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Von Neumann—-Jordan constant and

uniformly non—square Banach spaces

Yasuji TAKAHASHI* and Mikio KATOt

Abstract. A sequence of characterizations of uniform non—-squareness
is given, some of which are similar to the well-known homogeneous char—
acterization of uniformly convex spaces. As corollaries: (i ) Banach
spaces with von Neumann—-Jordan constant less than 2 are characterized
as those uniformly non-square; (ii ) it is presented that uniform non-

squareness 1s inherited by dual spaces.

1. Introduction and preliminaries

According to Clarkson [5] the von Neumann—-Jordan (NJ-) constant of

a Banach space X, we denote it by (X), is the smallest constant C for

Cng
which

2 2
Ilx + yll "+ lIlx — vyl

=
- 2 2
200 =l "+ vyl ™)

1
— <

c = C (1)
holds for all x, y € X with | x| 2+—H vl 2#= 0. (Note that the first
and second inequalities of (1) are equivalent; put x + y = u, x —y = v. )

Classical results state that: (i) 1 = CNJ(X) < 2 for any Banach space

*,t) Supported in part by Grants—in—-Aid for Scientific Research
from the Ministry of Education, Science and Culture (09640214* resp.
09640203t).
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X, and X is a Hilbert space if and only if CNJ(X) = 1 (Jordan and von

s 2/t-1
Neumann [13]). (ii) CNJ(Lp) 2

, where t = min{p, p'}, 1/p + 1/p
= 1 (Clarkson [5]). For the NJ-constant of some other Banach spaces we
refer the reader to [16, 15, 19]. Recently the authors [18] showed that
the uniform convexity of a Banach space X is nearly characterized by the
condition CNJ(X) < 2: More precisely, if X is uniformly convex, then
CNJ(X) < 2, while conversely if CNJ(X) < 2, X admits an equivalent
uniformly convex norm In other words, X is super-reflexive if and only
if EﬁJ(X) < 2, where éﬁJ(X) denotes the infimum of all NJ-constants of
equivalent norms of X

In this paper we first present a sequence of characterizations of
uniformly non—-square spaces, some of which are similar to the well-known
homogeneous characterization of uniformly convex spaces. It is in par-—
ticular observed that uniform non—-squareness is characterized by behavior
of norms of the Littlewood matrix as operators between [i(X)—spaces. As
direct consequences; (i ) those Banach spaces with NJ-constant less than
2 are precisely characterized as uniformly non—square spaces, which im—
proves the authors' result stated above; (ii ) it is obtained that uniform
non-squareness is inherited by dual spaces, which seems not to have
appeared in literature. The same for super-reflexivity (James [12]) is

immediately derived as: well.
Let us recall some definitions and previous results (ef. [1, 7]).

DEFINITIONS. Let BX denote the closed unit ball of a Banach space
X. X 1is called wniformly convex if for any &€ (0 < g < 2) there exists
a & > 0 such that || (x + y)/2] < 1 - 6 whenever [ x -yl 2¢, x, y
€ BX' X is said to be uniformly non-square ([11]) if there exists a
6 > 0 such that || (x + y)/2[| £ 1 - 6 whenever || (x —y)/2 || > 1 - 6§,
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X, v € B A Banach space Y is said to be finitely representable in X

e
provided for any A > 1 and for any finite-dimensional subspace F of Y

there is an isomorphism T of F into X for which

-1
A Ixll = Il = A Il xI for all x € F.

X is said to be super—-reflexive ([12; cf. 1, 7, 27]) if no non-reflexive

Banach space is finitely representable in X.

It is well known that uniformly convex spaces are uniformly non-
square, and uniformly non—square spaces are super—reflexive; the converse
is not true in each assertion ([11, 12]; ef. [1, 7, 27], see also [18]).
Super-reflexive spaces are just those uniformly convexifiable ([8]; cf.
[24]); these spaces are also characterized by means of the NJ-constant

as follows:

THEOREM A (Kato and Takahashi [18]). A Banach space X is super—
reflexive if and only if EﬁJ(X) < 2, where GﬁJ(X) denotes the infimum

of all NJ-constants of equivalent norms of X

In the following let A = ( 1 _: ), and let !i(X) denote the X-

valued li—space.

