
Nihonkai Math. J.
Vol.16(2005), 49-56

On Some EP Operators
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Abstract

Let $H$ be Hilbert space, and let $T$ : $H\rightarrow H$ be a bounded linear operator
with closed range. In this paper, we introduce a new family of operators with
generalized inverse $\tau\dagger$ such that $\tau\dagger\tau\geq\tau\tau\dagger$ , which is weaker than the case of EP.
Moreover we characterize such operators and give some fundamental properties.

1 Introduction and preliminaries
Throughout this paper we assume that $H_{1},$ $H_{2}$ , and $H$ are separable complex Hilbert

spaces with inner product $(\cdot, \cdot)$ . Let $B(H_{1}, H_{2})$ be the set of all bounded linear operators
from $H_{1}$ into $H_{2}$ . Let $B_{C}(H_{1}, H_{2})$ be the subspace of all $T\in B(H_{1}, H_{2})$ such that
the range of $T$ is closed in $H_{2}$ . If $H_{1}=H_{2}=H$ , we write $B(H)=B(H, H)$ and
$B_{C}(H)=B_{C}(H, H)$ . For $T\in B(H_{1}, H_{2})$ , ker $T$ and $R(T)$ denote the kernel and the
range of $T$ , respectively.

According to Nashed [6], $T\in B_{C}(H_{1}, H_{2})$ has a Moore-Penrose inverse $\tau\dagger$ , that is,
$\tau\dagger$ is the unique solution for the equations:

$\tau\tau\dagger\tau=T,$ $\tau\dagger\tau\tau\dagger=\tau\dagger,$ $(TT^{t})^{*}=\tau\tau\dagger$ , and $(T^{t}T)^{*}=\tau\dagger\tau$, (1.1)

where $\tau*$ denotes the adjoint operator of $T$ . Later of this, we write M-P inverse for
short.

We need the following results of $\tau\dagger$ and $R(T)$ . See [3, 4, 5] for details.

Theorem A. (i) For any $T\in B_{C}(H_{1}, H_{2})$ with M-P inverse $\tau\dagger$ , we have that

$\tau\dagger\tau=P_{R(T\dagger)},$ $\tau\tau\dagger=P_{R(T)},$ $(T^{\uparrow})^{t}=T$ , and $(T^{\uparrow})^{*}=(T^{*})^{\uparrow}$ ,

where $P_{M}$ is the orthogonal projection from $H$ onto $M$ .
(ii) For any $T\in B(H)$ ,

(1) $R(T)$ is closed if and only if $\tau\dagger$ is bounded;
(2) $R(T)$ is closed if and only if $R(T^{*})$ is closed.

An operator $T$ in $B(H)$ is said to be an $EP$ operator if the range of $T$ is equal
to the range of its adjoint $\tau*$ , i.e., $R(T)=R(T^{*})$ . For $S,$ $T\in B(H)$ , we write
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$[S, T]$ $:=ST-TS$ for the commutator of $S$ and $T$ . We know that $T$ in $B(H)$ is EP
if and only if $[T^{\uparrow}, T]=0$ (see [7, 10]). An operator $T\in B(H)$ is called normal if
$[T^{*}, T]=0$ and hyponormal if $[T‘, T]\geq 0$ (see e.g. [9]).

2 Characterization of hypo-EP operators
In this section, we define a new family of operators and give some properties.

Definition. For an operator $T\in B_{C}(H)$ , if $[\tau\dagger, \tau]\geq 0$ then $T$ is called a hypo-EP
operator.

The following theorems immediately follows from the definition of hypo-EP opera-
tors, Theorems 2, 3 of \S 29 of [1] and (1) of Theorem A.

Proposition 2.1. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Then the
following statements are equivalent:
(1) $T$ is hypo-EP;
(2) $R(T^{*})\supseteq R(T)$ ;
(3) $R(T^{t})\supseteq R(T)$ ;
(4) $\tau\dagger\dagger\dagger$

(5) $T(T)^{2}T=TT$ ;
(6) $||\tau\uparrow Tx\Vert\geq\Vert TT^{\uparrow}x||$ for all $x\in H$ .

Remarks 2.2. By using the results of Douglas [2], the following statements can
be proved. Here, we refer to a result, only.

Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Then the following statements are
equivalent: (1) $T$ is hypo-EP; (2) $\exists\alpha\geq 0$ s.t. $TT^{*}\leq\alpha T^{\uparrow}(T^{*})\dagger;(3)\exists C\in B(H)$ s.t.
$\tau=\tau\dagger c$ .

Theorem 2.3. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Then $T$ is
hypo-EP if and only if

$||T^{t}x||\leq||T^{\dagger}||^{2}||Tx||$ for all $x\in H$ .

Proof. Suppose that $T$ is a hypo-EP operator. Then, from (6) of Proposition 2.1,
$T$ satisfies the following condition;

$||T^{\dagger}Tx||\geq\Vert TT^{\dagger}x||$ for all $x\in H$ .

It follows from (1.1) that for all $x\in H$ ,

$|1\tau\uparrow x||=\Vert\tau\dagger\tau\tau\dagger_{x\Vert}\leq\Vert T^{\dagger}\Vert||TT^{\uparrow}x\Vert$

$\leq||\tau\uparrow||||\tau\dagger\tau_{x\Vert\leq||T^{\dagger}||^{2}||Tx||}$ .
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Thus we have
$\Vert T^{\uparrow}x\Vert\leq\Vert T^{\uparrow}\Vert^{2}\Vert Tx||$ for all $x\in H$ .

Conversely, we suppose that $\Vert T\dagger x\Vert\leq\Vert T^{\uparrow}\Vert^{2}\Vert Tx\Vert(\forall x\in H)$ . Then,

$Tx=0\Rightarrow\tau\dagger_{x}=0$ , i.e., ker $T\subseteq kerT^{\uparrow}$ .

Hence we have $(kerT)^{\perp}\supseteq(kerT\dagger)^{\perp}$ . Now we notice that $(kerT)^{\perp}=R(T^{*})=R(T^{\uparrow})$

and $(kerT^{\uparrow})^{\perp}=R(T)$ . Therefore

$R(T^{*})=R(T^{\uparrow})\supseteq R(T)$ , i.e., $T$ is hypo–EP. $\square $

Theorem 2.4. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Then $T$ is hypo-
EP if and only if one of the following statements holds:
(1) $\tau\dagger\tau^{2}=T$ ;
(2) $\tau*\tau\dagger\tau=T^{*}$ .

Proof. (1) From (4) and (5) of Proposition 2.1 we have that $T$ is hypo-EP if and
only if $R(T)\subseteq R(T^{*})=R(T\dagger)$ . Thus by (1.1) we have

$\tau\dagger\tau^{2}=(\tau\dagger\tau)T=P_{R(T\dagger)}T=T$ .

The converse is clear from $\tau\dagger\tau=P_{R(T\dagger)}$ .
(2) It is clear from (1.1) and (i) of Theorem A that

$(\tau\dagger\tau^{2})^{*}=((T^{t}T)T)^{*}=T^{*}(\tau\dagger\tau)$ . $\square $

Next, we give an example of hypo-EP operators. The following proposition is clear
from the fact that if $T$ is hyponormal then $R(T)\subseteq R(T^{*})$ .

Proposition 2.5. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . If $T$ is
hyponormal then it is hypo-EP.

The above proposition guarantees that introducing such an operator is meaningful.

3 Fundamental properties
In this section, we consider about three questions;

(i) What condition is a hypo-EP operator EP?
(ii) Is the limit of hypo-EP operators also hypo-EP?
(iii) What is a value of $\gamma(\tau\dagger\tau-TT^{\uparrow})$ ?

Next we show fundamental results to investigate hypo-EP operators with general-
ized inverse.
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Theorem 3.1. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . If $[T^{\uparrow}T, T+T^{\uparrow}]=0$

then $T$ is hypo-EP.

Proof. By (1.1) and Theorem $A$ ,

$[\tau\dagger\tau, \tau+T^{\uparrow}]=\tau\dagger\tau(\tau+T^{\uparrow})-(T+T^{t})T^{t}T$

$=\tau\dagger\tau^{2}+T^{t}-T-(T^{\dagger})^{2}T=0$ .
Multiplying by $T$ on the left hand side, by (1.1) we have

$\tau\tau\uparrow-(TT^{\uparrow})(T^{\uparrow}T)=0$ .

