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ENVELOPE OF HYPERHOLOMORPHY AND
HYPERHOLOMORPHIC CONVEXITY

Dong Guo ZHOU

N\^ono investigated the hyperholomorphy of functions of quaternion variables in [13], [14],

[15] and [16]. In the present paper, making use of his results [13] and [16] on series expansion
and integral representation, for a Riemann’s domain $(\Omega, \varphi)$ over $C^{2}xC^{2}$ , we $define_{\sim}the\sim$

envelope $(\tilde{\Omega},\tilde{\varphi})$ of hyperholomorphy of the domain $(\Omega, \varphi)$ and prove that the domain $(\Omega, \varphi)$

is hyperholomorphically convex.

1. Hyperholomorphic function on a domain in $C^{2}xC^{2}$

The field $\mathcal{H}$ of quaternions

(1) $z=x_{1}+ix_{2}+jx_{3}+kx_{4}$ , $x_{1},$ $x_{2},$ $x_{3},$ $x_{4}\in R$

is a four dimensional non-commutative R-field generated by four base elements 1, $i,$ $j$ and
$k$ with the folowing non-commutative multiplication rule:

(2) $i^{2}=j^{2}=k^{2}=-1,$ $ij=-ji=k,$ $jk=-kj=i,$ $ki=-ik=j$ .

R. $Fueter[7]-[8]$ and his school established the theory of quaternionic functions, called
regular functions, of a quaternionic variable. F. $Brackx[1]-[2]$ also developped the theory of
quaternionic functions, called monogenic functions, of a quaternionic variable in the view

point of (1).
By the second view point, an element $z$ of the field $\mathcal{H}$ of quaternions is regarded as

(3) $z=x_{1}+P$, $P=ix_{2}+jx_{3}+kx_{4}$ , $x_{1},$ $x_{2},$ $x_{3},$ $x_{4}\in R$ .

In the fashion of (3), C. A. Deavours[4] developped the theory of quaternionic regular
functions.

As the third view point, we associate two complex numbers

(4) $z_{1}$ $:=x_{1}+ix_{2}$ , $z_{2}$ $:=x_{3}+ix_{4}\in C$

to (1), regarding as
(5) $z=z_{1}+z_{2}j\in \mathcal{H}$ .

Thus, we identify $\mathcal{H}$ with $C^{2}\cong R^{4}$ and speak of the topology of $\mathcal{H}$ . We define the non-
commutative multiplication of two quaternions $z=z_{1}+z_{2}j,$ $w=w_{1}+w_{2}j\in \mathcal{H}$ by

(6) $zw:=(z_{1}w_{1}-z_{2}\overline{w_{2}})+(’\sim+z_{2}\overline{w_{1}})j\in \mathcal{H}$
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using the complex conjugate

(7) $\overline{z_{1}}$ $:=x_{1}-ix_{2}$ , $\overline{z_{2}}:=x_{3}-ix_{4}$ .

On the contrary, the quaternionic conjugate $z$
“ of $z=z_{1}+z_{2}j\in \mathcal{H}$ is defined by

(8) $z^{*}:=\overline{z_{1}}-z_{2}j$ .

The absolute value
(9) $|z|$ $:=\sqrt{|z_{1}|^{2}+|z_{2}|^{2}}$

$coincideswiththeusualnormofz\in c^{2}\underline{\simeq}R^{4}$ .
In the present paper, we use the following quaternionic differential operators:

(10) $\frac{d}{dz}$
$:=\frac{\partial}{\partial\overline{z_{1}}}+j\frac{\partial}{\partial\overline{z_{2}}}$ , $\frac{d}{dw}$

$;=\frac{\partial}{\partial\overline{w_{1}}}+j\frac{\partial}{\partial\overline{w_{2}}}$ .

