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Transcendental entire solution of
some $q$-difference equation
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Abstract
We treat linear q-difference equations with polynomial coefficients, in

which $q=e^{2\pi\lambda i},$ $\lambda\in(0,1)\backslash \mathbb{Q}$ . Supposing that there is a transcedental
entire solution $f(z)$ for this equation, we will show that $f(z)$ takes any
finite value infinitely often in any sector.
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1 Introduction
We consider here a q-difference equation

(1.1) $b_{p}(z)f(q^{p}z)+\cdots+b_{0}(z)f(z)=b(z)$ , $b_{j}(z),$ $b(z)\in \mathbb{C}[z]$ ,

with $b_{j}(z)=\sum_{k=0}^{B_{j}}b_{k}^{(j)}z^{k}$ $(b_{B_{j}}^{(j)}\neq 0),$ $0\leq j\leq p$ , in which we suppose that
$|q|=1$ , i.e., $q=e^{2\pi i\lambda}$ . Further we suppose that

(1.2) $q=e^{2\pi i\lambda}$ , $\lambda\in(0,1)\backslash \mathbb{Q}$ .

The equation (1.1) with $q$ in (1.2) may have transcendental entire solution. In
fact, Driver et al. [2] p. 474 showed that there exists a pair $(q, A),$ $q$ in (1.2)
and $|A|=1$ , such that the equation

(1.3) $qzf(qz)+(1-Az)f(z)=1$

has a transcendental entire solution $f(z)$ . See also [6].
By the way, Ramis [7] questioned whether (1.1) with $q$ in (1.2) would have

transcendental entire solution which also satisfies a linear differential equation.
Here we will consider some properties of solutions of (1.1) with $q$ in (1.2).
First, we introduce some notations: Put $B^{*}=$ max $B_{j}(B_{j}=\deg[b_{j}(z)])$

$0\leq j\leq p$

and $j_{1}<\cdots<j_{\tau}$ be such that $B^{*}=B_{j_{\ell}}(1\leq t\leq\tau)$ with $B_{j}<B^{*}(j\neq j_{t})$ .

Write $b_{t}=b_{B}^{(j_{\ell})}$ and set

(1.4) $\phi(z)=\sum_{t=1}^{\tau}b_{t}z^{j\ell-j_{1}}=0$ .
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Lemma 1.1 Let (1.1) be with $q=e^{2\pi t\lambda},$ $\lambda\in(0,1)$ , and $\phi(z)$ be as in (1.4).
Suppose (1.1) admits a transcendental entire solution $f(z)$ . Then the equation
(1.4) has at least one root of modulus 1.

Thus, if (1.1) has the only one coefficient of the highest degree, then $\phi(z)$ is a
non-zero const., and (1.1) cannot have any transcendental entire solution. E.g.,
$zf(qz)-f(z)=q^{2}z^{3}-z^{2}$ has no transcendental entire solution, while it has a
polynomial solution $f(z)=z^{2}$ . It may be $\lambda\in \mathbb{Q}$ or $\lambda\not\in \mathbb{Q}$ in the lemma.

In (1.4), write $ j_{\tau}-j_{1}=\iota$ . Denote by $\xi_{j},$ $ 1\leq j\leq\iota$ the roots of (1.4). By
Lemma 1.1, at least one of $\xi_{j}$ has modulus 1. Let $|\xi_{j}|=1$ for $ 1\leq j\leq\kappa$ , and
$|\xi_{j}|\neq 1$ for $\kappa<j\leq\iota$ . We write $\xi_{j}(1\leq j\leq\kappa)$ also as $q_{j}(1\leq j\leq\kappa)$ .

For (1.3), we have $\phi(z)=qz-A$ and $\xi_{1}=q_{1}=A/q$ , that is, $\iota=\kappa=1$ .
We will show an intersting property of solution of (1.3), i.e.,

Theorem 1.2 Suppose (1.1), with $\lambda$ in (1.2), admits a transcendental entire
solution $f(z)$ . Further assume that $\phi(z)$ in (1.4) has only one root of the modulus
1, $i.e.,$ $\kappa=1$ ( $\iota$ may $be>1$). Then, in any sector, $f(z)$ takes any finite value
infinitiely often.
When $\lambda\in \mathbb{Q}$ , the theorem does not hold. In fact, consider $f(z)=\cos z$ which
satisfies $f(-z)=f(z)$ , with $\lambda=1/2$ . Thus, value distributions of solutions
depend heavily on the irrationality of $\lambda$ .

Though the condition $\kappa=1$ is very restrictive, the equation (1.3) satisfies
this condition.

