Von Neumann-Jordan constant and uniformly non-square Banach spaces

Yasuji TAKAHASHI* and Mikio KATO

Abstract. A sequence of characterizations of uniform non-squareness is given, some of which are similar to the well-known homogeneous characterization of uniformly convex spaces. As corollaries: (i) Banach spaces with von Neumann-Jordan constant less than 2 are characterized as those uniformly non-square; (ii) it is presented that uniform non-squareness is inherited by dual spaces.

1. Introduction and preliminaries

According to Clarkson [5] the von Neumann-Jordan (NJ-) constant of a Banach space X, we denote it by $C_{\mbox{NJ}}(X)$, is the smallest constant C for which

$$\frac{1}{C} \le \frac{\|x + y\|^2 + \|x - y\|^2}{2(\|x\|^2 + \|y\|^2)} \le C \tag{1}$$

holds for all x, y \in X with $\|x\|^2 + \|y\|^2 \neq 0$. (Note that the first and second inequalities of (1) are equivalent; put x + y = u, x - y = v.) Classical results state that: (i) $1 \leq C_{\mbox{NJ}}(X) \leq 2$ for any Banach space

^{*,†)} Supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (09640214* resp. 09640203†).

X, and X is a Hilbert space if and only if $C_{NJ}(X)=1$ (Jordan and von Neumann [13]). (ii) $C_{NJ}(L_p)=2^{2/t-1}$, where $t=\min\{p,\ p'\ \}$, 1/p+1/p'=1 (Clarkson [5]). For the NJ-constant of some other Banach spaces we refer the reader to [16, 15, 19]. Recently the authors [18] showed that the uniform convexity of a Banach space X is nearly characterized by the condition $C_{NJ}(X)<2$: More precisely, if X is uniformly convex, then $C_{NJ}(X)<2$, while conversely if $C_{NJ}(X)<2$, X admits an equivalent uniformly convex norm. In other words, X is super-reflexive if and only if $\widetilde{C}_{NJ}(X)<2$, where $\widetilde{C}_{NJ}(X)$ denotes the infimum of all NJ-constants of equivalent norms of X.

In this paper we first present a sequence of characterizations of uniformly non-square spaces, some of which are similar to the well-known homogeneous characterization of uniformly convex spaces. It is in particular observed that uniform non-squareness is characterized by behavior of norms of the Littlewood matrix as operators between $\binom{2}{r}(X)$ -spaces. As direct consequences; (i) those Banach spaces with NJ-constant less than 2 are precisely characterized as uniformly non-square spaces, which improves the authors' result stated above; (ii) it is obtained that uniform non-squareness is inherited by dual spaces, which seems not to have appeared in literature. The same for super-reflexivity (James [12]) is immediately derived as well.

Let us recall some definitions and previous results (cf. [1, 7]).

DEFINITIONS. Let B_X denote the closed unit ball of a Banach space X. X is called uniformly convex if for any ε (0 $< \varepsilon <$ 2) there exists a δ > 0 such that $\| (x + y)/2 \| < 1 - \delta$ whenever $\| x - y \| \ge \varepsilon$, x, y $\in B_X$. X is said to be uniformly non-square ([11]) if there exists a δ > 0 such that $\| (x + y)/2 \| \le 1 - \delta$ whenever $\| (x - y)/2 \| > 1 - \delta$,

x, $y \in B_X$. A Banach space Y is said to be finitely representable in X provided for any $\lambda > 1$ and for any finite-dimensional subspace F of Y there is an isomorphism T of F into X for which

$$\lambda^{-1} \| \mathbf{x} \| \le \| \mathbf{T} \mathbf{x} \| \le \lambda \| \mathbf{x} \|$$
 for all $\mathbf{x} \in \mathbf{F}$.

X is said to be *super-reflexive* ([12; cf. 1, 7, 27]) if no non-reflexive Banach space is finitely representable in X.

It is well known that uniformly convex spaces are uniformly non-square, and uniformly non-square spaces are super-reflexive; the converse is not true in each assertion ([11, 12]; cf. [1, 7, 27], see also [18]). Super-reflexive spaces are just those uniformly convexifiable ([8]; cf. [24]); these spaces are also characterized by means of the NJ-constant as follows:

THEOREM A (Kato and Takahashi [18]). A Banach space X is super-reflexive if and only if $\widetilde{C}_{NJ}(X) < 2$, where $\widetilde{C}_{NJ}(X)$ denotes the infimum of all NJ-constants of equivalent norms of X.