Let $\Omega$ be an open set in $\mathcal{H}^{2}$ ” $C^{4}$ and $f(z, w)=f_{1}(z, w)+f_{2}(z, w)j$ be a $C^{1}$ -functionon $\Omega\subset \mathcal{H}^{2}\cong R^{8}$ . $f$ is said to be hyperholomorphic in $\Omega$ if $f$ satisfies the equations

(11) $\frac{d}{dz^{*}}f=0$ , $f\frac{d}{dw^{*}}=0$

in $\Omega$ , which are equivalent to

(12) $\frac{\partial f_{1}}{\partial\overline{z_{1}}}=\frac{\partial\overline{f_{2}}}{\partial z_{2}}$ , $\frac{\partial\overline{f_{1}}}{\partial z_{2}}=-\frac{\partial f_{2}}{\partial\overline{z_{1}}}$

and
(13) $\frac{\partial f_{1}}{\partial\overline{w_{1}}}=\frac{\partial f_{2}}{\partial\overline{w_{2}}}$ , $\frac{\partial f_{1}}{\partial w_{2}}=-\frac{\partial f_{2}}{\partial w_{1}}$ .
by page 3 of N\^ono[16].

For any complex valued functions $f_{1}$ and $f_{2}$ such that $f_{1}$ is a holomorphic function of the
variables $z_{1},$ $z_{2},$ $w_{1},\overline{w_{2}}$ and that $f_{2}$ is a holomorphic function of the variables $z_{1},$ $z_{2},\overline{w_{1}},$ $w_{2}$ , the
quaternion valued function $f$ $:=f_{1}+f_{2}j$ is a hyperholomorphic function of two quaternionic
variables $z:=z_{1}+z_{2}j,$ $w:=w_{1}+w_{2}j$ .

M. Naser[12] and K. $N\hat{o}no[13]-[14]-[15]$ developped the theory of quaternionic hyperholo-
morphic functions of a quaternionic variable and, moreover, K. N\^ono[16] developped that
of two quaternionic variables $z$ and $w$ . In this fashion, the hyperholomorphy is a natural
extension of the holomorphy of the theory of functions of several complex variables. And
problems of the theory of functions of several colnplex variables can be made clearer. This
is a characteristic of the third fashion (5) and is an advantage claimed for this hyperholo-
morphy. In deed, the notion of hyperholomorphy has aquired citizenship as is shown, $e$ . $g.$ ,
in M. S. Marinov[ll].
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2. Envelopes of hyperholomorphy of domains over $\mathcal{H}^{2}$

Let $D$ be a connected Hausdorff space and $\varphi$ : $D\rightarrow \mathcal{H}^{2}$ be a local homeomorphism. We
induce canonically the quaternionic structure into $D$ using the atlas associated to $\varphi$ . The
pair $(D, \varphi)$ is called a domain over $\mathcal{H}^{2}$ . A point $x$ of $D$ is called a point over $\varphi(x)$ . When the
mapping $\varphi$ is injective, the domain $(D, \varphi)$ over $\mathcal{H}^{2}$ is said to be schlicht and is identified with
the domain $\varphi(D)$ of $\mathcal{H}^{2}$ . Let $\mathcal{F}:=\{f_{\iota}; \iota\in I\}$ be a family of hyperholomorphic functions on
$D$ . A trio $(\lambda, D^{\prime}, \varphi^{\prime})$ is said to be a hyperholomorphic extension of the domain $(D, \varphi)$ over
$\mathcal{H}^{2}$ with respect to the family $\mathcal{F}$ if the pair $(D^{\prime}, \varphi^{\prime})$ is a domain over $\mathcal{H}^{2}$ , if the mapping
$\lambda$ : $D\rightarrow D^{\prime}$ is a local homeomorphism with $\varphi=\varphi^{\prime}0\lambda$ and if, for any $f\in \mathcal{F}$ , there exists
a hyperholomorphic function $f^{\prime}$ on $D^{\prime}$ with $ f=f^{\prime}o\lambda$ . Let $\mathcal{O}_{\mathcal{F}}$ be the sheaf of germs of
families indexed by the said set $I$ of hyperholomorphic functions over $\mathcal{H}^{2}$ and $\pi$ : $O\mathcal{F}\rightarrow \mathcal{H}^{2}$

be the canonical projection. By Theorem 3.5 of N\^ono[16], the sheaf $\mathcal{O}_{\mathcal{F}}$ is a Hausdorff space
and $(\mathcal{O}_{\mathcal{F}}, \pi)$ is also regarded as an open set over $\mathcal{H}^{2}$ .

