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OPERATOR INEQUALITIES RELATED TO CAUCHY-SCHWARZ
AND HOLDER-McCARTHY INEQUALITIES

Masatoshi Fujii*, Saichi Izumino**, Ritsuo Nakamoto*** and Yuki Seo****

Abstract. We give an improvement of the Cauchy-Schwarz inequality, which is based on the
covariance-variance inequality. We also give a complementary inequality of the Holder-McCarty
inequality. Furthermore we extend it to the case of two variables using the operator mean in the
Kubo-Ando theory. Consequently we have a noncommutative version of the Greub-Rheinboldt
inequality as an extension of the Kantrovich one. Finally we discuss about order preserving
properties of increasing functions through the Kantorovich inequality.

1. Introduction. In [1}, we proved the covariance-variance inequality in the noncommuta-
tive probability theory established by Umegaki[12]:

(1) [Cov(A, B)|? < Var(A)Var(B),
where Cov(A, B) and Var(A) are defined as
Cov(A, B) = (B* Az, z) — (B*z,z)(Az, z) and Var(A) = Cov(4, A)

for (bounded linear) operators A, B acting on a Hilbert space H and a fixed unit vector z € H.

The covariance-variance inequality has many applications for operator inequalities, see [1,2,6].
Among others, we pointed out that (1) implies the celebrated Kantorovich inequality: If a
positive operator A on a Hilbert space H satisfies 0 < m < A < M, then for each unit vector
z€H

@)  (Az,z)(A7'z,2) < (—"‘4%1‘1‘;—)2
or equivalently,
(3) (A%z,z) < (m+ M) (Az, z)2.

Since the covariance-variance inequality is equivalent to the Cauchy-Schwarz inequality, the
Kantorovich inequality lies on the line of the Cauchy-Schwarz inequality. More precisely, it is
considered as an estimation of the ratio of factors appearing in the Cauchy-Schwarz inequality.
Another viewpoint is to estimate the difference of the factors. Actually it has been done in the
numerical case. Its operator version will be given by the covariance-variance inequality in the
below. :

On the other hand, the H5lder-McCarthy inequality[3,8] is a generalization of the Cauchy-
Schwarz inequality. Along with our argument, we attempt to generalize the Hélder-McCarthy
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inequality and give its complementary inequality, in which the geometric mean plays an essential
role, see [7).

Finally we discuss the bridge between the Kantorovich inequality and the Lowner-Heinz
inequality via the condition number with the origin by Turing.

2. Cauchy-Schwarz inequality. The covariance-variance inequality is equivalent to the
Cauchy-Schwarz inequality[l]. Nevertheless we can discuss an improvement of the Cauchy-
Schwarz inequality lying on the line of the covariance-variance inequality .

First of all, we remark that the covariance-variance inequality (1) has a nice relation with
the Gram matrix as follows. For a unit vector z, the Gram matrix

(Az, Az) (Az,Bz) (Az,z)
(Bz, Az) (Bz,Bz) (Baz,x)
(z,Az) (z,Bz) (=z,7)

is positive definite and its determinant G(Az, Bz, z) is just the difference of the covariance-
variance inequality:

(4) G(Az, Bz, z) = Var(A)Var(B) — |Cov(4, B)|* > 0.

The covariance-variance inequality also appears in an improvement of Cauchy’s inequality
(see [9]): Let a1,--+ ,ax and by,::- ,bn be real numbers and let

u= n_lnz:a.- and v = n"lﬁZb.-.

Ea?Zb? - (z:a..-b;)2 > uZZb? - ZuvZa;b; +v? za?.

An operator version of this inequality is seemed to be as follows: If A and B are commuting
hermitian operators, then

(A%z, z)(B%z,z) — (ABz,z)* > (Az:z:,z)(Bz, z)? — 2(ABz, z)(Az, z)(Bz, z)
+ (B%z,z)(Az,z)? > 0

Then

(5)

for all unit vectors z. However the assumption of the commutativity on A and B is not needed;
as a matter of fact, we have the following operator version of Cauchy’s inequality, in which we
will be able to recognize the utility of the covariance-variance inequality:

Theorem 1. Let A and B be positive. Then
(6) (A2z,z)(B%z, z) - |(ABz, z)|? > (A%z, z)(Bz, z)? — 2|(ABz, z)|(Az, z)(Bz, z)
+ (B%z,z)(Az,z)2 > 0
for all unit vectors z.
Proof. By the covariance-variance inequality (1), we have
{(A%z, z) — (Az, z)*}{(B?z,z) — (Bz,z)?} > |(ABz, z) — (Az,z)(Bz, z)|?
> {(Az,z)(Bz,z) - |(ABz, 7)|}?
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It is easily checked that this inequality can be rephrased as the first inequality of (6). The
positivity of the middle term is shown as follows:

(A%z, z)(Bz,z)? - 2|(ABz, z)|( Az, z)(Bz, z) + (B?z, z)(Az, z)?
= {(A’a:,a:)lﬂ(B:c, z) — (B?%z,z)'/?( Az, :z:)}

+2{(4%2,2)"/*(B%z,z)"/? - |(ABa, 2)|} (Az,2)(Bz,z) > 0.0

3. H61der-McCarthy. inequality. In this section we show an operator version of Holder's
inequality and its complementary inequality. Moreover we generalize it using the geometric
mean in the Kubo-Ando theory[7]. The geometric mean A#B is defined by

A#B = AI/Q(A—I/QBA—I/Z)I/ZAI/Q

for positive invertible operators A and B.

We need the following useful result, which gives Jensen'’s inequality and a complementary
inequality of it with respect to the convex function f(z)=2f (p>1).

Lemma 2([9, p.694, (11.2)]). Let (a1,--- ,a,) and (w1, -+ ,wy) be n-tuples of nonnegative
numbers such that 0 < m <ar <M (k=1,---,n) and 3, w = 1. Then, forp > 1

M (S was)’ < S ned < 3oim 40 (Lwsen)

1 M?P —m? P P
where A(p;m, M) = {pllpqllq (O = )7 (7 —Mm.}’)l/‘l} and g = o1

If A is a selfadjoint operator with m < A < M, then for a unit vector z € H, there is a
spectral measure u, on [m, M} such that

M

(8) (APz,z) = / t*dy,.

m

Applying the inequality (7) to the approximate sum of the integral of (8), we have:

Theorem 3. Let A be a selfadjoint operator with m < A< M and p > 1. Then for a unit
vector z € H,

(9) : (Az, z)? < (APz,z) < A(p; m, M)(Az, z)P.

Here we note that the first inequality of (9) is due to McCarthy [8] and is called the Hélder-
McCarthy inequality[3].

If we replace = by z/||z|| in (9), and taking the p-th root of each term, we obtain
(10) (Az,z) < (APz, :z:)l/’"x”z/“ < A(p; m, M)I/P(Aa:, x),

foreveryxEHa.nd-;-+ql= .
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Recall the s-power mean A#,B (s € [0, 1]) in the Kubo-Ando theory;
A#,B = A‘/Z(A‘I”BA"/’)'A‘/Z.

Consequently, we have the following noncommutative version of Theorem 3.
Theorem 4. Let A and B be posstive operators satisfying0 <m; < A<M, and 0 <mz <
B < M;. Then forp> 1,9 > 1,%+%=1 and forxz € H,

(1) (Bl A'z,2) < (4°2,2)/7(B2,2) /0 < N gt ,—,.T)"'(B'#u,A'z. 2)

and

(12) (AP#./oB%z,z) < (APz,z)'/?(Bz, )1 < A(g; ’il , P_l)l/"(A"#V,B'z,z)

My

Proof. Replace A by (B~9/2A?B~/3)!/? and z by BY/3z in (10). Then we have

(13)
(BY*(B~/2 AP B~9/?)\/P B3z ) < (,4?.1.- z)l/P(B"a: z)!/e

< A(p; Mql_l , - )‘/’(B’/’(B"’”A'B“'/’)I/PBH’,,- z).
Since
P M?
—l <« mPB-1 < B-1/34PB-1/2 < MPB~1 < —L
M; =" - - 1 - mg ’
! —e/2 49 g-2/2)"/? M, ing th ] -
we havg T < (B A’B ) < —;=1- Hence (11) holds by noting that B4, ,, AP =

2 2
B1/2(B-1/2 Ap B—9/2)1/? B1/3_ The latter (12) is proved similarly.0

Thus a noncommutative variant of the Greub-Rheinboldt inequality[4] is also obtained by
putting p = ¢ = 2 in particular.
Corollary 5. Under the same assumption as in Theorem 4, the following holds:

mymg + My M,

2\/m1mgM M

Moreover, if A and B is replaced by AY? and A=/? respectively in (14), then the Kantorovich
inequality is obtained (cf. [10]):

(14) (A%#B%z,z) < (A%z, z)/3(B?z,2)!/? < ——=—=ar=rx(A*#B%z,2).

