 0$,

$$(B^r A^p B^r)^{1/q} \ge (B^r B^p B^r)^{1/q}$$

holds for $p \ge 0$ and $q \ge 1$ with

$$(*) (1+2r)q \ge p+2r.$$

The domain determined by (*) is expressed in



Theorem 7. Let A and B be positive operators on H and T an operator such that $T^*T \leq A^2$ and $TT^* \leq B^2$. Then for each $r, s \geq 0$

(14)
$$|(T|T|^{(1+2r)\alpha+(1+2s)\beta-1}x,y)|^2 + \sum_{i} \frac{|(Tx,z_i)|^2(|T^*|^{2(1+2s)\beta}y,y)}{\sum_{i}(|T|^{2(1-\alpha-2r\alpha)}z_i,z_j)}$$

$$\leq ((|T|^{2r}A^{2p}|T|^{2r})^{\frac{(1+2r)\alpha}{p+2r}}x,x)((|T^*|^{2s}B^{2q}|T^*|^{2s})^{\frac{(1+2s)\beta}{q+2s}}y,y)$$

for all $p, q \ge 1, \alpha, \beta \in [0, 1]$ with $(1+2r)\alpha + (1+2s)\beta \ge 1 \ge (1+2r)\alpha$ and $x, y, z_1, \dots, z_n \in H$ such that $z_i \notin ker(T^*)$ and $(|T^*|^{(1+2s)\beta+1-(1+2r)\alpha}y, z_i) = 0$ for $i = 1, \dots, n$.

Proof. By replacing α (resp. β) to $\alpha_1 = (1+2r)\alpha$ (resp. $\beta_1 = (1+2s)\beta$) in Theorem 3, we have

$$|(T|T|^{\alpha_1+\beta_1-1}x,y)|^2+\sum_i\frac{|(Tx,z_i)|^2(|T^*|^{2\beta_1}y,y)}{\sum_i(|T|^{2(1-\alpha_1)}z_i,z_j)}\leq (|T|^{2\alpha_1}x,x)(|T^*|^{2\beta_1}y,y).$$

Next we use the Furuta inequality for $|T|^2 \le A^2$ and $|T^*|^2 \le B^2$; namely (for the former) we replace A, B; q in the Furuta inequality to A^2 , $|T|^2$; $\frac{p+2r}{(1+2r)\alpha}$ respectively. Then we have

$$|T|^{2\alpha_1} = |T|^{2(1+2r)\alpha} \le (|T|^{2r} A^{2p} |T|^{2r})^{\frac{(1+2r)\alpha}{p+2r}}$$

and similarly

$$|T^*|^{2\beta_1} = |T^*|^{2(1+2s)\beta} \le ((|T^*|^{2s}B^{2q}|T^*|^{2s})^{\frac{(1+2s)\beta}{q+2s}}.$$

Combining them, we obtain the inequality (14).

Similarly we have the following further extensions by Theorem 4:

Theorem 8. Let A and B be positive operators on H and T an operator such that $T^*T \leq A^2$ and $TT^* \leq B^2$. Then for each $r, s \geq 0$

$$(15) \qquad |(T|T|^{(1+2r)\alpha+(1+2s)\beta-1}x,y)|^2 + \sum_{i} \frac{|(|T|^{2(1+2r)\alpha}x,z_i)|^2(|T^*|^{2(1+2s)\beta}y,y)}{\sum_{j}(|T|^{2(1+2r)\alpha}z_i,z_j)}$$

$$\leq ((|T|^{2r}A^{2p}|T|^{2r})^{\frac{(1+2\tau)\alpha}{p+2r}}x,x)((|T^*|^{2s}B^{2q}|T^*|^{2s})^{\frac{(1+2s)\beta}{q+2s}}y,y)$$

for all $p, q \ge 1, \alpha, \beta \in [0,1]$ with $(1+2r)\alpha + (1+2s)\beta \ge 1$ and $x, y, z_1, \dots, z_n \in H$ such that $z_i \notin ker(T)$ and $(T|T|^{(1+2r)\alpha+(1+2s)\beta-1}z_i, y) = 0$ for $i = 1, \dots, n$.

