#### MASATOSHI FUJII\* AND YUKI SEO\*\*

ABSTRACT. In this paper, we show reverse inequality to Araki's inequality and investigate the equivalence among reverse inequalities of Araki, Cordes and Löwner-Heinz inequalities. Among others, we show that if A and B are positive operators on a Hilbert space H such that  $0 < mI \le A \le MI$  for some scalars m < M, then

$$K(m, M, p) ||BAB||^p \le ||B^p A^p B^p||$$
 for all  $0 ,$ 

where K(m, M, p) is a generalized Kantorovich constant by Furuta.

#### 1. Introduction

Let A and B be positive operators on a Hilbert space H. The equivalence among Cordes and Löwner-Heinz inequalities was discussed by many authors. In [10], Furuta showed that the Cordes inequality for the operator norm

(1) 
$$||A^p B^p|| \le ||AB||^p$$
 for all  $0$ 

is equivalent to the Löwner-Heinz inequality (cf.[16])

(2) 
$$A \ge B \ge 0$$
 implies  $A^p \ge B^p$  for all  $0$ 

(cf. [7]). In [1], Araki showed a trace inequality which entailed the following inequality:

(3) 
$$||B^p A^p B^p|| \le ||BAB||^p$$
 for all  $0 .$ 

Moreover, it was shown in [8, 2] that the Cordes inequality (1) is equivalent to Araki's inequality (3).

On the other hand, Furuta [11] showed the following Kantorovich type inequalities of the Löwner-Heinz inequality (2): If A and B are positive operators such that  $0 < mI \le A \le MI$  for some scalars m < M, then

(4) 
$$A \ge B \ge 0$$
 implies  $K(m, M, p)A^p \ge B^p$  for all  $p > 1$ ,

where a generalized Kantorovich constant K(m, M, p) [5, 9, 13] is defined as

(5) 
$$K(m, M, p) = \frac{mM^p - Mm^p}{(p-1)(M-m)} \left(\frac{p-1}{p} \frac{M^p - m^p}{mM^p - Mm^p}\right)^p \qquad \text{for all real numbers } p.$$

We here cite Furuta's textbook [12] as a pertinent reference to Kantorovich inequalities.

<sup>1991</sup> Mathematics Subject Classification. 47A30 and 47A63.

Key words and phrases. Kantorovich inequality, Kantorovich constant, Operator inequality, Cordes inequality, Löwner-Heinz inequality, Araki's inequality.

In this note, we show reverse inequalities to Araki's inequality (3) and the Cordes inequality (1): If A and B are positive operators such that  $0 < mI \le A \le MI$  for some scalars m < M, then the following inequalities hold

(6) 
$$K(m, M, p) \|BAB\|^p \le \|B^p A^p B^p\|$$
 for all  $0 ,$ 

(7) 
$$K(m^2, M^2, p)^{1/2} ||AB||^p \le ||A^p B^p|| \quad \text{for all } 0$$

respectively. We moreover show that reverse inequalities (4), (6) and (7) are mutually equivalent.

## 2. Preliminary

Let A be a positive operator on a Hilbert space H and x a unit vector in H. Then it follows from Hölder-McCarthy inequality that

(8) 
$$(Ax, x) \le (A^p x, x)^{\frac{1}{p}}$$
 for all  $p > 1$ .

