On Some EP Operators

Masuo Itoh

Abstract

Let H be Hilbert space, and let $T: H \to H$ be a bounded linear operator with closed range. In this paper, we introduce a new family of operators with generalized inverse T^{\dagger} such that $T^{\dagger}T \geq TT^{\dagger}$, which is weaker than the case of EP. Moreover we characterize such operators and give some fundamental properties.

1 Introduction and preliminaries

Throughout this paper we assume that H_1 , H_2 , and H are separable complex Hilbert spaces with inner product (\cdot, \cdot) . Let $B(H_1, H_2)$ be the set of all bounded linear operators from H_1 into H_2 . Let $B_C(H_1, H_2)$ be the subspace of all $T \in B(H_1, H_2)$ such that the range of T is closed in H_2 . If $H_1 = H_2 = H$, we write B(H) = B(H, H) and $B_C(H) = B_C(H, H)$. For $T \in B(H_1, H_2)$, ker T and R(T) denote the kernel and the range of T, respectively.

According to Nashed [6], $T \in B_C(H_1, H_2)$ has a Moore-Penrose inverse T^{\dagger} , that is, T^{\dagger} is the unique solution for the equations:

$$TT^{\dagger}T = T, \ T^{\dagger}TT^{\dagger} = T^{\dagger}, \ (TT^{\dagger})^* = TT^{\dagger}, \ \text{and} \ (T^{\dagger}T)^* = T^{\dagger}T,$$
 (1.1)

where T^* denotes the adjoint operator of T. Later of this, we write M-P inverse for short.

We need the following results of T^{\dagger} and R(T). See [3, 4, 5] for details.

Theorem A. (i) For any $T \in B_C(H_1, H_2)$ with M-P inverse T^{\dagger} , we have that

$$T^{\dagger}T = P_{R(T^{\dagger})}, \ TT^{\dagger} = P_{R(T)}, \ (T^{\dagger})^{\dagger} = T, \ \text{and} \ (T^{\dagger})^* = (T^*)^{\dagger},$$

where P_M is the orthogonal projection from H onto M.

- (ii) For any $T \in B(H)$,
- (1) R(T) is closed if and only if T^{\dagger} is bounded;
- (2) R(T) is closed if and only if $R(T^*)$ is closed.

An operator T in B(H) is said to be an EP operator if the range of T is equal to the range of its adjoint T^* , i.e., $R(T) = R(T^*)$. For $S, T \in B(H)$, we write

[S,T] := ST - TS for the commutator of S and T. We know that T in B(H) is EP if and only if $[T^{\dagger},T] = 0$ (see [7, 10]). An operator $T \in B(H)$ is called *normal* if $[T^*,T] = 0$ and *hyponormal* if $[T^*,T] \geq 0$ (see e.g. [9]).

2 Characterization of hypo-EP operators

In this section, we define a new family of operators and give some properties.

Definition. For an operator $T \in B_C(H)$, if $[T^{\dagger}, T] \geq 0$ then T is called a hypo-EP operator.

The following theorems immediately follows from the definition of hypo-EP operators, Theorems 2, 3 of §29 of [1] and (1) of Theorem A.

Proposition 2.1. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Then the following statements are equivalent:

- (1) T is hypo-EP;
- (2) $R(T^*) \supseteq R(T)$;
- (3) $R(T^{\dagger}) \supseteq R(T)$;
- $(4) T^{\dagger}T^{2}T^{\dagger} = TT^{\dagger};$
- (5) $T(T^{\dagger})^2T = TT^{\dagger}$;
- (6) $||T^{\dagger}Tx|| \ge ||TT^{\dagger}x||$ for all $x \in H$.

Remarks 2.2. By using the results of Douglas [2], the following statements can be proved. Here, we refer to a result, only.

Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Then the following statements are equivalent: (1) T is hypo-EP; (2) $\exists \alpha \geq 0$ s.t. $TT^* \leq \alpha T^{\dagger}(T^*)^{\dagger}$; (3) $\exists C \in B(H)$ s.t. $T = T^{\dagger}C$.

Theorem 2.3. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Then T is hypo-EP if and only if

$$||T^{\dagger}x|| \le ||T^{\dagger}||^2 ||Tx||$$
 for all $x \in H$.

