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Abstract

The object of this paper is to improve some sufficient conditions
for p-valently starlikeness and for starlikeness of order a. Some new star-

likeness conditions are also presented.

1. Introduction
Let H denote the class of functions that are analytic in the open unit disk &/ and let

A= {feH: f(0) = F(0)—1=0).
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Denote by A(p) the subclass of H consisting of functions

fe) =+ 3 ans”  (pEN:i={1,2,3,)).
n=p+1

fz)e Alp) (0<a<p)

and

R{if—;%l}>a (z €lU),

then f(2) is said to be p-valently starlike of order a. We represent the class of such
functions by S3(a). Obviously, §3(a) = §*(a) is the familiar class of starlike functions of
order a.

Let f(z) € H and g(z) € H. We say that f(z) is subordinate to g(2), written f(2) < g(2)
or f < g, if there exists a Schwarz function w(z) € H, w(0) = 0, and |lw(2)] < 1in U, such
that f(z) = g (w(2)). It is known that, if g(2) is univalent in U, then f < g is equivalent
to

f(0)=g(0) and f(U)C g(U).

In this note, we improve some sufficient conditions for p-valently starlikeness and for star-

likeness of order a, and also obtain some new starlikeness conditions in terms of
zf'(z) zf"(z)
e d =/
) 20 ()
2. Preliminaries

We need the following lemmas to prove our results.

Lemma 1 (Miller et al. [5]). Let g(z) € H be a convez function in U (i.c., g(2) is univalent
and g(U) is a convez domain). If v # 0, R(7) 2 0, and f(z) € H, then

f<g=> ;1; /o ) fO " 1dt < ;1; /; g(t)t"" 1 dt. (1)

If f(2) € H with f(0) =0, then (1) holds true in the case vy =0.
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Lemma 2 (Miller and Mocanu [4]). Let s >0, A,B € [-1,1], and A# B. Ifp(z) € X

satisfies
zp'(z) 14 Az
sp(z) 1+ Bz’

p(z) +
then
1+ Az
He) < 4(e) < T

where q(z) given by

_ 2*(14+Bz)*(A-B)/B (B # 0)

s [ =114 Bt)*(A-B)/B 4t
]

q(z)

z* goA:

x
,ft.-x es At dt
°

(B=0)

is the best dominant.

Lemma 3 (Jack [2]). Let w(z) € H with w(0) = 0. If |w(z)| attains its mazimum value

on the circle |z| =r < 1 at 29, then

zow'(z) = mw(zg) (m2>1).

3. Two Sufficient Conditions for p-Valently Starlikeness

Nunokawa (7] proved that each of the following two conditions:

|1 + zf{'éi‘;) < ;1,.. %2(7;2 lOg(4eP—1) (f € A(p); ze u) (2)
and . .
p+1 z zfWP)(2
T+ vsz(P)(z() : < f(f-l)((z)) log4 (feAlp); z€l) (3)

implies that f(z) is p-valently starlike in U, that is, f(z) € 5;(0) = S;.

Nunokawa (7] also proposed the problem of finding the best constants in the above two
starlikeness conditions. Subsequently, Nunokawa [10, pp. 206-211] showed that the same
conclusion holds true if the constants in (2) and (3) are replaced by (p + 1)/p and &,

respectively. In this section, we shall improve the above results as follows.
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Theorem 1. Let f(z) € A(p) with f(z) #0 for 0 < |z| < 1. If f(z) satisfies

zf"(2)| _ |2f'(2)
1+ LD < | L ) ew, (4)
where k(p) € (1,2) is the unigque root of the equation:
1+p(1—k2)ln(1+%)=0, (5)

then f(z) € S;.

Proof. Let g(z) = p f(2)/(2f'(2)). Then, from the assumption, g(z) € H with g(0) = 1
and g(z) # 0 in U, and

lp—zd'(2)l <pk(p) (z€U). (6)
Let w(z) be defined by
W@ == E e, ()
where & = k(p) > 1.
It follows from (6) that
I% <1 (zel),

which is equivalent to |w(z)| < 1in ¥. -
From (7), we have

2d'(2) < (1= F) 5, ®

and by Lemma 1, we easily get
g(z)-<1+p(1-k2)ln(1+%). (9)
Since
— k2 z k2 1) _
®{1+5(1 k)ln(1+k)}>1+p(1 Ic)ln(1+k) 0 (zel),

we deduce from (9) that
R{g(2)} >0 (zeu),
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which shows that f(z) € S;. This evidently completes the proof of Theorem 1.

