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Self-Dual Metrics on 4-dimensional Circle Bundles

- Mitsuhiro Itoh and Takafumi Satou

Abstract

A circle bundle P over an oriented 3-manifold is endowed with a
bundle metric g in terms of a connection y. We investigate the self-
duality of g in terms of Yang-Mills condition on vy and base metric cur-
vature conditions, and also verify the circle bundle version of Joyce’s |

~ theorem with respect to Einstein-Weyl structures together with the
generalized monopole solutions.

§1. Introduction Let m : P — M be a circle principal bundle over an
oriented Riemannian 3-manifold (M, k) and v a connection on P.
We have then a bundle metric g on P in terms of the base metric h and

7
g=v+h | (1)

Namely, with respect to this metric the vertical subspace V, 2 R, u € P,
is measured through v by the standard inner product of R and the hori-
zontal subspace H, = Tr, M by h such that V, and H, are required to be
orthogonal. '

The subject of t:hls paper is to investigate the self-duality of a bundle
metric on an oriented 4-manifold P. Here P is orientable, because T, P =
V. @ H, has the canonical orientation. So we fix an orientation of P in this
way. ~

“Consider a metric g on a general oriented 4-manifold X. We say that g is
self-dual when the half part of the Weyl conformal curvature tensor vanishes.

To define the self-duality of metric more precisely, we provide on the
bundle 92(X) of 2-forms the Hodge operator * which is an involution so that
22(X) decomposes into the +1 eigensubbundles Q. ;

(X)) =0 o 02. (2)
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The Weyl conformal curvature tensor W is regarded as an endomorphism
of Q*(X) which commutes with Hodge operator. So, W maps Q2 into 02

and we have the splitting;
W+ 0
W= ( 0 w- ) ®)

A metric g on X is self-dual ( anti-self-dual ) when W— =0 ( W+ = 0,
respectively )([1], [5]). If both W+ and W~ vanish, g is a conformally flat
metric. Note that the self-duality equation is the equation on a conformal
structure represented by a metric.

Consider the trivial case where P and v are trivial. In this case a bun-
dle metric reduces to a product metric. The second author showed in his
master thesis [13] that a product metric is self-dual if and only if the base
manifold (M, h) is of constant curvature. This constant curvature statement
holds even for a circle bundle with a flat connection. In fact, over a small
neighborhood in M such a bundle with a flat connection turns out after a
gauge transformation to be a product bundle with a trivial connection ( see
[10] Theorem 9.1 ). So the following question can be posed: are there a
non-trivial circle bundle 7 : P — M and a non-flat connection 7 such that
the bundle metric is self-dual ?

We consider this question in the case that the connection is Yang-Mills.

We then have the following

THEOREM 1. Let g = 4% + 7*h be a bundle metric on a circle bundle 7 :
P — M where v is a Yang-Mills connection relative to the base metric h.

We assume that g is self-dual with respect to the orientation of P. If
(M, h) has constant scalar curvature o and the Ricci curvature satisfies

6 Rich(Z,Z) + o h(Z,2) <0 (4)

for any tangent vector Z of M, then v and (M, h) must be flat and of constant
curvature, respectively. Moreover the self-dual metric g is conformally flat.

Theorem 1 asserts under a certain nonpositive Ricci curvature condition
on the base metric that every self-dual bundle metric is essentially given as a
product metric on a product circle bundle over a 3-dimensional space form.

The self-dual bundle metrics above defined admit the right action of S!
as isometries.
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So we might be able to consider more general setting, namely self-dual 4-
manifolds admitting a non-trivial Killing field. Those 4-manifolds have been
considered by Jones and Tod ([7]) and Joyce ([8]) in terms of Einstein-Weyl
3-manifolds with an additional generalized monopole solution.

As a conformal generalization of Einstein manifolds, an Einstein-Weyl
manifold is defined as a manifold M being endowed with (D, [h]) for a torsion-
free affine connection D and a conformal structure [h] represented by a metric
h which satisfies Dh = w ® h for a 1-form w and the symmetrized Ricci
tensor symRic® = Ah for a A € C*(M) (see, for more precise definition, for
instances [4], [7], [12] and [6]).

The following has been shown by Jones and Tod.

THEOREM(Jones and Tod [7]). Let P be a self-dual 4-manifold with a nowhere
vanishing conformal Killing field K. Then the orbit space M = P/K of all
trajectories generated by K carries a structure of Einstein-Weyl 3-manifold
with a generalized monopole solution.

Conversely, given an Einstein-Weyl 3-manifold M with a generalized
monopole solution, then the product manifold M x R admits a self-dual
metric with a nowhere vanishing conformal Killing field K such that the or-
bit space of all trajectories generated by the field K is just the Einstein-Weyl
3-manifold M having a generalized monopole solution.

