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REVERSE INEQUALITIES OF ARAKI, CORDES AND
LOWNER-HEINZ INEQUALITIES

MASATOSHI FUJII* AND YUKI SEO**

ABSTRACT. In this paper, we show reverse inequality to Araki’s inequality and inves-
tigate the equivalence among reverse inequalities of Araki, Cordes and Lowner-Heinz
inequalities. Among others, we show that if A and B are positive operators on a Hilbert
space H such that 0 < mI < A < M1 for some scalars m < M, then

K(m,M,p)||BAB|? < ||BPAPB?|| foral0<p<1,
where K(m, M, p) is a generalized Kantorovich constant by Furuta.

1. INTRODUCTION

Let A and B be positive operators on a Hilbert space H. The equivalence among Cordes
and Lowner-Heinz inequalities was discussed by many authors. In [10], Furuta showed
that the Cordes inequality for the operator norm

(1) |APBP|| < ||AB|P  forall0<p<1

is equivalent to the Lowner-Heinz inequality (cf.[16])

(2) A>B>0 implies AP > BP forallO<p<1

(cf. [7]). In [1], Araki showed a trace inequality which entailed the following inequality:
(3) |B?PAPBP|| < ||[BAB|P forall 0 < p< 1.

Moreover, it was shown in [8, 2] that the Cordes inequality (1) is equivalent to Araki’s
inequality (3).

On the other hand, Furuta [11] showed the following Kantorovich type inequalities of
the Lowner-Heinz inequality (2): If A and B are positive operators such that 0 < mI <
A < M for some scalars m < M, then

(4) A>B>0 implies K(m,M,p)A? > BP for all p> 1,
where a generalized Kantorovich constant K (m, M, p) [5, 9, 13] is defined as
(5)

K(m,M,p) =

mMP — MmP (p—1 MP—mP
(p—1)(M —m) p mMP — Mmp

We here cite Furuta’s textbook [12] as a pertinent reference to Kantorovich inequalities.

p
) for all real numbers p.
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In this note, we show reverse inequalities to Araki’s inequality (3) and the Cordes
inequality (1): If A and B are positive operators such that 0 < mI < A < M1 for some
scalars m < M, then the following inequalities hold

(6) K(m, M,p)||BABI|PP < ||B*APB?|| forall 0 <p <1,
(7 K(m?, M?,p)'*||AB||P < ||APBP?|| forall0 <p <1,

respectively. We moreover show that reverse inequalities (4), (6) and (7) are mutually
equivalent.

2. PRELIMINARY

Let A be a positive operator on a Hilbert space H and z a unit vector in H. Then it
follows from Holder-McCarthy inequality that

(8) (Az,z) < (A”z,x)tl" for all p > 1.

By using the Mond-Pec¢ari¢ method [14, 15], we have the following reverse inequality of
(8) (17, 6l:

Lemma 1. If A is a positive operator on H such that 0 < mI < A < MI for some
scalars m < M, then for each a > 0

9) (4°2,2) < o(Az,7) + B(m, M,p,0)  for allp>1
holds for every unit vector x € H, where
(10)
1
-1 MP—mP \p-1 (MmP—mMP) . MP —mP MP—mP
B (M) + e i et < O S gttty
B(maMapva)': (l—a)M Zf 0<a£;_1\7§!—‘;(—1‘(}:_m)’
(1—-a)m if a> %

Proof. For the sake of reader’s convenience, we give a proof. Put g = §(m, M, p, a) and

M? —mP Mm?P — mMP
f(t)=(at+b)%~at for azw___:_ and b=_'7£‘M‘__T:T‘-
Then it follows that

£t = %(at +b)F ! —

and the equation f’(t) = 0 has exactly one solution

to = l(f‘f 2 _b
a' a a
If m < to < M, then we have 8 = maxm<i<m f(t) = f(to) since
2
1-—
F'(t) = %(at +b)r2<0
and the condition m < ty < M is equivalent to the condition

MP — mP << MP —mP
pMri(M —m) = * = pmpI(M —m)’
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If M < 1o, then f(t) is increasing on [m, M| and hence we have § = maxm<i<n f(t) =
f(M) = (1 —-a)M. Similarly, we have 3 = maxm<i<p f(t) = f(m) = (1 —a)m if t, < m.
Hence it follows that

(at+b)%—at§ﬁ for all t € [m, M].