Proof. Suppose that T is a hypo-EP operator. Then, from (6) of Proposition 2.1, T satisfies the following condition;

$$||T^{\dagger}Tx|| \ge ||TT^{\dagger}x||$$
 for all $x \in H$.

It follows from (1.1) that for all $x \in H$,

$$||T^{\dagger}x|| = ||T^{\dagger}TT^{\dagger}x|| \le ||T^{\dagger}|| ||TT^{\dagger}x||$$

$$\le ||T^{\dagger}|| ||T^{\dagger}Tx|| \le ||T^{\dagger}||^{2} ||Tx||.$$

Thus we have

$$||T^{\dagger}x|| \le ||T^{\dagger}||^2 ||Tx|| \text{ for all } x \in H.$$

Conversely, we suppose that $||T^{\dagger}x|| \leq ||T^{\dagger}||^2 ||Tx|| \ (\forall x \in H)$. Then,

$$Tx = 0 \Rightarrow T^{\dagger}x = 0$$
, i.e., $\ker T \subseteq \ker T^{\dagger}$.

Hence we have $(\ker T)^{\perp} \supseteq (\ker T^{\dagger})^{\perp}$. Now we notice that $(\ker T)^{\perp} = R(T^{*}) = R(T^{\dagger})$ and $(\ker T^{\dagger})^{\perp} = R(T)$. Therefore

$$R(T^*) = R(T^{\dagger}) \supseteq R(T)$$
, i.e., T is hypo – EP.

Theorem 2.4. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Then T is hypo-EP if and only if one of the following statements holds:

- (1) $T^{\dagger}T^2 = T$;
- (2) $T^*T^{\dagger}T = T^*$.

Proof. (1) From (4) and (5) of Proposition 2.1 we have that T is hypo-EP if and only if $R(T) \subseteq R(T^*) = R(T^{\dagger})$. Thus by (1.1) we have

$$T^{\dagger}T^2 = (T^{\dagger}T)T = P_{R(T^{\dagger})}T = T.$$

The converse is clear from $T^{\dagger}T = P_{R(T^{\dagger})}$.

(2) It is clear from (1.1) and (i) of Theorem A that

$$(T^{\dagger}T^2)^* = ((T^{\dagger}T)T)^* = T^*(T^{\dagger}T). \qquad \Box$$

Next, we give an example of hypo-EP operators. The following proposition is clear from the fact that if T is hyponormal then $R(T) \subseteq R(T^*)$.

Proposition 2.5. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . If T is hyponormal then it is hypo-EP.

The above proposition guarantees that introducing such an operator is meaningful.

3 Fundamental properties

In this section, we consider about three questions;

- (i) What condition is a hypo-EP operator EP?
- (ii) Is the limit of hypo-EP operators also hypo-EP?
- (iii) What is a value of $\gamma(T^{\dagger}T TT^{\dagger})$?

Next we show fundamental results to investigate hypo-EP operators with generalized inverse.

Theorem 3.1. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . If $[T^{\dagger}T, T+T^{\dagger}] = 0$ then T is hypo-EP.

Proof. By (1.1) and Theorem A,

$$\begin{split} [T^{\dagger}T,T+T^{\dagger}] &= T^{\dagger}T(T+T^{\dagger}) - (T+T^{\dagger})T^{\dagger}T \\ &= T^{\dagger}T^2 + T^{\dagger} - T - (T^{\dagger})^2T = 0. \end{split}$$

Multiplying by T on the left hand side, by (1.1) we have

$$TT^{\dagger} - (TT^{\dagger})(T^{\dagger}T) = 0.$$

Hence by Proposition 2.1 (5) we have the required conclusion. \Box

Corollary 3.2. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . If $[T, T^{\dagger}T] = 0$ then T is hypo-EP.

Proof. Since $[T, T^{\dagger}T] = 0$,

$$TT^{\dagger}T - T^{\dagger}T^2 = 0.$$

Multiplying by T^{\dagger} on the right hand side, by (1.1) we have

$$TT^{\dagger} = (T^{\dagger}T)(TT^{\dagger}).$$

Hence by Proposition 2.1 (5) we have the required conclusion. \Box

Theorem 3.3. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Suppose that T is hypo-EP. If $[TT^{\dagger}, T + T^{\dagger}] = 0$ then T is EP.