This correspondence was also obtained by N. Hitchin in the context of
twitor spaces. In fact, given a self-dual 4-manifold admitting a conformal
Killing vector field H, its twistor space admits a holomorphic field so that
one can consider the space T of trajectories of H in the twistor space. And
it was shown by Hitchin that T carries the mini-twistor space of an Einstein-
Weyl 3-manifold (M, D, [h]), i.e., the space of oriented geodesics in (M, D, [h])
and vice versa. See for this [4] and also [11].

The second part of Theorem of Jones and Tod was also shown by Joyce
in a more direct form ( see [8], Proposition 2.2.3 ).

Even Joyce treated the product bundle P = M x R, the statement of his
result still holds for bundle metrics on non-trivial circle bundles. Although
Joyce did not mention it explicitly, we can actually show in our terminology
the equivalence between Einstein-Weyl 3-manifolds together with generalized
monopole solutions and self-dual bundle metrics on circle bundles.
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THEOREM 2. Let M be an oriented 3-manifold with a metric hand 7 : P —
M a circle bundle with a connection 4.

Then, a bundle metric g = n*h + 71;'72 ( f is a positive function on M
) is self-dual if and only if there exists a torsion free affine connection D
satisfying Dh = —2w ® h for a 1-form w so that (D, k) is Einstein-Weyl and
J is a solution to the generalized monopole equation:

df — fw =+ x4 (dy). (5)

We postpone its proof in §5.

In Theorem 2 we specialize for a bundle metric g = n*h+ Tlg'yz as f=1
and the connection v to be Yang-Mills, i.e., the 1-form *,d7 is closed. So in
this specialized case, namely for the bundle metrics considered in Theorem
1 the generalized monopole equation reads as

w=—*,dy | (6)

and hence w is closed, that is, w is locally exact and then the Einstein-Weyl
structure (D, h) is locally trivial, i.e., D coincides locally with the Levi-Civita
connection of a conformal change of h([6]). Theorem 1 implies then that
under the curvature conditions this closed 1-form w vanishes. So the base
manifold (M, h) must be an Einstein space and then a space form because
of dim M = 3. Further the curvature form dvy turns out to be zero.

REMARK 1. LeBrun constructed in [11] on a non trivial circle bundle over
a hyperbolic 3-space self-dual metrics as g = %72 + Vn*h, where V > 0
are fundamental solutions of the Laplace equation AV = 0 so that % xdV
are integral homology classes and that *dV = dv. Because of the conformal
invariance g is self-dual if its conformal change % g= Vlg'yz +*h is self-dual.
In LeBrun’s construction the hyperbolic 3-space structure is nothing but the
Einstein-Weyl 3-structure so that the equation *dV = d is the generalized

monopole equation.

REMARK 2. If the base manifold is compact, then any self~dual bundle metric
on a circle bundle P is automatically conformally flat. This is because the

S'! action is free on P so that the signature 7(P) must be zero ( see [3],
p.722 ).
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REMARK 3. A Riemannian 3-manifold (M, h) satisfying the curvature in-
equality (4) in Theorem 1 must be of nonpositive scalar curvature. On the
other hand, a nonpositively curved 3-manifold necessarily satisfies (4). So, let
Y. be a hyperbolic 2-space. Then a Riemannian product metricon M = ¥x S!
has constant scalar curvature and satisfies (4).

COROLLARY of THEOREM 1. Let P be an arbitrary circle bundle over M =
Y x S1. Then P admits no self-dual bundle metric g = 72 + 7*h associated
to a Yang-Mills connection «.

This corollary is shown as follows. In fact, if we suppose that some bundle
metric g be self-dual, then from Theorem 1 the base manifold (M, k) must be
of constant curvature, and hence this contradicts to a Riemannian product
structure M = ¥ x S1.

§2. Weyl conformal curvature tensor on a circle bundle

Let (M, h) be an oriented Riemannian 3-manifold and m : P — M be
a circle bundle. Let v be a connection on P and consider a bundle metric
g=7+7mh.