Now, we define canonically a local homeomorphism $\lambda_{\mathcal{F}}$ : $D\rightarrow \mathcal{O}_{\mathcal{F}}$ as follows:

(14) $D\ni x\sim\{f;\iota\in I\}_{\varphi(x)}\in O_{F}$

associating to each point $x\in D$ the germ $\{f;\iota\in I\}_{\varphi(x)}$ at $\varphi(x)$ of the family $\{f_{\iota};\iota\in I\}$ of
hyperholomorphic functions $f_{\iota}$ on $0$ . The image $\tilde{\lambda}_{\mathcal{F}}(D)$ of the connected space $D$ by the
continuous mapping $\tilde{\lambda}_{\mathcal{F}}$ is connected. Let $\tilde{D}_{\mathcal{F}}$ be the connected component of the Hausdorff
space $\mathcal{O}_{\mathcal{F}}$ containing the connected set $\tilde{\lambda}_{\mathcal{F}}(D)$ and $\tilde{\varphi}_{\mathcal{F}}$ be the restriction of the projection $\pi$

to $\tilde{D}_{\mathcal{F}}$ . Then the trio $(\tilde{\lambda}_{\mathcal{F}},\tilde{D}_{\mathcal{F}},\tilde{\varphi}_{\mathcal{F}})$ is the largest hyperholomorphic extension of $(D, \varphi)$ with
respect to the family $\mathcal{F}$ . The trio $(\tilde{\lambda}_{\mathcal{F}},\tilde{D}_{F},\tilde{\varphi}_{\mathcal{F}})$ is called the envelope of hyperholomorphy
of the domain $(D, \varphi)$ over $\mathcal{H}^{2}$ with respect to the family $\mathcal{F}$ . In this way, we can prove the
following theorem:

Theorem 1. Let $(D, \varphi)$ be a domain over $\mathcal{H}^{2}$ and $\mathcal{F}$ be a family of hyperholomorphic func-
tions on D. Then, there exists uniquely the envelope $(\tilde{\lambda}_{\mathcal{F}},\tilde{D}_{\mathcal{F}},\tilde{\varphi}_{\mathcal{F}})$ of hyperholomorphy of a

domain $(D, \varphi)$ over $\mathcal{H}^{2}$ with respect to the family $\mathcal{F}$ .

The envelope of hyperholomorphy with respect to a family consisting of a single hyper-
holomorphic function $f$ is called the domain of hyperholomorphy of the function $f$ . The
envelope of hyperholomorphy with respect to the family of hyperholomorphic functions on
$D$ is called simply the envelope of hyperholomorphy of the domain $D$ .

Let $W$ be the domain in $C^{2}$ and $f(w_{1}, w_{2})$ be the holomorphic function of the com-
plex variables $(w_{1}, w_{2})\in W$ given at page 43 of Gunning-Rossi[9] such that the domain
of holomorphy $\tilde{W}$ of the single valued holomorphic function $f$ on the schlicht domain $W$

is not a schlicht domain over $C^{2}$ and that the holomorphic extension of the holomorphic
function $f(w_{1}, w_{2})$ takes two different values at two points over a point in $C^{2}$ . Then, for the
quaternionic variables $z:=z_{1}+z_{2}j,$ $w:=w_{1}+w_{2}j$ , the domain of hyperholomorphy of the
single valued hyperholomorphic function $h(z, w)$ $:=f(z_{1}, z_{2})+f(\overline{w_{1}}, w_{2})j$ on the schlicht
domaiii $D$ $:=\{(z_{1}+z_{2}j, w_{1}+w_{2}j)\in \mathcal{H}^{2}; z_{1}, z_{2}, \overline{w_{1}}, w_{2}\in W\}$ in $\mathcal{H}^{2}$ is not schlicht. So, it is
not complete to treat domains of hyperholomorphy exclusively in the category of schlicht
domains, in order to discuss fully the problem of extension on quaternionic functions. This
is the reason why the present paper adds a non trivial result on the theory of quaternionic
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functions.