Proof. By (1.1) and Theorem A,

$$\begin{split} [TT^{\dagger}, T + T^{\dagger}] &= TT^{\dagger}(T + T^{\dagger}) - (T + T^{\dagger})TT^{\dagger} \\ &= TT^{\dagger}T + T(T^{\dagger})^2 - T^2T^{\dagger} - T^{\dagger}TT^{\dagger} \\ &= T + T(T^{\dagger})^2 - T^2T^{\dagger} - T^{\dagger} = 0. \end{split}$$

Thus, we have

$$T^{2} + T(T^{\dagger})^{2}T - T^{2}T^{\dagger}T - T^{\dagger}T$$
$$= (TT^{\dagger})(T^{\dagger}T) - T^{\dagger}T = 0.$$

Hence, we have

$$T^{\dagger}T \leq TT^{\dagger}$$
.

Here $T^{\dagger}T \geq TT^{\dagger}$, by assumption. Therefore, $T^{\dagger}T = TT^{\dagger}$, i.e., T is EP. Corollary 3.4. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Suppose that T is hypo-EP. If $[T, TT^{\dagger}] = 0$ then T is EP.

Proof. By (1.1),

$$[T, TT^{\dagger}] = T^2T^{\dagger} - TT^{\dagger}T$$
$$= T^2T^{\dagger} - T = 0.$$

Thus we have

$$(T^{\dagger}T)(TT^{\dagger}) = T^{\dagger}T.$$

Which means $T^{\dagger}T \leq TT^{\dagger}$. Thus T is EP by assumption.

Wei and Chen [11] proved the following theorem, which is a theorem for the continuity of T^{\dagger} .

Theorem B (Cor.1 of [11]). Let $T \in B_C(H_1, H_2)$, and let $\{T_n\}$ be a sequence of operators in $B_C(H_1, H_2)$. Let T_n^{\dagger} be the M-P inverse of T_n for every n. Suppose that $T_n \to T$ (with respect to the norm $\|\cdot\|$ on $B_C(H_1, H_2)$). Then the following conditions are equivalent:

- (1) $T_n^{\dagger} \to T^{\dagger}$;
- $(2) T_n^{\dagger} T_n \to T^{\dagger} T;$
- $(3) \sup_n ||T_n^{\dagger}|| < \infty.$

By Theorem B, we get the following theorem.

Theorem 3.5. Let $T \in B_C(H)$, and let $\{T_n\}$ be a sequence of hypo-EP operators in $B_C(H)$. Let T_n^{\dagger} be the M-P inverse of T_n for every n. Suppose that $T_n \to T$ (with respect to the norm $\|\cdot\|$ on $B_C(H)$). Then T is a hypo-EP operator.

Proof. It is clear from Theorem B that if $T_n \to T$ then $T_n T_n^{\dagger} \to T T^{\dagger}$. And following inequality holds,

$$||T_n^{\dagger}T_nx - T^{\dagger}Tx|| \ge |||T_n^{\dagger}T_nx|| - ||T^{\dagger}Tx|||.$$

Hence we have

$$||T_n^{\dagger}T_nx|| \to ||T^{\dagger}Tx||$$
 for all $x \in H$.

Similarly, we obtain

$$||T_nT_n^{\dagger}x|| \to ||TT^{\dagger}x|| \text{ for all } x \in H.$$

Therefore, by Proposition 2.1 (7), we have

$$||T^{\dagger}Tx|| = \lim_{n \to \infty} ||T_n^{\dagger}T_nx|| \ge \lim_{n \to \infty} ||T_nT_n^{\dagger}x|| = ||TT^{\dagger}x||.$$

That is, T is hypo-EP.

According to Kato [8], for $T \in B(H_1, H_2)$, the reduced minimum modulus $\gamma(T)$ of T is defined as follows:

$$\gamma(T) = \inf \frac{\|Tx\|}{\operatorname{dist}(x, \ker T)},$$

where $dist(x, \ker T) = \min_{y \in \ker T} ||x - y||$.

The following statements are well known, see [8] for details.

Theorem C. For any $T \in B(H)$. Then

- (1) R(T) is closed if and only if $\gamma(T) > 0$;
- (2) if $\gamma(T) > 0$ then $||T^{\dagger}|| = \frac{1}{\gamma(T)}$.

By using of Theorem C, we show the following theorem.

