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ABSTRACT

We determine the conditions for which confluent hypergeometric
functions are convex and starlike of order a.
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1.  INTRODUCTION
Let A denote the class of analytic functions f in the unit disk

= {z:|z|<1} with f(0) = 0, f'(0) = 1. We denote by S the subclass
of A consisting of univalent functions. A function feS*(o) S, 0<l1,
if and only if Re iz—gT)— > a, 2zeE. We call f a starlike function of
order o in E. Also, a function feS, satisfying Re {15;;%§%ll} > a,
0<a<l, zeE, is called a convex function of order « and we denote the
class consisting of such functions as C(a).

It is clear that

feC(a) if, and only if, zf'e S*(a), (1.1)
Let c be a complex numbers with ¢ # 0, -1, -2,...., and consider the
function defined by

ccoq) = ceg) = 1422, a(atl) 22 '
¢(a,c,z) = lFl(a,c,z) =1+ c 11 +a-ch-5' 51 + eeeo (1.2)

This function is called Confluent (or Kummer) hypergeometric function
and it is analytic in C. It satisfies Kummer's hypergeometric dif-
ferential equation

zw"(z) + (c-z)w'(z) - aw(z) = 0 (1.3)

If we let (d)k %’;—l

= d(d+1)....(d+k-1),
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and (d)o = 1, then (1.2) can be written as
o (a) b o k
_ k z _ r(c r(a+k) z
¢(asc;z) = 1 T, kKT~ T ag k) kT (1.4)
k=0 k k=0
It is well-known [1] that
c¢'(asc;z) = ag¢(a+l; c+l; z), (1.5)
z
¢(a;azz) = e (1.6)

Also, if Re ¢ > Re a > 0, then

¢(asc;z) = ?(3§£%%g:gy é

where

1 1
371 (1-0)°73 1 P24 = 1 ePZay(r), (1.7)
0

_ r{c a-1 c-a-1
ME) = T ey B (-0)

is a probability measure on [0,1]. In fact

1
({ du(t) = REY%%:‘ET . B(a, c-a) = 1, (1.8)

where B is the beta function.

2.  MAIN RESULTS
We shall now determine conditions on a and ¢ so that ¢ belongs to
*
C{a) and S (a).

Theorem 2.1
Let a, c and a be real numbers with a # 0, 0<<1l and satisfy
c>N(a, a), where

1-262+24+2 la 1-0) 2
c2(1-a)l L, lota] >'$—3-§'a)
N(a,a) = (2.1)

2 2 2 2
4(l-a) “(1+ta)-a 3-2a)( ota 1-a
2(3-2a) (=) * "‘2‘(1L)—)_-a > lara] <1375

Then ¢(a;c;z) is convex of order o« in E.

To prove this, we follow the technique of Miller and Mocanu [2] and we
need the following result which is a special case of Theorem 1 in [3].
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Lemma 2.1
Cet D be a set in the complex plane € and let a function

H:0? x E —> ¢ satisfy the condition

2
H(is;t;z) % D for zeE and for real s,t with t <-ZLE%;L-1 . If pis

analytic in E with p(0) =1 and H(p(z); zp'(z):2) e E, z ¢ E, then
Re p(z) > 0 in E.

Proof of Theorem 1
Let

(Ertd + 1) = (1-0) p(2) * @ (2.2)

where ¢'(z) = ¢'(a;c;z) # 0, see [2]. Clearly the function p(z) is
analytic in E with p(0) = 1. Since ¢ satisfies the differential
equation (1.3), we use (2.2) in (1.3) to have

{zp'(2) + (1-a)p?(2) + (1-0)(c-2+a-2) p(2)
- [(1-a)c+z(a*a) - (1-0) %} =0 (2.3)

Let
H(wys W5 2) = w, + (1-a) Wi + (1-a)(c-z+a-2)w,
- [(1-o)c+z(ata) - (1-0) %
and D = {0}, then (2.3) can be written as
H(p(z); zp'(z); z) €D
We shall use Lemma 2.1 to prove that Re p(z) > 0.