2 Proof of Lemma 1.1
We write the entire solution $f(z)$ as

(2.1) $f(z)=\sum_{\mathfrak{n}=0}^{\infty}\alpha_{\mathfrak{n}}z^{n}$ .

Denote by $\nu(r)$ the central index of $f(z),$ $[3]$ p.318.
We have, by (1.1) and (2.1), for any $n>\deg[b(z)]$ ,

$\sum_{\ell=1}^{\tau}b_{t}q^{j_{\iota}n}\alpha_{n}z^{\mathfrak{n}}z^{B}+\sum_{k=0}^{B-1}(\sum_{j=0}^{p}b_{k}^{(j)}\dot{\phi}^{(n+B-k))}\alpha_{n+B-k}z^{n+B-k}z^{k}=0$ .

Write $\beta_{(k,\mathfrak{n})}(z)=\alpha_{\mathfrak{n}+B^{*}-k}z^{\mathfrak{n}+B-k}/\alpha_{\mathfrak{n}}z^{\mathfrak{n}}$ , when $\alpha_{\mathfrak{n}}\neq 0$ . Then $|\beta_{\langle k,\nu(r))}(z)|\leq 1$

for $|z|=r$. Thus

$\sum_{t=1}^{\tau}b_{t}q^{(j_{t}-j_{1})\nu(r)}+q^{-j_{1}\nu(r)}\sum_{k=0}^{B-1}(\sum_{j=0}^{p}b_{k}^{(j)}q^{j(\nu(r)+B-k))}\beta_{(k,\nu(r))}(z)z^{k-B}$

(2.2) $=\phi(q^{\nu\langle r)})+O(1/z)=0$ ,

hence any accumulation value of $\{q^{\nu(r)}\}$ is a root of (1.4). $\square $
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3 Proof of Theorem 1.2

Let $f(z)$ be the transcendental entire solution of (1.1). Let $j_{1}<\cdots<j_{\tau}$ and
$b_{t}(1\leq t\leq\tau)$ be as in (1.4). Write $\iota=j_{\tau}-j_{1}$ as before.

Put $f_{0}(z)=f(z)$ and

$f_{j}(z)=f_{j-1}(qz)-\xi_{j}f_{j-1}(z)$ for $ 1\leq j\leq\iota$ .

Since we can write (1.1) as $\sum_{t=1}^{\tau}b_{t}z^{B}f(q^{j_{\ell}}z)=\sum_{j=0}^{p}b_{j}^{*}(z)f(q^{j}z)+b(z)$ with some

polynomials $b_{j}^{*}(z)$ , where $\deg[b_{j}^{*}(z)]<B^{*}$ , we have

$b_{\tau}f_{\iota}(z)=\epsilon_{p-j_{1}}(z)f(q^{p-j_{1}}z)+\cdots+\epsilon_{-j_{1}}(z)f(q^{-j_{1}}z)+\epsilon(z)$ ,

with rational coefficients $\epsilon_{j}(z),j=-j_{1},$ $\ldots$ , $p-j_{1}$ , which is $O(1/|z|)$ for large
$|z|$ , and a ratioal function $s(z)$ . Let $M(r, f)=\max_{|z|=r}|f(z)|$ .

Thus $f_{\iota}(z)=O(\Pi^{1}zM(|z|, f))=o(M(|z|, f))$ . If $\iota=\kappa=1$ , then

$(Q)$ $f_{1}(z)=f(qz)-q_{1}f(z)=O(|z|^{-1}M(|z|, f))$ .

If $\iota>\kappa$ , then $|\xi_{\iota}|\neq 1$ . Hence we have

$|f_{\iota-1}(z)||1-|\xi_{\iota}||\leq|f_{\iota}(z)|=O(|z|^{-1}M(|z|, f))$ .

Repeating this procedure, using the fact that $|\xi_{j}|\neq 1,1<j\leq\iota$ , we obtain the
above inequality $(Q)$ also.

Hence, if $\zeta=\zeta(r)$ is a point such that $|\zeta|=r,$ $|f(\zeta)|=M(r, f))$ then we
have

$f(q\zeta)=q_{1}f(\zeta)(1+o(1))$ ,

generally for $N\in N$ ,

(3.1) $f(q^{k}\zeta)=q_{1}^{k}f(\zeta)(1+o(1))$ , $|f(q^{k}\zeta)|=M(r, f)(1+o(1))$ , $1\leq k\leq N$ .