Let $z$ be a point in $\mathcal{H}^{2}$ and $r$ be a positive number. We denote by $B(z, r)$ the euclideanopen ball with center $z$ and radius $r$ in $\mathcal{H}^{2}\cong C^{4}$ . Let $(D, \varphi)$ be a domain over $\mathcal{H}^{2}$

$x$

be a point of $D$ and $r$ be a positive number. Under the aesumption of the existence ofan open neighborhood $U$ of the point $x$ in the Hausdorff space $D$ such that $\varphi$ maps $U$

homeomorphically onto the open ball $B(\varphi(x), r)$ in the euclidean space $R^{4\underline{\simeq}}\mathcal{H}^{2}$ , we speakof the open ball with center $x$ and radius $r$ in the domain $D$ and denote $U$ by $B(x, r)$ .
We define the distance of $x$ from the boundary $\partial D$ of $D$ by

(15) $\delta(x, \partial D):=\sup$ { $r$ : there exists $B(x,$ $r)\subset D$ },
$i$ . $e.,$ $\delta(x, \partial D)$ is the largest between those $r$ so that $\varphi|_{B(x,r)}$ : $B(x, r)\rightarrow B(\varphi(x), r)$ arehomeomorphisms.

We differentiate functions on $D$ using the above chart, $e$ . $g.$ , for a hyperholomorphicfunction $f$ on $D$ and a point $x\in D$ , we define as follows:

(16) $\frac{d}{dz^{*}}f|_{B(x,\delta(x,\partial D))}$ $:=(\frac{d}{dz^{*}}fo(\varphi|_{B(x,\delta(x,\partial D))})^{-1})0\varphi|_{B(x,\delta(x,\partial D))}$

and
(17) $f\frac{d}{dw^{*}}|_{B(x,\delta(x,\partial D))}$

$:=(fo(\varphi|_{B(x,\delta(x,\partial D))})^{-1}\frac{d}{dw^{*}})\circ\varphi|_{B(x,\delta(x,\partial D))}$ .
Let $K$ be a compact in $D$ , we use the following notation too:

(18) $\delta(K, \partial D):=\min\{\delta(x, \partial D);x\in K\}$ .

Moreover, let $\mathcal{F}$ be a family of hyperholomorphic functions on $D$ . The set

(19) $\tilde{K}_{\mathcal{F}}$

$:=$ { $x\in D;|f(x)|\leq\sup_{\nu\epsilon K}|f(y)|$ for all $f\in \mathcal{F}$}

is called the hyperholomorphic hull of the compact set $K$ with respect to the family $\mathcal{F}$ . When
$\mathcal{F}$ is the family of all hyperholomorphic functions on $D,\tilde{K}_{\mathcal{F}}$ is called simply the hyperholo-
morphic hull of the compact set $K$ and denoted by $\tilde{K}_{\mathcal{F}}$ .

A domain $(D, \varphi)$ over $\mathcal{H}^{2}$ is said to be hyperholomorphically convex with respect to afamily $\mathcal{F}$ of hyperholomorphic functions on $D$ if, for any compact set $K$ in $D$ , the distance
$\delta(.K\mathcal{F}\partial D)$ from the boundary of the domain $D$ to the hyperholomorphic hull $\tilde{K}_{\mathcal{F}}$ of $K$

with respect to the family $\mathcal{F}$ is positive and, when $\mathcal{F}$ is the family of al hyperholomorphicfunctions on $D,$ $D$ is said simply to be hyperholomorphically convex.
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3. Contionuation Theorem of Cartan-Thullen’s type

Let $(D, \varphi)$ be a domain over $\mathcal{H}^{2}$ and $\mathcal{F}$ be a family of hyperholomorphic functions on $D$

stable under the following differentiations:

(20) $\mathcal{F}\ni f\leftrightarrow\frac{\partial}{\partial z_{j}}f\in \mathcal{F}$ , $\mathcal{F}\ni f\leftrightarrow\frac{\partial}{\partial\overline{z_{J}}}f\in \mathcal{F}$ $(j=1,2)$

and
(21) $\mathcal{F}\ni f\leftrightarrow f\frac{\partial}{\partial w_{j}}\in \mathcal{F}$ $\mathcal{F}\ni f\rightarrow f\frac{\partial}{\partial\overline{w_{j}}}\in \mathcal{F}$ $(j=1,2)$