Since t* is convex for p > 1, it follows that t* < at + b for t € [m, M]. By the spectral
theorem, we have AP < aA + b and hence (APz,z) < a(Az,z) + b for every unit vector

z € H. Therefore we have
(A”x,x)?l" — a(Az,z) (a(Az,z) + b)xl’ — a(Az, x)

max f(t) = B(m, M,p,a).

<
<
- m<t<M

d

As a complementary result, we state the following lemma.

Lemma 2. If A is a positive operator on H such that 0 < mI < A < MI for some
scalars m < M, then for each o > 0

(11) (APz, x)% > a(Az,z) + B(m, M, p, a) forall0<p<1
holds for every unit vector x € H, where
(12)
5t (i) SR MR < oS ot
B(m, M,p,a) ={ (1-a)M if a2 e, |
(1-a)m if 0<a$,m"%"%m—)-

By Lemmas 1 and 2, we have the following estimates of both the difference and the
ratio in the inequality (8).

Lemma 3. If A is a positive operator on H such that 0 < mI < A < MI for some
scalars m < M, then

(13) (A”a:,x)i < K(m, M,p)%(Aa:,x) forallp>1
and .
(14) K(m, M, p)%(Ax,x) < (A”:c,x)r% forall0<p<1

hold for every unit vector x € H, where a generalized Kantorovich constant K(m, M, p)
is defined as (5) in §1.

Proof. For p > 1, if we put 8(m, M, p,a) =0 in Lemma 1, then it follows that
p—l(M”-—m‘”)?’i_1 2 (Mm? — mMP)

P wr-m) T T e O
and hence
ap_l_—p_l(Mp_mp)m MP — mP
p \p(M-—m) MmpP — mM?r
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Therefore, we have

,_ MP—mP (p—1 MP—mP p-l
@ ~ p(M —m) ( P mMP—MmP)
= K(m, M, p)
and we obtain the desired inequality (13). We similarly have the inequality (14) by
Lemma 2. O

We remark that K (m, M,2) coincides with the Kantorovich constant %ﬁ.

Lemma 4. If A is a positive operator on H such that 0 < mI < A < MI for some
scalars m < M, then

(15) (A”x,x)% — (Az,z) < —C(mP, MP, %) forallp >1
and
(16) — C(m?P, MP?, %) < (A”a:,x)% — (Az,7) forallD<p<1

hold for every unit vector x € H, where the constant C(m, M, p) [14, 18] is defined as

MP —mP \#T  MmP — mM?
p(M —m) M-m

Proof. For p > 1, if we put a =1 in Lemma 1, then it follows that

17) C(m, M,p) = (p— 1) (

1

D wary
_C(mp,Mp,l,l)z(l_l)( M —m ) L MPm—mPM

- P p’ \ 3(Mr — ) M-m
= ﬂ(m7 M’ p, 1) »
and we obtain the desired inequality (15). We similarly have the inequality (16) by
Lemma 2. |

We summarize some important properties of a generalized Kantorovich constant [5, 13,
15].
Lemma 5. Let m < M be given. Then a generalized Kantorovich constant K(m, M, p)
has the following properties.

(i) K(m,M,p) = K(M, m,p) for allp € R.

(i) K(m,M,p) = K(m,M,1 —p) for allp € R.
(iii) K(m,M,0) = K(m,M,1) =1 for allp € R.
(iv) K(m, M, p) isl increasing for p > ‘% and decreasing for p < 1.

(v) K(m", M",2)» = K(mP, MP,Z)~~ for pr # 0.

In particular, K(m, M,p) = K(mP, MP, %)"’ for p # 0.
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3. REVERSE INEQUALITY OF ARAKI, CORDES AND LOWNER-HEINZ INEQUALITIES
First of all, we show the following reverse inequality to Araki’s inequality (3).