By using the Mond-Pečarić method [14, 15], we have the following reverse inequality of (8) [17, 6]:

**Lemma 1.** If A is a positive operator on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then for each  $\alpha > 0$ 

(9) 
$$(A^p x, x)^{\frac{1}{p}} \leq \alpha(Ax, x) + \beta(m, M, p, \alpha) for all p > 1$$

holds for every unit vector  $x \in H$ , where

(10)

$$\beta(m,M,p,\alpha) = \begin{cases} \frac{p-1}{p} \left(\frac{M^p - m^p}{\alpha p(M-m)}\right)^{\frac{1}{p-1}} + \frac{\alpha(Mm^p - mM^p)}{M^p - m^p} & \text{if } \frac{M^p - m^p}{pM^{p-1}(M-m)} \le \alpha \le \frac{M^p - m^p}{pm^{p-1}(M-m)}, \\ (1-\alpha)M & \text{if } 0 < \alpha \le \frac{M^p - m^p}{pM^{p-1}(M-m)}, \\ (1-\alpha)m & \text{if } \alpha \ge \frac{M^p - m^p}{pm^{p-1}(M-m)}. \end{cases}$$

*Proof.* For the sake of reader's convenience, we give a proof. Put  $\beta = \beta(m, M, p, \alpha)$  and

$$f(t) = (at+b)^{\frac{1}{p}} - \alpha t$$
 for  $a = \frac{M^p - m^p}{M-m}$  and  $b = \frac{Mm^p - mM^p}{M-m}$ .

Then it follows that

$$f'(t) = \frac{a}{p}(at+b)^{\frac{1}{p}-1} - \alpha$$

and the equation f'(t) = 0 has exactly one solution

$$t_0 = \frac{1}{a} \left(\frac{\alpha p}{a}\right)^{\frac{p}{1-p}} - \frac{b}{a}.$$

If  $m \le t_0 \le M$ , then we have  $\beta = \max_{m \le t \le M} f(t) = f(t_0)$  since

$$f''(t) = \frac{a^2(1-p)}{p^2}(at+b)^{\frac{1}{p}-2} < 0$$

and the condition  $m \leq t_0 \leq M$  is equivalent to the condition

$$\frac{M^p-m^p}{pM^{p-1}(M-m)} \leq \alpha \leq \frac{M^p-m^p}{pm^{p-1}(M-m)}.$$

If  $M \leq t_0$ , then f(t) is increasing on [m, M] and hence we have  $\beta = \max_{m \leq t \leq M} f(t) = f(M) = (1 - \alpha)M$ . Similarly, we have  $\beta = \max_{m \leq t \leq M} f(t) = f(m) = (1 - \alpha)m$  if  $t_0 \leq m$ . Hence it follows that

$$(at+b)^{\frac{1}{p}}-\alpha t \leq \beta$$
 for all  $t \in [m,M]$ .

Since  $t^p$  is convex for p > 1, it follows that  $t^p \le at + b$  for  $t \in [m, M]$ . By the spectral theorem, we have  $A^p \le aA + b$  and hence  $(A^p x, x) \le a(Ax, x) + b$  for every unit vector  $x \in H$ . Therefore we have

$$(A^{p}x,x)^{\frac{1}{p}} - \alpha(Ax,x) \leq (a(Ax,x)+b)^{\frac{1}{p}} - \alpha(Ax,x)$$
  
$$\leq \max_{m \leq t \leq M} f(t) = \beta(m,M,p,\alpha).$$

As a complementary result, we state the following lemma.

**Lemma 2.** If A is a positive operator on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then for each  $\alpha > 0$ 

holds for every unit vector  $x \in H$ , where

(12)

$$\overline{\beta}(m,M,p,\alpha) = \begin{cases} \frac{p-1}{p} \left(\frac{M^p - m^p}{\alpha p(M-m)}\right)^{\frac{1}{p-1}} + \frac{\alpha(Mm^p - mM^p)}{M^p - m^p} & \text{if} \quad \frac{M^p - m^p}{pm^{p-1}(M-m)} \leq \alpha \leq \frac{M^p - m^p}{pM^{p-1}(M-m)}, \\ (1-\alpha)M & \text{if} \quad \alpha \geq \frac{M^p - m^p}{pM^{p-1}(M-m)}, \\ (1-\alpha)m & \text{if} \quad 0 < \alpha \leq \frac{M^p - m^p}{pm^{p-1}(M-m)}. \end{cases}$$

By Lemmas 1 and 2, we have the following estimates of both the difference and the ratio in the inequality (8).