Hence by Proposition 2.1 (5) we have the required conclusion. $\square $

Corollary 3.2. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . If $[\tau, \tau\dagger\tau]=0$

then $T$ is hypo-EP.

Proof. Since $[T, T^{t}T]=0$ ,

$TT^{\uparrow}T-T^{t}T^{2}=0$ .

Multiplying by $\tau\dagger$ on the right hand side, by (1.1) we have

$\tau\tau\dagger=(\tau\dagger\tau)(TT^{t})$ .

Hence by Proposition 2.1 (5) we have the required conclusion. $\square $

Theorem 3.3. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Suppose that $T$

is hypo-EP. If $[TT^{\uparrow}, T+\tau\uparrow]=0$ then $T$ is EP.

Proof. By (1.1) and Theorem $A$ ,

$[\tau\tau\dagger, \tau+T^{t}]=TT^{t}(T+T^{\uparrow})-(T+T^{t})TT^{\uparrow}$

$=\tau\tau\dagger\tau+T(T^{\uparrow})^{2}-T^{2}T^{t}-\tau\dagger\tau\tau\dagger$

$=T+T(T)^{2}-TT-T^{\uparrow}=0$ .
Thus, we have

$T^{2}+T(T^{\uparrow})^{2}T-\tau^{2}\tau\uparrow T-T^{t}T$

$=(TT^{\dagger})(T^{\uparrow}T)-T^{t}T=0$ .

Hence, we have
$\tau\dagger\tau\leq\tau\tau\dagger$ .

Here $\tau\dagger\tau\geq\tau\tau\dagger$ , by assumption.
Therefore, $\tau\dagger\tau=\tau\tau\dagger$ , i.e., $T$ is EP. $\square $
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Corollary 3.4. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Suppose that $T$

is hypo-EP. If $[T, TT\dagger]=0$ then $T$ is EP.

Proof. By (1.1),
$[T, TT^{\dagger}]=T^{2}T^{\uparrow}-TT^{t}T$

$=T^{2}T^{\uparrow}-T=0$ .
Thus we have

$(T^{\uparrow}T)(TT^{\uparrow})=\tau\dagger\tau$ .

Which means $\tau\dagger\tau\leq\tau\tau\dagger$ . Thus $T$ is EP by assumption. $\square $

Wei and Chen [11] proved the following theorem, which is a theorem for the conti-
nuity of $\tau\dagger$ .

Theorem $B$ (Cor.1 of [11]). Let $T\in B_{C}(H_{1}, H_{2})$ , and let $\{T_{n}\}$ be a sequence of
operators in $B_{C}(H_{1}, H_{2})$ . Let $T_{n}^{\uparrow}$ be the M-P inverse of $T_{n}$ for every $n$ . Suppose that
$T_{n}\rightarrow T$ (with respect to the norm $\Vert$ . I on $B_{C}(H_{1},$ $H_{2})$ ). Then the following conditions
are equivalent:
(1) $T_{n}\dagger\rightarrow T^{\uparrow}$ ;
(2) $ T_{n}^{\uparrow}T_{n}\rightarrow\tau\dagger\tau$ ;
(3) $\sup_{n}\Vert T_{n}^{\uparrow\Vert}<\infty$ .

By Theorem $B$ , we get the following theorem.

Theorem 3.5. Let $T\in B_{C}(H)$ , and let $\{T_{n}\}$ be a sequence of hypo-EP operators
in $B_{C}(H)$ . Let $T_{n}^{\uparrow}$ be the M-P inverse of $T_{n}$ for every $n$ . Suppose that $T_{n}\rightarrow T$ (with
respect to the nom $\Vert$ . I on $B_{C}(H))$ . Then $T$ is a hypo-EP operator.

Proof. It is clear from Theorem $B$ that if $T_{n}\rightarrow T$ then $ T_{n}T_{n}^{1}\rightarrow\tau\tau\dagger$ . And
following inequality holds,

$||T_{n}^{t}T_{n}x-T^{\uparrow}Tx\Vert\geq|\Vert T_{n}^{t}T_{n}x\Vert-||T^{\uparrow}Tx|||$ .

Hence we have
$\Vert T_{n}^{1}T_{n}x\Vert\rightarrow\Vert T^{\uparrow}Tx\Vert$ for all $x\in H$ .