We take an orthonormal local frame {ep, - --,e3} of TP compatible with
the orientation of P in such a way that {m.e;, m,ez, T, e3} is an orthonormal
frame of T'M, associated to the orientation of M. The dual frame is given
as {0° = v, 0, 0%,6%}, where {60!, 62,6} is the pull back of the dual frame of
{m.e1,m.e2,m.e3}. |

Since the structure group of P is abelian, the curvature form I' = dvy of
v is a real valued 2-form defined over M;

1
F — 5 ZAstes /\ ot, Ast - _Ats- (7)
s,t

Here and in what follows, the Roman indices t, j, k, ¢, s, t run from 1 to 3,
while the Greek indices a, 3,4, 6 from 0 to 3. In addition, we define over M
tensors A;jx, Bij and C by

N Ayt = dAi; = Auwi - Ay, ‘ (8)
Bi ;. — Z AsiAsj,
C — ZBss - Z(Ast)z

st
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where w} is the Levi-Civita connection of (M,h). The tensor A;;x is the
covariant derivative of I' and %C’ is the square norm of T".
The curvature tensor K,p,s of the metric g is calculated by the aid of the

structure equations;
de* = - agAd, (9)
B

dsf + Y.o5nGh=0,
v

where
~ 1
0 = Estaﬁy&m N6, Kopys = —Kapsy (10)
7
and represented as
3
Kijie = Rija — ZAiink, (11)
1
KOin = ZBija
1
Koije = 5 Ak,

where R;jx, is the curvature tensor of (M, h) ( see for these formulas also [9],
§3). Further the Ricci tensor K,s and the scalar curvature k of (P, g) are

1

Kii = Ry — 3By, (12)
1
KOi - _§ ;Asi,s,
1
kK = 00— ZC,

where R;; and o denote the Ricci tensor and the scalar curvature of (M, h).
The Weyl conformal curvature tensor W of (P, g) is

1
Wopys = Kopys + 5(Kpy8as — Kpsbay — KayBps + Kasbpy)  (13)

K
+ 6(6'66607 — 5@7505).
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and from (11) and (12)

1 1 1 1 1 1
W(),;()j = ZB, — Q(B’.,J — EBij + ZC&J) + 6(0 — ZC)(S,J (14)
1 1 1
= 5By — 06 — ;T
g B~ 5%~ gl
1 1 1
Woije = §Ajk,i +7 > Agjsbi — 1 > Ak s8ij,
where T;; denotes the trace-free Ricci tensor of (M, h);
1
T = Rij — 300 (15)
We consider W as an endomorphism of §2;
WO AP) =" Wapyst* N6 (16)
a<lf

We take now the basis of Q3;
ff = ON L AP, (17)
fF = °rNFPLP NG,
ff = NP Lo NG
with respect to which W+ and W~ have trace-free symmetric 3 x 3-matrix
representations.

In what follows, we will adopt the convention that indices z, j, k appeared
in the propositions and formulae mean an even permutation of 1,2, 3.

PROPOSITION 2.1. The components W; of W™ are

_ 1 1 1 1
Wi = EBii — -6—0 — §T¢'i — §Ajk,i7 (18)
_ 1 1 1 1
W, = §Bij — ‘2‘Tij — §Ajk,j + 1 Z:Ask,s-
Proof. We have
W = Woini — Wois —lB.._lc_lT.._lA.. (19)
it 0:i0i Oijk — 2 1 6 9 i 9 jk,i9
_ 1 1 1 1
Wi = Woij — Wojie = §Bij §Tq 2Ajk,,- +2 > Asks
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This is because, on a general Riemannian 4-manifold

WO NP — 0" NO°) = (Wapru — Wosa )0 A 0 (20)
A<p
and
Wagag = Wysys, Wapys = — 676> (21)
where a, 3,4, 6 are distinct indices. , Q.E.D.

We assume that a connection v is Yang-Mills, namely, the curvature form
I' = dvy is coclosed; 6 I"' = 0.

Then, since }", As s = 0, the anti-self-dual part W~ has from Proposition
2.1 the components

1 1 1
Wi = _'%Ajk,i +5Bu— 05T, i=1,2,3 (22)
1 1 1 C
Wi = —54mi+ 5By~ Ty i# 5.

Thus, we have

PROPOSITION 2.2 Let g = 72 + 7*h be a bundle metric on P. Then g
is self-dual if and only if the covariant derivative of the curvature form I
satisfies ‘

1
Aijx = Brx — §C — Tik, Aiji = Bri — T (23)

We have then

PROPOSITION 2.3 Assume that a bundle metric g = v2+7*h is self-dual with
respect to the orientation of P. If (M, h) has constant scalar curvature, then
under the condition that <y is a Yang-Mills connection the second covariant
derivatives of the curvature form of v satisfy

1
ZAij,ss - —'l—éck, (24)

s
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where dC = Y, C,6°.
Proof. Since dim M = 3, the Yang-Mills equation Y, A, s = O is equivalent
to Aj;; = —Agix for an even permutation {z, j, k} of {1,2,3}.