**Lemma 3.** If A is a positive operator on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then

(13) 
$$(A^{p}x, x)^{\frac{1}{p}} \leq K(m, M, p)^{\frac{1}{p}} (Ax, x) for all p > 1$$

and

(14) 
$$K(m, M, p)^{\frac{1}{p}}(Ax, x) \le (A^p x, x)^{\frac{1}{p}}$$
 for all  $0$ 

hold for every unit vector  $x \in H$ , where a generalized Kantorovich constant K(m, M, p) is defined as (5) in §1.

*Proof.* For p > 1, if we put  $\beta(m, M, p, \alpha) = 0$  in Lemma 1, then it follows that

$$\frac{p-1}{p} \left( \frac{M^p - m^p}{p(M-m)} \right)^{\frac{1}{p-1}} + \alpha^{\frac{p}{p-1}} \frac{(Mm^p - mM^p)}{M^p - m^p} = 0$$

and hence

$$\alpha^{\frac{p}{p-1}} = -\frac{p-1}{p} \left( \frac{M^p - m^p}{p(M-m)} \right)^{\frac{1}{p-1}} \frac{M^p - m^p}{Mm^p - mM^p}.$$

Therefore, we have

$$\alpha^{p} = \frac{M^{p} - m^{p}}{p(M - m)} \left(\frac{p - 1}{p} \frac{M^{p} - m^{p}}{mM^{p} - Mm^{p}}\right)^{p - 1}$$
$$= K(m, M, p)$$

and we obtain the desired inequality (13). We similarly have the inequality (14) by Lemma 2.

We remark that K(m, M, 2) coincides with the Kantorovich constant  $\frac{(M+m)^2}{4Mm}$ .

**Lemma 4.** If A is a positive operator on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then

(15) 
$$(A^{p}x, x)^{\frac{1}{p}} - (Ax, x) \leq -C(m^{p}, M^{p}, \frac{1}{p}) \quad \text{for all } p > 1$$

and

hold for every unit vector  $x \in H$ , where the constant C(m, M, p) [14, 18] is defined as

(17) 
$$C(m, M, p) = (p-1) \left( \frac{M^p - m^p}{p(M-m)} \right)^{\frac{p}{p-1}} + \frac{Mm^p - mM^p}{M-m}.$$

*Proof.* For p > 1, if we put  $\alpha = 1$  in Lemma 1, then it follows that

$$-C(m^{p}, M^{p}, \frac{1}{p}, 1) = (1 - \frac{1}{p}) \left( \frac{M - m}{\frac{1}{p}(M^{p} - m^{p})} \right)^{\frac{\frac{1}{p}}{\frac{1}{p} - 1}} - \frac{M^{p}m - m^{p}M}{M - m}$$
$$= \beta(m, M, p, 1)$$

and we obtain the desired inequality (15). We similarly have the inequality (16) by Lemma 2.  $\Box$ 

We summarize some important properties of a generalized Kantorovich constant [5, 13, 15].

**Lemma 5.** Let m < M be given. Then a generalized Kantorovich constant K(m, M, p) has the following properties.

- (i) K(m, M, p) = K(M, m, p) for all  $p \in \mathbb{R}$ .
- (ii) K(m, M, p) = K(m, M, 1-p) for all  $p \in \mathbb{R}$ .
- (iii) K(m, M, 0) = K(m, M, 1) = 1 for all  $p \in \mathbb{R}$ .
- (iv) K(m, M, p) is increasing for  $p > \frac{1}{2}$  and decreasing for  $p < \frac{1}{2}$ .
- (v)  $K(m^r, M^r, \frac{p}{r})^{\frac{1}{p}} = K(m^p, M^p, \frac{r}{p})^{-\frac{1}{r}}$  for  $pr \neq 0$ . In particular,  $K(m, M, p) = K(m^p, M^p, \frac{1}{p})^{-p}$  for  $p \neq 0$ .