In the following let $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, and let $\binom{2}{r}(X)$ denote the X-valued $\binom{2}{r}$ -space.

2. Homogeneous characterizations of uniformly non-square spaces

We first recall the following characterization of uniformly convex spaces (see e.g., [22, 1]):

PROPOSITION A. Let 1 \infty. A Banach space X is uniformly convex if and only if for any $\epsilon>0$ there exists $\delta=\delta_p(\epsilon)>0$ such that $\|x-y\|\geq\epsilon$, x, $y\in B_\chi$ implies

$$\left\| \frac{\mathbf{x} + \mathbf{y}}{2} \right\|^{\mathbf{p}} \leq (1 - \delta)^{\frac{\|\mathbf{x}\|^{\mathbf{p}} + \|\mathbf{y}\|^{\mathbf{p}}}{2}. \tag{2}$$

Now let us present some similar homogeneous characterizations for uniformly non-square spaces. We need the following lemma which is easily seen:

LEMMA 1. Let $1 . Then the function <math>\phi$ (t) = $(1+t)^p/(1+t^p)$ ($0 \le t \le 1$) is strictly increasing.

THEOREM 1. Let 1 < p < ∞ . For a Banach space X the following are equivalent:

- (i) X is uniformly non-square.
- (ii) There exist some ϵ and δ (0< ϵ , δ <1) such that $\|x-y\| \ge$ 2(1- ϵ), x, $y \in B_X$ implies

$$\left\| \frac{x + y}{2} \right\|^{p} \le (1 - \delta)^{\frac{\|x\|^{p} + \|y\|^{p}}{2}}.$$
 (2)

- (iii) There exists some δ (0< δ <1) such that $\| \ x-y \| \ge 2(1-\delta \),$ x, y \in B implies the inequality (2).
 - (iv) There exists some δ (0 < δ < 2) such that for any x, y in X,

$$\left\| \frac{x+y}{2} \right\|^{p} + \left\| \frac{x-y}{2} \right\|^{p} \le (2-\delta) \frac{\|x\|^{p} + \|y\|^{p}}{2}.$$
 (3)

$$(v) \| A : l_p^2(X) \rightarrow l_p^2(X) \| < 2.$$

Proof. (i) \Rightarrow (ii): Note first that the assertion (ii) is equivalent to

(ii') There exist some ε and δ (0 $< \varepsilon$, $\delta <$ 1) such that $\| \mathbf{x} - \mathbf{y} \| \ge 2(1 - \varepsilon)$, $\| \mathbf{x} \| = 1$, $\| \mathbf{y} \| \le 1$ implies (2).

Now, assume (ii') fails to hold. Then for any positive integer n there exist x_n and y_n in X such that $\|x_n - y_n\| \ge 2(1 - 1/n)$, $\|x_n\| = 1$, $\|y_n\| \le 1$, and

$$\left\| \frac{x_{n} + y_{n}}{2} \right\|^{p} > (1 - \frac{1}{n}) \frac{\|x_{n}\|^{p} + \|y_{n}\|^{p}}{2}.$$

Since

$$2(1 - \frac{1}{n}) \le ||x_n - y_n|| \le 1 + ||y_n|| \le 2,$$

we have $\|y_n\| \rightarrow 1$ and

$$\left\| \frac{x_n - y_n}{2} \right\| \rightarrow 1 \tag{4}$$

as $n \to \infty$. On the other hand, since

$$(1 - \frac{1}{n})^{\frac{1}{2} + \|y_n\|^{\frac{p}{2}}} < \|\frac{x_n + y_n}{2}\|^{\frac{p}{2}} \le 1,$$

we have

$$\left\| \frac{\mathbf{x}_{\mathbf{n}} + \mathbf{y}_{\mathbf{n}}}{2} \right\| \to 1 \quad \text{as } \mathbf{n} \to \infty. \tag{5}$$

From (4) and (5) it follows that X is not uniformly non-square.

(ii) \Rightarrow (iii): This is a direct consequence of the fact that in the assertion (ii) we may replace ϵ and δ with any $\epsilon' < \epsilon$ and $\delta' < \delta$.

The assertion (iii) \Rightarrow (i) is clear.