2. Homogeneous characterizations of uniformly non—square spaces

We first recall the following characterization of uniformly convex

spaces (see e.g., [22, 1]):

PROPOSITION A. Let 1 < p < oo. A Banach space X is uniformly
convex if and only if for any ¢ > 0 there exists 6 = 0 p(e )y > 0

such that || x — yll=2¢, x, vy € BX implies
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”x;ynpg(1_6)uxnp;uynp_ (2)

Now let us present some similar homogeneous characterizations for

uniformly non-square spaces. We need the following lemma which is easi-

ly seen:

LEMMA 1. Let 1<p<co. Then the function ¢ (t)= (1+t)P/(1+ tP)

(0=t=1) is strictly increasing.

THEOREM 1. Let 1 < p < ©. For a Banach space X the following

are equivalent:
(i) X is uniformly non-square.

(ii ) There exist some ¢ and 6 (0< e, § <1) such that || x—y| =

2(1— g), x, y € BX implies

b b p
X+ vy I = + Uyl
“——2 ” < (1—6) . . (2)
(iii ) There exists some 6 (0< 6§ <1) such that | x—y|| =2(1— ¢ ),

X, ¥ E BX implies the inequality (2).

(iv) There exists some 6 (0 < 6 < 2) such that for any x, y in X,

e B e i e S

2 2
(v) Il A : lp(X) Ip(X) < 2

Proof. (i) = (ii): Note first that the assertion (ii) is equiv-

alent to

(ii') There exist some € and 6 (0 < €, 6 < 1) such that

lx — vyl 2 200 —¢), lIxll=1 lyll £ 1 implies (2).
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Now, assume (ii') fails to hold. Then for any positive integer n there
exist X and y, in X such that ||xn — ynH = 2(1 — 1/n), | an = 1,

=
Iy IS 1, and

p P P
+ +
x ty, S o - l) I xnll I ynll
2 n 2
Since
1
- )< — < <
2(1 ) = I X ynll = 1 + | ynll = 2,
we have | yn I — 1 and
X - Y
n n
5 - 1 (4)
as n —> o000, On the other hand, since
L1y 1P x +y [P
— = <
(1 n) > < > = 1,
we have
xn + y
> - 1 as n — ©0. (5)

From (4) and (5) it follows that X is not uniformly non—-square.
(ii ) = (ii): This 1s a direct consequence of the fact that in the
assertion (ii ) we may,replace ¢ and 6 with any e'< ¢ and 6'< 6.
The assertion (iii) = (i) is clear.
(i) = (iv): Assume (i ). Suppose that (jv) fails to hold. Then

for any positive integer n there exist X and Y in X such that

P P D p
- +
x ty N X -y, s - = I I vl )
2 2 n 2 )
Here we may assume || Yy = | X | = 1 for all n without loss of general-



ity. Further we may assume that {Ilynll} converges to some g (0 < ¢

=< 1); if necessary, take a suitable subsequence of {Ilynll}. By (6)

we have
p p _ p
(2~1)1 +ly | < x +t vy, . X Ty
n 2 2 2
Tx I+ By 1\P
< ( n n )
= 2 >
1+ iy p)
<
= 2 > (7)
. . o] P p—1 . .
Letting n - o in (7), we have (1 + @) /(1 + aF) = 2 , which im—
plies ¢ = 1 by Lemma 2. Hence by (7) again we have
p p
X +y X -y
n + a n 2 as n — 0o, (8)
2 2
Therefore, | (xn + yn)/2 m — 1, | (xn — yn)/2 I — 1 as n - o (note
that each term in (8) is not greater than one). This contradicts (i ).

(iv) = (i ): Assume that there exists a 6 (0 < 6 < 2) for which

(4) holds for all x, vy in X. Then if [ x| = 1, [yl £ 1, we have

p _ p
===+ 1571

< -
> > = 2 0.
. 1
Hence min{ || (x + y)/2|, I (x — y)/2l} = (1 — 6 /2) P g - 6 o
where § 0 = 1 — (1 — 6 /2)1/p, that is, X is uniformly non-square.

(iv) © (v ): Note merely that the inequality (3) is rewritten as
2 1
A 1500 - lE(X)II < 201 —6s2)"P

This completes the proof.