3. Reverse inequality of Araki, Cordes and Löwner-Heinz inequalities First of all, we show the following reverse inequality to Araki's inequality (3).

**Theorem 6.** If A and B are positive operators on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then for each  $\alpha > 0$ 

(18) 
$$||BAB||^p \le \alpha ||B^p A^p B^p|| + \beta (m^p, M^p, \frac{1}{p}, \alpha) ||B||^{2p}$$
 for all  $0 ,$ 

or equivalently

(19) 
$$||B^p A^p B^p||^{\frac{1}{p}} \le \alpha ||BAB|| + \beta(m, M, p, \alpha) ||B||^2$$
 for all  $p > 1$ , where  $\beta(m, M, p, \alpha)$  is defined as (10).

*Proof.* For every unit vector  $x \in H$ , it follows that

$$((BAB)^{p}x, x)$$

$$\leq (BABx, x)^{p} \text{ by H\"older-McCarthy inequality and } 0 
$$= \left( (A^{p})^{\frac{1}{p}} \frac{Bx}{\|Bx\|}, \frac{Bx}{\|Bx\|} \right)^{p} \|Bx\|^{2p}$$

$$\leq \left( \alpha (A^{p} \frac{Bx}{\|Bx\|}, \frac{Bx}{\|Bx\|}) + \beta (m^{p}, M^{p}, \frac{1}{p}, \alpha) \right) \|Bx\|^{2p} \text{ by Lemma 1 and } \frac{1}{p} > 1$$

$$= \alpha (A^{p}Bx, Bx) \|Bx\|^{2p-2} + \beta (m^{p}, M^{p}, \frac{1}{p}, \alpha) \|Bx\|^{2p}$$

$$= \alpha \left( B^{p}A^{p}B^{p} \frac{B^{1-p}x}{\|B^{1-p}x\|}, \frac{B^{1-p}x}{\|B^{1-p}x\|} \right) \|Bx\|^{2p-2} \|B^{1-p}x\|^{2} + \beta (m^{p}, M^{p}, \frac{1}{p}, \alpha) \|Bx\|^{2p}$$

$$= \alpha \left( B^{p}A^{p}B^{p} \frac{B^{1-p}x}{\|B^{1-p}x\|}, \frac{B^{1-p}x}{\|B^{1-p}x\|} \right) \|Bx\|^{2p-2} \|B^{1-p}x\|^{2} + \beta (m^{p}, M^{p}, \frac{1}{p}, \alpha) \|Bx\|^{2p}$$$$

and

$$||Bx||^{2p-2}||B^{1-p}x||^2 = (B^2x, x)^{p-1}(B^{2-2p}x, x)$$

$$\leq (B^2x, x)^{p-1}(B^2x, x)^{1-p} = 1 \text{ by } 0 < 1 - p < 1.$$

By combining two inequalities above, we have

$$||BAB||^p = ||(BAB)^p||$$
  
 $\leq \alpha ||B^p A^p B^p|| + \beta (m^p, M^p, \frac{1}{p}, \alpha) ||B||^{2p}$ 

and hence we have the desired inequality (18).

Next, we show (18)  $\Longrightarrow$  (19). For p > 1, since  $0 < \frac{1}{p} < 1$ , it follows from (18) that

$$\|BAB\|^{\frac{1}{p}} \leq \alpha \|B^{\frac{1}{p}}A^{\frac{1}{p}}B^{\frac{1}{p}}\| + \beta(m^{\frac{1}{p}}, M^{\frac{1}{p}}, p, \alpha)\|B\|^{\frac{2}{p}}.$$

By replacing A by  $A^p$  and B by  $B^p$  in the above inequality respectively, we have

$$||B^{p}A^{p}B^{p}||^{\frac{1}{p}} \le \alpha ||BAB|| + \beta(m, M, p, \alpha) ||B^{p}||^{\frac{2}{p}},$$

and so we have the desired inequality (19). Similarly we can show (19) $\Longrightarrow$ (18). Therefore (18) is equivalent to (19).