M
Az, z V(A 1z, 1/2 < m
A2y AT S oy

4. Kantorovich inequality. The Kantorovich inequality is a complementary one of the
Cauchy-Schwarz inequality and gives the bound of its ratio. Also it has many generalizations
(see (1) and Theorem 4).
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Now it is well known that t* (0 < s < 1) is an operator monotone function ([5]) and not so
is t2. However, by the Kantorovich inequality, we can say that ¢2 is order preserving in the
following sense.

Theorem 6. Let 0 < A< B and0<m < A< M. Then

2 ¢ (m'*‘M)sz.

4 4mM

Proof. By the Kantorovich inequality (3), we have

m m m 2
(A’z,x)sg-‘i-;—-}l:—;—)z-(Ax,x)z ( + )(B, z)? < (—-Z;:-AA?Q—(B%J)

for all unit vectors z.0
Similarly, if 0 < n < B < N, we have, by Theorem 6,

2
B-2% < (__+E_)_A-2 (_ﬂ)_’A_,.
- 4' N 41&N

So, as a variant of Theorem 6, we have
Theorem 6'. Let 0 < A< B and0<n < B< N. Then
N)?
2 (nt B2.
A%< 4nN
Following after Turing{11], the condition number x(A) of an invertible operator A is defined

by x(A) = ||A|| ||A~Y|l- i a positive operator A satisfies the condmon 0<m< A< M, then
it may be thought as M = ||4]| and m = ||A™}||™}, so that k(4) =

From the same viewpoint as Theorems 6 and 6', we estimate the function ¢ (p > 1) using
the condition number x(4) = &,
Theorem 7. Let 0< A< B and0<m < A< M. Then

AP < (%),B’ (»21).

Proof. We have
A% = BPB"?A* BPBP < ||B"P AP B~?||B** < ||A|*? ||B7}|[** B**,

so that this implies A7 < ||A||?||B-!|IPB? < M?(L)Br = (MypBr. o

Though the function e is not operator monotone, we have the following result as a conse-
quence of Theorem 7:
Corollary 8. Let 0 < A< B and0<m < A< M. Then

A <e*3.
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Proof. By Theorem 7, we have
o0 o0
1 1 M M
= LA S L (B =R e
»=! n=!

Remark. Finally we remark that Theorem 7 is extended to every increasing function f as
follows: If 0 < m < A < M and A < B are satisfied, then we obtain

14 < 1)

and
F(M)
f(4) S FE3H(B) (F(m)f(M) > 0),
because f(A) < f(M) < f(XB) and f(A) < f(M) = XL f(m) < {0 £(B).
References

[1] M.Fujii, T.Furuta, R.Nakamoto and S.I.Takahashi, Operator inequalities and covariance
in noncommutative probability, to appear in Math. Japonica

[2] M.Fujii, R.Nakamoto and Y.Seo, Covariance in Bernstein's inequality for operators,
to appear in Nihonkai Math. J.

[3] M.Fujii, S.Izumino and R.Nakamoto, Classes of operators determined by the Heinz-Kato-
Furuta inequality and the Holder-McCarthy inequality, Nihonkai Math.J., 5(1994), 61-67.

[4] W.Greub and W.Rheinboldt, On a generalization of an inequality of L.V.Kantorovich,
Proc. Amer. Math. Soc., 10(1959), 407-415.

[5] E.Heinz, Beitrige zur Storungstheorie der Spectralzerlegung, Math. Ann., 123(1951),
415-438.

(6] S.Izumino and Y.Seo, On Ozeki's inequality and noncommutative covariance, to appear
in Nihonkai Math.J.

[7] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.

[8] C.A.McCarthy, cp, Israrel J. Math., 5(1967), 249-271.

[9] D.S.Mitrinovié, J.E.Peéari¢ and A.M.Fink, Classical and New Inequalities in Analysis,
Kluwer Academic Publishers, 1993.

[10] R.Nakamoto and M.Nakamura. Operator mean and the Kantorovich inequality, Math.
Japonica, 44(1966), 495-498.

[11) A.M.Turing, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math.,
1(1948), 287-308.

[12] H.Umegaki, Conditional expectation in an operator algebra, Tohoku Math. J., 6(1954),
177-181.

* Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
*x Faculty of Education, Toyama University, Gofuku, Toyama-shi 930, Japan
* * * Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan

* * x* Tennoji Branchi, Senior Highschool, Osaka Kyoiku University, Tennoji, Osaka 543,
Japan

Received January 10, 1997 Revised March 21, 1997

—122 —