— 160 —



Remarks. (i ) The characterization of uniform convexity stated in
Proposition A fails to hold for the case p = 1 ((2) is false in this
case; put y = 0), while the corresponding characterizations of uniform
non—-squareness (ii ) and (iii) in Theorem 1 hold for p = 1. Indeed the
above proofs of the equivalence of (i )— (iii) remain valid for p =1;
the assertions (iv) and (v ) are false in this case (the inequality (3)

fails to hold with y = 0 (x #= 0)).
(ii ) For any Banach space X and for any 1 & p = o it holds that
2 2
AT - |12 £ 2
I p( D
(see (15) in Remarks after Theorem 2). For X = Lp we have
2 2 1/min(p, p' )
Ha - 12wy » (2@ = 2V/miner)
P P P P
which is equivalent to the following Clarkson' s inequality:

p _ pP,\1/p 1/min(p, p' ) p p,1/p £ eL
C f+gllp+ | £ gllp) 2 (Ilfilp+ IIgllp) (V£, g p)

(Clarkson [U4]; cf. [14]).
(fii ) A result of Smith and Turett [26, Lemma 14] concerning uni-
formly non-—| 1 (n) spaces implies the equivalence of (i) and (iv) of

Theorem 1 in the case n = 2 (our proof is different from theirs).
By Theorem 1 (use (iv)) we have

COROLLARY 1. Let 1 < p < o0. Then the Lebesgue-Bochner space
Lp(X) is uniformly non-square if and only if X is (Smith and Turett [26];

cf. [25, 91).
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3. Von Neumann—Jordan constant and uniform non—-squareness

We now characterize Banach spaces with NJ-constant less than 2.

LEMMA 2. (1) Cg (X) = 22/’5_1, 1 < t = 2, if and only if
2 2 1/t
A : IZ(X) IZ(X)ll = 2 . (9)
(ii) CNJ(X') = CNJ(X) (X' is the dual space of X).

Proof. (i) is easy to see (recall the note after the definition

of the NJ-constant).

(ii ) Since A is symmetric,
2,0 2,0 . ., 2 2
A : lZ(X ) — IZ(X I = 1A : lz(X) - lZ(X)",
from which the conclusion follows by (1 ).

THEOREM 2. For a Banach space X the following are equivalent:

(i) C;(x) < 2

(ii ) X is uniformly non—-square.

(iii ) For any (resp. some) r and s with 1 < r £ o, 1 £ s <

Az 1200 - 2 < 27T (10)

where 1/r + 1/ = 1.

Proof. (i) & (ii): By Lemma 2 the assertion CNJ(X) < 2 1is

equivalent to

2 2
A : (LX) = 15(X) < 2 (11)

which is valid if and only if X is uniformly non—-square by Theorem 1.
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(ii) = (iii): Let X be uniformly non—square. We first see that

for any p with 1 < p < 2

2 2 2/p'
A : X) — 2 , 1
I lp( ) lp. xX)yn < (12)
where 1/p + 1/p' = 1. By (11) we can put
o2 2 1/t
A : IZ(X) lZ(X) = 2 (9)
with some t, 1 < t = 2. On the other hand, we obviously have
2 2 _
A : 11(X) - IOO(X) = 1. (13)
Put 6 = 2/p' (0 < 6 < 1). Then, since (1 —8)/1 + 6 /2 = 1/p,
(1 —0)/oo + @/2 = 1/p', we have
I A - IIZD(X) . IIZ)' X = 11—4926/i: _ 22/p'1; < 22/p.

by interpolation (cf. [2; Theorems 5.1.2, 4. 2.1 and 4. 1.21) with (13)
and (9). Now, let 1 < r & o, 1 £ s < oo. Takepast < p< r

and s < p' < oo. Then by (12) we have
2 2
I A: !r(X) - lS(X) I

2 2 2 2 2 2
: — : - : —
S NI L0 > LSO A 15 = 15 GOl T 15 (0 > 100 |

< 21 /p—1 /r22/p’ 21 /s—=1/p'