Let z =x + iy. Then

Re H(is;t;z) = t-(1-a)s? + (1-a)ys - (1-a)(c-1+a) - (o+a)x

_(xs?) 2(1-a)s? | 2(1-d)ys-2(ata)x _ 2(1-q)(c-1+a)
2 2 2 2

- % [(3-20)s2-2(1-a)ys + 2(ara)x+2(1- o) (c-1-a)+1]
= Q(s)
Now Q(s) < O for all real s and x2+y2<1. In fact the Discriminant a

of Q(s) is

(1-0)%y? - (3-2a) [1+2(1-a) (c-1- a)+2( ata)x ]

>4
]

A

(1-a)? - (3-2a) [1+2(1-0a)(c-1-a) + 2(ata)x] - (1-a) %2
h(x)
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l-a 2
If  |a+ al <'%§:§£Y , then

h.(xo) =0 for = -(3-2"l (a"'a)

(1-a) 2

X0

and using (2.1), we have

h(x) < h(xy) = (1-a)? - (3-20) [1+2(1-a)(c-1-0) ] + (3-2:)21)0‘?)2
1-

<0 for -1 < x < 1.

2
If |otal| > ;:gl , then h(x) is monotone on (-1,1) and again, from

(2.1), we deduce that

h(x) < -(3-2q)[1+2(1-a)(c-1-a) ] + 2(2-3a)(a+|a])
<0

Hence, in both cases, a<0 for x2+y2<1. Also, from (2.1), we have
Q(0) < 0 and therefore

2
Re H(is;t;z) < 0, for zeE and all real s and t with t < - ili%—l.
Hence, from Lemma 2.1, we have Re p(z) > 0, zeE. This proves that

¢ € C(a) for zeE and c>N(a,a), where N(a,a) is given by (2.1).

Theorem 2.2
Let a#l and ¢ > 1+N(a-1,qa), 0<xl, where N(a,q) is as defined in
(2.1). Then z¢(azc;z) e S*(a) for zeE.

Proof: Its proof follows immediately from relations (1.1), (1.5) and
Theorem 2.1.

Remark
For o=0, we obtain the results proved in [2].

3.  APPLICATIONS
To illustrate some of the applications of our main result, we
need the following concepts.

0 oo

Let f(z) = z+ © a 2" and g(z) =z+ = b z". Then the
n=2 " n=2 "
Hadamard product (also called the convolution) of f and g is defined
as
f(z) *g(z) =z+ £ ab 2"
n=2 nn

It is known [4] that if feC(a), O<o<l and g is convex then f*geC(a).
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Let My» 0<i<5 be the linear operators defined on A by the equations

below.
wp(f(2)) = zf'(2), w(f(2)) = [f(2) + 2f'(z2) /2
tz)) = [ fLe) () =2 [
Uz( (Z)) = ({ —E—— dg, IJ3( (Z)) -7 Of (E)dE,
Z
u4(f(z)) = g LA 2 :,:éxg) dg, |x] <1, x#
z

w(F(2)) = X [ 7 £(e)dg, Re O

z 0

Each of these operators can be written, (see [5]), as a convolution
operator given by ui(f) = ¢i* f, 0<i<5, where

(z) = ¢ n" = 2,
% n=1 (1-z)2
2
z
oo Z - =
W = & .5,
n=1 (1-2)
W(2) = T L2 = . Log(1-2)
_ T 2 .n, -2[z + log(1l-2)]
¢3(Z) B nfl 1 2 7 z
(z) = ; 1 - x" M =L 1o [1155] |z]=1, x#
‘p4 n=1 (1 - x)n 1-X g l‘z > ’
_ ® 1+ n
v (2z) = nfl FI$ z', Re 0

For a given subclass M of S, let rC[M] denote the minimum radius of
convexity over all functions f in M. It is not difficult to find the
radius of convexity of each of the functions ¥ s 0<i b, that is

— 21
relvg) =2-73, ry) =53
and

reluy) = r(ug) =r (g) = r (g =1

These facts together with (Theorem 1.2) yield the following result as
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a consequence.

Theorem 2.3

Let a,c and o be real numbers with a#0, 0<o<l and c>N(a, a) where
N(a,a) is defined by (2.1). Then ”i(¢(z)) = ey € C(a) up to rc(qﬁ)
for each i, 0<i<b. Here ¢(z) = ¢(a;c;z).

It is known [6] that feC(a) implies that feS*(g) where

20-1 w el
2(1_21-20;) * 2

B(a) = (2.4)
1 1
2 Tog 2 °® e~ 7

and it is a sharp result.

Using this and Theorem 1, we immediately have the following
result.
Theorem 2.4

Let a,c and a be as defined in Theorem 2.1. Then ¢(a;c;z) € S*(8)
where g is given by (2.4).
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