Proof. By replacing α (resp. β) to $\alpha_1 = (1+2r)\alpha$ (resp. $\beta_1 = (1+2s)\beta$) in Theorem 4, we have

$$|(T|T|^{\alpha_1+\beta_1-1}x,y)|^2+\sum_i\frac{|(|T|^{2\alpha_1}x,z_i)|^2(|T^*|^{2\beta_1}y,y)}{\sum_j(|T|^{2\alpha_1}z_i,z_j)}\leq (|T|^{2\alpha_1}x,x)(|T^*|^{2\beta_1}y,y).$$

By the use of the Furuta inequality for $|T|^2 \leq A^2$ and $|T^*|^2 \leq B^2$, we have

$$|T|^{2\alpha_1} = |T|^{2(1+2r)\alpha} \le (|T|^{2r}A^{2p}|T|^{2r})^{\frac{(1+2r)\alpha}{p+2r}}$$

and similarly

$$|T^*|^{2\beta_1} = |T^*|^{2(1+2s)\beta} \le ((|T^*|^{2s}B^{2q}|T^*|^{2s})^{\frac{(1+2s)\beta}{q+2s}}.$$

Combining them, we obtain the inequality (15).

Remark. (1) We remark that the condition $(1+2r)\alpha + (1+2s)\beta \ge 1$ in above is unneccessary if T is either positive or invertible.

- (2) Though Theorem 7 is followed from the Furuta inequality, they are equivalent actually, that is, Theorem 7 is an alternative representation of the Furuta inequality. Because Theorem 7 is an extension of [2; Theorem 3] which is equivalent to the Furuta inequality, see Remark after Theorem 3 in [2].
- (3) Theorem 7 will be discussed under the chaotic order, which will be appeared in a separate paper.
- 4. A concluding remark. By a similar way to proofs of results in § 2, we give a simple proof to an extension of Diaz-Metcalf inequality due to Fujii-Yamada [3].

Theorem 9. Let z_1, \dots, z_n be non zero vectors in H satisfying

$$0 \le r_k \le \frac{Re(x_i, z_k)}{\|x_i\|} \text{ for all } i, k$$

for $x_1, \dots, x_m \in H$. If $(y, z_i) = 0$ for all i, then

$$|(x_1 + \dots + x_m, y)|^2 + (\sum \frac{r_k^2}{c_k})(||x_1|| + \dots + ||x_m||)^2 ||y||^2 \le ||x_1 + \dots + x_m||^2 ||y||^2$$

where $c_k = \sum_j |(z_j, z_k)|$.

Proof. Put $x = x_1 + \cdots + x_n$. Then we have

$$||y||^{2} \{||x||^{2} - \sum \frac{r_{k}^{2}}{c_{k}} (||x_{1}|| + \dots + ||x_{m}||)^{2} \}$$

$$\geq ||y||^{2} \{||x||^{2} - \sum \frac{|\operatorname{Re}(x, z_{k})|^{2}}{c_{k}} \}$$

$$\geq ||y||^{2} \{||x||^{2} - \sum \frac{|(x, z_{k})|^{2}}{c_{k}} \}$$

$$\geq ||y||^{2} ||x - \sum \frac{(x, z_{k})}{c_{k}} z_{k}||^{2}$$

$$\geq |(y, x - \sum \frac{(x, z_{k})}{c_{k}} z_{k})|^{2}$$

$$= |(y, x)|^{2}.$$

as desired.

REFERENCES

- 1. M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator theory, 23 (1990), 67-72.
- 2. M.Fujii and R.Nakamoto, Extensions of Heinz-Kato-Furuta inequality, Proc. Amer. Math. Soc., to appear.
- 3. M.Fujii and H.Yamada, Around the Bessel inequality, Math. Japon., 37 (1992), 979-983.
- 4. T.Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
- 5. T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65 (1989), 126.
- 6. T.Furuta, When does the equality of a generalized Selberg inequality hold?, Nihonkai Math. J., 2 (1991), 25-29.
- 7. T.Furuta, Determinant type generalizations of the Heinz-Kato theorem via the Furuta inequality, Proc. Amer. Math. Soc., 120 (1994), 223-231.
- 8. T.Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc., 120 (1994), 785-787.
- 9. E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33 (1988), 883-886.
- 10. K.Kubo and F.Kubo, Diagonal matrix dominates a positive semidefinite matrix and Selberg's inequality, preprint.
- 11. C.-S.Lin, Heinz's inequality and Bernstein's inequality, Proc. Amer. Math. Soc., 125 (1997), 2319-2325.
- 12. G.K.Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309-310.
- * Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
 - ** FACULTY OF ENGINEERING, IBARAKI UNIVERSITY, HITACHI, IBARAKI 316-0033, JAPAN.

Received May 29, 1998

Revised July 21, 1998