Theorem 6. If A and B are positive operators on H such that 0 < mI < A < M1 for
some scalars m < M, then for each o > 0

1
(18)  ||BABI|]” < o||B"APB?|| + B(m”, M?, o’ a)||BI*  forall0<p<1,
or equivalently
(19) |BP4?B?|[> < o | BABI| + 6(m, M,p, ) |BI*  for all p>1,
where B(m, M,p, «) is defined as (10).
Proof. For every unit vector z € H, it follows that

((BAB)Pz, )
'< (BABz,z)? by Holder-McCarthy inequality and 0 < p < 1

_ P %__B_“'_C_ Bz \* zl12P
= (“” nBa:u’anu) 1Bz

< (“(A 1Ba]l’ [Bal

= a(A?Bz, Bx)||Bz|®~? + f(m?, MP, 11—, o) Bz]|

) + B(m?P, MP, ;—),a)) |IBz||”” by Lemma 1 and % > 1

Bl-ry  Bl-rg
| B1-?z]||” || Bl1-Pz||

1
= o (B”A”B” ) | Bz~ B*~Px||* + B(m”, M",Z—),a)IIBxII”.

and

| Bz||~*||B'z||* = (B%z,z)"""(B* *z,1)
< (B2?z,z)P"Y(B%z,z)'?P=1 byO0<l-p<l1.
By combining two inequalities above, we have

IBAB|P = ||(BABY|
< ol BPAPBP| + B(mP, M?, % o)\ BI|

and hence we have the desired inequality (18).
Next, we show (18)==(19). For p > 1, since 0 < > < 1, it follows from (18) that

IBAB|? < o|B7A»Bs|| + B(m», M7, p,a)|| B>
By replacing A by A? and B by B? in the above inequality respectively, we have
1B>4B7|[» < a|| BABI| + B(m, M, p, )| B”||7,

and so we have the desired inequality (19). Similarly we can show (19)==>(18). Therefore
(18) is equivalent to (19). O
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Remark 7. Bourin [3, 4] showed the following result: If A and Z are positive operators
such that 0 <ml < Z < MI for some scalars m < M, then
M+m
2vVMm
where 7(-) is the spectral radius. J.I.Fujii, M.Tominaga and one of the authors [6] ez-
teneded the result above as follows: Under the same assumption, for each a > 0
(20) I(AZ°A)?|| < @ r(ZA?) + B(m, M,p,0)l|Al}  for allp > 1,

where B(m, M, p, a) is defined by (10). Then it easily follows that Theorem 6 is equivalent
to (20).

I1ZA]l <

r(ZA),

As a complementary result, we state the following theorem.

Theorem 8. If A and B are positive operators on H such that 0 < mI < A < M1 for
some scalars m < M, then for each o > 0

(1)  ||BAB|P > of|BPAPBP|| + B(m?, M?, %,a)HB‘IH’z‘” for allp > 1,
or equivalently
(22)  ||B*4?B?||> > o||BAB|| + B(m,M,p,e)||B7Y||*  forall0<p<]1,
wﬁere B(m, M, p, ) is defined as (12).
Proof. By a similar way in Theorem 6, for every unit vector z € H we have

| B||*~*||B'?z||* = (B%z,z)P~'(B* *z,z)
> (B%z,z)P '(B%*r,z)!'?=1 byl—p<0

and
((BAB)?Pz, x)

Bl-Px Bl-Pg ) — 1
> a | BPAPB? , Bz||*72|| B ?z||? + B(mP, M?, -, o)||Bz||*®
> o(Brarpr Bt Bt ) UBelP B el + B, M, )] B
Bl-Py  Bl-rg ) — 1
> a| BPAPB? , + B(mP, M?, =, a)||Bz||?*.
( B TBea)) A 5 VBl

By a suitable unit vector z € H, it follows that
IBAB|P = |[(BAB)|

> || BPAPB?|| + B(m?, M?, % &)||Bz||*.

Since (B%z,z) > ||B7%||"*(z,z) and p > 1, we have
|1 Bz||* > || B~?||7*

and hence we have the desired inequality (21). We can show (21) <= (22) by a similar
proof as in Theorem 6. v O

If we choose a such that 8 = 0 (resp. B = 0) in Theorem 6 (resp. Theorem 8), then
we have the following ratio type reverse inequality to Araki’s inequality.
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Corollary 9. If A and B are positive operators on H such that 0 < mlI < A< MI for
some scalars m < M, then

(23) |BPA”B*|| < K(m, M,p) ||BAB|P  forallp>1
and.
(24) K(m,M,p)||BAB|P < ||BPA?B?|| forall0<p<1,

where K(m, M, p) is defined as (5) in §1.
In particular,

2
(25) 182428 <« g e
and
(26) o %HBABH% < |B}atBi|.