We take covariant derivative of formulae (23) in Proposition 2.2 to have
1

3Ck - Tkk,k) (25)

> Aiss = (Brii — Thiz) + (Bjr,; — Tik,5) + (Brk —

= ZBsk,s - %Ck - an,s-
s s

The last term vanishes from the assumption that (M, h) has constant
scalar curvature together with the secon Bianchi identity.

On the other hand, the Yang-Mills equation Aj;; = —Ajxx together with
the second Bianchi identity on I, i.e., dT" = 0, implies

Y Bas = (AjiAju)i+ (AijAu),;+ ((Aw)? + (Aj)*) & (26)
= AjiiAje + AjiAjrs + AijjAic
+ Aiink,j + 2Aik,kAik + 2Ajk,kAjk

~lg
from which the proposition follows. Q.E.D.
Since it holds
AijBri + AjxBii + AxiBji = 0 (27)
for any even permutation {z, j, k}, we have by applying Proposition 2.2
Ci = 4(AijAii+ AjeAjri + AriAri) (28)
4

= —3 kC — 4(AijTis + AT + AnTyj)-

Consequently we have the following

PROPOSITION 2.4 Assume g = 2+ 7*h is a self-dual metric on P. If (M, h)
has constant scalar curvature and <y is Yang-Mills, then the curvature form
I'= % Y A0 N O satisfies the following equations.

1 1
Z Aij,ss = §A,-j(} + g(AkiT}k + A,‘kak + AjkT,'k). (29)
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§3. The Bochner-Weitzenbock formula for 2-form Laplacian

Let ¢ be a 2-form on an oriented 3-manifold (M, h). Then the Bochner-
Weitzenbock formula of Ap = (6d + db)y is

(AQ)ij = = Pijss — O Ratijpst + _(Rsitpsj + Rajipis)- (30)
s s,t s

To get this formula is a routine business. So, consult (3.10) and also
(3.8) in [2] where the Bochner-Weitzenbock formula was derived for a vector
bundle valued 2-form.

Let = be an arbitrary point of M. Diagonalize the Ricci tensor at z. So,

(Ap)i; = = Pijss + (Ris + Ryj — 2Rsjis)pij, (31)
because

Z Rstijpst = 2(Rijijpis + Rikijpik + RiiijPri) (32)

s,t

and, the both Rj; = Rjkji and Rkj = Rikij vanish at z.

PROPOSITION 3.1 Let v be a Yang-Mills connection on a circle bundle P.
Then the curvature form I' = %Zs,t Aa0® A Gt of v satisfies

> Aijss = (Rii + Rjj — 2Ryji) Aij. (33)

Proof. Since v is Yang-Mills, A" = 0. So, the equation (33) follows from
(31). Q.E.D.

§4. The proof of Theorem 1

Let (M, h) be of constant scalar curvature. Suppose that the connection
v is Yang-Mills and the bundle metric g = 42 + 7*h is self-dual.

If we diagonalize the Ricci tensor at £ € M, the equation (29) becomes
at =

1 1
D> Aijss = (§C + ngk)Aij- (34)
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Combining this with (33) we have
1 1
§C'Aij = (Rii + Rjj — 2Ryji5 — ngk)Aij (35)
the RHS of which reduces to
2 1
(ngk + §U)Aija (36)

because Ry + Rjj — 2Rijij = Riixi + Rjkje = R and  Tix = Rk — 30.
Consequently, we have

1 2 1
§CA,'J' - (ngk + §O')A,'j. (37)
Suppose I' # 0 at some point z € M. So (37) holds at z for the diago-
nalized Ricci tensor. Since I' # 0, we can assume without loss of generality
A;; # 0 for some indices %,j at z.
We have then

C=6Ri+o (38)

and C = Y (A«)? > 0 at z. The curvature assumption on (M, h), how-
ever, implies 6Rix + 0 < 0. This causes a contradiction. Thus I' vanishes
identically on M.

That (M, h) is of constant curvature follows from the equation (22). In
fact, since v is flat, A;;, Bij, C all vanish and hence T' = 0, that is, the base
metric h is Einstein. On 3-manifold M this implies that h is of constant
curvature.

Finally we will show that the bundle metric is conformally flat. Because
«v is flat and T" = O for (M, h), W vanishes from formulae (14).

§5. The proof of Theorem 2

Set F' = f~! in the bundle metric form. Then g = F242 + w*h.
To verify the equivalence in Theorem 2 we need to adapt Joyce’s termi-

nology to our calculation framework. So, we set p = —w. The generalized
monopole equation ——%F; — %;w = *d~y reduces to ——% + pu = F xd~v.
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It suffices then to show that the metric g = F2v 4 n*h is self-dual if and
only if the 1-form p and the positive function F fulfill

1
Ricy, + E(Vsp + 2pQ@pu) = Ah, (39)
p = dlogF + F(xdv)

(Veu(X,Y) = (Vxp)(Y) + (Vyu)(X) ). Here the first equation represents
the Einstein-Weyl equation ( see [6]).