For a quadruplet $p=(p_{1}, p_{2}, p_{3}, p_{4})$ of non negative integers $p_{j}(j\in\{1,2,3,4\}),$ $|p|$ $:=$

$p_{1}+p_{2}+p_{3}+p_{4}$ , we use the following differential operators on $z$ $:=z_{1}+z_{2}j\in \mathcal{H}$ in
this section:

(22) $\partial_{z}^{p}$
$:=\frac{\partial^{|p|}}{\partial z_{1}^{P1}\partial\overline{z}_{1}^{\nabla 2}\partial z_{2}^{P3}\partial\overline{z_{2}}^{p_{4}}}$ .

Theorem 2. Let $K$ be a compact set in $D,\tilde{K}_{\mathcal{F}}$ be the hyperholomorphic hull of $K$ with
respect to the family $\mathcal{F}$ stable under the differentiation (20) and (21) and $x$ be a point
in $\tilde{K}_{\mathcal{F}}$ . Then any $fo(\varphi|_{B(x,\delta(x,\partial D))})^{-1}$ is hyperholomorphically extended to $B(\varphi(x),$ $(1-$

$\tau_{2}^{1})\delta(K, \partial D))$ .

Proof. Let $f$ be an element of $\mathcal{F}$ and $x$ a point of $D$ . We put $(z_{0}, w_{0}):=\varphi(x)$ . By N\^ono[16],
$fo\varphi|_{B(x,\delta(x,\partial D))}$ is represented as the series

(23) $fo\varphi|_{B(x,\delta(x,\partial D))}(z, w)=\sum_{m,\mathfrak{n}=0}^{\infty}\sum_{|p|=m,|q|=n}(z_{1}-z_{1}^{0})^{p\iota}(\overline{z_{1}}-\overline{z_{1}^{0}})^{p_{2}}(z_{2}-z_{2}^{0})^{ps}(\overline{z_{2}}-\overline{z_{2}^{0}})^{ps}x$

$\frac{\partial_{z}^{p}fo(\varphi|_{B(x,\delta(x,\partial D))})^{-1}(z^{0},w^{0})\partial_{w}^{q}}{p!q!}(w_{1}-w_{1}^{0})^{q_{1}}(\overline{w_{1}}-\overline{w_{1}^{0}})^{q_{2}}(w_{2}-w_{2}^{0})^{q_{3}}(\overline{w_{2}}-\overline{w_{2}^{0}})^{q_{4}}$

which converges normally in the open ball $B(\varphi(x), (1-7^{1}2)\delta(K, \partial D))$ .

4. Hyperholomorphic convexity of envelopes of holomorphy

Theorem 3. Let $(D, \varphi)$ be a domain over $\mathcal{H}^{2},$ $\mathcal{F}$ be a family of hyperholomorphic functions
on $D$ which contains the functions $z_{1},$ $z_{2},$ $w_{1},$ $w_{2}$ and which is stable under the differentiation
(20) and (21), and $(\tilde{D}_{\mathcal{F}},\tilde{\varphi}_{\mathcal{F}})$ be the envelope of hyperholomorphy of the domain $D$ with
respact to the family $\mathcal{F}$ . Then $\tilde{D}_{\mathcal{F}}$ is hyperholomorphically convex.

Proof. Let $K$ be a compct subset of $\tilde{D}_{\mathcal{F}}$ . Since $\mathcal{F}$ contains the functions $z_{1},$ $z_{2},$ $w_{1},$ $w_{2}$ , the
set $\varphi(K_{\mathcal{F}})$ is bounded by the theory of functions of several complex variables. Moreover, by

Theorem 2, we have

(24) $(1-\frac{1}{\sqrt{2}})\delta(K, \partial D)\leq\delta(\tilde{K}_{F}, \partial D)\leq\delta(K, \partial D)$
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and, making use of this inequality, we can prove the theorem.
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