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A REMARK ON PREHOMOGENEOUS ACTIONS
OF LINEAR ALGEBRAIC GROUPS

MAKOTO NAGURA, TSUYOSHI NIITANI, AND SHIN-ICHI OTANI

ABSTRACT. Let $G$ be a connected linear algebraic group acting rationally on an
affine variety $V$ defined over an algebraically closed field of characteristic zero, and
$G^{\prime}$ a closed normal subgroup of $G$ such that $G/G^{\prime}$ is a torus. In this paper, we
show that the condition that a G-orbit $O$ in $V$ is decomposed into infinitely many
$G^{\prime}$-orbits can be characterized by the existence of a certain G-relative invariant on
the orbit $O$ . In fact, this is a condition ofwhether or not $G^{l}$ acts $prehomogen\infty usly$

on $O$ .

INTRODUCTION

Let $G$ be a connected linear algebraic group acting rationally on an affine variety
$V$ defined over an algebraically closed field of characteristic zero, and $G^{\prime}$ a closed

normal subgroup of $G$ such that $G/G^{\prime}$ is a torus. In this paper, we will show

that a G-orbit (i.e., a G-homogeneous space) $O$ in $V$ is decomposed into infinitely

many G’-orbits if and only if there exist a non-trivial rational character $\chi$ of $G$

and a non-constant rational function $f$ on the orbit $O$ such that $\chi|_{G^{\prime}}=1$ and
$f(g\cdot w)=\chi(g)f(w)$ for any $g\in G$ and $w\in O$ . As mentioned in Proposition 1.2,

this is equivalent to the condition that $O$ has no open G’-orbit.
Let $\rho:G\rightarrow GL(V)$ be a rational representation of a linear algebraic group $G$ on a

finite dimensional vector space $V$ . If $V$ is decomposed into a finite union of G-orbits,

it must have a unique Zariski dense orbit (we call it a finite prehomogeneous vector

space (abbrev. F.P.)). Such F.P. $s$ were first classified in the case of irreducible $\rho$

(see [6], \S 8), and next under the assumption that $\rho$ is the action of $G=G^{\prime}xGL(1)^{l}$

on $V$ which is the composite of a rational representation $\rho^{\prime}$ of a semisimple algebraic
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group $G^{\prime}$ and scalar multiplications $GL(1)^{l}$ on each irreducible component $V_{i}$ , where
$V=V_{1}\oplus\cdots\oplus V_{l}$ is the decomposition of $\rho^{\prime}$ into irreducible components (see [3]).

Up to now, some class of F.P. $s$ for semisimple algebraic groups has been classified
(see [5]). On the other hand, it is known that the condition that a representation

of $SL(d_{1})\times\cdots\times SL(d_{r})$ associated with an arbitrary quiver of type $A_{r}$ is not an
F.P. can be characterized by the existence of a certain absolute invariant (see [4]).
Our theorem (Theorem 2.2) gives a unffied understanding of the reason why a finite-
dimensional rational representation $\rho^{\prime}$ of a semisimple algebraic group $G^{\prime}$ is not an
F.P. though the composite of $\rho^{\prime}$ and scalar multiplications is an F.P.

Thanks are due to Professor Tatsuo KIMURA, who introduced this interesting
problem to the authors.

1. PRELIMINARIES

We assume that all are defined over an algebraically closed field $K$ of characteristic
zero.

Lemma 1.1. Let $G$ be a linear algebraic group acting rationally on an affine variety
$V$ , and $G^{\prime}$ a dosed subgroup of G. For $v\in V$ , let $G\cdot v=U_{\lambda\in A}G^{\prime}\cdot v_{\lambda}$ be the orbital
decomposition of the G-orbit $O=G\cdot v$ containing $v$ into G’-orbits. If $\#\Lambda<\infty$ ,
then we have dim $O=\dim G^{\prime}\cdot v_{\lambda}$ for some $\lambda\in\Lambda$ .

Proof. Let $O=G^{\prime}\cdot v_{1}u\cdots uG^{\prime}\cdot v_{r}$ be the decomposition into its finitely many $G$‘-

orbits. Taking the Zariski closure, we have $\overline{O}=\overline{G^{\prime}\cdot v_{1}}\cup\cdots\cup\overline{G^{\prime}\cdot v_{r}}$. The uniqueness
for the decomposition into irreducible components implies that $\dim\overline{O}=\dim\overline{G^{\prime}\cdot v_{\lambda}}$

for some $v_{\lambda}$ .
In general, we choose an irreducible component $U$ of $\overline{O}satis\Phi iug$ dim $\overline{O}=\dim U$ .