(i) \Rightarrow (iv): Assume (i). Suppose that (iv) fails to hold. Then for any positive integer n there exist x_n and y_n in X such that

$$\left\| \frac{x_{n} + y_{n}}{2} \right\|^{p} + \left\| \frac{x_{n} - y_{n}}{2} \right\|^{p} > (2 - \frac{1}{n}) \frac{\|x_{n}\|^{p} + \|y_{n}\|^{p}}{2}.$$
 (6)

Here we may assume $\|\mathbf{y}_n\| \leq \|\mathbf{x}_n\| = 1$ for all n without loss of general-

ity. Further we may assume that { $\|y_n\|$ } converges to some α (0 $\leq \alpha$ \leq 1); if necessary, take a suitable subsequence of { $\|y_n\|$ }. By (6) we have

$$(2 - \frac{1}{n})^{\frac{1 + \|y_n\|^p}{2}} < \|\frac{x_n + y_n\|^p}{2}\|^p + \|\frac{x_n - y_n\|^p}{2}\|^p$$

$$\leq 2 \left(\frac{\|x_n\| + \|y_n\|^p}{2}\right)^p$$

$$\leq 2 \left(\frac{1 + \|y_n\|^p}{2}\right). \tag{7}$$

Letting $n \to \infty$ in (7), we have $(1 + \alpha)^p/(1 + \alpha^p) = 2^{p-1}$, which implies $\alpha = 1$ by Lemma 2. Hence by (7) again we have

$$\left\| \frac{x_n + y_n}{2} \right\|^p + \left\| \frac{x_n - y_n}{2} \right\|^p \longrightarrow 2 \quad \text{as } n \to \infty.$$
 (8)

Therefore, $\|(x_n + y_n)/2\| \to 1$, $\|(x_n - y_n)/2\| \to 1$ as $n \to \infty$ (note that each term in (8) is not greater than one). This contradicts (i).

(iv) \Rightarrow (i): Assume that there exists a δ (0 < δ < 2) for which (4) holds for all x, y in X. Then if $\| x \| \le 1$, $\| y \| \le 1$, we have

$$\left\|\frac{x+y}{2}\right\|^p + \left\|\frac{x-y}{2}\right\|^p \le 2 - \delta.$$

Hence $\min\{\|(x + y)/2\|, \|(x - y)/2\|\} \le (1 - \delta/2)^{1/p} = 1 - \delta_0$, where $\delta_0 = 1 - (1 - \delta/2)^{1/p}$, that is, X is uniformly non-square.

(iv) \Leftrightarrow (v): Note merely that the inequality (3) is rewritten as

$$\| A : {\binom{2}{p}}(X) \rightarrow {\binom{2}{p}}(X) \| \le 2(1 - \delta/2)^{1/p}.$$

This completes the proof.

Remarks. (i) The characterization of uniform convexity stated in Proposition A fails to hold for the case p=1 ((2) is false in this case; put y=0), while the corresponding characterizations of uniform non-squareness (ii) and (iii) in Theorem 1 hold for p=1. Indeed the above proofs of the equivalence of (i)-(iii) remain valid for p=1; the assertions (iv) and (v) are false in this case (the inequality (3) fails to hold with y=0 (x $\neq 0$)).

(ii) For any Banach space X and for any 1 \leq p \leq ∞ it holds that

$$\| A : l_p^2(X) \rightarrow l_p^2(X) \| \le 2$$

(see (15) in Remarks after Theorem 2). For $X = L_p$ we have

$$\| A : \ell_{p}^{2}(L_{p}) \rightarrow \ell_{p}^{2}(L_{p}) \| = 2^{1/\min(p, p')},$$

which is equivalent to the following Clarkson's inequality:

$$(\|\mathbf{f} + \mathbf{g}\|_{p}^{p} + \|\mathbf{f} - \mathbf{g}\|_{p}^{p})^{1/p} \leq 2^{1/\min(p, p')} (\|\mathbf{f}\|_{p}^{p} + \|\mathbf{g}\|_{p}^{p})^{1/p} (\forall \mathbf{f}, \mathbf{g} \in L_{p})$$

$$(Clarkson [4]; cf. [14]).$$

(iii) A result of Smith and Turett [26, Lemma 14] concerning uniformly non- l_1 (n) spaces implies the equivalence of (i) and (iv) of Theorem 1 in the case n = 2 (our proof is different from theirs).

By Theorem 1 (use (iv)) we have

COROLLARY 1. Let 1 \infty. Then the Lebesgue-Bochner space $L_p(X)$ is uniformly non-square if and only if X is (Smith and Turett [26]; ef. [25, 9]).