**Remark 7.** Bourin [3, 4] showed the following result: If A and Z are positive operators such that  $0 < mI \le Z \le MI$  for some scalars m < M, then

$$||ZA|| \le \frac{M+m}{2\sqrt{Mm}}r(ZA),$$

where  $r(\cdot)$  is the spectral radius. J.I.Fujii, M.Tominaga and one of the authors [6] extended the result above as follows: Under the same assumption, for each  $\alpha > 0$ 

where  $\beta(m, M, p, \alpha)$  is defined by (10). Then it easily follows that Theorem 6 is equivalent to (20).

As a complementary result, we state the following theorem.

**Theorem 8.** If A and B are positive operators on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then for each  $\alpha > 0$ 

(21) 
$$||BAB||^p \ge \alpha ||B^p A^p B^p|| + \overline{\beta}(m^p, M^p, \frac{1}{p}, \alpha) ||B^{-1}||^{-2p} \quad \text{for all } p > 1,$$
 or equivalently

(22) 
$$||B^p A^p B^p||^{\frac{1}{p}} \ge \alpha ||BAB|| + \overline{\beta}(m, M, p, \alpha) ||B^{-1}||^{-2}$$
 for all  $0 , where  $\overline{\beta}(m, M, p, \alpha)$  is defined as (12).$ 

*Proof.* By a similar way in Theorem 6, for every unit vector  $x \in H$  we have

$$||Bx||^{2p-2}||B^{1-p}x||^2 = (B^2x, x)^{p-1}(B^{2-2p}x, x)$$
  
 
$$\geq (B^2x, x)^{p-1}(B^2x, x)^{1-p} = 1 \text{ by } 1 - p < 0$$

and

$$((BAB)^{p}x, x) \ge \alpha \left(B^{p}A^{p}B^{p}\frac{B^{1-p}x}{\|B^{1-p}x\|}, \frac{B^{1-p}x}{\|B^{1-p}x\|}\right) \|Bx\|^{2p-2} \|B^{1-p}x\|^{2} + \overline{\beta}(m^{p}, M^{p}, \frac{1}{p}, \alpha)\|Bx\|^{2p}$$

$$\ge \alpha \left(B^{p}A^{p}B^{p}\frac{B^{1-p}x}{\|B^{1-p}x\|}, \frac{B^{1-p}x}{\|B^{1-p}x\|}\right) + \overline{\beta}(m^{p}, M^{p}, \frac{1}{p}, \alpha)\|Bx\|^{2p}.$$

By a suitable unit vector  $x \in H$ , it follows that

$$||BAB||^{p} = ||(BAB)^{p}||$$

$$\geq \alpha ||B^{p}A^{p}B^{p}|| + \overline{\beta}(m^{p}, M^{p}, \frac{1}{p}, \alpha)||Bx||^{2p}.$$

Since  $(B^2x, x) \ge ||B^{-2}||^{-1}(x, x)$  and p > 1, we have

$$||Bx||^{2p} \ge ||B^{-2}||^{-p}$$

and hence we have the desired inequality (21). We can show (21)  $\iff$  (22) by a similar proof as in Theorem 6.

If we choose  $\alpha$  such that  $\beta = 0$  (resp.  $\overline{\beta} = 0$ ) in Theorem 6 (resp. Theorem 8), then we have the following ratio type reverse inequality to Araki's inequality.

Corollary 9. If A and B are positive operators on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then

(23) 
$$||B^p A^p B^p|| \le K(m, M, p) ||BAB||^p$$
 for all  $p > 1$ 

and

(24) 
$$K(m, M, p) ||BAB||^p \le ||B^p A^p B^p||$$
 for all  $0 ,$ 

where K(m, M, p) is defined as (5) in §1.