Similarly, we obtain
$\Vert T_{n}T_{n}^{\uparrow}x\Vert\rightarrow\Vert TT^{\uparrow}x\Vert$ for all $x\in H$ .

Therefore, by Proposition 2.1 (7), we have

$||T^{\uparrow}Tx\Vert=\lim_{n\rightarrow\infty}\Vert T_{n}^{t}T_{n}x\Vert\geq\lim_{n\rightarrow\infty}\Vert T_{n}T_{n}^{\uparrow}x\Vert=\Vert TT^{\uparrow}x||$ .

That is, $T$ is hypo-EP. $\square $
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According to Kato [8], for $T\in B(H_{1}, H_{2})$ , the reduced minimum modulus $\gamma(T)$ of
$T$ is defined as follows:

$\gamma(T)=\inf\frac{\Vert Tx\Vert}{dist(x,kerT)}$ ,

where dist( $x$ , ker $T$) $=\min_{y\in kerT}\Vert x-y\Vert$ .

The following statements are well known, see [8] for details.

Theorem C. For any $T\in B(H)$ . Then
(1) $R(T)$ is closed if and only if $\gamma(T)>0$ ;
(2) if $\gamma(T)>0$ then $\Vert\tau\uparrow\Vert=\frac{1}{\gamma(T)}$ .

By using of Theorem $C$ , we show the following theorem.

Theorem 3.6. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Suppose that $T$

is hypo-EP but it is not EP. Then

$\gamma(\tau\dagger\tau-TT^{\uparrow})=1$ .

To show this, we need the following two lemmas.

Lemma 3.7. Let $P$ be a bounded projection operator. Then $P^{\uparrow}=P,$ $P^{\uparrow}P=$

$PP^{\uparrow}=P$ .

Proof. Since $P$ is bounded, $P\dagger P$ and $PP^{\uparrow}$ are projection operators. Hence
$(P^{t}P)^{*}=P^{t}P$ . It follows from $(P^{\uparrow})^{*}=(P^{*})\dagger=P^{\uparrow}$ that

$PP^{\uparrow}=P^{*}(P^{\dagger})^{*}=(P^{\uparrow}P)^{*}=P^{\uparrow}P$.

Thus, we have $PP^{\uparrow}=P^{\uparrow}P$ . Using the above relation, we have

$P=PP^{\uparrow}P=P^{2}P^{\uparrow}=PP^{t}$ .

Hence,
$P\dagger=PPP=P^{\uparrow}P=P$.

Therefore,
$P^{\uparrow}=P$. $\square $

Theorem 3.8. Let $T\in B_{C}(H)$ with a bounded M-P inverse $\tau\dagger$ . Then

$\gamma(T^{\uparrow}T)=\gamma(TT^{t})=1$ .

Proof. Since $\tau\dagger\tau$ and $\tau\tau\dagger$ are bounded operators, from Theorem $C$

$\gamma(T^{\uparrow}T)=\frac{1}{\Vert(T\dagger T)\dagger\Vert}$ and $\gamma(TT\dagger)=\frac{1}{\Vert(TT\dagger)\dagger\Vert}$
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Since $\tau\dagger\tau$ and $\tau\tau\dagger$ are non-trivial projection operators, from Lemma 3.7 we have

$\Vert(\tau\dagger\tau)^{\uparrow}\Vert=\Vert T^{\uparrow}T\Vert=1$ and $\Vert(TT^{\uparrow})^{\uparrow}\Vert=\Vert TT\dagger\Vert=1$ .

Therefore,

$\gamma(T^{\uparrow}T)=\frac{1}{\Vert T\dagger T\Vert}=1$ and $\gamma(TT^{\uparrow})=\frac{1}{\Vert TT\dagger\Vert}=1$ . $\square $

Proof of Theorem 3.6. Since $T$ is not EP, $\tau\uparrow T-TT^{\uparrow}$ is a non-trivial projection
operator. Thus by Lemma 3.8 we have 1 $\tau\dagger\tau-\tau\tau\uparrow\Vert=1$ .
Therefore,

$\gamma(T^{\uparrow}T-TT^{\uparrow})=\frac{1}{\Vert(T\dagger T-TT\dagger)\dagger\Vert}=\frac{1}{\Vert T\dagger T-TT\dagger||}=1$ . $\square $
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