Considering the decomposition of $G$ into its connected components, we may assume
that $U=\overline{G^{o}\cdot w}$ for some $w\in O$ (here $G^{o}$ is the identity component of $G$). Then,
since the orbit $O$ is open in $\overline{O}$, we see that $U\cap O$ is open in the irreducible $U$ . Hence
we have dim0 $=\dim U=\dim U\cap O\leqq\dim O\leqq\dim\overline{O}$ . Consequently we obtain
our assertion. $\square $

Proposition 1.2. Let $G$ be a connected linear algebraic group acting rationally
on an affine vanety $V$ , and $G^{\prime}$ a dosed normal subgroup of G. For $v\in V$ , let
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$G\cdot v=u_{\lambda\in\Lambda}G^{\prime}\cdot v_{\lambda}$ be the orbital decomposition of the G-orbit $O=G\cdot v$ containing
$v$ into $G^{\prime}$ -orbits. Then the following seven conditions are equivalent:

(1) $\# A<\infty;i.e.,$ $O$ is decomposed into only finitely many $G^{\prime}$ -orbits.
(2) $\#\Lambda=1;i.e.,$ $O$ is $G^{\prime}$ -homogeneous.

(3) $O$ has a Zari.;$ki$ open $G^{\prime}- orbit,\cdot i.e.,$ $O$ is $G^{\prime}$ -prehomogeneous.
(4) $G=G^{\prime}H_{v}$ , where we put $H_{v}=\{g\in G;g\cdot v=v\}$ .
(5) dim $G=\dim G^{\prime}H_{v}$ .
(6) dim $G/G^{\prime}=\dim H_{v}/H_{v}\cap G^{\prime}$ .
(7) dim0 $=\dim G^{\prime}\cdot w$ for any $w\in O$ .

Proof. Since the canonical surjection $H_{v}\rightarrow G^{\prime}H_{v}/G^{\prime}$ is a morphism of algebraic
groups with kernel $H_{v}\cap G^{\prime}$ , we have dim $H_{v}=$ dim $H_{v}\cap G^{\prime}+\dim GH_{v}/G^{\prime}$ ; i.e.,

dim $H_{v}/H_{v}\cap G^{\prime}=\dim G^{\prime}H_{v}/G^{\prime}$ . On the other hand, we note that $H_{v}\cap G^{\prime}=H_{w}\cap G^{\prime}$

for any $w\in O$ because $G^{\prime}$ is a normal subgroup of $G$ . Thus we have

dim $G$ –dim $G^{l}H_{v}$

$=\dim G$ –dim $G^{l}-\dim G^{\prime}H_{v}+\dim G^{\prime}$

$=\dim G/G^{\prime}-\dim G^{\prime}H_{v}/G^{\prime}$

$=\dim G/G^{\prime}-\dim H_{v}/H_{v}\cap G^{\prime}$

$=\dim G$ -dim $ G^{\prime}-\dim$ $H$. $+\dim H_{v}\cap G^{\prime}$

$=\dim G-\dim H_{v}-\dim G^{\prime}+\dim H_{w}\cap G^{\prime}$ $foranyw\in O$

$=\dim O$ –dim $G^{\prime}\cdot w$ for any $w\in O$ .

Hence we obtain (5) $\Leftrightarrow(6)\Leftrightarrow(7)$ . Suppose that dim $G\neq>$ dim $G^{\prime}H_{v}$ . Then
the same calculation implies that dim $ O>\neq$ dim $G^{\prime}\cdot w$ for any $w\in O$ . Therefore
Lemma 1.1 implies $\#\Lambda=\infty$ , which shows that (1) $\Rightarrow(5)$ .

If $G\supsetneqq G^{\prime}H_{v}$ , then we have dim $ G>\dim G^{\prime}H_{v}\neq$ because $G^{\prime}H_{v}$ is a proper closed
subset of the irreducible variety $G$. Thus we have (5) $\Leftrightarrow(4)$ . Suppose that
$G=G^{\prime}H_{v}$ . Then, for any $w\in O$ , we can choose $g^{\prime}\in G^{\prime}$ and $h\in H_{v}$ satisfying
$(g^{\prime}h)\cdot v=w$ . Thus we have $g^{\prime}\cdot v=w$ , which shows that (4) $\Rightarrow(2)$ .