In particular,

(25) 
$$||B^2 A^2 B^2|| \le \frac{(M+m)^2}{4Mm} ||BAB||^2$$

and

(26) 
$$\frac{2\sqrt[4]{Mm}}{\sqrt{M} + \sqrt{m}} \|BAB\|^{\frac{1}{2}} \le \|B^{\frac{1}{2}}A^{\frac{1}{2}}B^{\frac{1}{2}}\|.$$

*Proof.* For p > 1, if we choose  $\alpha$  such that  $\beta(m, M, p, \alpha) = 0$  in Theorem 6, then it follows that  $\alpha^p = K(m, M, p)$  and so we have the desired inequality (23). Similarly we have the inequality (24) by Theorem 8. We have (24) (resp. (25)) if we put p=2 in (23) (resp. p = 1/2 in (24). 

If we put  $\alpha = 1$  in Theorem 6 and Theorem 8, then we have the following difference type reverse inequality to Araki's inequality.

Corollary 10. If A and B are positive operators on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then

(27) 
$$||B^p A^p B^p|| - ||BAB||^p \le C(m, M, p) ||B^{-1}||^{-2p} \quad \text{for all } p > 1,$$

and

(28) 
$$||BAB||^p - ||B^pA^pB^p|| \le -C(m, M, p)||B||^{2p}$$
 for all  $0 ,$ 

where C(m, M, p) is defined as (17).

In particular,

(29) 
$$||B^2 A^2 B^2|| - ||BAB||^2 \le \frac{(M-m)^2}{4} ||B^{-1}||^{-4}$$

and

(30) 
$$||BAB||^{\frac{1}{2}} - ||B^{\frac{1}{2}}A^{\frac{1}{2}}B^{\frac{1}{2}}|| \le \frac{(\sqrt{M} - \sqrt{m})^2}{4(\sqrt{M} + \sqrt{m})}||B||.$$

*Proof.* For p>1, if we put  $\alpha=1$  in Theorem 8, then it follows that  $\beta(m^p,M^p,\frac{1}{p},1)=$ -C(m, M, p) and so we have the desired inequality (27). Similarly we have the inequality (28) by Theorem 6. We have (29) (resp. (30)) if we put p = 2 in (27) (resp. p = 1/2 in (28).

Moreover, we obtain the following reverse inequality to the Cordes inequality by Corollary 9.

**Theorem 11.** If A and B are positive operators on H such that  $0 < mI \le A \le MI$  for some scalars m < M, then

(31) 
$$||A^p B^p|| \le K(m^2, M^2, p)^{\frac{1}{2}} ||AB||^p \text{ for all } p > 1$$

or equivalently

(32) 
$$K(m^2, M^2, p)^{\frac{1}{2}} ||AB||^p \le ||A^p B^p||$$
 for all  $0 .$ 

In particular,

(33) 
$$||A^2B^2|| \le \frac{M^2 + m^2}{2Mm} ||AB||^2$$

and

(34) 
$$\sqrt{\frac{2\sqrt{Mm}}{M+m}} ||AB||^{\frac{1}{2}} \le ||A^{\frac{1}{2}}B^{\frac{1}{2}}||.$$

*Proof.* For a given p > 1, it follows from Corollary 9 that

$$||B^p A^p B^p|| \le K(m, M, p)||BAB||^p$$

and hence

$$||A^{\frac{p}{2}}B^p||^2 \le K(m,M,p)||A^{\frac{1}{2}}B||^{2p}.$$

If we replace A by  $A^2$ , then we have

$$||A^p B^p||^2 \le K(m^2, M^2, p) ||AB||^{2p}$$

as desired.

The equivalence among the reverse inequalities of Araki, Cordes and Löwner-Heinz inequalities is now given as follows.