It may be of interest to note that, if we let

¢(k)=1+p(1—k2)ln<1+%),

then

(k) <0 (ke(1l,00)), #(2)<0, and ¢(1+1—g;>>0 (peN).

Thus the constant in (4) satisfies the inequality:

k(p)>% (p+%).

In the cases when p =1 and p = 2, we have

k(1) =1.809... and k(2)=1.3857....

Theorem 2. Let f(z) € A(p) with fP~1(z) # 0 in 0 < |z| < 1. If f satisfies

z f(p)( 2)

Zy| MY e, (10)

ll zf(?‘f‘l)(z)
f®)(2)

then f(2) € Sp(p—1).

Proof. Let g(z) = f(P~V)(z)/p!. Then g(z) € A(1) =4, 9(z) #0in 0 < |z| <1, and

zg"(2)| _ |z4'(2)
1+ (2 < o k(1) (z €elU).
Applying Theorem 1, we have
(» .
se{;(f_;l)((?)}>o (z €U). Ay
Let _ _
zf(P_J)(z) (.7 =0,1,"',P— 1)‘

4= G 00
Then ¢;(0) =1 and

24(2)  _14ig(2)
G0~ j+1

Q.f(z)+ (.7 = 1,2""’1’_1)’ (12)
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It follows from (11) and a result of Nunokawa [10, pp. 206-211] that
R{gj(2)} >0 (z2€U; j=0,1,---,p—1)

i.e.,
s § L VS .
(J p' ) f(p J 1)(z)€ ;+1 (J=0’1,...,p_1).

However, if we apply Lemma 2, we find that (11) or go(2) < (1 + 2)/(1 — z) implies that

q.i(z)+ (J :_q{§;)(z) < ]-:-1 (-7+ it:) (-7 =1,--+,p— 1)$ (13)

which yields
R{G+1Dgi(x)}>7 (G=1---,p—1; z€U)

or, equivalently,

6] ';!1)! f(P-J'-l)(z) € S;+1(j) G=1---,p=1; z€U).

Hence the required result follows. This completes the proof of Theorem 2.

4. Sufficient Conditions for Starlikeness

Let f(z) € A, B+ >0, and 8 > 0. Obradovi¢ and Owa [10, pp. 220-233] considered a
problem of Ruscheweyh and some related topics. They showed that, if

B >

<

21"(2)|°|2£'G) _|
f'(2) f(2)

then f(z) is starlike in U, that is, f(2) € §*(0) = S*. In this section, we shall extend this

result and some related results.

CYET (z € U), (14)

Theorem 3. Let f(z) € A with f(2) #0in0<|z| <1, <a<1,f+72>0,and $>0.
If f(2) satisfies the inequality:

B ¥

z2f"(2) < 2}3(1 _ a)ﬂ+‘1 (z € U), (15)

()
0) !

f(2)
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then

N oy H@ . a
f(z) € S*(a) d f(2) -<a—(1-—a)z'

Proof. Let us put

z2f'(2) o
= . 16

&)~ a—(-a)u@ - 19)
Then w(z) € H with w(0) = 0 and, by an easy calculation, we have

|rw!(2) + w(z)|® ()"

e — (1 — a)w(z)|ftY <2 (z €U). (17)

To prove Theorem 3, it suffices to show that |w(z)| < 1 in Y. If this is not the case, then
there is a point 29 with |z9] = p < 1, such that

max |w(z)| = [w(z)| = 1.
1z1<p
By Lemma 3, there exists a real number m > 1 such that

zow'(z0) = mw(zo).

Thus we get

|z0w'(20) + w(z0)|” lw(z0)|” _ (m+1)
ola _0(1_0,):,(20)|ﬂ+: = BT =) u(a) P > 2P, (18)

which contradicts (17). Therefore, we have |w(z)| < 1 in U, and it follows from (16) that

()« 2f'(2)
o) “a-(i-ayz R{ 7(2)

} >a (z€elU)
This completes the proof of Theorem 3.

The following theorem can be proved along similar lines and so we omit its proof.