3. Von Neumann-Jordan constant and uniform non-squareness

We now characterize Banach spaces with NJ-constant less than 2.

LEMMA 2. (i)
$$C_{NJ}(X) = 2^{2/t-1}$$
, $1 \le t \le 2$, if and only if
$$\|A : \ell_2^2(X) \to \ell_2^2(X)\| = 2^{1/t}. \tag{9}$$

(ii) $C_{N,I}(X') = C_{N,I}(X)$ (X' is the dual space of X).

Proof. (i) is easy to see (recall the note after the definition of the NJ-constant).

(ii) Since A is symmetric,

$$\| \ A \ : \ {}^2_2(X' \) \ \to \ {}^2_2(X' \) \ \| \ = \ \| \ A \ : \ {}^2_2(X) \ \to \ {}^2_2(X) \ \| \ ,$$

from which the conclusion follows by (i).

THEOREM 2. For a Banach space X the following are equivalent:

- $(i) C_{NJ}(X) < 2.$
- (ii) X is uniformly non-square.
- (jii) For any (resp. some) r and s with 1 < r \leq ∞ , 1 \leq s < ∞

$$\|A: {l_{r}^{2}(X)} \rightarrow {l_{s}^{2}(X)} \| < 2^{1/r'+1/s},$$
 (10)

where 1/r + 1/r' = 1.

Proof. (i) \Leftrightarrow (ii): By Lemma 2 the assertion $\text{C}_{\mbox{NJ}}(\text{X})$ < 2 is equivalent to

$$\| A : I_2^2(X) \to I_2^2(X) \| < 2,$$
 (11)

which is valid if and only if X is uniformly non-square by Theorem 1.

(ii) \Rightarrow (iii): Let X be uniformly non-square. We first see that for any p with 1 < p < 2

$$\| A : l_{p'}^{2}(X) \rightarrow l_{p'}^{2}(X) \| < 2^{2/p'},$$
 (12)

where 1/p + 1/p' = 1. By (11) we can put

$$\|A: l_2^2(X) \rightarrow l_2^2(X)\| = 2^{1/t}$$
 (9)

with some t, 1 < t \leq 2. On the other hand, we obviously have

$$\| A : l_1^2(X) \to l_{\infty}^2(X) \| = 1.$$
 (13)

Put $\theta = 2/p'$ (0 $< \theta < 1$). Then, since $(1 - \theta)/1 + \theta/2 = 1/p$, $(1 - \theta)/\infty + \theta/2 = 1/p'$, we have

$$\| A : l_p^2(X) \rightarrow l_{p'}^2(X) \| \le 1^{1-\theta} 2^{\theta/t} = 2^{2/p't} < 2^{2/p'}$$

by interpolation (cf. [2; Theorems 5. 1. 2, 4. 2. 1 and 4. 1. 2]) with (13) and (9). Now, let $1 < r \le \infty$, $1 \le s < \infty$. Take p as $1 and <math>s < p' < \infty$. Then by (12) we have

$$\| A: \|_{\mathbf{r}}^{2}(X) \to \|_{\mathbf{s}}^{2}(X) \|$$

$$\leq \| I: \|_{\mathbf{r}}^{2}(X) \to \|_{\mathbf{p}}^{2}(X) \| \| A: \|_{\mathbf{p}}^{2}(X) \to \|_{\mathbf{p}'}^{2}(X) \| \| I: \|_{\mathbf{p}'}^{2}(X) \to \|_{\mathbf{s}}^{2}(X) \|$$

$$< 2^{1/p-1/r} 2^{2/p'} 2^{1/s-1/p'}$$

$$= 2^{1/r'+1/s}, \qquad (14)$$

where I's are identity operators.

(jji) \Rightarrow (ji): Assume the inequality (10) to be valid for some r and s with 1 < r \le ∞ , 1 \le s < ∞ . Then there exists a δ (0 < δ < 1) such that for any x and y in X

$$\left(\frac{\|x + y\|^{s} + \|x - y\|^{s}}{2}\right)^{1/s} \le 2(1 - \delta) \left(\frac{\|x\|^{r} + \|y\|^{r}}{2}\right)^{1/r}$$

(usual modification is required for the right term if $r=\infty$). Let here $\|x\| \le 1$, $\|y\| \le 1$. Then we have $\min\{\|x+y\|, \|x-y\|\}$ $\le 2(1-\delta)$, as is desired. This completes the proof.