Obviously (2) implies (3). To show the converse, we take an arbitrary point $w$

belonging to an open G’-orbit in $0$ . Then $G^{\prime}H_{w}$ is open in $G$ , because it is the
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inverse image of the open orbit $G^{\prime}\cdot w$ under the morphism $G\rightarrow O,$ $g\leftrightarrow g\cdot w$ . Since
$G^{\prime}$ is a normal subgroup of $G$ , we have $G=G^{\prime}H_{w}$ , which implies (2). a

2. THE EXISTENCE OF RELATIVE INVARIANTS

Although the next lemma is well known in the theory of prehomogeneous vector
spaces, it is important for our theorem; so we will give the proof here (see [2],
Proposition 2.11).

For a linear algebraic group $G$ , we denote by $X(G)$ the group of all rational
characters of $G$ .

Lemma 2.1. Let $G$ be a connected linear algebraic group acting rationally on an

affine variety $V$ , and $H_{v}=\{g\in G;g\cdot v=v\}$ the isotropy subgroup at $v\in V$ .
Then, for any $\chi\in H_{v}^{\perp}=\{\chi\in X(G);\chi|_{H_{v}}=1\}$ , there evzsts a relative invar2ant
corresponding to $\chi$ on the orbit $O=G\cdot v$ ; that is, a rational fimction $f$ satisfying
$f(g\cdot w)=\chi(g)f(w)$ for any $g\in G$ and $w\in O$ . (Here we consider the restnction of
an element of the function field $K(O)$ of the irreducible variety $\overline{O}$ to be a rational

function on $O.$)

Proof. Take $\chi\in H_{v}^{\perp}$ . Then we can choose a regular function $\overline{f}$ on $G/H_{v}$ satisfying
$\overline{f}(gH_{v})=\chi(g)$ . Since the canonical bijective mapping $\pi:G/H_{v}\rightarrow O$ is a morphism

between non-singular irreducible algebraic varieties, we have $\pi(K(O))=K(G/H_{v})$

(here note that the field $K$ is of characteristic zero; see [1], AG. 18.2). Hence $\pi$ is
an isomorphism, and we can uniquely choose a regular function $f\in K(O)=K(O)$

satisfying $\overline{f}=f\circ\pi$ . In fact, it is explicitely given by $f.(w)=\chi(g)$ for $w=g\cdot v\in O$ ,

which is well-defined and is a relatively G-invariant regular function. $\square $

Theorem 2.2. In the same situation as in Proposition 1.2, assume that $G/G^{\prime}$ is a

torus. For a point $v\in V$ , we put $H_{v}^{\perp}=\{\chi\in X(G);\chi|_{H_{v}}=1\}$ and $ H_{v}^{\prime}\perp=\{\chi\in$

$X(G^{\prime});\chi|_{H_{v}^{\prime}}=1\}$ (here $H_{v}=\{g\in G;g\cdot v=v\}$ and $H_{v}^{l}=H_{v}\cap G^{\prime}$). Then the
following conditions are equivalent:

(1) The orbit $O=G\cdot v$ is decomposed into infinitely many G’-orbits; i.e., $O$ is
not $G^{l}$ -prehomogeneous.

(2) The restriction homomorphism $\pi$ : $H_{v}^{\perp}\rightarrow H_{v}^{\prime\perp}is$ not injective.
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(3) There exist a non-trivial rational character $\chi$ of $G$ and a non-constant ra-
tional function $f$ on the orbit $O$ such that $\chi|_{G^{l}}=1$ and $f(g\cdot w)=\chi(g)f(w)$

for any $g\in G$ and $w\in O$ .

Proof. Since ker $\varphi_{1}=X(G/H_{v}[G, G])\simeq H_{v}^{\perp}$ , ker $\varphi_{2}=X(G^{l}/H_{v}^{\prime})\simeq H_{v}^{\prime}\perp$ , and
$X(H_{v})=X(H_{v}[G, G])$ (here $[G,$ $G]$ is the commutator subgroup of $G$), the canonical

short exact sequences induce the following commutative diagram with exact rows
and columns:

$ 1\rightarrow$ ker $\varphi_{0}$
$\rightarrow$ $H_{v}^{\perp}$ $\rightarrow^{\pi}$ $ H_{v}^{\prime}\perp$

$\downarrow$ $\downarrow$ $\downarrow$

$1\rightarrow X(G/G^{l})$ $\rightarrow X(G)$ $\rightarrow X(G^{\prime})$

$\downarrow\varphi_{0}$ $\downarrow\varphi\iota$ $\downarrow\varphi_{2}$

$1\rightarrow X(H_{v}/H_{v}^{\prime})\rightarrow X(H_{v})\rightarrow X(H_{v}^{\prime})$ .