Theorem 4. Let f(z) € A with f(z2) #0in0<|z|<1,} <a<1,8>0,and f+720.
If f(z) satisfies

5

zf"(z) g zf'(z) B o(1 — a)P 2 ’
LD <?arta-af  Gew, (19)
then f(z) € S*(a) and
zf(z) < > (z €U).

f(z) a-(1-a)z
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Several cases of Theorem 3 and Theorem 4, for special values of the parameters a, 3, and
v, will improve some other interesting known results.
In the rest of this section we restrict our discussion to the case when # =1 and vy =0. It

follows from Theorem 3 or Theorem 4 that, if { < a < 1, then

zf"(z) . zfl(z) o
f'(z)— <2(1-a)= f(z) € S*(a) and ) < popy e (20)
Owa [8] showed that
2f"(2) 1-a)3—a) .
) | < 2-a  —fR)ES(@  (0<a<i)
In the case when 0 < a < %, Li Jian Lin [3] improved Owa’s result and showed that
Zf"(z) . 0
| < M@) = f(2) € 5°(@) (o <a< §) ,

h
where 2 _a (O<a<l)
M(a) :=
(1-a)(1+ % (3<a<i).

Obviously, in the case when { < & < 1, (20) is much better than Owa’s assertions. The
following theorem will improve this result further.

Theorem 5. Let f(z) € H with f(2) #0in 0 < |z| < 1.

If
f'(z)

7(2) S, 7 (z €l),

O<u<l and '

then

» R .
The value of p is the best possible.

If

F2) < (o),

<a<l and

e—1
where p(a) € (0,1] is the unique root of the equation

p+a(l—e*)=0,
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then f(z) € S*(a). This sufficient condition for starlikeness of order a is sharp.

Proof. (i) If we put
Zf( ) (z € U),

P =0y
then
(=)
o=
reduces to
p(z) + (())<1+pz (21)

By using Lemma 2, we have the best dominant

Bz
p(e) < i —. (22)
Ruscheweyh and Singh [9] showed that
1 .
9(2) := € 5%(p),

that is, that

pzeh* 7
82{ }>e“_1 (z e U),

et -1
and this result is sharp. Combining this result with (22), we have the desired assertion of
Theorem 5(i).

(ii) Let
Y .
¢(k) = o —
Then
1
¢'(n) <0 (0<p<l), ¢0)=1, and ¢(1)= —
If
P fa<l,
then (ii) follows from (i) by letting
B _
eh — 1 «.
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This completes the proof of Theorem 5.

Miller and Mocanu [10, pp. 171-178] showed that, if 4 < 4.046.. ., then (21) implies (22).

Hence, if
etr -1

u(a) = sup { e 5@},

then

zf"(2)

f'(2)
and this sufficient condition is sharp. Anisiu and Mocanu [1] proved that u(0) = 2.83....

Sua)=> f(z)€S*(a) (0<a<]),

5. A Result Involving the Alexander Integral Operator

The integral operator introduced by J.W. Alexander is defined by

o= [ Ra  @eu see. (2)

Recently, Mocanu [6] proved that, if g(2) satisfies the inequality:

8
"(2)-1| <
16'(:) =1 < 5=

(z€l),

then

zf'(2) _ .
2 1|<1 (z elU).

In this section, we shall improve this result to the following form.

Theorem 6. For f(z) and g(z) given by (23), let
W@-1<s e (24)

Then

zf'(2)
0] -1|<1 (z eU).

Proof. 1t is easily seen from (24) that

g(z) <1+ -g-z.
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By Lemma 1, we also have

FE) <1+ 3z, (25)
Applying Lemma 1 once again, we obtain

f(z)

<1+ § z
or, equivalently, ,
@-1|<§ (z € U). (26)
Let
- 18 2 Z ), (27)

Then w(z) € H with w(0) = 0. If we suppose that there exists a point 29 € U such that

lw(2)] = [w(z0)| =1,

I'I<l ol

then, from Lemma 3, we have

2ow'(z0) = m w(zo) (m2=1).
Since

' f( ) '

g(z)=—"+2 {zw (2) +2w(2)},
we have
W) -1=|12 118 migue)| < (e
F4) 8 2

The inequality in (28) yields

OOIOO

f(z) _ ‘>(+2)§

20
which contradicts (26). Therefore, we have |w(z)| < 1 (z € /) or, equivalently,
f(z)

-1 <t cew. (29)
Finally, we observe from (26) that
f2)| 8
>3 (z elU). (30)
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The inequality (30), in conjunction with (29), yields

fi(z) - f(:)‘ < |f(:)| (z € U),

which shows that

2f'(2) _ ]
) 1' <1 (z €U).

This evidently completes the proof of Theorem 6.
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