Remarks. (i) For any Banach space X

$$\|A: |_{r}^{2}(X) \to |_{s}^{2}(X)\| \le 2^{1/r'+1/s}$$
 for all $1 \le r$, $s \le \infty$ (15)

and

$$\|A: {\binom{2}{r}}(X) \rightarrow {\binom{2}{s}}(X)\| = 2^{1/r'+1/s}$$
 for $r = 1$ or $s = \infty$. (16)

Indeed to see (15), merely put p=1 in the first inequality of (14) and use (13); if r=1 resp. $s=\infty$, in the inequality

$$(\|x+y\|^{s} + \|x-y\|^{s})^{1/s} \le 2^{1/r'+1/s} (\|x\|^{r} + \|y\|^{r})^{1/r}$$

equality attains with (x, 0) resp. (x, x) (x \neq 0), which implies (16). For X = L (1 \leq p \leq ∞) we have

$$\| A : \binom{2}{r} (L_p) \rightarrow \binom{2}{s} (L_p) \| = 2^{c(r, s; p)} \text{ for all } 1 \leq r, s \leq \infty, (17)$$

where $c(r, s; p) = \max\{1/r', 1/s, 1/r'+1/s-1/\max(p, p')\}$, which yields the following Clarkson-Boas-Koskela inequality:

$$(\|f+g\|_{p}^{s} + \|f-g\|_{p}^{s})^{1/s} \leq 2^{c(r, s; p)} (\|f\|_{p}^{r} + \|g\|_{p}^{r})^{1/r}$$
for $\forall f, g \in L_{p}$ (18)

(Boas [3], Koskela [21], Kato [14]; see also [16, 23]).

(ii) As Boas [3] (cf. [4]) observed, the inequality (18), or (17), with c(r,s;p)=1/r' (for the case $s'\leq r<\infty$, $max(p,p')\leq s<\infty$)

implies the uniform convexity of L. The same is clearly true for a general Banach space X, that is, if

$$\|A: {l_{r}^{2}(X)} \to {l_{s}^{2}(X)}\| \le 2^{1/r'}$$
 (19)

for some $1 \le r$, $s < \infty$, then X is uniformly convex. (Note that if (19) is valid, then (19) is in fact reduced to identity; (x, x), $x \ne 0$, is norm-attaining.) This fails to be valid if the above norm of A is greater than $2^{1/r'}$ (see Example below). By a recent result of the authors [17, Theorem 2.4], if $2 \le s < \infty$, $s' \le r \le s$, (19) implies that X is of cotype s and 'cotype s constant' is 1, and vice versa; a similar result for type is also given in [ibid., Theorem 2.2].

(iii) The equivalence of (i) and (ii) in Theorem 2 is very recently proved in a generalized form by the authors and Hashimoto [20] by using a result of Smith and Turett [26; Lemma 14].

The following example explains difference between uniform convexity and uniform non-squareness via behavior of norms of the Littlewood matrix:

Example Let 1 \leq 2 and 1 < λ < 2^{1/p'}. Let $X_{p, \lambda}$ be the space $l_{p'}$ equipped with the norm $\|x\|_{p, \lambda} := \max\{\|x\|_{p'}, \lambda\|x\|_{\infty}\}$, where 1/p + 1/p' = 1. Then, in the same way as the proof of Proposition 1 in [18] we have for $p \leq r < \infty$

$$2^{1/r'} < \| A: |_{r}^{2}(X_{p, \lambda}) \rightarrow |_{p'}^{2}(X_{p, \lambda}) \| = \lambda 2^{1/r'} < 2^{1/r'+1/p'}.$$
 (20)

By Proposition 1 of [18], $X_{p,\ \lambda}$ is not uniformly convex (nor strictly convex) for all 1 $<\lambda<2^{1/p'}$, whereas Theorem 2 asserts that $X_{p,\ \lambda}$ is uniformly non-square (compare (20) with (19)).

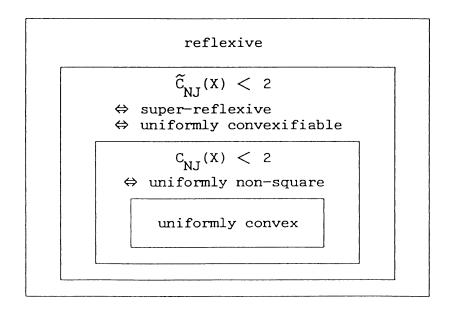
Now, Theorems 2 and A, combined with Lemma 2, immediately yields that uniform non-squareness and super-reflexivity are inherited by dual spaces (recall that uniform convexity is not so; cf. [1]):

COROLLARY 2. (i) The dual space X' is uniformly non-square if and only if X is.