Proof. For p > 1, if we choose « such that 8(m, M, p, @) = 0 in Theorem 6, then it follows
that o? = K(m, M, p) and so we have the desired inequality (23). Similarly we have the
inequality (24) by Theorem 8. We have (24) (resp. (25)) if we put p = 2 in (23) (resp.
p=1/2in (24). O

If we put @ = 1 in Theorem 6 and Theorem 8, then we have the following difference
type reverse inequality to Araki’s inequality.

Corollary 10. If A and B are positive operators on H such that 0 <ml < A< M1 for
some scalars m < M, then

(27) ||BPAPBP|| — || BAB||? < C(m, M,p)HB_lll_?p forallp > 1,
and
(28) ||BAB|P — ||BPAPB?|| < —C(m, M, p)||B[|2p forall0 <p<1,

where C(m, M, p) is defined as (17).

In particular,

29 1824257~ BABIP < YL ey
‘and

b\ Biatph) < M Vi)
(30) IBABI: - B aiph) < OV gy

Proof. For p > 1, if we put o = 1 in Theorem 8, then it follows that g(m?, M?, ;7, 1) =
—C(m, M, p) and so we have the desired inequality (27). Similarly we have the inequality
(28) by Theorem 6. We have (29) (resp. (30)) if we put p = 2 in (27) (resp. p =1/2in
(28). O

Moreover, we obtain the following reverse inequality to the Cordes inequality by Corol-
lary 9.
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Theorem 11. If A and B are positive operators on H such that 0 < ml < A < MI for
some scalars m < M, then

(31) ||APBP|| < K(mz,Mz,p)% |AB||P  for allp > 1
or equivalently
(32) K(m? M2 p)%||AB|P < ||A*B®||  forall0<p< 1.
In particular,
M? + m?

22 < 2
(33) 14282 < S| 4B
and
(34) 2vMm, B < |14} B,

M+m

Proof. For a given p > 1, it follows from Corollary 9 that

|B*APB®|| < K(m, M, p)|BAB|
and hence

143 B?||” < K(m, M, p)|| A2 B||*.
If we replace A by A2, then we have

|47 BP||? < K (m? M?,p)||AB||*
as desired. a

The equivalence among the reverse inequalities of Araki, Cordes and Léwner-Heinz
inequalities is now given as follows.

Theorem 12. For a given p > 1, the following are mutually equivalent: For all positive
operators A, B such that 0 < mI < A < MI for some scalars m < M

(A) A>B>0 implies K(m,M,p)A? > BP.
(B) |47 B?|| < K(m?, M?,p)"/?||ABIP.

(©) |B?APBP|| < K(m, M, p)||BABIP".

(B") K (m? M2,1/p)"/*| AB||> < || A7 B7].

() K(m,M,1/p)||BAB||? < ||B? A?B#||.

Proof. The proof is divided into three parts, namely the equivalence (A) = (B) =
(C) = (A), (B) < (B') and (C) <= (C').
(A) = (B). It follows that

(4) < ||A3B|| < 1 |A"EBE|? < K(m, M, p)
> ||A¥B3| < 1 - |AEBE|? < K(M~',m™!,p) = K(m, M, p)
< [|AB|| < 1 — || APB?|| < K(m?, M?,p).
If we put B, = B/||AB||, then it follows from ||AB,|| = 1 that
|47 BY|| < K (m?, M?,p)% <= || APBP|| < K (m?, M?,p)%|| AB]|P.
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(B) = (C). If we replace A by A? in (B), then it follows that
142 B|| < K (m, M, p)? || Az BIP".
Squaring both sides, we have
B4 B7|| < K (m, M, p)|| BABIP.
(C) = (A). If we replace B by B 2 and A by A~! in (C), then it follows that
IBEATPBE| < K(M~',m™",p)||B* A~ B2|]".
By rearranging it, we have
|A~2BPA~%|| < K(m, M,p)||A"3 BA"|]P.
Since A > B > 0, it follows from A"2BA~% < 1 that
|A~$BPA-%|| < K(m, M, p)
and hence
BP < K(m, M, p)AP.
(B) <= (B'): If we replace A and B by A? and B? in (B) respectively, then it follows
that
(B) <= [|AB|| < K(m?», M>,p)? (| 4+ B
<= ||AB||> < K(m#, M>,p)%||A» B |

< K(m?,M2,1/p):||AB||? < |A*B?|| by (v) in Lemma 5
< (B')
Similarly we have (C) <= (C") and so the proof is complete. O
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