We adopt an orthonormal dual frame similarly as in §2;
{6° = F~,6",6%,6°}.

Then by the aid of the structure equations the curvature tensor K,g,s of
the metric g = F?4® + w*h is represented as

3

Kijixw = Rijax — ZF % Aij Au, (40)
1
Kowoj = —F'Fj+ ZFzB,-,-,

1 1
Koiji - = '2‘FAjk,i + F;Aj — §(FjAki + FiAyij),

where F; ; is the second covariant derivative of F'.
We have the Ricci tensor K,3 and the scalar curvature & of (P, g)

1

Kij = Ry—F7'F,;— §F2Bij, (41)
Koi = %Fzs:Asi,s - gzs:FsAsi,
Kk = 0—3F2C—%23:F3,3
and the Weyl conformal curvature tensor;
Woio; = %F2B,-j - éFzC%‘ - %T,—,- - ;;:(Fi,j - %Zs: F;,4655), (42)

1 F
Woise = o Ajri + Z(Z Agjsbik — Y Ask,s0i5)

1 3
+ Aiji — é(AkiFj + A.'ij) + 1_1(6* Z Asts — 5,'1' ZAssz).
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LEMMA 5.1 The components of W~ are given as

I 1, 1 1
I/Vii - —iijk,i + EF (Bu - gC) 2711 + Un,
1 1 1 1
m; — ——2-FAjk’j + EFzB,;j — 511_7 + ZFZA"""’S + U,'j,
where Uj; and Uj; are given by
| 1 1 1
Ui = _E(Fi,i 3 Zs: Fos) — F;Aj + 'Z‘(F}Aki + FiAqj),
1 3
U,‘J' == _ﬁFi’j -_ Z(Ak,’Fi + Aijj).
Now define a 1-form p = Y, us6° by
Hi — % + FAjk, 1= 1,2,3.

We take covariant derivative of p;;
F.
pie = (55 + FAju).e

and substitute (45) to this to get

Pieg = { Ff + FAjk,g —_ 2F2AjkAmn}

—  pipe + F(piAmn + 2p10Aj1),

where {z, j,k} and {£,m,n} are even permutations of {1,2,3}.

So,

1
pii+pi = 7l + FAges + 3F A — 2F 2A%
1
= pluit FAp: +3F:Aj + F?A%

and summing up this

1 1
g(ﬂ&"s + l"ﬁ) - F ;Fs,s + 3ZFiAjk + §cm
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(45)

(46)

(47)

(48)
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Here we used the Bianchi identity for I'. The summation ) F; A, is taken
over the cyclic even permutations of {1,2, 3}.

So

1 1 1
(1 + pag) — 3 S+ pss) = f(Fi,i —3 > Foo) + FAjs (50)

1
+ 2F;Ajx — FjArw — FrAij — EFZC + F?A%.
Thus from (46) we have

1

1 1 1 1
Us + 5{(#? + pig) — 3 Zs:(ﬂﬁ + s,s)} = g FAms — o F “C+ 2t 2A% (51)

Since By = A% + Af, = § — A%, the RHS of this turns into

1 2 1 2
5F?Bu + < F°C. (52)

So we have verified the half of the following

1
§FAJ']¢’,' -

LEMMA 5.2. If one defines p; = 3 + F'Ajx, then the components of W~ are
written

_ 1 1 1 .

Wi = —5Tu- 5{(%’)2 + pig) — 3 > ((1s)? + p1s5)}, i=1,2,3 (53)
_ 1 1 1 ] .

Wi = 5Tu— 7 (Bis + P3i) = GHittys 8 F ]

To verify the rest part is similar, so we omit.

Therefore, from Lemma 5.2 all the components of W~ vanish if and only

if

F; :
pi:F+FAjk,1,:1,2,3 (54)
together with
1
T + pf+ pag— 3 > (15 + pss) =0, (55)

1
i + 5(was+ pia) + paps = 0,
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in other words,

1

1 1
Rij — 3085+ 5 (i + s + 2maps) — 3 > (15 + ps,6) 655 = O, (56)

or in coordinate free expressions

1
Ricy, + E(Vsu + 2u @ p) = Ah, (57)

where
1
A= (o + bl + 3 pas) (58)

which is exactly the Einstein-Weyl equation. So we get Theorem 2.
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