Theorem 3.6. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Suppose that T is hypo-EP but it is not EP. Then

$$\gamma(T^{\dagger}T - TT^{\dagger}) = 1.$$

To show this, we need the following two lemmas.

Lemma 3.7. Let P be a bounded projection operator. Then $P^{\dagger} = P$, $P^{\dagger}P = PP^{\dagger} = P$.

Proof. Since P is bounded, $P^{\dagger}P$ and PP^{\dagger} are projection operators. Hence $(P^{\dagger}P)^* = P^{\dagger}P$. It follows from $(P^{\dagger})^* = (P^*)^{\dagger} = P^{\dagger}$ that

$$PP^{\dagger} = P^*(P^{\dagger})^* = (P^{\dagger}P)^* = P^{\dagger}P.$$

Thus, we have $PP^{\dagger} = P^{\dagger}P$. Using the above relation, we have

$$P = PP^{\dagger}P = P^{2}P^{\dagger} = PP^{\dagger}$$

Hence,

$$P^{\dagger} = P^{\dagger}PP^{\dagger} = P^{\dagger}P = P.$$

Therefore,

$$P^{\dagger} = P$$
.

Theorem 3.8. Let $T \in B_C(H)$ with a bounded M-P inverse T^{\dagger} . Then

$$\gamma(T^{\dagger}T) = \gamma(TT^{\dagger}) = 1.$$

Proof. Since $T^{\dagger}T$ and TT^{\dagger} are bounded operators, from Theorem C

$$\gamma(T^{\dagger}T) = \frac{1}{\|(T^{\dagger}T)^{\dagger}\|} \text{ and } \gamma(TT^{\dagger}) = \frac{1}{\|(TT^{\dagger})^{\dagger}\|}.$$

Since $T^{\dagger}T$ and TT^{\dagger} are non-trivial projection operators, from Lemma 3.7 we have

$$||(T^{\dagger}T)^{\dagger}|| = ||T^{\dagger}T|| = 1$$
 and $||(TT^{\dagger})^{\dagger}|| = ||TT^{\dagger}|| = 1$.

Therefore,

$$\gamma(T^{\dagger}T) = \frac{1}{\|T^{\dagger}T\|} = 1 \text{ and } \gamma(TT^{\dagger}) = \frac{1}{\|TT^{\dagger}\|} = 1.$$

Proof of Theorem 3.6. Since T is not EP, $T^{\dagger}T - TT^{\dagger}$ is a non-trivial projection operator. Thus by Lemma 3.8 we have $||T^{\dagger}T - TT^{\dagger}|| = 1$. Therefore,

$$\gamma(T^{\dagger}T - TT^{\dagger}) = \frac{1}{\|(T^{\dagger}T - TT^{\dagger})^{\dagger}\|} = \frac{1}{\|T^{\dagger}T - TT^{\dagger}\|} = 1.$$

4 Acknowledgement

The author would like to express his thanks to the referee for several improvements on the presentation of this paper.

References

- [1] P. R. Halmos, Introduction to Hilbert Space, Chelsea, New York, (1957).
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Amer. Math. Soc. 17, 413-415, (1966).
- [3] R. Bouldin, *The pseudo-inverse of a product*, SIAM J. Appl. Math. **24** (4), 489-495 (1973).
- [4] R. Bouldin, The product of operators with closed range, Tôhoku Math.J. 25, 359-363 (1973).
- [5] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Willey, New York, (1974).
- [6] M. Z. Nashed, Perturbations and approximations for generalized inverses and linear operator equations, in: M. Z. Nashed(Ed.), Generalized Inverses and Approximations, Academic Press, New York/San Francisco / London, (1976).
- [7] S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations, Pitman, (1979).
- [8] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, (1984).

- [9] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Birkhäuser Verlag, Basel / Boston / Berlin, (1989).
- [10] D. S. Djorrdjević, Product of EP operators on Hilbert spaces, Proc. Amer. Math. Soc. 129 (6), 1727-1731 (2000).
- [11] Y. Wei and G. Chen, Perturbation of least squares problem in Hilbert spaces, Appl. Math. Comput. 121, 177-183 (2001).

Department of Mathematics Kagoshima National College of Technology, Kagoshima, 899-5193 JAPAN e-mail number: mitoh@kagoshima-ct.ac.jp

Received 15 February, 2005 Revised 18 April, 2005