]
p1/T ¥1/s (14)
where I's are identity operators.
(iii ) = (ii): Assume the inequality (10) to be valid for some r

and s with 1 < r £ oo, 1 £ s < o0, Then there exists a 6 (0 < 6

< 1) such that for any x and y in X
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S 1 r r\i1/r
lx + vyl S+ Ix-ypS|"/s o Ty T}
= 2(1 0)
2 2
(usual modification is required for the right term if r = o). Let
here x| = 1, llyll £ 1. Then we have min{ || x + yl, lIlx — vy}
=< 2(1— 6 ), as is desired. This completes the proof.
Remarks. (i ) For any Banach space X
'+
ha: 2w - 2ol = 2T foralli £k s o (15)
and
{
A : li(X) - li(X) Il 21/r *1/s for r = 1 or s = ©o. (16)
Indeed to see (15), merely put p = 1 in the first inequality of (14)
and use (13); if r = 1 resp. s = 00, in the inequality

(Il S+ 1x—yl 'S < 2T/ g1 Tx 1y1 HYE

equality attains with (x, 0) resp. (x, x) (x # 0), which implies (16).

For X = Lp (1 & p £ o) we have
A : 12wy » 12y = 2°(0SiP) porall 1 = 1, s < o, (17)
r p S P

where c(r, s;p) = max{1/r, 1/s, 1/r' +1/s—-1/max(p, p' )}, which yields the

following Clarkson—-Boas—-Koskela inequality:

s, 1/s 1/r

) =
p

r,s; r
(I £+els + 1 t—gl < 2°¢ p’<||fnp+ngu;>

for V£, g € Lp (18)

(Boas [3], Koskela [21], Kato [14]; see also [16, 23]).
(ii ) As Boas [3] (cf. [4]) observed, the inequality (18), or (17),

with e¢(r,s;p) = 1/r' (for the case s < r < o, max(p, p') £ 8 < )
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implies the uniform convexity of Lp’ The same is clearly true for a

general Banach space X, that is, if

1/r'

1204y _, 2
hA : lr(X) lS(X) I = 2 (19)

for some 1 = r, s < oo, then X is uniformly convex. (Note that if
(19) is wvalid, then (19) is in fact reduced to identity; (x, x), x # 0,
is norm—attaining. ) This fails to be valid if the above norm of A is

1
greater than 21 /T

(see Example below). By a recent result of the
authors [17, Theorem 2.4], if 2 £ s < o, 8 = r = s, (19) implies
that X is of cotype s and ‘cotype s constant' is 1, and vice versa; a
similar result for type is also given in [ibid., Theorem 2. 2].

(iii ) The equivalence of (i ) and (ii ) in Theorem 2 is very recently

proved in a generalized form by the authors and Hashimoto [20] by using

a result of Smith and Turett [26; Lemma 14].

The following example explains difference between uniform convexity

and uniform non—squareness via behavior of norms of the Littlewood ma-

trix:
1
Example. Let 1 < p =< 2 and 1 < A < 21/p . Let Xp 2 be the

space lp, equipped with the norm | x| D, A := max{ || x| o Al x| oo}’
where 1/p + 1/p' = 1. Then, in the same way as the proof of Proposi-—
tion 1 in [18] we have for p < r < oo

1/7 o2 2 _ 1/r 1/r' +1/p'

2 < "A"r(xp,k)—_)lp'(xp,k)" = A2 < 2 . (20)
By Proposition 1 of [18], Xp 2 is not uniformly convex (nor strictly

U

convex) for all 1 < A <K 21/p , whereas Theorem 2 asserts that X

P, A

is uniformly non-square (compare (20) with (19)).
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Now, Theorems 2 and A, combined with Lemma 2, immediately yields
that uniform non-squareness and super-reflexivity are inherited by dual

spaces (recall that uniform convexity is not so; cof. [1]):

COROLLARY 2. (i ) The dual space X' is uniformly non-square if and
only if X 1is.
(ii ) The dual space X' is super—-reflexive if and only if X is

(James [12, Theorem 2]).

Remark. The above result (j ) of Corollary 2 seems not to have
appeared in literature. Giesy [9] showed that the bidual X" is uni-
formly non—l1(n) if and only if X is; and the dual space X' is B-convex
(uniformly non—l1(n) for some n) if and only if X is (see also [6; Cor-—
ollary 13.71]). It is known that for some Orlicz spaces uniform non-—

squareness coincides with reflexivity and also with B-convexity ([10]).

Our results about relation between NJ-constant and some geometrical

properties of Banach spaces are illustrated as follows:

reflexive

CNJ(X) < 2

& super-reflexive
& uniformly convexifiable

CyyX) < 2

& uniformly non—square

uniformly convex
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