Note that $H_{v}/H_{v}^{\prime}(\simeq G^{l}H_{v}/G^{\prime})$ can be regarded as a closed subgroup of the torus

$G/G$‘, because they are defined over an algebraically closed field of characteristic $0$ .
So we see that they are diagonalizable, and hence we have dim $G/G^{\prime}=rankX(G/G^{l})$

and dim $H_{v}/H_{v}^{\prime}=rankX(H_{v}/H_{v}^{\prime})$ . On the other hand, we see that rank $X(G/G^{\prime})_{\neq}>$

rank $X(H_{v}/H_{v}^{\prime})$ if and only if $\varphi_{0}$ is not injective, because $X(G/G^{\prime})$ is a free abelian

group and the restriction homomorphism $\varphi_{0}$ is surjective. Since ker $\varphi_{0}\simeq$ ker $\pi$ ,

this condition is equivalent to the condition that $\pi$ is not injective. Therefore, by

Proposition 1.2, we obtain (1) $\Leftrightarrow(2)$ .
Note that the condition (2) is equivalent to the condition that there exists a non-

trivial character $\chi\in H_{v}^{\perp}$ satisfying xl $G^{\prime}=1$ . In particular, the condition (2) follows

from (3). Couversely, if the condition (2) is satisfied, then there exists a non-trivial
character $\chi\in H_{v}^{\perp}$ satisfying $\chi|_{G^{\prime}}=1$ . Therefore, by Lemma 2.I, we obtain the

condition (3). $\square $

In general, a rational representation $(G, V)$ of a connected linear algebraic group
$G$ on a finite dimensional vector space $V$ is called a prehomogeneous vector space
(abbrev. P.V.) if there exists $v\in V$ satisfying $\dim H_{v}=$ dim $G$ –dim $V$ , where
$H_{v}=\{g\in G;g\cdot v=v\}$ (see [2], \S 2.1). Thus Theorem 2.2 can be regarded as a
generalization of the criterion by Servedio [7], \S 3 (see also [2], Proposition 7.41).
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In the same situation as in Theorem 2.2, there exists an F.P. $(G, V)$ such that
$(G^{\prime}, V)$ is not an F.P. but a P.V.; i.e., a non-generic G-orbit is decomposed into
infinitely many G’-orbits:

Example 2.3. Let $(G, V)$ be the representation, of dimension $d=(1,3,1)$ , associ-
ated with the $A_{3}$-type quiver $\cdot\leftarrow\cdot\rightarrow\cdot$ ; that is, $G=GL(1)\times GL(3)\times GL(1)$ acts
on $V=M(1,3)\oplus M(1,3)$ by $g\cdot v=(g_{1}v_{1}g_{2}^{-1}, g_{3}v_{2}g_{2}^{-1})$ for $g=(g_{1},g_{2},g_{3})\in G$ and
$v=(v_{1}, v_{2})\in V$ . Then the torus-restricted subgroup $G^{l}=SL(1)\times GL(3)\times SL(1)$

also acts on $V$ . It is well known that $(G, V)$ is an F.P. (it has exactly five orbits).
Moreover we see that $(G^{\prime}, V)$ is a prehomogeneous vector space with a generic point
$v=((100), (001))$ ; that is, we have $G\cdot v=G^{\prime}\cdot v$ .

On the other hand, let $H_{w}=\{g\in G;g\cdot w=w\}$ be the isotropy subgroup at
$w=((001), (001))\in V$ , and put $H_{w}^{\prime}=H_{w}\cap G^{\prime}$ . Then we have dim $G/G^{\prime}=2>$

dim $H_{w}/H_{w}^{l}=1$ . Hence the orbit $G\cdot w$ is decomposed into infinitely many G’-orbits;
that is, $(G^{l}, V)$ is not an F.P.

In this case, since we can write the orbit as $G\cdot w=U_{1}UU_{2}\cup U_{3}$ , where

$U_{i}=$ { $((\alpha x_{1}\alpha x_{2}\alpha x_{3}),$ $(x_{1}x_{2}x_{3}))\in V;\alpha\in K^{x}$ and $x_{i}\neq 0$ },

a relatively G-invariant (and G’-invariant) regular function on the orbit $G\cdot w$ is given
by $f(x)=x_{i}/y_{i}$ on $U_{i}(i=1,2,3)$ for $x=((x_{1}x_{2}x_{3}), (y_{1}y_{2}y_{3}))\in V$ .
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