(ii) The dual space X' is super-reflexive if and only if X is (James [12, Theorem 2]).

Remark. The above result (i) of Corollary 2 seems not to have appeared in literature. Giesy [9] showed that the bidual X" is uniformly $non-l_1(n)$ if and only if X is; and the dual space X' is B-convex (uniformly $non-l_1(n)$ for some n) if and only if X is (see also [6; Corollary 13.7]). It is known that for some Orlicz spaces uniform non-squareness coincides with reflexivity and also with B-convexity ([10]).

Our results about relation between NJ-constant and some geometrical properties of Banach spaces are illustrated as follows:



ACKNOWLEDGEMENT. The authors thank the referee for some helpful comments.

References

- [1] B. BEAUZAMY, Introduction to Banach spaces and their geometry, 2nd Ed., North Holland, 1985.
- [2] J. BERGH and J. LÖFSTRÖM, Interpolation spaces, Springer-Verlag, 1976.
- [3] R. P. BOAS, Some uniformly convex spaces, Bull. Amer. Math. Soc. 46 (1940), 304-311.
- [4] J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [5] J. A. CLARKSON, The von Neumann-Jordan constant for the Lebesgue spaces, Ann. of Math. 38 (1937), 114-115.
- [6] J. DIESTEL, H. JARCHOW and A. TONGE, Absolutely summing operators, Cambridge University Press, 1995.
- [7] D. van DULST, Reflexive and super-reflexive Banach spaces. Mathematical centre tracts, Vol. 102, Mathematisch Centrum, 1978.
- [8] P. ENFLO, Banach spaces which can be given as equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281-288.
- [9] D. P. GIESY, On a convexity condition in normed linear spaces,
 Trans. Amer. Math. Soc. 125 (1966), 114-146.
- [10] H HUDZIK, Uniformly non- $\frac{1}{n}$ Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271-284.
- [11] R. C. JAMES, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.

- [12] R. C. JAMES, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904.
- [13] P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719-723.
- [14] M Kato, Generalized Clarkson's inequalities and the norms of the Littlewood matrices, Math. Nachr. 114 (1983), 163-170.
- [15] M Kato and K Miyazaki, Remark on generalized Clarkson's inequalities for extreme cases, Bull. Kyushu Inst. Tech. Math. Natur. Sci. 41 (1994), 27-31.
- [16] M. Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_{\rm p}(\mu;L_{\rm q}(\nu))$ and Sobolev spaces, Math. Japon. 43 (1996), 505-515.
- [17] M. Kato and Y. Takahashi, Type, cotype constants and Clarkson's inequalities for Banach spaces, Math. Nachr. 186 (1997), 187-196.
- [18] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
- [19] M. Kato and Y. Takahashi, Von Neumann-Jordan constant for Lebesgue-Bochner spaces, J. Inequal. Appl. 2 (1998), 89-97.
- [20] M. Kato, Y. Takahashi and K. Hashimoto, On n-th von Neumann-Jordan constants for Banach spaces, Bull. Kyushu Inst. Tech. Pure Appl. Math. 45 (1998), to appear.
- [21] M. Koskela, Some generalizations of Clarkson's inequalities, Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. Fiz. No. 634-677 (1979), 89-93.
- [22] G. Köthe, Topological vector spaces I, Springer-Verlag, 1969.
- [23] D. S. Mitrinovic, J. E. Pečaric and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, 1993.
- [24] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 326-350.

- [25] M A. Smith, Rotundity and extremity in $l^p(X_i)$ and $L^p(\mu, X)$. Geometry of normed linear spaces. Contemporary Math., vol. 52, Amer. Math. Soc., 1986, 143-162.
- [26] M. A. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), 105-118.
- [27] W. A. Wojczynski, Geometry and martingales in Banach spaces, part II. In Probability on Banach Spaces 4 (Kuelbs, ed.), Marcel Dekker, 1978, 267-517.

Department of System Engineering, Okayama Prefectural University, Soja 719-1197, Japan e-mail: takahasi@cse.oka-pu ac.jp

Department of Mathematics, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan e-mail: katom@tobata.isc.kyutech.ac.jp

Received December 8, 1997 Revised March 26, 1998