Suppose there is a sector $\triangle(\alpha, \beta, r_{0})=\{z ; \alpha<\arg[z]<\beta, |z|>r_{0}\}$ , in
which $f(z)$ has no zeros. Let $r_{0}<r_{1}<r_{2}$ and $0<\epsilon<\frac{1}{4}$

There is $\delta^{*}$ such that log $|f(r_{j}e^{2\pi t}\theta)|$ -log $|f(r_{j}e^{2\pi i\theta^{\prime}})||<\epsilon,j=1,2$ , when-
ever $\theta,$ $\theta^{l}\in(\alpha, \beta),$ $|\theta-\theta^{\prime}|<\delta^{*}$ .

Let $\alpha<\theta_{1}<\theta_{2}<\beta$ . Let $\delta>0$ be $\delta<\min(\theta_{1}-\alpha,\beta-\theta_{2}, \frac{1}{4}(\theta_{2}-\theta_{1}), \delta^{*})$ ,
and let $C(\theta, \delta)$ : $z=z_{\delta}(r;\theta)=re^{2\pi i\psi_{\delta}(r,\theta)},$ $ 0\leq r<\infty$ , be a curve such
that $|f(z_{\delta}(r;\theta)))|=\sup_{|\theta-\theta|\leq\delta}|f(re^{2\pi i\theta})|$ . The local maximum curve $C(\theta, \delta)$

is obtained by finding local maximum points of $U(r, \theta)=f(re^{2\pi i\theta})\overline{f(re^{2\pi i\theta})}$ in
$\theta-\delta\leq\theta\leq\theta+\delta$, by differentiation or others. It is a locally analytic curve.

By the way, the maximum curve, which is nothing but a trace of $\zeta=\zeta(r)$ ,
was given in a classical work of O. Blumenthal [1].

Take $N_{1}\in N$ so large that, each arc $\gamma(r, \theta, \delta)=\{z=re^{2\pi i\theta}$ ; $\theta-\delta<\theta<$

$\theta+\delta\}$ with opening $ 2\delta$ contains at least one $rq^{k},$ $1\leq k\leq N_{1}$ , by the uniform
distribution property of $k\lambda,$ $k\in N[5]$ .
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Let $\zeta(r),$ $|\zeta(r)|=r$ , be such that $|f(((r))|=M(r, f)$ . Since $\gamma(r, \theta_{j}, \delta),j=$

$1,2$ , contain at least one $q^{k}((r)$ , we have that $|f(z_{\delta}(r, \theta_{j}))|=M(r, f)(1+o(1))>$

$M(r, f)(1-\epsilon)$ . Further, for any $\theta\in[\theta_{1}, \theta_{2}]$ , the arc $\gamma(r_{j}, \theta, \delta)$ contains $q^{k}\zeta(r_{j})$ ,
and $|f(q^{k}\zeta(r_{j}))|>M(r_{j}, f)(1-\epsilon)$ by (3.1). Therefore for any $\theta_{1}\leq\theta\leq\theta_{2}$ ,
there is $k$ such that

log $|f(r_{j}e^{2\pi i\theta})|>\log|f(q^{k}\zeta(r_{j}))|-\epsilon>\log M(r_{j}, f)-2\epsilon$ , $j=1,2$ .

$u(r)=\log M(r, f)$ is convex with respect to $\log r$ , henoe $\nabla^{2}u\geq 0$ , and can be
considered as subharmonic [4] p.41. Sinoe $\log|f(z)|$ is harmonic, we get that

log $|f(z)|>\log M(r, f)-2\epsilon$ if $r_{1}\leq|z|\leq r_{2},$ $\theta_{1}+\delta\leq\arg[z]\leq\theta_{2}-\delta$.

For any $z,$ $r_{1}\leq|z|\leq r_{2}$ , there is a $\zeta,$ $\arg[\zeta]\in(\theta_{1}+\delta, \theta_{2}-\delta)$ , such that
$ z=q^{k}\zeta$ for some $k,$ $1\leq k\leq N_{1}$ . Hence $f(z)\neq 0$ for $r_{1}\leq|z|\leq r_{2}$ . Since $r_{1}<r_{2}$

are arbitrary, we see that $f(z)\neq 0$ for $|z|>r_{0}$ . Further we see that $ f(z)\rightarrow\infty$

as $ z\rightarrow\infty$ , which shows that the point at infinity is not essential singularity for
$f(z)$ , hence $f(z)$ is a polynomial, a contradiction.

For any $a\in \mathbb{C}$ , we have only to consider $f(z)-a$ for $f(z)$ . $\square $

The authors wish to express their hearty thanks to the referee, for his cordial
and valuable advice.
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