**Theorem 12.** For a given p > 1, the following are mutually equivalent: For all positive operators A, B such that  $0 < mI \le A \le MI$  for some scalars m < M

(A) 
$$A \ge B \ge 0$$
 implies  $K(m, M, p)A^p \ge B^p$ .

(B) 
$$||A^p B^p|| \le K(m^2, M^2, p)^{1/2} ||AB||^p.$$

(C) 
$$||B^p A^p B^p|| \le K(m, M, p) ||BAB||^p$$
.

(B') 
$$K(m^2, M^2, 1/p)^{1/2} ||AB||^{\frac{1}{p}} \le ||A^{\frac{1}{p}}B^{\frac{1}{p}}||.$$

(C') 
$$K(m, M, 1/p) ||BAB||^{\frac{1}{p}} \le ||B^{\frac{1}{p}}A^{\frac{1}{p}}B^{\frac{1}{p}}||.$$

*Proof.* The proof is divided into three parts, namely the equivalence  $(A) \Longrightarrow (B) \Longrightarrow (C) \Longrightarrow (A), (B) \Longleftrightarrow (B')$  and  $(C) \Longleftrightarrow (C')$ .

 $(A) \Longrightarrow (B)$ . It follows that

$$(A) \iff \|A^{-\frac{1}{2}}B^{\frac{1}{2}}\| \le 1 \to \|A^{-\frac{p}{2}}B^{\frac{p}{2}}\|^{2} \le K(m, M, p)$$

$$\iff \|A^{\frac{1}{2}}B^{\frac{1}{2}}\| \le 1 \to \|A^{\frac{p}{2}}B^{\frac{p}{2}}\|^{2} \le K(M^{-1}, m^{-1}, p) = K(m, M, p)$$

$$\iff \|AB\| \le 1 \to \|A^{p}B^{p}\| \le K(m^{2}, M^{2}, p).$$

If we put  $B_1 = B/||AB||$ , then it follows from  $||AB_1|| = 1$  that

$$||A^p B_1^p|| \le K(m^2, M^2, p)^{\frac{1}{2}} \iff ||A^p B^p|| \le K(m^2, M^2, p)^{\frac{1}{2}} ||AB||^p.$$

$$(B) \Longrightarrow (C)$$
. If we replace A by  $A^{\frac{1}{2}}$  in  $(B)$ , then it follows that

$$||A^{\frac{p}{2}}B^p|| \le K(m, M, p)^{\frac{1}{2}}||A^{\frac{1}{2}}B||^p.$$

Squaring both sides, we have

$$||B^p A^p B^p|| \le K(m, M, p) ||BAB||^p$$
.

$$(C) \Longrightarrow (A)$$
. If we replace B by  $B^{\frac{1}{2}}$  and A by  $A^{-1}$  in  $(C)$ , then it follows that

$$\|B^{\frac{p}{2}}A^{-p}B^{\frac{p}{2}}\| \leq K(M^{-1}, m^{-1}, p)\|B^{\frac{1}{2}}A^{-1}B^{\frac{1}{2}}\|^{p}.$$

By rearranging it, we have

$$||A^{-\frac{p}{2}}B^{p}A^{-\frac{p}{2}}|| \le K(m, M, p)||A^{-\frac{1}{2}}BA^{-\frac{1}{2}}||^{p}.$$

Since  $A \ge B \ge 0$ , it follows from  $A^{-\frac{1}{2}}BA^{-\frac{1}{2}} \le 1$  that

$$||A^{-\frac{p}{2}}B^pA^{-\frac{p}{2}}|| \le K(m, M, p)$$

and hence

$$B^p \leq K(m, M, p)A^p$$
.

 $(B) \iff (B')$ : If we replace A and B by  $A^{\frac{1}{p}}$  and  $B^{\frac{1}{p}}$  in (B) respectively, then it follows that

$$\begin{split} (B) &\iff \|AB\| \leq K(m^{\frac{2}{p}}, M^{\frac{2}{p}}, p)^{\frac{1}{2}} \|A^{\frac{1}{p}} B^{\frac{1}{p}}\|^{p} \\ &\iff \|AB\|^{\frac{1}{p}} \leq K(m^{\frac{2}{p}}, M^{\frac{2}{p}}, p)^{\frac{1}{2p}} \|A^{\frac{1}{p}} B^{\frac{1}{p}}\| \\ &\iff K(m^{2}, M^{2}, 1/p)^{\frac{1}{2}} \|AB\|^{\frac{1}{p}} \leq \|A^{\frac{1}{p}} B^{\frac{1}{p}}\| \quad \text{by (v) in Lemma 5} \\ &\iff (B') \end{split}$$

Similarly we have  $(C) \iff (C')$  and so the proof is complete.

# Acknowlegement

The authors would like to express their cordial thanks to Professor Jean-Christophe Bourin for his valuable suggestions.

### REFERENCES

- [1] H.Araki, On an inequality of Lieb and Thirring, Letters in Math. Phys., 19 (1990), 167-170.
- [2] R.Bhatia, Matrix Analysis, Springer, New York, 1997.
- [3] J.-C.Bourin, Compressions, Dilations and Matrix inequalities, Monographs in Research Group in Math, Inequal. and Appl., 2004.
- [4] J.-C.Bourin, Reverse inequality to Araki's inequality comparison of  $A^p Z^p A^p$  and  $(AZA)^p$ , to appear in Math, Inequal. and Appl.
- [5] J.I.Fujii, M.Fujii, Y.Seo and M.Tominaga, On generalized Kantorovich inequalities, Proc. Int. Sym. on Banach and Function Spaces, Kitakyushu, Japan, October 2-4, (2003), 205–213.
- [6] J.I.Fujii, Y. Seo and M. Tominaga, Kantorovich type reverse inequalities for operator norm, to appear in Math. Inequal. Appl.
- [7] M.Fujii and T.Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities, Math. Japon., 38 (1993), 73-78.
- [8] M.Fujii, T.Furuta and R.Nakamoto, Norm inequalities in the Corach-Porta-Recht theory and operator means, Illinois J. Math., 40 (1996), 527-534.
- [9] M.Fujii, S.Izumino, R.Nakamoto and Y.Seo, Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J., 8 (1997), 117-122.

#### M.FUJII AND Y. SEO

- [10] T.Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys., 1(1989), 135– 137.
- [11] T.Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2(1998), 137-148.
- [12] T.Furuta, Invitation to Linear Operators, Taylor and Francis, London and New York, 2001.
- [13] T.Furuta, Specht ratio S(1) can be expressed by Kantorovich constant K(p):  $S(1) = \exp K'(1)$  and its application, Math. Inequal. Appl., 6 (2003), 521-530.
- [14] J.Mićić, Y.Seo, S.-E.Takahasi and M.Tominaga, Inequalities of Furuta and Mond-Pečarić, Math. Inequal. Appl., 2 (1999), 83-111.
- [15] T.Furuta, J.Mićić, J.E.Pečarić and Y.Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in inequalities 1, Element, Zagreb, 2005.
- [16] G.K.Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36(1972), 309-310.
- [17] M.Tominaga, An Estimation of quasi-arithmetic mean by arithmetic mean and its applications, preprint.
- [18] T.Yamazaki, An extension of Specht's theorem via Kantorovich inequality and related results, Math. Inequal. Appl. 3 (2000), 89-96.
- \* DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN, E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
- \*\* TENNOJI BRANCH, SENIOR HIGHSCHOOL, OSAKA KYOIKU UNIVERSITY, TENNOJI, OSAKA 543-0054, JAPAN, E-mail address: yukis@cc.osaka-kyoiku.ac.jp

Received 7 July, 2005 Revised 14 September, 2005